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ABSTRACT

A numerical solution to the problem of thermal elastohydrodynamic lubri-
cation of line contacts was obtained by using a finite difference formula-
tion. The solution procedure consists of simultaneous solution of the thermal
Reynolds equation, the elasticity equation, and the energy equation subject to
appropriate boundary conditions. Pressure distribution, film shape, and
temperature distribution were obtained for fully flooded conjunctions, a
paraffinic lubricant, and various dimensionless speed parameters while the
dimensionless load and materials parameters were held constant. Reduction in
the minimum film thickness due to thermal effects (as a ratio of thermal to
isothermal minimum film thickness) is given by a simple formula as a function
of the thermal loading parameter Q:
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Plots of pressure distribution, film shape, temperature distribution, and flow
are shown for some representative cases.

INTRODUCTION

ETastohydrodynamic lubrication of nonconformal contacts has been an
important aspect of research in the field of tribology for the last two
decades primarily because of its paramount importance in the lubrication of
heavily loaded contacts in machine elements, viz roller bearings, ball bear-
ings, gears, and traction drives. The variation of viscosity with pressure
and the elastic deformation associated with the high pressures generated in
the contact region are the major causes of the complexity attributed to the
problem. The first major effort in arriving at a numerical solution of the
problem was made by Grubin and Vinogradova (1949), who incorporated both elas-
tic deformation and viscosity-pressure characteristics in the inlet zone anal-
ysis of the hydrodynamic lubrication of nonconformal line contacts. Elastic
deformation in the contact region was approximated by the Hertzian deformation
of the solid in that region.

Dowson and Higginson (1961) obtained a numerical solution to the problem
of elastohydrodynamic Tubrication of nonconformal line contacts by incor-
porating both elasticity and viscous effects in the coupled solution of the
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Reynolds and elasticity equations. They obtained a formula for the minimum
film thickness that was based on their theoretical results and that showed the
effects of the load, speed, and materials parameters.

Thermal effects in nonconformal line contacts were.investigated by
Sternlicht et al. (1961) assuming that the heat generated due to viscous shear
was carried away totally by the lubricant and that no heat was conducted into
the contacting solids. However, in the lubrication of nonconformal contacts
and within the practical range of loads and rolling speeds, conduction of heat
to the solids appears to be the major mode of heat transfer rather than con-
vection by the Tubricant. Cheng (1965) presented a numerical solution to the
thermal elastohydrodynamic lubrication of rolling-sliding line contacts that
takes into account both the conduction of heat into the solid from the lubri-
cant and convection by the lubricant. Results showed that temperature had no
significant effect on the magnitude of the film thickness. However, the fric-
tional force in the case of rolling-sliding contacts was affected by the tem-
perature rise in the film. In a similar paper, Dowson and Whitaker (1965)
also produced a complete thermohydrodynamic solution to the lubrication of
rolling-sliding line contacts and concluded that the thermal effects on the
film thickness were insignificant. However, the rolling speed and the inlet
viscosity of the lubricant used were low, and it is not surprising that ther-
mal effects were not observed. On the contrary, the work done by Cheng
(1967), Murch and Wilson (1975), and Goksem and Hargreaves (1978) on the
effect of viscous shear heating in the inlet zone in a Grubin type of analysis
revealed a much larger influence of temperature on the film thickness, par-
ticularly at high rolling speeds. Recently, Kaludjercic et al. (1980), in a
rigorous simultaneous solution of the thermal Reynolds equation, the elastic-
ity equation, the energy equation, and the transient heat conduction equation
in the solids showed that temperature effects on the film thickness can be
significant at higher rolling speeds and presented a formula for the reduction

in the central and minimum film thicknesses caused by viscous heating in the
film.

Recently, Hamrock and Jacobson (1983) presented a solution for line con-
tacts wherein the computations are carried out from the inlet to the outlet of
the conjunction as one complete solution. These results formed the basis for
the present investigation, and the numerical procedure adopted retains all of
the essential features of the procedure developed by Hamrock and Jacobson
(1983). The thermal aspect of the problem uses an approach similar to that
adopted by Dowson and Whitaker (1965) or Kaludjercic et al. (1980).

