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DEVELOPMENT OF LOW VISCOSITY ALKANE-BASED
URETL.IANE FOR CONNECTOR POTTING APPLICATIONS

I. INTRODUC'CION

It was established in a previous Discretionary Fund task that alkane~based
urethanes are hydrolytically and oxidatively stable and have excellent dielectric
properties. However, the urethanes prepared from most commercially available
alkene materials are very viscous liquids or semi-solids which cannot be easily used
in potting applications. To take advantage of the inherently good properties of this
type of urethane, this study has been directed toward the development of alkane-~
based urethanes with viscosities low enough to permit easy mixing with catalyst at
room temperature, followed by out-gassing, and molding.

Polyurethanes are made essentially of three basic components: difunctional
polyols, diisocyanates, and chain extenders. It is the interaction of these three com~-
ponents which produces the polyurethane:

e L.

HO-R ~ OH + OCN - R'- NCO
polyol diisocyanate |
0 o) ¥

it "

OCN-R'-NHC-0O0-R~-0-CNH -R 'NCO

urethane prepolymer

The urethane is cured with chain extenders which in this study, consisted of a
diamine.

o) o)

" n
OCN-R'-NH~C-0-R~-0-C~-NH~R-NCO + NH2 R" NH2 ‘
urethane prepolymer diamine
0] 0] 0] 0]

1" " " "

CNHR'-NHC-0-R-O-C-NHR'-NHC-NHR"-NH

polyurethane
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Each of these components can influence the v130051ty of the reaction mixture. Pot
life, or time interval before the material is too viscous to use, will depend upon the
relative reactivity of the components, the molecular weight, and the molecular
structure,

Most of the alkane-based urethanes used in this study were prepared by the
hydrogenation of hydroxy-termmated polybutadiene. The high viscosity of the
resulting urethane is due to crystallinity and to the high molecular weight of the
polybutadiene used. The preparation of hydroxy-terminated polybutadiene by anionic
techniques lead to both 1,2- and 1,4~ additions of butadiene:

_Eclﬁ - CHZ}- -ECHZ CH = CH - cnz}-

CH
|
CH,

1,2~ addition 1,4~ addition
One typical commercially available hydroxy-terminated polybutadiene is:

CH OH

2
CH = = CH

/ 3
HO CH CH H CH - CHHCH

CH—-C‘I

[ -]

The predominant configuration is trans-1,4 (60 percent) with approximately 20
percent each cis-1,4 and vinyl-1,2, Hydrogenation yields

CH >—CH CH—(CH OH

CH —-CH

Hydrogenation of the 1,4-chain leads to polyethylene, a highly crystalline polymer,
whereas, hydrogenation of the 1,2-chain would yield poly-l-butene, presumably
atactic, and hence non crystalhne. A study of methods for preparing polybutadiene
with a high 1,2-addition content was not within the scope of this study. However,
the range of usable molecular weights found by this study could undoubtably be ex-
tended by the use of highly branched polyols to disrupt the chain regularity

LIRS
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favoring crystallinity and thus lower the polymer viscosity. As an example, a urethane
prepared from 1,12-dodecanediol, molecular weight 202, had an initial viscosity
preater than 20,000 poise; while one prepared from ¢ hydrogenated polybutadiene diol,
molecular weight 1350, had an initial viscosity of 380 poise.

' Seven alkane-based polyols, varying in molecular weight from approxim-iely 300
to 4000, were used for preparing polyurethanes to be used in this study. With one
exception, the polyols were prepared by the hydrogenation of hydroxy-terminated
polybutadiene. Hydrogenated ricinoleic acid,

HO~ClH-Clo

Ce Hyg

Hyp CH2 OH,

was used as the lowest molecular weight diol.

Diisocyanates are the second group of components used in the manufacture of
polyurethanes. These cheémicals end-cap the polyols and supply the active sites
necessary for cross-linking or chain extension. The most commonly used and least
expensive diisocyanate is 2,4-toluene diisocyanate (TDI). However, in this study, two
aliphatic diisocyanates, isophorone dissocyanate and methylene bis(4-cyclohexyl-
isocyanate), were used to evaluate their effect on pot life as compared to the aromatic
TDI-type diisocyanate.

