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INTRODUCTION

A prototype interferometric spectrometer system is being built by NASA to explore

the potential of the technique for applications involving the visible and near-

ultraviolet portions of the electromagnetic spectrum. As described in the paper by

Parsons, Gerlach, and Whitehurst (1982), which will hereafter be referred to as PGW, the

system is limited only by the frequency bandpass of the optical components used in the

system, the quality of the optical components, and ultimately by the memory rapacity of

the computer. In PGW, however, the tradeoff between the wavenumber resolution of the

produced spectrum, the bandpass limits of the optics, and the number of samples obtained

from the interferogram were not delineated explicitly. The prototype Ultraviolet Inter-

ferometric Spectrometer (UVIS) instrument is expected to be configured several different

ways to ascertain its suitability for various applications. To exploit its inherent

flexibility, a reference document containing the parameter tradeoffs involvea would be

very useful. This paper is designed to be that reference. 	 {

BACKGROUND

?he Interferogram

In PGW, the transform pair linking the wavenumber, a, and path difference, x,

domains was derived and found to be

00

Y(x)	 --co P(a)e21Tiax d
a	(la)

P(a) = I y(x)e-27riax dx	 (1b)
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where Y (x) is the interferogram, or interference pattern, produced by the spectrometer

when exposed to an incoming light beam having the spectral shape P(a). In actuality,

of course, it is not possible to perform the integral calculations because the spectrum

is too complex to permit closed-form solutions. Therefore, the integral transforms must

in fact be replaced by a discrete Fourier transform pair. In this section, this relation-

ship will be derived so that the pertinent parameters for interferometric spectroscopy

and their interconnections can be described mathematically.

Figures I and 2 show graphically the steps in the path difference and wavenumber

domains, respectively, that carry the interferogram and incoming spectrum at the top to

the recovered discrete spectrum at the bottom. Each step will be discussed in detail and

sequentially. The starting point is the production of the interferogram r(x) by the

optical interference produced in the Michelson interferometer. Therefore, ^ the linkage

between Figures la and 2a is the optics in the instrument.

Once the path difference signal is produced, it must be captured in some way and

this is done using an analog-to-digital converter. In the next section, the technique

used to produce samples evenly spaced in path difference will be described in more detail.

The sampling process can be described by the equation

00

	

Y( X )A( X) = Y(X) E 6(x-kAx)	 (2)

k=-00

where Ax is the path difference interval between samples. Using the transform pair

relationship,

0	 1Co	 k
^6(X-kAx) f+ Ax 	 AX )	 (3)	 z

k=-oo	 k=-00

it is seen that samp li ng in the path difference domain is equivalent in the wavenumber

domain to convolution of the, spectrum by a series of delta functions spaced apart in

wavenumber by multiples of 
1 . 

.

Figures lc and 2c illustrate (2) and

1	 Co	 k
P(c) * Ax

	

	
E 

a (a - AX )	 (4)

k= -^

respectively.
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Sampling Theorem	 ORIGiNAL PAGC ^a
OF POOR QUALITY

The sampling theorem has a deep significance in communication theory and other

scientific disciplines involving measurements of signals at discrete intervals. It

states that a bandlimited signal which has no wavenumber components above omax cm-1

is uniquely determined by its values at uniform intervals less thano2 max cm apart. To

capture the spectrum in Figure 2a that created the interfNrogram in Figure la, the

sampling illustrated in Figure lb must be done at path difference intervals less than or

equal to off---- cm. That is,

max

1

^x	
2amax

	 (5)

For the case of equality, the sampling rate is at the Nyquist interval. In (4) then, the

spectrum is replicated at intervals of 2omax-

Truncation

Of course, the sampling process cannot be continued for an indefinite period of

time. If for no other reason, thers will be an upper limit on the number of samples that

the system computer can process. Therefore, the series of sampling triggers is truncated

by either the rectangular pulse shown in Figure ld or by X some other functional form that

eliminates sampling for path differences in excess of ± 2 from ZPD. Xt is the total

path difference allowed by this truncation process. If the pulse in Figure ld is labelled

A(x), then its transform is given by

sin ,raXt

A(v) = Xt

	

	 = Xt sinc(vXt)	
(6)

rraxt 

The sinc function has its first zero at cr = 1 and oftentimes this wavenumber is termed

the resolution Aa of the procedure. Figure 2^ depicts the sin x/x type behavior and in

Figure 2e the convolution of the preceding signal with A(o) is shown. formally,

instead of th? rectangular pulse, a tapered function known as the apodization function

is used. A variety exist with each having attributes such as low sidelobes or fast

rolloff that are attractive for particular applications. The particular form used for

HIS was described in PGW. For this study, the merits are not important; it is suffi-

cient to use the rectangular truncation in the rest of the analysis. In summary, at this

point in the development, the signal in the path difference domain can be described by

3
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Figure 1. Fourier transform spectrometry signals in the path difference, x,
domain. (a) The interferogram. (b) An infinite sequence of sampling
triggers spaced ox path difference units apart. (c) The interferog,°am
after sampling. (d) The apodization function (here represented by
simple truncation). (e) The sampled interferogram after truncation.
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Figure 2. Corresponding signals in the wavenumber, a, domain. (a) The wavenumber
spectrum of the incoming light which is responsible for the interferogram
produced by the spectrometer. (b) The Fourier transform of the sampling
trigger sequence. In this domain, the delta functions are separated by
the reciprocal of the sampling interval in wavenumber units. (c) The con-
volution of the spectrum with the sampling function. (d) The Fourier trans-
form of the apodization function. (e) The convolution of (a), (b), and (d).
(f) The sequence of sampling triggers applied by the discrete Fourier trans-
form to the output. (g) The sampled output spectrum which has a resolution
given by the reciprocal of the total path difference displacement.
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Y( x) Is Y(X)A(x)A(X) z E Y(X)d(x-kAx)

k=- 2"

where N = XT
Ax

Fourier Transformation

In Appendices A, B and C y there are appropriate derivations leading to a formulation

of the discrete Fourier transform. When (7) is operated upon by the transform, the

discrete spectrum

12" -1

P(nAa)	 Y(kAAje-i2rnk/N 	 (H)

k=- 2

is produced. Consisting of N samples ( like the input interferogram function), the spec-
tral resolution 4a is