In the present work a numerical solution to the problem of thermal
elastohydrodynamic lubrication of Tine contacts is obtained. It consists of
simultaneous solution of the thermal Reynolds equation, which takes into
account viscosity variations with pressure and temperature, the elasticity
equation for the film shape due to a known pressure distribution, the energy
equation for temperature due to a known pressure distribution and film shape,
and the heat conduction equation for the solid surface temperatures due to a
known temperature distribution in the film. Pressure distribution, film
shape, and temperature distribution were obtained in fully flooded conjunc-
tions for a paraffinic lubricant and for various dimensionless speed param-
eters covering the practical range of low to moderately high rolling speeds,
while the dimensionless load and materials parameters were held constant. In
arriving at a converged solution for any particular case, special attention




was paid to assure that the mass flow rate per unit length was held constant
throughout the conjunction. This latter effect is important, especially in
the inlet zone of a fully flooded conjunction in which the inlet distance
extends several Hertzian widths from the center of the contact.

Computer plots of pressure distribution and film shape are characteristic
of elastohydrodynamically lubricated line contacts. Thermal effects on the
minimum film thickness are incorporated into a simple formula that shows the
influence of the dimensionless thermal loading parameter. Sliding had no
significant influence on the film thickness but did affect the frictional
characteristics.

SYMBOLS

A constant defined in eq. (26), m2/N
constant defined in eq. (37)

foT]

b/b

semiwidth of contact, m

constant defined in eq. (26), m2/N
specific heat of lubricant, J/kg-K
specific heat of solid, J/kg-K
constant defined in eq. (37)

modulus of elasticity of solid, N/m2
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m

effective modulus of elasticity of solid, 2 E + , N/m

dimensioniess shear force per unit length
shear force per unit length, N/m
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dimensionless materials parameter, aF'
dimensioniess film thickness, h/RX
dimensionless minimum film thickness
dimensionless constant defined in eq. (13)
film thickness, m

X T M ~h ™M

min

X
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minimum film thickness, m

thermal conductivity of lubricant, W/m-K
thermal conductivity of solid, W/m-K
some characteristic length of contact, m
number of nodes in semiaxis of contact
dimensionless pressure, p/E'

min
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Peclet number, pCpuSRX/k

pressure, N/m2

dimensionless thermal loading parameter, ynoug[k

dimensionless mass flow rate per unit length, qx/°0ust

mass flow rate per unit length, kg/s-m
effective radius in direction of motion, m
radius of curvature, m

slide-to-roll ratio, 2(ua - ub)/(ua + ub)
geometrical separation, m

dimensionless temperature, t/t0
temperature, K

inlet lubricant temperature, K
dimensionless speed parameter, nOuS/E'Rx

fluid particle velocity, m/s

dimensionless fluid particle velocity, u/ug
solid surface velocities, m/s
sliding velocity, Uy = Ups m/s

surface velocity in direction of motion, (ua + ub)/2, m/s

fluid element volume, m3
dimensionless load parameter, wZ/E'RX
load, N/m

dimensionless coordinate, x/b
coordinate in direction of motion, m

dimensionless coordinate in direction of film thickness, z/h

coordinate in direction of film thickness, m
pressure-viscosity coefficient of lubricant, m2/N
elastic deformation, m

temperature-viscosity coefficient of lubricant, K"1
. . 1 [aV 1
thermal expansivity of lubricant, ¥y \3t/ , K™
p

viscosity of lubricant, N—s/m2
viscosity of lubricant at ambient pressure, N—s/m2

dimensionless viscosity of lubricant, n/ng

coefficient of friction




v Poissons ratio for solid

P density of lubricant, kg/m3

0 density of lubricant at ambient pressure and inlet oil temperature,
kg/m3 |

o dimensionless density of lubricant, o/pg

o density of solid, kg/m3

Subscripts:

a solid a

b solid b

3 solid

X coordinate in direction of motion

z coordinate in direction of film thickness

THEORY

The approach used in solving the isothermal elastohydrodynamic aspect of
the problem is similar to that used by Hamrock and Jacobson (1983). The
approach used in solving the thermal aspect of the problem is similar to that
adopted by Dowson and Whitaker (1965) and Kaludjercic et al. (1980).