The final component of polyurethanes is the chain-extender or cross-linker. This
component allows the urethane prepolymer to reach its final molecular weight and con-
verts it via crosslinks to a thermoset material. The chain extenders fall into two
categories, diols and amines. Both types were used in this study. The most common
diamine type is 4,4' methylene-bis(2~chloroaniline), known under the DuPont trade
name MOCA. This curing agent adds toughness to the urethane; but it was not used
in this study because it is a carcinogen suspect. Polacure 740M, trimethylene glycol
di~-p-aminobenzoate made by Polaroid Corporation, was used. 1,4-Butanediol was used
in one series of urethanes.

Three series of urethanes with molecular weights from 300 to 4000 wcre prepared,
molded, and cured into configurations for the evaulation of physical properties. The
cured urethanes were tested for hardness, tensile and tear strength, percent elon-
gation, and specific gravity. These properties were compared to that required by
MSFC-SPEC-515, which is the controlling specification for urethane potting and
molding material. Thermogravimetric and thermomechanical analyses were performed to
further characterize these materials.

II. URETHANE PREPARATION

A. Hydrogenation of Polybutadiene

The polybutadiene diol was hydrogenated using a Parr 3921, shaker type,
hydrogenation apparatus. A 200 W glass fabric heating mantle was used for heating
the reaction bottle. The temperature of the reaction was automatically controlled with
a Parr 3931 temperature controller and a stainless sheathed thermistor probe in the

A
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reaction hottle.

One hundred grams of hydroxy-terminated polybutadiene was dissolved in 1 liter
of toluene in a 2-liter reaction bottle, Approximately 1.0 gram of Palladium (5%) on
activated carbon was added and the bottle was placed in the hydrogenation apparatus.
The bottle was evacuated and refilled with nitrogen. This procedure was repeated |
taree times. The vessel was evacuated and refilled with hydrogen twice. The ap-~
paratus was pressurized to 50 psig and the¢ wmaterial reacted at 75°C, The reaction
was allowed to proceed until a minimum of 90 percent of the theoretical amount of
hydrogen was absorbed. The catalyst was then removed by Soxhlet extractiun of the
reaction mixture. The toluene was evaporated isolating the hydrogenated polybutadiene
diol.

Figures 1 and 2 show the infrared spectrum of polybutadiene before and after

hydrogenation. The disappearance of the absorption bands in the 910 cm"’k1 to

1000 cm"1 region, generally associated with cis, trans, and 1,2 vinyl units, indicates

the polybutadiene has been hydrogenated. The groups were hydrogenated prefer-

entially. The vinyl group was hydrogenated the most rapidly and the trans-1,4 the 1
least, Some samples showed some residual unsaturated trans units. However, accor-

ding to the amount of hydrogen absorbed, all samples were hydrogenated to 90

percent or greater.

” -

B. Alkane Diols

The alkane diols used in this study were primarily hydrogenated, hydroxy-
terminated polybutadienes (HTPBD). Two of these materials under the trade name
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Figure 1. Infrared spectrum of hydroxy-terminated polybutadiene.
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Figure 2. Infrared spectrum of hydrogenated, hydroxy-terminated polybutadiene,
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Telagen-S were obtained from General Tire and Rubber Company. Hydroxy-terminated
polybutadienes ranging in molecular weight from 450 to 3350 were obtained fiom
Polyscience, LTD and Arco Chemical Company. This range would include and exceed

the molecular weight required in the preparation of polyurethanes for connector-
potting applications.

Table 1 lists the diols used in this study. Molecular weights for those diols not
furnished by the distributor were determined using gel permeation chromatographic
(GPC) techniques. The chromatography studies were carried out on a Waters
Associates liquid chromatograph equipped with a Model 6000 A solvent delivery f
system, Model 440 absorbance detector, and R 401 differential refractometer.