1	 1

Aa = Xt	NAx	 (g)

Therefore, the total range covered by the discrete spectrum is

1

at = NAu = Ax - 2Qmax	 ( 10)

if sampling is done at the Nyquist interval. However, as reported in Appendix C, this

band contains the wavenumber samples

N

P(nAQ ) for 0 < n < 2

6	 1'	 '

(7)



and the samples

N

P[(N-n)Aa7 - P(-nAo) for	 2 < n < N

The actual spectrum is of course real only for positive wavenumbers. The spectrum

recovered by the transform in the second ha' ► f of the wavenumber span is the image of the

spectrum into negative wavenumbers because of the convolutirn shown in Figures 2a-c. It

is a copy of the real spectrum and does not contain any information. All of the informa-

tion of importance is contained in the first 
N 

samples produced by the transform.

OTHER CONSIDERATIONS

In this section several complications must be discussed that impact the operating

characteristics of the spectrometer. These include the techniques employed to produce

samples evenly spaced in path difference, the errors resulting from imperfections in this

technique, and a discussion of the aliasing phenomenon.

r

Path Difference Sampling Technique

For UVIS, the interference pattern produced by the interferometer is sampled at

fixed intervals of time using triggers produced by an external pulse generator. To get 	
e:

measurements of path difference, x, the spectrometer is also used to produce the inter-

ference pattern for an incoming He-Ne laser beam. Being a coherent signal, the inter-

ference pattern is a sinusoid that does not decay in amplitude as path difference is

increased away from ZPD. And, since it is a monochromatic light source, the wavelength

of its interference pattern imjst be equal to its electromagnetic wavelength. This sinu-

soidal signal is then sampled at the same rate using the exterrnal pulse triggers. This

rate must be sufficient to enable the accurate calculation of the location of some fea-

ture of the sinusoid that can be used to monitor path difference. For UVIS, the zero-

crossings were selected as that feature. After subtracting any bias present, the samples 	 =

z,re used to compute the zero-crossings by means of a linear interpolation algorithm. If

this could be done perfectly then a> each zero-crossing was reached during the production

of an interferogram, it would be known that .3164 um of path difference had been tra

versed. To determine the zero-crossing location to high accuracy requires a high number

of pulse generator triggers per inte:rferogram fringe. Both the interval between triggers,

7



PD, an6 the period of the fringe pattern are based on time and can be related. The

movement of the Binge pattern with time depends only on the axial deformation of the

heated aluminum Aar as described in PGW. If a voltage is applied to the coil surrounding

the bar such that its length changes by HR um/msec, then the number of msec per zero-

crossing is given by .3164/HR. Subsequent division of this by PD msec/samples yields

the number of samples per zero crossing, R. Matheir.W cally,

R Z .3164/(PD . HR)	 (11)

PD and HR must be chosen so that sufficient samples are collected per zero-crossing to

ensure that the zero-crossing locations are determined with minimum error.

To explore this further, a sinusoid was sampled by use of a computer program for a

range of values of R. Figures 3, 4, 5, 6 and 7 show the error between the interpolated

locations of 125 consecutive zero-crossings and the actual locations for R equal to

approximately 6, 3, 2, 1.5, and 1.2 samples per zero-crossing, respectively. The maximum

error in um can be selected to characterize the effects of the sampling process. In
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Figure 3. The error in microns resulting from locating the zero-crossings in
the laser reference interferogram with a linear interpolator and a
sampling rate of six equal time spacing samples per zero-crossing.
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Figure 7. Same as Figure 3 but with 1.2 samples per zero-crossing.
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Figure 8, this parameter is plotted versus R. Also, the graph contains the ratio of the

maximum error to the zero-crossing separation distance plotted versus R. For example,

at a sampling rate of 1.5 samples per zero-crossing, the maximum error is about

1.85.10-2 um, which is about 5.9% of the zero-crossing spacing.

As discussed in PGW, the zero-crossings are used to determine the approximate values

of the interference pattern produced by the solar signal. These constant path difference

samples would be unaffected by low frequency changes in the bar, heating rate and also

would be in the appropriate x domain for transformation by the discrete Fourier transform

algorithm. The true cost of the location error discussed above cannot be determined

without using these mislocated zero-crossings to trigger the sampling of the solar signal

interferogram. To simulate this, the following Fourier transformation relationship can

be derived and conveniently used. If

P(a) x e-n2(0-00 )2T2 • Jn T	 (12)

where ao is the wavenumber of this Gaussian function's peak value, then

1	 -X2/T2
Y(x) - 2 e	 cos 2naoX	 (13)

with

T = 1/7r (a'-00)

a' is defined to be the wavenumber at which the Gaussian function's amplitude is 1/e of

its peak value. The path differences, x, are in microns. If (13) is sampled at the

zero-crossing points determined from a linear interpolator and which therefore are

mislocated, then a set of samples is produced which is useful for this eval)jation. When

used as the input data to the Fourier transform algorithm, the function shown in Figure 9

was produced. The solid line represents the original spectrum given by (12) with o0

11,500 cm- 1 and a' = 11,000 cm- 1 . The errors introduced into this sampling and transfor-

mation procedure are those illustrated in Figure 6. This case, which has a maximum

mislocation error of 1.85 . 10- 2 um, results in a recovered spectrum that is most

marked by the introduction of a non-negligible artifact at about 4,350 cm- 1 . Within

the skirts of the recovered Gaussian, there is a small shift towards higher wavenumbers

as well: The impact of these spectral errors will be discussed later in this section.
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Figure 9. A normalized spectrum produced by the FFT with (-----) and without
(	 ) the inter erogram samples being mislocated by the errors
plotted in Figure 6.	 s