Reynolds Equation
The generalized thermal Reynolds equation derived by Dowson (1962) and

written in the present form by Fowles (1970) is written for line-contact prob-
lems as follows:

m
3 apy_ ., & LI e
ax ("‘z ax> = Uy 5x (M) * 33 [fo (uy ub)] (1)
where
£ h v/} h
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F4 dz
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where

11,1 (3)
Rx rax rbx
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nau F ! Z
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—{ (dz\ 4 . ~ z _ [
M1=fp :—dZ,M3=fpdz, F1=f_dZ,F0_f_
n n n
0 0 0 0 0
Boundary conditions for equation (5) are
P=0; X=w: P= 20 at X = X (7)
- ’ - ’ X - " oexit

Figure 1 shows the radii of the rollers used in defining equation (3). It is

assumed that convex surfaces, as shown in figure 1, exhibit positive curvature
and concave surfaces, negative curvature. Therefore, if the center of curva-

ture lies within the solid, the radius of curvature is positive; if the center
of curvature lies outside the solid, the radius of curvature is negative.

Film Shape
The film shape can be written simply as
h(x) = hg + s{x) + §(x)

where
hO constant

s(x) separation due to geometry of undeformed solids
§(x) elastic deformation




The separation due to the geometry of the two undeformed rollers shown in
figure 1(a) can be described by an equivalent cylindrical solid near a plane,
as shown in figure 1(b). The geometrical requirement is that the separation
of the two rollers in the initial and equivalent situations should be the same
at equal values of x. Therefore the separation due to the undeformed geo-
metry of the two rollers can be written, using the parabolic approximation, as

s(x) =5~ (9)
X

Figure 2 shows a rectangular area of uniform pressure. From Timoshenko and

Goodier (1951) the elastic deformation at a point X on the surface of a
semi-infinite solid subjected to pressure at the point X; can be written as

ol

Y :
5(X) =-;§.— [ opmE-x) dy (10)
5 |

If the pressure is assumed to be uniform over the rectangular area, the pres-
sure can be put in front of the integral. Therefore equation (10) results in
the following (Hamrock and Jacobson, 1983):

6(7)=%PD (11)
where
D=b[(X-8)1n (X=8)% - (X+8) In (X+8)%+48(1 - Inb)]
and
b Hertzian semiwidth of contact
b equals b/n

n number of nodes within semiwidth of contact
B equals b/b

Now the term &(X) 1in equation (11) represents the elastic deformation, at a

point X, caused by a rectangular area of uniform pressure and width 2b. If
the conjunction is divided into a number of equal rectangular areas, the total

deformation at a point X due to contributions of various rectangular areas
of uniform pressure in the conjunction can be evaluated numerically. The
total elastic deformation caused by the rectangular areas of uniform pressure
within a conjunction can be written as

2 . .
8 (X) =+ 1;1:,2”“ PiD; = |k - 4] +1 (12)
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Therefore substituting equations (9) and (12) into equation (8) while writing
the film thickness in the dimensionless form gives the following:

2 (2
h 1 X~ (b 2
k=R, = TRy 2—,(’?—,()+? Z PiD; (13)

X i=1,2,...

H

where

i = Ik—il +1

Energy Equation

The temperature distribution within the lubricant film is determined from
the solution of the energy equation subject to appropriate boundary condi-
tions. The energy equation for line-contact problems can be expressed,
neglecting convection across the film and conduction along the film, as

follows:
LI 1) DN 1 ST I 1 (14)
az \" ez )T Pplax ~ tel gy - a3
where
z £ z u z
- ap_fz _ap__lfd_z _dfd_
u=u + ™ - dz o fO . + » . (15)
0 0 0

Ug f1 3
(- 2)] -

With the following substitutions and assuming that lubricant properties such
as thermal conductivity, specific heat, and thermal expansivity do not vary
with temperature or pressure, the energy equation can be written in dimension-
less form as

2 —\?2
3 T —.2 aT — .2 aP — [ su
272 = Neyeu™ 55 - NacTUh™ 3x - Nygh (ﬁ) (17)
where
2
: pAC REE'U 1/2

.o ) __0'px A

Tt Teung o, - (o)

c(R E')2 1/2 (R, E')2
Noe = [—o—— U &) 5 N, =—X " 2
ac kn0 8W vd nOtOk

The following expressions for fluid velocity and its derivative in the dimen-
sionless form are used in the energy equation:




Z Z Z
2 1/2 u
- = H™ (n aP Z 1 dZ d dZ
“=“b*u—(m> a—/: r/:" [ f-— (18)
n 0 n n
0 0 0
— u 2 F
su 1 |Y . H 1/2 1 aP
=z |F, " u(sw) Z-F- %X (19)
n 0
Boundary conditions for the energy equation are given as
T=10, X==3 T(X0)=Ty; T(XH) =T, (20)

where T, and Tp are the surface temperatures of the two solids and are
eva]uated by solving transient heat conduction equations for solids for a
known temperature distribution in the film.