Hydroxyl functionality was calculated from hydroxyl number and number-average
molecular weight. Hydroxyl number is the milligrams of OH expressed as potassium
hydroxide per gram of sample. The hydroxyl equivalent vicight is 1000 x molecular
weight of potassium hydroxide/hydroxyl number or

Hydroxyl equivalent weight = 56,100
Hydroxyl Number

Functioriality of the diol is the number-average molecular weight/hydroxyl equivalent
weight or

Functionality = Mn x Hydroxyl Number

96,100

e e O
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A functionality of two indicates two hydroxyl groups per molecule. Monofunctional
molecules would prevent chaiiy 2xtension and result in a lower molecular weight of the
cured polymer. The functionaiity of the diols used in this study was very close to
two considering variations due to experimental error, with the exception of HTPBD
1350 and 2900 as indicated in Table 1. Mechanical properties of urethanes prepared
from these diols would be suspect.

TABLE 1. CHARACTERIZATION OF DIOLS

Melecular Weight
Number Average,

Alkane Dijol M " Functionality
1,12-Dodecane cliol 202 2.0
Hydrogenated Ricinoleic Acid 286 2.0
HTPBD 450 450 2.0
HTPBD 1350 1350 1.6
Telagen-S A595-88 1660 2.1
RTPBD 2000 2000 1.4
HTPBD 2800 2800 2.2
HTPBD 3500 3350 2.3
Telagen-S 185M 3960 1.9

C. Diisocyanates

Two aliphatic diisocyanates, isophorone diisocyanate and methyl bis-(4-
cyclohexylisocyanate), were studied in this project. Isophorone diisocyanate or 3-
isocyanate-methyl~3,5,5-{rimethyl-cyclohexylisocyanate was obtained from Thorson
Chemical Corporation. The structure is

CH,
OCN.— —&
clgg CH,NCO
CH A\

Methyl-bis(4-cyclohexylisocyanate) was obtsined from Mobay Chemical Corporation !

under the trade name Desmodur W. The structure is

-

e Kt - AR -« hSs s b o s
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NCO

S

(}H2

NCO

Each diisocyanate was used for preparing a series of urethanes with the diols in
Table 1. The diisocyanates react much more slowly with the diols than does TDI.
Viscosity increases slowly resulting in a urethane with lower viscosity and a longer
working life. Higher temperatures are required for complete cure. Because of lower
reactivity some of these urethanes can be processed at elevated temperatures to take
advantage of the resulting lower viscosities. A urethane prepared from 1,12-
dodecanediol with a viscosity greater than 20,000 poise at room temperature was pro-
cessed satisfactorily at elevated temperature. Viscosity decreases rapidly with increase
in temperature. Some unique urathanes probably could be prepared by reacting these
aliphatic diisocyanates with phenol-type materials.

Relative reactivity of catalyzed urethanes prepared from the two aliphatic
diisocyanates and a commercial urethane of the TDI-type is illustrated in Figure 3.
MSFC~-SPEC-615, the specification for molding and potting material, requires that the
application life of freshly mixed urethane (time for viscosity to exceed 1000 poise)
should be at least 1 hr., The two experimental urethanes easily meet this requirement.
The compssinion of the application life of the three urethanes is:

Commercial urethane 1to 2 hr
Isophorone urethane 2 to 3 hr
Desmodur W urethane 4 to 5 hr

However, the initial viscosity and the cure time of the two experimental ‘diisocyanates
exceed that required by MSFC-SPEC-515. Urethanes prepared from Desmodur W and
hydrogenated, hydroxy-terminated polybutadienes of molecular weights up to 2500
(Fig. 4) are usable as potting and modling materials, Those prepared from isophorone
diisocyanate are more viscous but arz usable to about 2000 molecular weight. However,
the urethanes have a high initial viscosity and a long cure time. These disadvantages
must be weighed against the materials' excellent dielectric properties and moisiure
resistance,