Interferogram Centering

The only mechanism that has been found to be capable of smoothly moving the inter-

ferometer optics by the small path difference required for visible and near-ultraviolet

spectral measurements is the heated rod. One might suspect that this technique would be

flawed because of inordinate amounts of time that would be required for the bar to be

heated and cooled through the appropriate temperature range. With aluminum as the

s plected material, this is not the case. For a reasonable voltage, the Nichrome heating

coil can easily create a bar expansion rate for heating of around 10 um/sec. A cooling

rate nearly as fast can be produced by wing an auxiliary fan. If,'for example, a spec-

tral resolution of 100 cm-1 were desired, then from (9), X t equals 100 um. For the

above expansion rate, a complete scan can be obtained in about 10 sec. For this length

of time, the atmosphere can certainly be considered steady-state.

13



However, the true cost of the heated bar technique is the lack of registration.

Consecutive scans cannot be started at the same path difference. By use of mechanical

stops, they can be started within a few microns of the same path difference. Therefore,

it is necessary to collect more samples triggered from the pulse generator than are

actually needed for the interferogram. By starting a little in advance of the desired

scan starting point and by finishing a little beyond the desired end point, there will be

a cushion of samples that can be discarded as needed to bring an interferogram into proper

registration. If M is the number of pulse generator triggers and if AM is the additional

samples in the cushion, then the number of zero crossings is given by (M+QM)/R. The

situation can be further complicated if a path difference sampling interval nx different

from the zero-crossing interval is desired. This can be done in the software by linear

interpolation between zero-crossings or by skipping integer numbers of zero-crossings.

If the number of final, or constant path difference samples per zero-crossing is K, then

the total number of interferogram samples is

(N+Q N ) - (M+oM) . R . K	 (14)

where AN is the additional numbers of constant path difference samples that is produced

by the AM samples in the cushion. Zero path difference is found by visual inspection

of the final interferogram. Then the ends are truncated as required to produce the proper

interferogram length.

Of course, the interpolation and the imprecise determination of zero path difference

give rise to potentially important phase errors. It is for this reason that the two-

sided interferogram and discrete Fourier transform are used in UVIS. By taking the

magnitude of the computed spectrum, these phase errors can be avoided. Consider the

following explanation. Pe( Q) is the actual spectrum which is even (i.e., symmetrical
about ZPD). ^( d) is the function describing the phase errors present. Then the
observed spectrum is

pe(a)e-4 (0) = p (Q)-ig (a) = f Y(x)e-12nox dx	 (15)
-00

By taking the magnitude using

Pe(Q) =	 {[p (a)J2 + Cq(o)32} 
1/2	

(16)

the actual spectrum is recovered regardless of the form of ^(Q).
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Alias ing

The final additional consideration that is necessary for describing the operating

characteristics of UVIS is aliasing. This phenomenon will be described using Figures 10

and 11, which are modifications of Figures 1 and 2. In Figure 11a, the spectrum from

Figure 2a is shown after it has been attenuated on the low wavenumber side in a fashion

that is typical of the effects of an optical filter. If its total bandwidth is now less

than 1/2 of the upper wavenumber cutoff, amax, then the benefits of aliasing can be

reaped. Figure 10b shows constant path difference sampling performed at twice the

interval used in Figure 1b. This results in a replication of the spectrum at intervals

Of amax, as snown in Figure 11c. Then, X t = Npx is twice the total path difference

as before, and the spectral resolution is halved as shown in Figure 11f. For the same

number of samples, N, the computed spectrum can be found in the first N/2 spectral samples

as shown in Figure 11g. The example shown produces a backwards replica of the spectrum

because of the wavenumber domain convolution process but this is easily corrected by the

software package for UVIS.

The governing equation for aliasing is a modification of (5). 	 If ax ifs selected

such that

1

Ax < 2(amax-ao)	
(17)

where ao is the lower wavenumber cutoff of the filtered spectrum and where

amax - ao - amax/m	(18)

then aliasing can be a beneficial attribute of the spectral recovery scheme. m is

an integer and is called the spectral order. For the example above, m = 2 and ao

> amax/2.

One specific requirement for this technique to work is that there are no spectral

components below ao• If there are, then the aliasing will introduce these components

as contaminants to the replicated spectrum produced by the convolution. Therefore, the

artifact produced by the laser beam interferogram interpolation procedure that is shown

in Figure 9 could not be tolerated if aliasing was being used.
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SYSTEM OPERATING CHARACTERISTICS GOVERNING EQUATIONS 	 ORIONAL F~d fA 1
OF POOR QUALITY

From all of the preceding discussions, a system of equations has been developed

which completely describe how an instrument system such as UVIS will operate. These are

recapitulated below for review.

(19a)
Ax el

m (amax- ao) = amax	
(19b)

1

N + AN = (M + AM) • R . K 	 (19c)

N = 2J ; J an intener	 (19d)

Tt = (M + AM)	 PD	 (19e)

Xt = (N + AN)Ax	 (19f)

1

Av = NAx	
(199)

at = Zamax	 (19h)

R = .3164/(PD . HR)	 (19i)

These have been recombined in a simple computer model to produce values of amax9 m, Ax,

K, N, M + AM, Xt, and Tt given input values for amax9 amin, Aa, PD, HR, and AN.

An initial value for amax is entered and the output amax value produced is the wave-

number needed to satisfy (19a,b,d,g) in combination. The Fortran code for this model is

included as Appendix D and is suitable for use with the DEC RT-11 version 3b operating

system.

`n

h
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MODEL RESULTS

The following results have been produced using the model subject to these conditions.

First, the cushion AM has been set at 10% of N. Secondly, the bar expansion rate of

10 um/sec is fixed. However, the pulse generator triggering rate PD is variable.