Surface Temperature Equations

Carlsaw and Jaeger (1959) solved the transient heat conduction equation
for the case of linear heat flow and developed the expression for the solid
surface temperature rise of a semi-infinite body under the action of a moving
heat source. Following this, the surface temperature rise in the thermal
elastohydrodynamic lubrication of line contacts can be expressed as

X
1 at dz .
t = k (——) —_— for solid b (21a)
b (nk sPgU b )1/2 / 92/,-0 (x - ;)1/2
ps’ 4
X
1 (8t> dg .
t. = k [—= —_ for solid a (21b)
a ("kspsuacps)llz ./f 9z, (x - C)1/2

-0

These equations are valid for constant thermal conductivity of the solid and
for the dimensionless parameter

pC
P (_kE) > 10
S
In a lubricated contact and for the practical range of load and speed para-

meters, this condition is well satisfied.

Equations (2la) and (21b) can be expressed in dimensionless form as



1/2
k b I EN : dz
T (X,0) = o= | —F—— T (——) _— (22a)
X
1/2
k b 1 (a7 dg
T.(X,H) = 5~ | —F———— = (—T) —_— (22b)
a Rx n‘pSCpsuak,s / H \s8Z Z=H (X - C)l/Z

Viscosity-Pressure-Temperature Relationship

The isothermal viscosity-pressure relationship employed in the present
analysis as proposed by Barus (1893) is given as

- ap
n = no e (23)

The complete viscosity relationship can be expressed as

[ap+Y(t0_t)]
n=ne (24)

In dimensionless form it is written as

- _ e[GP’*‘yt

- 1.0-T)]

o (25)

The viscosity model used for the sliding friction calculation is

- 6P
n = exp [1.0 +o.016p * Y10 - T’]

Density-Pressure-Temperature Relationship
The isothermal density-pressure relationship used by Dowson, Higginson,
and Whitaker (1962) has been employed in this work. For the temperature vari-
ation it is assumed that within the range of temperatures considered, a linear

model applies. Therefore the complete density relationship used can be
expressed as

p = DO (1.0 "'1'0—5%) [1.0 - E(t - to)] (25)

In the dimensionless form it is expressed as

7= (1.0 +ﬁE—PCE,—P) [1.0 - ety(7 - 1.0)] (27)
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Computational Procedure

To solve the thermal elastohydrodynamic lubrication problem, it is neces-
sary to solve the isothermal cases first. The computational procedure
developed by Hamrock and Jacobson (1983) for the solution of isothermal
elastohydrodynamic lubrication of line contacts was adopted here to arrive at
the isothermal pressure distribution and film shape in the conjunction. The
isothermal pressure distribution and the film shape thus obtained were used as
initial guesses for thermal cases. Equations (5), (13), and (17) were written
in the finite difference form by using a standard central difference scheme.

Figure 3 shows the placement of the uniform nodes within the conjunc-
tion. The number of nodes within a semicontact width was 120 throughout all
calculations. However, the numbers of nodes in the inlet and outlet regions
were different for higher rolling speed cases. The system of simultaneous
equations ((5), (13), (17), and (22)) was solved by the standard Gauss-Seidel
iterative method. A1l fluid property integrals were evaluated by using the
trapezoidal rule. The cycle for automatic computation procedure is shown in

the flow chart in figure 4.

Computational difficulties were encountered in solving the energy equa-
tion and in evaluating the surface temperature near the pressure spike. Since
the film temperatures are mostly governed by the local viscosity and the pres-
sure gradient, it is not surprising that such difficulties were encountered.
Therefore, in some cases, temperatures near the pressure spike could not be
evaluated. In general, temperatures near the spike were much higher than
temperatures at the center of the contact. Therefore, in the computer plots
of temperature, temperatures near the spike have been suppressed in order to
clearly depict the temperatures before and after the pressure spike.