D. Curing Agents

The urethanes were cured with trimethyiene glycol di-p-aminobenzoate

(l-l) 0
: Il
HZN—-C-O~(CH2)3~O—C— -NH,

Vit e,

“:ﬂ‘\"* “:‘*:;;»' ST

¥
E
s



VISCOSITY {POISE]}

ORIGINAL PAGE 19
OF POOR QUALITY

1500~
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O TELAGERN-S A595—-88—IPDI
O TELAGEN-S A585-88-DW
X COMMERCIAL URETHANFE
LI ] B L) i
1 2 3 4 5
TIME (HOURS)
Figure 3. Viscosity of catalyzed urethanes versus time.
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sold by Polaroid Corporation under the trade name Polacure 740M. Three series of
urethanes were prepared with alkane diols listed in Table 2. One series was pre-
pared with isophorone diisocyanate (IPDI) and one with Desmodur W (DW). These
urethanes were cured with the Polacure 740M. One additional series was prepared
with the alkane diols and isophorone diisocyanate and cured with a mixture of
Polacure 740M and 1,4 butanediol to evaluate the diol as a chain extender.

TABLE 2. COMPOSITION OF ALKANE-BASED URETHANES

Weight Curing Agents
Diisceyanate|  g/100g Diol
g/100g |Polacure 1,4
Alkane Diol Diisocyanate Diol 740M Butanediol

Hy drogenated Ricinoleic Acid IPDI 6.1 4.5 2.1
HTPBD 450 IPDI 64.5 4,2 3.8
HTPBD 1350 IPDI 33.0 4.2 4,3
Telagen-S A595-88 IPDI 26.8 4.0 3.1
HTPBD 2000 IPDI 22.2 3.8 2.3
HTPBD 2800 IPDI 15.8 3.6 1.1
HTPBD 3500 IPDI 13.2 3.6 0.6
Telagen-S 185M IPDI 11.2 3.5 0.3
1,12 Dodecandiol IPDI 117.4 5.4 -
Hydrogenated Ricinoleic Acid IPDI 80.4 - 4,2 -
HTPBD 450 IPDI 54.4 3.4 -
HTPBD 1350 IPDI 20.0 2.5
Telagen-S A595-88 IPDI 16.9 2.5
HTPBD 2000 IPDI 14.7 2.5 -
HTPBD 2800 IPDi 11.7 2.7 -
HTPBD 3500 IPDI 10.6 2.9 -
Telagen-S 185M IPDI 10.0 3.1 -
1,12 Dodecandiol DW 139.8 6.1 -
Hydrogenated Ricinoleic Acid DW 95.8 4.7 -
HTPBD 450 DW 64.8 3.8
HTPBD 1350 DW 23.9 2.7
Telagen-S A595-88 DW 20.2 2.6 -
HTPBD 2000 DW 17.5 2.7 -
HTPBD 2800 DW 14.0 2.8 -
HTPBD 3500 DW 12.8 3.0 -
Telagen-S 185M DW 12.0 3.2 -

E. Preparation of Test Specimens

The urethanes were prepared in a one step reaction with the alkane diol,
diisocyanate, and chain extenders in the ratios shown in Table 2. Polacure 740M was
dissolved by heating with the alkane diol. The diisocyanate was added to the mixture,
stirred thoroughly, and then degassed. The reaction mixture was poured into molds
for sheet material. The material was cured in air at 70°C for 12 hr and 120°C for

10
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18 hr. Specimens for tensile strength, elongatiorn, tear strength, and thermal tests
were cut from the cured sheets of the elastomer for evaluation of mechanical proper-
ties.