Based upon the result given in Figure 9, it seems prudent to require that PD be less

than 20 cosec/sample. This is equivalent to saying that R should be kept greater than

1.5 reference samples per zero-crossing.

One of the input parameters is oo, the output spectral resolution. Of course, it

would be desirable to keep this as small as possible. In the visible and near-ultraviolet

wavelengths, most scientists and engineers tend to use wavelength, X„ as the unit of

measurement rather than wavenumber, a. Therefore, it is important to point out that a

constant resolution 4Q does not correspond to a constant resolution pa. The wavelength

at which the resolution element pa is located influences the corresponding resolution Ax-

This is illustrated in Figure 12. For example, a resolution of 100 cm- 1 at 1.0 um is

equivalent to a wavelength resolution of 10OA; but at 0.3 U m, it is equivalent to

9A. Qv = 40 cm-1 is the same as 40A at 1.0 um and 3.6A at 0.3 pm. As will be

seen in the model results, quite high wavelength resolution in the ultraviolet is possible

if sufficient samples can be collected and transformed. As seen in (199), pQ is dependent

upon Ax, the interval of constant path difference. It should be observed that the

original sampled data contains higher resolution information because of the requirement

that there be enough time samples per zero-crossing to make possible accurate interpola-

tions of the zero-crossing locations. This information is lost, however, because of the

FFT algorithm requirement for evenly spaced data points in path differences,

Before specif,jing the optimum operational characteristics of the UVIS, it is

instructive to exercise this model to examine the variability of the important output

parameters for a range of input parameter values. Figure 13 shows how M and N vary for a

number of amax values. Only spectral order 1 (m=1) solutions are plotted and the spec-

tral resolution is 40 cm-1 . The pulse generator trigger period, PD, is 20 msec. The

discontinuities in the curves are the result of the requirement that N is a power of 2.

Within each plateau region, the value of K, the number of output samples per zero-crossing,

is also given.

In Figure 14, the effects of varying PD is examined for the different spectral

resolutions, 100 cm- 1 and 40 cm- 1 . Again only solutions for spectral order 1 are shown

and amax is set at 30,000 cm-
1 ; K is constant for all solutions and equal to 2 samples

per zero-crossing.
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Figure 13. The variation of M and N with maximum wavenumber. Only spectral
order 1 solutions at a resolution of 40 cm- 1 are shown. PD is
20 msec and the number of samples per zero-crossing, K, are shown
in-between the discontinuities.
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4

UVIS OPERATING CONDITIONS

To specifically identify the operating parameter values for UVIS, it is necessary

to identify the appropriate values of amaxp co t and Qcr for nntential applications of

UVIS. As discussed in PGW, the instrument uses silicon photodiode detectors that are

responsive from about .25 pm - 1.1 um. That is, they are sensitive to radiation from

the near ultraviolet through the visible and into the near-infrared. Figure 15 is the

solar spectrum plotted against wavenumber as reported by Mecherikunnel (1980). Tenta-

tively, this can be divided into three broadband regions that can be used for the follow-

ing applications. From about 10,000-15,000 cm- 1 , there are three water vapor absorption

band systems. By monitoring the difference between the signal strength at the center of

these bands to the signal level at unattenuated wavenumbers gust outside these bands,

estimates can be made of the amount of water vapor present in the atmosphere. Prelimi-

nary results from UVIS for this application have been reported by Parsons (1983). From

20 0000 - 30,000 cm- 1 , the solar spectrum becomes increasingly attenuated by ozone as

the Wavenumber increases. By monitoring the gradient of the suns intensity with wave-

number and hopefully by monitoring its value at specific ozone absorption lines, UVIS 	 r

may be able to measure total ozone amounts. Finally, the spectral band between 15,000

and 25,000 cm- 1 encompasses the visible wavelengths and an interferometric spectrometer

operating within this band would obviously have many uses.

Therefore, these three bands are au,apted for this modelling effort to give reason-

able values for vmax and amin o Au cannot be specified at the desired levels because

of computer memory constraints. The LSI-11/02 system used in UVIS has a memory capacity

of 32K words of which 28K words are available to the programmer. This limits the value

of N to 512 or less and M to I9,030 or less- Aa will be selected at the highest resolution

possible to accommodate this constraint. Figure -14 .shows that at Aa = 100 cm- 1 , for

example, the required number of original samples, M, rises dramatically for smaller

values of PD to produce the same number of final samples, N.

To stay within the memory limit and also to keep PD less than 20 msec to avoid the

interpolation artifact problem may necessitate a very narrow range of operating condi-

tions. This is examined in the following illustration. Figure 16 shows the variation

of N and M with Aa for the bandpass covering 10,000 - 15,000 cm- 1 and for R = 1.5. This

graph shows that for this band, both spectral orders 1 and 2 are usable. Of course, m=1

implies that the resultant spectrum covers the entire range of wavenumbers from 0 cm-1

to 15,000 cm" 1 . Actually a max is 15,802 cm-1 . For m=2, ao = 7,901 cm-1 instead of

0 cm- 1 . To conform to the computer memory limit, the maximum resolution that can be

achieved for R = 1.5 is 61.73 cm- 1 . Table I summarizes the information contained in

Figure 16 and adds similar information for the same bandpass but for the R = 2.0 and
	

}	 t

23



V

L0

w

0^
Cr.J
VJ

l
NI

ORIGINAL Pft'► 4a 1.3
OF POOR QUA1.IV

0
0
0

w 10"
WAVENUMBER (CM-1

Figure 15. The solar radiance spectrum from Mer^herikunnel and Richmond (1980).

4

24



N,M

103

ORIGINAL MCC r

OF POOR QUALITY

104

i
i
i
i

102
0	 20	 40	 60	 80	 100 120 140

Aa ( c rrl^1)

Figure 16. The variation of M and N with spectral resolution for a spectral
bandpass of 10,000-15,000 cm- 1 and 1.5 samples per zero-crossing.
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R = 3,0 cases. For R - 3.0 0 it indicates that 123.46 cw-1 is the .maximum resolution

achievable.