In the case of highest rolling speed, the temperature calculation in the
beginning of the inlet zone also gave rise to numerical problems. This is due
to the very high film thickness and very high recirculation flow caused by the
rapidly converging film thickness. Therefore, in that case, temperatures in
the first few nodes were not evaluated. However, these numerical difficulties
are likely to occur because of the highly nonlinear nature of the energy equa-
tion coupled with the nonlinear thermal Reynolds equation. None of these
difficulties affected the film thickness calculations in those cases since the
magnitude of the film thickness and the film shape are not decided by these
regions at all. The coupled solutions were considered to be converged when
the combined solution conserved the flow from the inlet to the exit region
besides satisfying the convergence criteria associated with various equa-
tions. The numerical procedures for solving the energy equation and evalu-
ating surface temperatures fail to converge for high rolling speeds when
sliding is introduced, even.for slide-to-roll ratios of 0.1 and 0.2. This is
due to high temperatures generated within the contact region and perhaps also
to the viscosity-temperature-pressure relationship used in the present calcu-
Tations. Dowson and Whitaker (1965) and Cheng (1965) have used a different
pressure-temperature relationship in their solution. However, Dowson and
Whitaker (1965) did not carry out computations for higher rolling speeds.

11



Mass Flow Rate

The mass flow rate per unit length for the elastohydrodynamically lubri-
cated contacts with temperature effects can be written as

(U -u)—=+um —m dp
9% = (ua ub) f * UpM3 = My dx (28)

In the dimensionless form the fiow rate is written as

9 Ug (&1”) Up Rx 3 5P
Q. = = |—= +—=M, H| - MHY = (29)
X pOUSRx Ug FO ug 3 bU \''2" 73X

Force Components

Normal force components per unit length acting on the solids can be
written as (fig. 5):

Wz = Waz = Wpz = JSp dx
In dimensionless form

W

P4 b
w=E'Rx=§:fP dX (30)

The tangential force component for solid a is zero. For solid b it can be
expressed as

Wpx = - fp dh

In dimensionless form it can be expressed as

Wby

dP
wbx _E,Rx =/‘HHdX (31)

Shear Forces

The shear force per unit length of the roller is written as

exit
f = n (ﬂ) dx (32)
b,a ./f ¥4 2=0,h

where
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Therefore the shear forces on the roller surfaces can be expressed in dimen-
sionless form as

) S
exitr u F
b d 1} 3P .
F =f Us—)——*+ H 1.0——)-— dX for solid a  (33)
a  J _( Rx)uSHF0 ( F0 ax]

X p—

exit u F
f (u b—)—d—— - H—l% dx for solid b (34)

F
X uSHF0 F

b

o

-0

L. .
For equilibrium to be satisfied, the following must be true:

Fa-Fp*Hpx=0
Waz - Wpz = 0

and the coefficient of friction can be written as

RESULTS AND DISCUSSION

Input data for the system of rollers, the physical material properties,
and the lubricant physical properties used in the computer calculations are
presented in table I. Computed isothermal film thickness, thermal film thick-
ness, and rolling traction coefficient are shown in table II. Table III pre-
sents the computed results of midfilm temperature rise, surface temperature
rise, and coefficient of friction for combined rolling-sliding cases.

Representative pressure distribution and film shape are shown in
figure 6. Figure 6(a) shows the pressure distribution and film shape for the
low dimensionless rolling speed of lx10‘11, and figure 6(b) shows the cor-
responding pressure distribution and film shape for the high dimensionless
rolling speed of 1.344x10-10 (or 8.0 m/sec). The pressure distribution and
film shape exhibit the characteristic pressure spike and nip in the film shape
near the pressure spike, where the nip is that portion of the film shape from
the tip of the pressure spike to the outlet of the conjunction. The film
shape in the contact region is flatter for low rolling speed than for high
rolling speed. This is due to the greater film thickness and the pronounced
hydrodynamic effect on the pressures in the contact region for the high
rolling speed. It is noticeable too in the pressure distribution in the con-
tact region, which departs significantly from the Hertzian pressures when com-
pared with low rolling speeds. This causes a shift in the location of the
pressure spike toward the center of the contact. However, the natures of the
film shape and pressure profile are not altered by the thermal effects, and no
appreciable changes are noticed when compared with respective isothermal
solutions.

A computer plot of the mass flow rate from the inlet to the outlet is
shown in figure 7. Conservation of mass flow rate is evident and was used as

13




the final criterion for the converged solution. Conservation of flow in the
inlet region is an important aspect since the pressure distribution and film
shape in the inlet region are responsible for the film shape within the con-
Junction and to a greater extent for the minimum film thickness.