IIT. URETHANE EVALUATION

A. Hardness

Hardness was measured with a Shore Durometer, Type A-2, with the exception )
of the urethanes prepared from 1,12-dodecanediol. Hardness for these urethanes
was measured with Shore Durometer, Type D. The dodecanediol-urethane has a
relatively short flexible chain and a very regular structure resulting in a highly
crystalline and hard urethane. These urethanes are not elastemeric and are not
suitable for potting applications. MSFC-SPEC-515 permits a hardness range of
60 to 90 Shore A hardness for potting applications. Most of the urethanes prepared
in this study, as shown in Table 3, fall in this range. J

B. Tensile Strength and Elongation

Tensile strength and elongation testing was in accordance with ASTM D 638-77.
This method covers the determination of the tensile properties of plastics in the form
of standard dumbell-shaped test specimens. The specimens were cut from cast sheets
of the cured urethane. The values obtained for the experimental urethanes are shown
in Tables 4 and 5. Urethanes prepared with Desmodur W have higher tensile strength

TABLE 3.. HARDNESS OF CURED URETHANES

Diisocyanate
Isophorone I sophoronea .
Alkane Diol Desmodur W | Diisocyanate Diisocyanate
1,12-Dodecane Diol 78 D 78 D -
Hydrogenated Ricinoleic Acid 96 95 95
HTPBD 450 77 83 89
HTPBD 1350 67 63 76
Telagen-S A595-88 64 60 74
HTPBD 2000 64 62 73
HTPBD 2800 64 61 72
HTPBD 3500 64 63 60 |
Telagen-S 185M 57 ’ 60 60

a. 1,4 Butanediol added as chain extender as shown in Table 2.

11 Z;
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TABLE 4. TENSILE STRENGTH AT BREAK, PSI

, Diisocyanate
Isophorone Isophoronea ’
Alkane Diol Desmodur W Diisocyanate Diisocyanate
1,12~Dodecane Diol 7510 8099 -
Hydrogenated Ricinoleic Acid 2971 1600 2576
HTPBD 450 629 516 892
HTPBD 1350 320 294 339
Telagen-S A595-88 729 523 729
HTPBD 2000 383 358 390
HTPBD 2800 656 405 806
HTPBD 3500 445 408 458
a. 1,4 Butanediol added as chain extender as shown in Table 2.
TABLE 5. ELONGATION AT BREAK, PERCENT
Diisocyanate
Isophorone Isophoronea *
Alkane Diol Desmodur W Diisocyanate Diisocyanate
1,12-Dodecane Diol 70 90 -
Hydrogenated Ricinoleic Acid 142 172 98
HTPBD 450 167 172 182
HTPBD 1350 192 243 197
Telagen-S A595-88 437 525 275
'HTPBD 2000 74 83 142
HTPBD 2800 125 175 170
HTPBD 3500 192 197 155

12

a. 1,4 Butanediol added as chain extender as shown in Table 2.
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and lower percent elongation than those prepared with isophorcne diisocyanate. The
tensile strength of the isophorone diiscoyanate material was increased by the addition
of 1,4 butanediol as a chain extender. A study directed toward cure optimizaticn
would probably result in urethanes with better mechanical properties but such a study
is beyond the scope of this task,

MSFC-SPEC-515 requires a minimum 1500 psi tensile strength and 200 percent
elongation for potting applications. The uretnanes prepared from 1,12 dndecanediol
has a very high tensile strength, but the material is not elastomeric, as indicated by
its low percent elongation, and is not suitable for potting applications. The low values
for tensile strength obtained for HTPBD 1350 and 2000 are probably due to their low
functionality. Most of the experimental resins are usable as potting material. However,
the alkane-based urethanes, in general are less elastomeric, more plastic, and not as
tough as the ether-based urethane.

C. Tear Strength

Tear strength was determined in accordance with ASTM D624-54. The test speci-
mens were cut with a Model C die from cast sheets of the cured urethane. Urethanes
prepared with Desmodur W (Table 6) have slightly greater tear strength than those
prepared with isophorone diisocyanate. The use of 1,4 butanediol with the isophorone
diisocyanate as a chain extends improves the tear strength slightly. Hydroxy-
terminated polybutadiene 2800, with a low functionality, formed urethanes with low
tear strengths for all three formulations. MSFC~SPEC-515 requires a minimum tear
strength of 175 lb/in. Most of these experimental urethanes do not meet these require-
ments. In general, the alkane-based urethanes are not as resistant to tear as are the
ether-based materials.