Table II applies to the ultraviolet bandpuss containing the ozone absorption fea-

tures. For sampling rates of 1.5 and 2.0 final samples per zero-crossing av - 61.73

cm- 1 is possible but only for spectral order 2. For R = 3.0, again only 123.40 cm-1

resolution is achievable. Finally, the visible wavelength bandpass is studied in Table

III. For °max 
w 25,000 cm' 1 and co E 15,000 cm»1 , the possibility of using aliasing

and spectral order 2 is gone. Unfortunately, for all three sampling rates the best

resolution possible is 123.46 cm-1.

To summarize these findings Table IV is presented. It contains the pertinent infor-

mation from these model results. When several operating modes are possible, the one

with the best resolution and the highest sampling rate R is the one entered in the table.

The information entered for the 15,000 - 25,000 cm- 1 case is also appropriate if the

entire spectrum to 30,000 cm- 1 is to be recovered.

TABLE I. SAMPLING REQUIREMENTS FOR WAVENUMBER REGION 8000 " 15000 cm-1

0o Range N M

(cm-1 ) m=1 m=2 R=1.5 R=2.0 R=3.0

15.43 - 30.87 2048 1024 3414 4549 6824

30.87 - 61.73 1024 512 1704 2276 344

61.73 - 123.46 512 256 854 1136 1704

123.46 - 246.92 256 128 426 569 854

TABLE II. SAMPLING REQUIREMENTS FOR WAVENUMBER REGION 20000-30000 cm-1

pct Range N M

(cm- 1 ) m=1 m=2 R=1.5 R=2.0 R=3.0

15.43 - 30.87 4096 2048 3414 4549 6824

30.87 - 61.73 2048 1024 1706 2276 3414

61.73 - 123.46 1024 512 854 1136 1704

123.46 - 246.92 512 256 426 569 854
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'TABLE III. SAMPLING REQUIREMENTS FOR WAVENUMBER REGION 15000-25000 cm-1

oa Range N M

(cm- 1 ) m=1 m=2 R=1.5 R=2.0 R=3.0

15.43 - 30.87 4096 3414	 d 4551 4551 6827

30.87 - 61.73 2048 1706 2274 2274 3412

61.73 - 123..46 1024 854 1138 1138 1707

123.46 - 246.92 512 426 568 568 852

TABLE IV.	 SUMMARY OF OPTIMUM OPERATING CHARACTERISTICS IN ALL

THREE BANDS.

a band a band v band

10-15,00 cm- 1 15-25,000 cm- 1 20-30,000 cm-1

N 512 512 512

M 1137 851 1137

av 61.73 cm- 1 123.46 cm- 1 61.73 cm-1

R 2.0 3.0 2.0

m 1.0 1.0 2.0

AX .3164 um .1582 um .3164 Um

Xt .3593 mm .1347 mm .3593 mm

Tt 17.033 sec 8.5167 sec 17.033 sec

Qmax 15802.78 cm-I 31605.57 cm-1 31605.56 cm-1

Qp 0.0 cm-1 0.0 cm-1 15802.78 cm-1

PD 15.0 cosec 10.0 msec 15.0	 msec

CONCLUSIONS

Using the design of the ultraviolet interferometric spectrometer (UVIS) and the

fundamentals of the discrete Fourier transform, the optimum operating characteristics of

the instrument have been developed for three broadband spectral regions. Each of these

regions contains the signatures of atmospheric constituents which are important to several

applications.
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THE FOURIER TRANSFORM OF A GENERAL PERIODIC FUNCTION f(x)

From Appendix B, it is seen that

F {1} = d(a)

One of the useful general properties of the Fourier Transform is frequency shifting or

modulation. Mathematically, this is evident as the following derivation illustrates.

F {ei27raox f(x) } _	
L	

f(x)e-i27r(a-QO (; t dx
w

V(0-10)

where V is the Fourier transform of f. If f(x) is the constant 1, then

F { e i2naox} _ &(a-ao)

This can be usefully applied to the following expression

n
00	 i2,r(x)x

0
f(x) = Z ane

n=-oo

which states that any periodic function can be represented as the infinite sum of complex

sinusoids weighted by coefficients given by

x012	 n

1	 -i2,r(x )x
0

an = xo	 f(x)e	 dx

-xo/2

Using the Fourier transform definition,



00	 n

00	 i2tt(xo)x	 -12nax

F{f(x)) =	
E 

ane	 e	 dX

n=—

00	 n

C*	12,r(xo)x -i2nax7 an	 e	 e	 dx
L-j	 -^
n=-w

Using the frequency shift property,

00	 n

F{f(x)) 
_ E 

an 6(a - Xo)

n= -m	 ORIGINAL IMAGE W
OF POOR (QUALITY
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THE FOURlER TRANSFORM OF A CONSTANT

Using e~n |x l as a convergence factor,

	

F{ 1} = lim	 e~n|X| e~i2n«% dx

	

n+O	 CO

0	 co

= li0^.e(n- i2na ) x dx +	 e~(n+i2no)% dx

O

co
	= 11m	 |	 q~j2"^	 |	 ~	 n+j^=o	

|	 |

	

n+O L	 -'	 '^m	 -`	 /O  ^

l
= limn~i^

------	 f ------'	 '

	

|	 no	 n+iDno |n+O

	

= 110	 "2f/2no\2 	 = li0	 "2f(2no)2

In the limit, there io a singularity at « = Q ° By invoking L'Hospital^s Rule, the limit

can be evaluated, however, and found to be

F{l} = lim /--\'^`	 `^n'

^- uto=U

iU at^^O

The area under the function can be obtained from

'

 |^



! ^'
	 2n

.00 n2+(2n^ )2

where w = 2 ff a has been us

L

r °° 2 rL dw

	

nz.W2	 2n

ORIGINAL PAM 13
OF, POOR QUALI' Yr0o 23 dw

	

do = f00 n2 +w2 	2,r

ad as a substitution. Proceeding,

L

Co
	 2p	dw

	

112 (i+w2 )	 2,r
n2

00	
001 fdw	 " 1 (	 ndx

	

nn 	 i+w
2 	nn J 00 1+x2

T12

using x = n as a substitution. Then,

	

1 r	 dx	 1	 1	 - 1

	

1	 ,
,r	 i+x2	 ,r tan- 1 x 

o_«0	
n (tan- 1 m- tAn-1(--) )

1 Ir	 -n

_ n (2-(2) ) = 1

In the limit then, the Fourier transform of a constant of magnitude 1 has been shown to

have infinite amplitude and unity area at wavenumber v = 0 and to be zero elsewhere.