Temperature distributions in the conjunction for pure rolling cases are
presented in figures 86a) and (b) for two dimensionless rolling speeds,
1x10-11 and 1.324x10-1 , respectively. In pure rolling cases the maximum
temperature rise for the midfilm temperature occurs on the far left in the
beginning of the inlet zone. Surface temperatures rise from the beginning of
the inlet zone, reach a maximum, and then drop to a lower value before the
start of the contact region. In pure rolling cases temperatures are much
Tower in the contact region than in the inlet zone. For higher rolling speeds
much higher temperatures are attained, as is evident from the comparison of
figures 8(a) and (b). Viscous shear heating in pure rolling is predominant in
the inlet zone and is pronounced at high rolling speeds, thus resulting in
significant thermal effects on film thickness for higher rolling speeds.

With sliding, the temperature distribution in the conjuction is altered
totally, as is evident from the figure 9. Sliding causes severe heating due
to viscous effects in the contact region only, where the viscosities are high,
and does not introduce significant heating in the inlet region. Both the mid-
film temperature and the surface temperature rise considerably due to shear
heating as a result of sliding in the contact region. Sliding results in
different surface temperatures in the solids, the slower surface attaining
higher temperature than the faster surface. However, for the sliding cases
computed, no appreciable change was noticed in the film thickness, even for
very high slide-to-roll ratios of 0.3 and 0.5. A decompression cooling effect
is visible in the temperature distribution after the pressure spike.

The effect of temperature on rolling and sliding traction is shown in
figures 10(a) and (b), respectively. As the rolling speed and slide-to-roll
ratio increase, traction coefficients decrease with respect to their iso-
thermal values.

In calculating sliding friction, however, a different pressure-viscosity
model was used since the friction coefficients calculated with the model used
in computing the pressure and temperature distribution were unreasonably
high. This fact was mentioned by Dowson and Whitaker (1965) as a reason for
using a different model for thermal analysis than for jsothermal analysis.

Minimum Film Thickness Formula

Besides the usual dimensionless parameters associated with the isothermal
film thickness calculations, the only other dimensionless parameters that
influence the magnitude of film thickness in thermal elastohydrodynamic Tubri-
cation of rectangular contacts are

"

(1) Thermal loading parameter Q = g.s
pC u R
(2) Peclet number Pe = —P S X




with the dimensionless group as Pe w3/ 2, How%v%r, the influence of the
dimensionless group of the Peclet number Pe W /2 on the minimum film thick-
ness is negligible. Therefore the functional relationship can be suitably
represented (as the ratio of thermal to isothermal minimum film thickness) by

H

min 1.0
= (36)
Hmin,I 1.0 + £(Q)
or
H .
min 1.0
q = (37)

min,I 1.0 + DQ%

where the constants D and a are determined by the linear regression analy-
sis of the computed data for the minimum thickness.

The formula for the thermal elastohydrodynamic minimum film thickness is
obtained as

H .
min 10

H . = 0.4 (38)
min,I 10 +Q

with a regression coefficient of 0.97811, where

0.71 0.57N—0.11

H = 3.07 U G (39)

min, I
as obtained from Hamrock and Jacobson (1983).

Table IV compares the thermal and isothermal minimum film thickness
ratios obtained from equation (38) with those calculated from the Kaludjercic
et al. (1980) and Murch and Wilson (1975) formulas. There is good correlation
with the values given by Kaludjercic's formula, but Murch and Wilson's formula
overestimates the thermal effect at higher rolling speeds. It is understand-
able since the analysis done by Murch and Wilson (1975) is only approximate.
It is a Grubin type of analysis of the inlet zone for an incompressible fluid
and constant surface temperature.

CONCLUSIONS

A numerical solution to the problem of thermal elastohydrodynamic Tubri-
cation of line contacts has been achieved. It calls for simultaneous solution
of the thermal Reynolds equation, the elasticity equation, the energy equa-
tion, and the transient heat conduction equation in the solids. The following
conclusions were reached:

1. Thermal effects on the minimum film thickness are negligible at low
rolling speeds.

2. At high rolling speeds there can be significant reduction in the
minimum film thickness due to viscous shear heating in the conjunction. Ther-
mal effects are incorporated in terms of the dimensionless thermal loading
parameter Q into isothermal film thickness equations as follows:
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Hmin _ 10
min,1 10 + Q2%

H

3. Sliding has negligible effect on the film thickness or film shape,

especially at low rolling speeds.
4. Thermal effects considerably reduce both rolling traction and sliding

traction, especially at high rolling speeds and for the combination of rolling
with sliding.

