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EXTENDED ABSTRACT 

Constitutive equations based on classical concepts of creep and 

plasticity generally rest on the assumption that the inelastic strain 

can be decomposed into two distinct and additive contributions, one time­

dependent (creep) and the other time-independent (plastic). Experimental 

data collected on structural alloys at high temperature (500 to 600°C), 

however, suggest that an improved approach is to adopt a unified represen­

tation in which creep and plasticity are characterized as occurring simul­

taneously and interactively and time is an essential ingredient throughout. 

Examples of the inherent time dependency exhibited by some fast breeder 

alloys (particularly 2-1/4 Cr-l Mo steel) at elevated temperature are rate­

dependency under monotonic and cyclic straining, thermal recovery (Fig. 1), 

and strong creep-plasticity interaction. One manifestation of the latter 

is illustrated in Fig. 2 which shows the strong influence of the recent 

history of plastic straining on stress relaxation. Account of such be­

havior is important in structural problems related to the design of fast 

breeder components. 

A creep-plasticity-recovery constitutive model has been under develop­

ment at Oak Ridge National Laboratory (ORNL) in recent years 1 ,2,3 that 

allows for some of the more important nonclassical features observed in 

the behavior of fast breed~r alloys. The ORNL model is based on the 

Bailey-Orowan theory of competing hardening and recovery mechanisms and 

incorporates some aspects of the work of several authors, e.g., Rice,4 

Ponter and Leckie,s and Lagneborg. 6 A notable distinction between this 

constitutive model and the related state-variable theories of Krieg 7 and 

Miller8 lies in an accompanying set of inequalities that, in effect, 

delineate analytically different regions of the "state space." This 

approach in so structuring the state space follows the work of Onat 9 
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and Larrson and Stoakers 10 and admits a representation of analytically dis­

continuous response such as that observed before and after reductions or 

reversals of stress and exemplified in Figs. 1 and 2. 

Figures 3 through 6 provide a qualitative demonstration of the abil­

ity of the ORNL unified model to represent key features of high temperature 

uniaxial response. Figure 3 illustrates creep behavior (in arbitrary non­

dimensional units) under constant stress conditions, indicating satura­

tion of the state variable CL at steady state creep. Figure 4 shows the 

predicted response in an interrupted creep test and is characterized by 

the occurrence of state recovery with zero creep strain recovery (cf. 

Fig. 1). The state variable CL is seen, in this case, to decrease during 

the period at zero stress. Figure 5 illustrates the capability of the 

model, coupled with linear elasticity, to represent rate-dependent plas­

ticity. Shown are several monotonic stress strain curves corresponding to 

different strain rates. Finally, Fig. 6 demonstrates the ability of the 

unified equations to model the complex behavior depicted in Fig. 2. A 

saturated hysteresis loop predicted on the basis of the ORNL unified 

equations is shown in Fig. 6a, the numbers indicating points from which 

the stress is relaxed. The corresponding predictions of stress relaxa-

tion are given in Fig. 6b. Figure 6c depicts the limit cycle in state space 

corresponding to the saturated hysteresis loop of Fig. 6a and shows the 

trajectories followed by the state points during stress relaxation. The 

relaxation behavior is seen to be strongly dependent on the initial in­

elastic state even for points of equal starting stress. 
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Fig. 1. Response of 2-1/4 Cr-l Mo steel 
at 5380 C in interrupted creep test. 
Stress alternates as 124 MFa, 0 MFa, 
124 MPa. 
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Fig. 2. Stress relaxation in one hour 
from various points around a satu­
rated hysteresis loop. 
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Fig. 3. Prediction of creep strain vs time and state variable a vs 
time under constant stress (T = const.) conditions. Units are arbitrary 
and nondimensional. 

182 



0.025 

0.020 

Z 

< 0.015 c: 
I-
00 
n. 
w 
w 0.010 c: 
U 

0.005 

0 
0 0.1 0.2 

TIME 

0.3 0.4 0.5 

~ 

I 
w 

6 

~4 
< 
c: 
< 
> 
w 
I-

~ 2 
00 

0.1 0.2 0.3 0.4 

TIME 

Fig. 4. Prediction of response in interrupted creep test. Creep 
strain vs time and state variable a vs time (cf. Fig. 1). Arbitrary, 
nondimensional units. 
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Fig. 5. Prediction illustrating rate sensitive plasticity. Stress vs 
strain under constant strain rate. Variation in strain rate is one decade. 
Arbitrary, nondimensional units. 
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Fig. 6. (a) A saturated hysteresis loop at constant strain rate. 
Numbers indicate points from which stress is relaxed. (b) Stress relaxa­
tion curves corresponding to points in (a). (c) Saturated limit cycle 
in state space T vs a showing trajectories followed during stress relaxa­
tion. Units are arbitrary and nondimensional. 
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