This is the definition of the delta function. Thus,

F{1} = a(a)

B2
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DERIVATION OF DISCRETE FOURIER TRANSFORM

Starting with equation (7),

2.)-1

Y(X)A(x)A(x) = E y(x)d(x-kex) = Y(x)

k=- N

there is the need to compute its Fourier transform. Because the data is known at dis-

crete points and because of the computer's obvious advantages for doing complex arith-

metic manipulations, it is advantageous to compute the transform at discrete points.

The discrete Fourier transform equation is derived as follows. If y(x) is the x

domain function to be transformed, we can use the expression in Appendix A. The an

coefficients can be calculated as

xo/2	 n

1	 -127r x x

a n = xo
	

Y(x)e	 o dxif
x /2 N	 n0	 2 -1	 -i27r(x

o 
)x

xo	 E y(x)6(x-kex) e 	 dx
_x

0 /2	 k=- N

\ 2 -1	 xo j2	 n1	 -i2,r(x )x

= xo T
.Y

(kQx)	 6(x-kpx)e	 o dxf
o/2

k=- 2
So

,A



L ( 
T- ) -1	

-12-a	 (kox)

an - xo	 v(kpx }e

k=- 2'

Thus,

ORIGINAL PAU—.' Sr)
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co	 n
F{Y(X)}	 an d(a - xo)

Z^

00	 00 -1	 _i2nnkxx	 n1	 0
xo	 y(kQx)e 	 a(a xo)

	

n=-^	 k=. 7

n is the index of variation in the spectral domain and the delta functions are separated

by wavenumber intervals of xo

Discrete Fourier transforms, when implemented in digital computers, can be made much

more efficient if particular parameter choices are made (Chamberlain, 1979, pp. 315-325).

First, if xc is set equal to X t , the total path difference traversed by the inter-

ferometer, then

AX	 Ax	 1

xo	 Xt	 N

where N is the total number of interferogram samples. Then

r N ) ^ Il
°°	 1 \	 -12wnk/N	 n

F{Y(x)} _ 2] Xt	 y(kAX)e	 s(a - Xt)

	

n=-co 	k=- 2

The an coefficients are sampled at intervals of x— wavenumbers. The discrete Fourier

transfoitn is addit4-,jnally simplified if the range that n is allowed to assume is limited

to N values. The impact of this decision is analyzed in the following calculation. Let

f

C2	
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\2J`1
1	 -i27rrk/N	 r

F{Y(x))n-
r - P(rAa) 

z Xt	 Y(kAx)e	 d( o - Xt)

k-- N

If n= r+ N,

2N_ 
/ `1k

_	 1	 -i2n(r+N)N	 r+NZ

F{Y(x))n=r+N = P((r+N)Aa) _ X	 Y(kAx)e	 a(Q - Xt
k=- 2

But

e - i27r(r+N)k/N = e - i2,rrk/N a - i 21,k = e-127rrk/N (cos 2,ik-isin2wk)

e-i2,rrk/N for k an integer

1	 \ 2 / `1
	

-i 2,rrk /N 	 r+N
F{Y(x))n=.r+N ° Xt	 )	 Y( kAx ) e	d(a -	 Xt )

Lk. 2

That is, at a = (r+N)Aa, the discrete Fourier transform yields the same result as for

a = rAa. If N samples are examined, all of the information available from the

transform will be recovered.

The discrete transform equation then is given by

`2/-1

P (nAa) _	
T.	

y(kAx)e-i2.rnk/N	 n = 0,],2,...,N-1

k=- N

C3
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This replication also holds for n - r-N and for positive and negative multiples of N.
That is,

P(nAo) : PC(n + JN)Aal 	 ,i a d, ill t2o...

In particular, it is important to note that

PC(N-n)Aal s P(-nna)

That is, the computed spectrum from wavenumber samples 
N 

to N is the same spectrum that
lies between..	 and 0.
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SIMULATION PROGRAM

C	 PROGRAM FT$SIM.FR
-EAR S0.NS._QQ9	 (LJ.J.VQ,9 E_ I

C_ --DES l,Gt4ED_.LU_COMPUTE

C FLEXIBLE, CUMPUTER-CONTROLLED FOURIER TRANSFORM SPECTROMETER
__r _Gl,.V.EPL_THE_ F0LLQuP)G

G SIGMAX	 UPPER aAVE 14UMBLR CUTOFF OF INCOMING LIVNT

C SIGMIN	 LOwkR wAVENUM8ER CUTOFF	 (IN CM-1)
_c. DESIRED. $PE,CY84.L_RF,5QLUTJO(j_f

C PO	 EXTERNALLY CONTROLLED INTERFEROGRAM
_.L --.SAMP.L-D.IG-PERLQD-,IIN-dSLrJ..