16




REFERENCES

Barus, C. (1893): Isotherms, Isopiestics, and Isometrics Relative to
Viscosity. Am. J. Sci., vol. 45, pp. 87-96.

Carlsaw, H. S.; and Jaeger, J. C. (1959): Conduction of Heat in Solids.
Oxford University Press, Oxford, U.K.

Cheng, H. S. (1965): A Refined Solution to the Thermal-Elastohydrodynamic
Lubrication of Rolling and Sliding Cylinders. Trans. A.S.L.E., vol. 8,
pp. 397-410.

Cheng, H. S. (1967): Calculation of Elastohydrodynamic Film Thickness in High
Speed Rolling and Sliding Contacts. Mechanical Tech. Inc., N. Y. Report No.
AD65292.

Dowson, D. (1962): A Generalized Reynolds Equation for Fluid Film
Lubrication. Int. J. Mech. Sci., vol. 4, pp. 159-170.

Dowson, D.; and Higginson, G. R. (1961): New Roller-Bearing Lubrication
Formula. Engineering (London), vol. 192, p. 158.

Dowson, D.; Higginson, G. R.; Whitaker, A. V. (1962): Elasto-Hydrodynamic
Lubrication: A Survey of Isothermal Solutions. J. Mech. Eng. Sci.,

I. Mech. Engrs., London, U.K., vol. 4, no. 2, pp. 121-126.

Dowson, D.; and Whitaker, A. V. (1965): A Numerical Procedure for the
Solution of the Elastohydrodynamic Problem of Rolling and Sliding Contacts
Lubricated by a Newtonian Fluid. Proc. Inst. of Mech. Engrs., London, U.K.,
vol. 180, pt. 3B, pp. 57-71.

Fowles, P. E. (1970): A Simpler Form of the General Reynolds Equation.

Trans. A.S.M.E., JOLT, vol. 92, no. 4, Oct., pp. 661-662.

Goksem, P. G.; and Hargreaves, R. A. (1978): The Effect of Viscous Shear
Heating on Both Film Thickness and Rolling Traction in an EHL Line Contact,
Part I: Fully Flooded Conditions. Trans. A.S.M.E., JOLT, vol. 100, no. 4,
p. 346.

Grubin, A. N.; and Vinogradova (1949): Fundamentals of the Hydrodynamic
Theory of Lubrication of Heavily Loaded Cylindrical Surfaces. Invesitgation
of the Contact Machine Components, Kh. F. Ketova, ed. Translation of
Russian, Book No. 30, Central Scientific Institute for Technology and
Mechanical Engineering, Moscow, Chapter 2. (Available from Dept. of
Scientific and Industrial Research, Great Britain, Transl. CTS-235, and from
Special Libraries Association, Chicago, Trans. R-3554).

Hamrock, B. J.; and Jacobson, B. 0. (1983): Elastohydrodynamic Lubrication of
Rectangular Contacts. NASA TP-2111.

Kaludjercic, A.; Ettles, C. M. M.; and MacPherson, P. B. (1980) :
Thermohydrodynamic Effects in Lubricated Line Contacts. Research Paper R.P.
620, Westland Helicopters Limited, Yeovil, England, U.K.

Murch, L. E.; and Wilson, W. R. D. (1975): A Thermal-Elastohydrodynamic Inlet
Zone Analysis. Trans. A.S.M.E., JOLT vol. 97, no. 2, pp. 212-216.

Sternlicht, G.; Lewis, P.; and Flynn, P. (1961): Theory of Lubrication and
Failure of Rolling Contacts. Trans. A.S.M.E., Ser. D., vol. 83, p. 213.

Timoshenko, S.; and Goodier, J. N. (1951): Theory of Elasticity, 2nd ed.
McGraw Hill.

17






TABLE I. - INPUT DATA, MATERIAL PROPERTIES, AND LUBRICANT PROPERTIES

Radius of equivalent roller on plane, em . . . . . . . . . . . .. 1.11125
Inlet temperature of lubricant, K . . . . . . . . . ... ... .. 313
Inlet viscosity of lubricant, Pa-s . . . . . . . . .« .. .. .. 0.04N
Inlet density of lubricant, kg/m3 ................. 866
Pressure-viscosity coefficient of lubricant, a, GPa-l . ... .. 22.76
Temperature-viscosity coefficient of lubricant, k-1 . . . . .. 0.04666
Pressure-density coefficients of lubricant, GPa-!