TABLE 6. TEAR STRENGTH, LBS/IN

Diisocyanate
| .{sopﬁorone Ivso;')hox:;m.e'a :
Alkane Diol Desmodur W Diisocyanate Diisccyanate
1,12-Dodecane Diol 1099 1096 -
Hydrogenated Ricinoleic Acid 419 126 434
HTPBD 450 72 63 83
HTPBD 1350 69 65 69
Telagen-S A595-88 112 93 119
HTPBD 2000 62 52 58
HTPBD 2800 109 97 126
HTPBD 3500 97 95 100

a. 1,4 Butanediol added as chain extender as shown in Table 2.
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D. Glass Transition and Expansion Coefficient

Glass transitions and expansion coefficients for the experimental urethanes were
determined with DuPont 943 Thermomechanical Analyzer in conjunction with the Dupont
1090 Thermal Analysis/Data System. Figure 5, a typical thermomechaaical analysis of ¢
an alkane-based urethane, shows the glass transition (T E:) of the material as well as

coefficient of expansion (o) below and above T g Table 7 lists the glass transition

temperatures for the experimental urethanes. Table 8 lists the expansion coefficients.
The coefficient of linear thermal expansion is a very important parameter for materials
used for coating circuit boards, It is possible for a thick coating with a high ex-
pansion coefficient to break a solder joint. MSFC-SPEC-507, specification for conformal
coeting material for printed circuit boards, requires a maximum coefficient of ex-
pausion of 175um/m °C from -55 to 100°C. As shown in Table 8, the expansion co-
eificient for a urethane below T  is much less than that above T g This temperature

range spans the glass transition range of most urethanes and includes two distinct
rates of expansion. As a result the expansion rate over the specified range would
be an average or resultant vector for the above T g and below T & rates. This is

illustrated in Figure 5. The expansion coefficient is 75um/m °C below T g and
338um/m °C above Tg' It is 214um/m °C between -55 and 100°C. The urethanes with

the higher glass transition temperatures give the better expansion coefficients in the
required range. In general, the alkane-based urethanes have expansion coefficients
higher than is desirable for coating applications,

L e e I m o B e A e i e mm o

w0+ = 338, g mimPc |

100,0°C

DIMENSION CHANGE (um)

-56,0°C
=214, 4 mim°C

e 75.4 4 mim°c

+ -+ + " 4 4+ 4 +
+ t A\ + ¥ T t +— +

’ + + N 4 + + + s + +
+- + + t + - + + + + + t
160 -120 -80 -40 o 40 80 120 160 200 240 280

TEMPERATURE {°C)

Figure 5. Thermomechancial analysis of alkane-based urethane.
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GLASS TRANSITION, °C

Diisocyanaie
Isophorone Isophoronea )
Alkane Diol Desmodur W Diisocyanate Diisocyanate
1,12-Dodecane Diol 50 51 -
Hydrogenated Ricinoleic Acid 49 42 54
HTPBD 450 17 15 19
Telagen-S A595-88 ~-20 -16 ~25
HTPBD 2800 -9 -18 -17
HTPBD 3500 ~-24 ~19 -34
a. 1,4 Butanediol added as chain extender as shown in Table 2.
TABLE 8. EXPANSION COEFFICIENT, um/m °C
Diisocyanate
Isophorone FIsophoronea'
Desmodur W Diisocyanate Diisocyanate
Alkane Diol Below | Above | Below | Above | Below | Above
T T
_ TE TE—’; g g TB’ Tg’
1,12~-Dodecane Diol 83 192 68 332 - -
Hydrogenated Ricinoleic Acid 118 207 136 232 111 246
HTPBD 450 132 263 129 305 75 337
Telagen-S A595-88 108 309 87 452 94 292
HTPBD 2800 139 405 115 325 112 330
HTPBD 3500 112 382 125 411 113 413