C HR	 HEATING RATE OF OPTICAL	 TRANSLATION

C X8AR	 LASER REFERENCE SIGNAL ZERO-CRUSSING PATH
r D_IFEE,RF_NCE_ _=.31,6_4_MlCRQAS
C VELN	 NUMBER OF FINAL SAMPLES NEEDED TO CUSHION
c HE-C,EtYIERLti"E-INTEREER,OGRAB—LJLN.-P.ERCLfiT.--
C Ov IF N

C THE OUTPUT PRODUCTS ARE;

C SPECTRUM	 (IN CM-1)
-r- ki

C DELX	 - INTERFEROGRAM SAMPLING INTERVAL (IN MICRONS)
_C,. YFXIRA	 -

N	 - NO, OF FINAL SAMPLES USED IN FFT PROCESS

C XTOTAL	 - TOTAL TRANSLATION DISTANCE NEEDED	 (IN MtA)

---r-	

,
- 11 0 1A.L _.-,.J 0._TAL_UML_RF_11LIli FW__EQR_ldA.N 4, LAI	 ^LIW_

C R	 - NO. OF ORIGINAL SAMPLES/FINAL SAMPLE
RPRIME	 - _N0._JQE__QP	 _,LG LNAL_§.6 M f	 MCRD§Aj N jZ	 O

C
REAL M LOTAL

r IN -A 1) 1 N IV_uu_
C,

10 ILYP-E- 1 ENTE_R_JHE_Ae.RRj	 Pak	 Aj	 J tpeR	 FQX LkAjf,-U	 _k_	 L
READ FREE (IIPERR=10) SIGMAX

I c; TY E--L-E.N.TY-R-IHE-.AP.eRi).XLmA.TE.LO,,j.EB-A-Avg-kLikOER--!.'StT-O,F-E
READ FREE (IltERR=15) SIGP.IN
I	 DES IREDJ_IlNAL_0JU T
READ FREE 01PERR=20) DELSIG

_-----LYE':  _WE LALC.ULATIQNS...ASS-U,4E-JbA-T-A--tiErjYt-LA-$ER-I$—U.$Et)-.f
TYPE	 THIS IMPLIES A RFFF-RE14CE ZLRO-CRUSSING PATH DIFFERENCE
T E QE_ .3jh.4....MjCR.QN.S
"J RITE (10,25)
ptl_ (1.Z.' Il_I.S__AL5O
TYPE	 TU ENSURE THAT A CENTERED HLOCK OF DATA CAN BF EXTRACTED •

E.IL4-''ii7 __  .---
TYPE	 THE DEFAULT VALUE FOR THE 141Y, N _6F EXTRA SAMPLES IS

l _LQ__P_FRCEfj_LjF TH_. I . E j,.1 N4.L. SA PLES . 11ELI)Flol AS COMPU I ED 6ELOo



30 TYPE • IF THIS NOT SATISFACTORVe TYPE it OTHERWISE 0
_._._ 9F_Al) FREE...C11t.EKt3^34►a..,I.C:tU':d

IF (IN(J %18 * EQ,0) GO TO 40

	

5»_I.Y.E..: t^aE .J1 51 ! E t) EFzF C. FIT aS.,F,^ , x,	 a M" ..i.5'......_.._.._^..^ ...,,
HEAD FREE (11tER035) DELN

__..._.Gu... L11 4
40 DELNxl0.0

U5_ CONTlNUE^....«...........o..,.. ..,...,.,,..,..r,>.ti..^..,^.,..
48 +RITE ( 10t50)

.. _._.._..5U. FuHtA.AT._.(//,' ..ENTER THE ,ORIGIN.A , SANP zLI(v(i _M„tF2,IQq ^,XN MS,EG„), '„^. <.. .
READ FREE (11tERR=48) PD

5 5 ..,T YP F ' F N T.ER....TItE.» H EA.T ED-.a A R T R A N-S.L-kT-I tl.Iv... R S,LE__.(4..X T N G j M §f q)
READ FREE (11,ERRx55) HR

	

C	 COMPUTE THE ORDER OF THE FUU14IER »TRANSFORM SPECTRUM

	

.^..0 	^. _,..^_.^.,_
MxINT(SIGMAX/(SIGMAX^SIGMIN))

GO_.TO. P00.,r.., .._	 ...,._.._. ^.,,....._.. ,,_> ,.».._._„^,.... __...... .. ..
C

	

. r	 r. n M EL1SE._.T.tt E...I N T E R E ER.fJ.G.R A ^_11.,..5 A M F'L x N_!^ISIT.ERJ! ^,L ..I? E G ?S,t_._._»	 .».._....

	

C	 THE NUMBER OF FINAL SAMPLES4'ZERO •CROSSING YEXTRAt AND
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C	 SIGMAXI

%b DcL	 u^ AE')i ( G•v**SIGMA"A

4,EXTRA=XBAR/DELX
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YEX rRA=FLUAT (INT (wEXTRA)+1)

70 Y
/S
EX

/
T

R
A=FL

f
0AT (̂

y
IN

(
T(1e0/WEXTRA))

...	 WGr.A.^i4M•^^.^.dl.r^.^4i.A.MAN...........i«,.» 	 .	 «....._.,.—._....^.oN.._..^......,..
75 CONTINUE

SIGMAXI = (M*IE4)/(2e0*DELX)

	

C	 w

	

C'	 CHECK I ► SIGMIN IS WITHIN THE RANGE FOR THIS SPECTRAL ORDER

SlGmINVtSIGMAXI-(lE4 /( -2.*DELX))-

4
c .^C.UMP_ U TE_J-HE..RUl 49.ER.,..Of_:E.INAL,._SAMELESki._,NM.E;l?_..E'O-R-F..Er

	

,.....,....	 Y^+::.•lE4LI.U.ELSL^.D,ELX)
K=II4T(ALOG(XN)/ALOG( 2.))+l
NMI T x C EkP (K.*ALO.G.GZ.1a.)^... ._ . _..•__... 	 _._.._.._._ _.. .._. . .