A e e e e e e e e e e e e e e e e e e e e 0.582744

e e e e e e e e e e e e e e e e e e e e e e 1.68348
Thermal expansivity of lubricant, k-1 6.5x10-4
Thermal conductivity of lubricant, W/m-k . . . . . . . . ... .. 0.12
Specific heat of lubricant, kd/kg-K . . . . . . . . . ... ... 2.0
Thermal conductivity of steel rollers, W/m-K . . . . . . . . . .. .. 52
Specific heat of steel rollers, J/kg-K . . . . . . . . .« v o .. 460
Density of steel rollers, kg/mé ................. 7850
Elastic modulus of steel rollers, GPa . . . . . . . . ¢ ¢ ¢ « « « . 200
Poissons ratio of steel rollers . . . . . . . . . . ... ... 0.3

TABLE II. — ISOTHERMAL FILM THICKNESS, THERMAL FILM THICKNESS, AND
ROLLING TRACTION COEFFICIENT

[Dimensionless load, W, 2.0478x10-5; dimensionless materials parameter, G, 5000.]

Case | Dimensionless Dimensionless Dimensionless Ratio of Isothermal Thermal
speed, isothermal thermal mini- thermal to rolling rolling
U minimum film mum film isothermal traction traction
thickness, thickness, film thickness | coefficient coefficient
Hmin Hmin
1 1.000x10-11 20.015x10-6 20.015x10-6 1.0000 0.537x10-3 0.537x10-3
2 2.000 35.384 34.581 L9773 .683 .683
3 3.000 44,978 43.881 .9756 .836 .836
4 5.000 65.144 61.995 .9516 .968 .968
5 7.575 87.943 83.123 .9452 1.074 1.051
10.000 113.660 105.240 .9259 1.7097 1.563
7 13.466 138.060 125.740 ,9108 1.9097 1.678
8 20.000 177.880 156.710 .8810 2.1610 1.733




TABLE III. — MIDFILM TEMPERATURE RISE, SURFACE TEMPERATURE RISE, AND
COEFFICIENT OF FRICTION FOR ROLLING-SLIDING CASES

[Dimensionless rolling speed, U, 1x10‘11;

parameter, G, 5000;

dimensionless materials

dimensionless load parameter, W, 2.0478x10-5,]

Slide-~to- Sliding Dimensionless mid- Dimensionless solid surface
roll ratio coefficient film temperature temperature rise at
of friction rise at center of center of contact
contact
Faster surface Slower surface
0 0 0 0
.04 .0145 .528x10-3 .124x10-3 .124x10-3
.08 .0319 3.552 1.615 1.638
.16 .0384 13.799 6.416 6.736
.20 .0460 20.217 9.359 9.975
.30 .0547 38.000 17.460 19.320
.50 .0677 73.142 33.040 39.490

TABLE IV. - THERMAL AND ISOTHERMAL MINIMUM FILM THICKNESS RATIOS OBTAINED FROM

EQUATION (38) AND FROM KALUDJERCIC AND MURCH AND WILSON FORMULAS

[Dimensionless Toad parameter, W, 2.0478x10-5; dimensionless materials parameter, G, 5000.]

Dimensionless Dimensionless Dimensionless Ratio of thermal to isothermal film thickness
speed parameter, thermal Peclet

u loading group Present Kaludjercic et al. | Murch and Wilson

parameter, parameter, formula (1980) formula (1975) formula

1.000x10-11 0.564x10-2 0.883x10-2 0.9875 0.9940 0.9890
2.000 2.256 1.766 .9785 .9876 .9764
3.000 5.076 2.649 .9705 .9812 .9616
5.000 14.100 4,415 .9563 .9682 .9299
7.575 32.360 6.688 .9401 .9517 .8880
10.000 56.400 8.298 .9263 .9361 .8489
13.466 102.270 11.890 .9083 .9150 .7953
20.000 225.600 17.660 .8784 .8767 .7040
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Figure 2. - Surface deformation of semi-infinite body subjected to uniform pressure over a rectangular area,
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Figure 4, - Flow chart for computational procedure used in thermal elastohydrodynamic studies.
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less materials parameter G of 5000, dimensionless load parameter W of 2. 0478x10'5,
and two dimensionless speed parameters U.
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materials parameter G of 5000, dimensionless load parameter W
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