A. 1,4 Butanediol added as chain extender as shown in Table 2.
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E. Thermogravimelric Analysis

Decomposition temperatures and weight loss for the alkane-base urethane were
determined with a DuPont 951 Thermogravimetric Analyzer in conjunction with a
DuPont 1090 Thermal Analysis/Data System, Table 9 summarizes the thermo-
gravimetric analyses of the experim2ntal alkane-based urethanes. The urethanes were
heated to 600°C at a rate of 20 deg/min in gaseous nitrogen. Decomposition was al-
most complete for all samples. The temperature of onset of decomposition, the in-
flection point, and percent weight loss are shown in Table 9 for the three series of
urethanes. The thermal stability of the experimental urethanes compare favorably
with other uretharie types shown in Figure 6. There is very little difference amorng
the urethane types with the exception of the polybutadiene-based urethane, This
urethane has a lower on-set temperature and appears to have two transition tempera-
tures. The thermal stability of the three series of urethanes prepared in this study
are very similar, Figure 7 compares three alkane-based urethanes prepared from
hydrogenated ricinoleic acid (HRA). One urethane is prepared from ricinslic acid
and Desmodur W (DW-HRA), one from the acid and isophorone diisocyanate '
(IPDI-HRA), and one with 1,4 butanediol added as a chain extender (JPDI-HRABA).
The urethane prepared with Desmodur W appears to have the best thermal properties.
The two prepared with isophorone diisocyanate have very similar properties. In
general, the thermal properties of the alkane-based urethanes are comparable to other
type urethanes.

IV. CONCLUSIONS

Alkane-based urethanes were prernred by reaction of both isophorone
diisocyanate and methyl-bis(4-cyclohexylisocyanate) with hydrogenated, hydroxy-
termianted polybutad1ene Urethanes with molecular weights up to 2500 had viscosities
low enough to be used in potting and molding applications. Since the reactivity of the
alkane diisocyanates was iess than that of their aromatic diisocyanate counterparts,
the working life of the experimental urethanes was longer than that of the average
commercial urethane. However, the initial viscosity was higher. The higher molecular
weight alkane-based urethanes were not suitable for potting applications. A compari-
son of the properties of the experimental urethanes with MSFC-SPEC 515 requirements
is shown in Table 10.

The experimental urethanes could be prepared in the required hardness range,
60 to 90 Shore A. However, none of the urethanes met all of the requirements re-
lating to hardness, tensile strength, elongation, and tear strength. The alkane~
based urethanes did not have as high tensile strength, percent elongation, and
resistance to tear as ether or ester-based urethanes. The experimental urethanes
were less elastomeric, more plastic, and not as tough as ether-based material.

The thermal stability of the experimental urethanes was as good or better than
ether, ester, and polybutadiene-based urethanes. The coefficient of linear thermal
expansion for the material was higher than desirable for printed circuit board
coatings.

i

The alkane-based urethane can be used for potting and molding applications.
Up to 2500 molecular weight, viscosity is low enough and working life is long enough
for this usage. Dielectric properties and hydrolytic stability are excellent. However,
mechanical properties are not as good as those of ether and ester-based urethanes.
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TABLE 10, COMPARISON OF PROPERTIES OF EXPERIMENTAL Un.™THANES

WITH REQUIREMENTS OF SPECIFICATIONS FOR

URETHANE POTTING MATERIAL

MSFC-SPEC Experimental
a Alkane-Based
Properties 516" Urethanes
Hardness, Shore A 60~90 57-96
Tensile Strength, psi 1500 min 400-3000
Tear Strength, lb/in 175 min 52~434
Elongation, percent 200 min 74-525
Viscosity, Initial at 256°C, poise 450 max 20-500
Application Life At 25°C, hours 1 min 2-10
Coefficient of Thermal
Expansion, -55°C to +100°C, -6 -6
infin/°C 175x10 ~ max 162-324x10

20

a. Specification for urethane potting and molding elastomers.
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