C
•-_..1:	 CDARUIE_...T.NE_ T.O.T.AL_IVU.M13EEL.0.E_.0331.G... A.,L_a0ARLES.. 1EfPED.,

	

C	 TO GET N FINAL SAMPLES

h'TOTAL=((1.0+(DELN/100.0))*N)/(PD*HR*YEXTRA)^

	

C	 COMPUTE THE TOTAL PATH DIFFERENCE# THE TOTAL SCAN TIMEt
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llil-0.111W PIES ULT.S.,S CL_L1S.T_.ElL E 	 ..... _...
C

105 FORMAT ( ' FOR A DESIRED NiAVENUMHER WINOOW F140M 'xF10.2r

108 FORMAT C '	 (OR 'rF8,2r'A TO 'rF8.2r'A), • )
_____,U0_EORMATY(' ANO A SPEC. TPAL RESULUTIUN OF 'rFI.2r' CM » 1'_}^	 s_^a

112 Fl)RMAr ( p' ®	 (OR 'xF7.3r'A AT 5000A) ' )
._._.,,.L.1.S..1^W?^' 	 ,.L '.^LHE..,F:UL4n ►V^NG F rti^F^lE.k.4,Tf^A. N^E9RM_ SP<;.0"CRU^^E}'ER.a^^^,IGNS..,'..^

120 FORMAT ( • ARE POSS IBLE:: '///l
LASER RE:FE. RENG.<._.C.HArJN..l~Lz„ZERO-CFtO.S$ING-PA.T ► +_

130 FORMAT ( ' DIFFERENCE IS ASSUMED TO HE .3lb4 mICRONS ) '//)
_43S_f.OdAAL,,,L__!_JlARDtiARE_V ARIA 8LES

140 FORU T ( ' THE PULSE GENERATOR SAMPLING PERIOD = 'xF5.1 rr' MSEC
TdE .W .HEAT..ING. 2ATE.- •.r#F4.3,'_.z.EE Q,-CR g SST1vG/M51;C _^1.)a^.

150 FORMAT ( • SOFTAARE VARIANLE: S
._._. _ .55 _.EUtAAL.L.._ • EU8_.5PECJRAL... 0R0LH._: r.I 1)_.w__.

160 FORMATî	THE OUTPUT SPECTRUM UPPER CUTOFF = •rF10,2r

162 FORMAT ( •	 THE OUTPUT SPECTRUM LOWER CUTOFF = ' ► F10.2 r • CM-1 ' )
t ix5_,Ft188AT f •	 T.IiE_PAJkL..D_LFF.E_gE,lNlCE_lNT.ERV,AL.._.- 'rF.x,4.r.,' NICRS)GV3
170 FORMAT ( '	 THIS REQUIRES A SAMPLING RAVE/ZERO-CROSSING

175 FURh1Al' ( •	 THE NUMBER OF POINTS NEEDED FOR THE FFT = 1rI5/)
----.. .1, U—.F LIRUAI--(—'..._..--ASBUM.I,IG—A—CU,SH.L(1N—.EUUA.L_LO!.F.5.,^1.e 	 _...

PERCENT OF THIS NUMBER OF POINTSr ' )
_.^._,+RS..^..t,)1tMALt.-_;	 n r OZAL._iIE:•,r..EB...^r..'...1l.Et.I,tiLLV.AL_.SAME'.LE.S._LS._NE^pED....:1).._....

190 FORMAT (	 THE TOT AL TRANSLATION PATH DIFFERENCE a 'rF7.4t

195 FORM AT 1 •	 AND THE TOTAL TIME NEEDED/SCAN = 0 rF8.4r' SEC*)
r •	 r+{E.NL1MfIfiR..!]E._0@IGIt^A1....SiL'LES1E,lralAl....Sl'F?. 	 •,

*F'8.4)
r2U5._.F_ORMAL(  '	 ._Ai^112 T11E_d^IU^QE.I F OQIi^I NAi.. s P L.ESJ2EC^2-.CE^Q.5.3ING ••

*F8.4)

wki rE (12.105) SIGMINrSIGMAX
—n--.-	 •,̂ IL^I:.L'L..fl.!-S1GM.I N 1.^4.1E8,...^

dVLMAX= (1.0/S I GMA X) * 1 EA
^!. I T f ..L L2	 X^.._
,TRITE (12x110) OELSIG

wR YTE (12.112) OELWL

^^HITE (12x124)

r^KITE (12,130)

v,RITE (12x140) PD

:, PITE (12.15 0)
(12,k
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ORIGINAL PA	 1,k.

ANITE	 (12,160)	 SIGMAXI OF POOR QUTALt'y

vR T IF	 r t.2a	 )^,5XGM.IN^
WRITE	 (12,165)	 DELX

..._..._, r,.A..^u PMT E_. (.12. 1.1.0.) t E X.TRA..._. _.,_
WRITE	 (12,175)	 N
a R T T	 Ll2_L1.$ Q..)._D E L 	 _ ..
WRITE	 (12,185)	 MTOTA4 -----
WRL.T F	 ( 12 - f 90) 	 )(lJ1l L_.._..
WRITE.	 (12095)	 T rOTAL

4RITE	 (12x205)	 RPRIME
C
L	 FUR M.GT.1 LOOP HACK FOR OTHER ORDERS

.. G __
IF	 (M.GT.1)	 GO	 TO	 300

....	 _..r4._.C.rj
30 0 M-M- l

____._...._...._.

C	 Q,F G t L E T F 0 T ^EE.S A8 E 5_ARE..T Q l!.RUN
C

».._..A00_..LY,PE_ ._lF...O.THEh;_CASES_ ARE.. TO SE._RUN*_T.YPE_1.O.Tf ERk ISE...O..'.....
READ FREE	 (11,ERR=400)	 INUfW
T F 	f TNIiM (j sEni r jj ^ _CzC1 	 TO ybQ

GU	 r0	 10

C	 uYRAPIJP

800 TYPE • A SPECTRAL ORDER LESS THAN i WAS COMPUTED - ABORT	 •
__9 b_0_.0 &T_MUE_

STOP
Fun 
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