
ABSTRACT 

SOME RECENT DEVELOPMENTS IN THE ENDOCHRONIC THEORY 
WITH APPLICATION TO CYCLIC HISTORIES 

K. C. Valanis and C. F. Lee 

University of Cincinnati 
Cincinnati, Ohio 45221 

Constitutive equations with only two easily determined material constants 

can predict with computational ease the stress (strain) response of normalized 

mild steel to a variety of general strain (stress) histories, without a need 

for special unloading-reloading rules that are otherwise so evident in the 

literature. 

These equations are derived from the endochronic theory of plasticity of 

isotropic materials with an intrinsic time scale defined in the plastic strain 

space. Agreement between theoretical predictions and experiments are excel-

lent quantitatively in cases of various uniaxial constant strain amplitude 

histories, variable uniaxial strain amplitude histories and cyclic relaxation. 

The cyclic ratcheting phenomenon is also predicted by the present theory, in 

routine fashion. 
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INTRODUCTION 

In recent years, cyclic plasticity, which deals with the rate-independent 

inelastic response of materials to cyclic stress or strain histories, has be­

come an important subject of research in applied mechanics and engineering 

design. Past experimental work, theoretical studies and engineering analysis 

are well documented in the lit~rature. For details see, typically, References 

~1-1§1. 

On the basis of existing experimental results, one concludes that gene­

rally, when subjected to symmetric stress or strain cycles, annealed or soft 

materials will harden and will tend to a stable response, while cold-worked 

or hard materials will soften. When a stable response is reached, hysteresis 

loops in the stress-strain space become stable, closed and symmetric. Also 

stable loops at various strain (or stress) amplitudes are similar in shape. 

This has led to the definition of a cyclic stress-strain curve which is the 

locus of the tips of stable hysteresis loops. It is found that some metals, 

e.g. 7075-T6 aluminum, follow the Masing rule. However, some metals, e.g. 

normalized mild steel, do not follow this rule at all I-a 7. 

In the presence of a history of unsymmetric stress cycles, the material 

response involves a progressive increase of plastic (or total) strain in the 
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direction' of mean stress. This is' called cyclic "creep" or "ratcheting". 

On the other hand, a history of unsymmetric strain cycles, will result in 

"cyclic stress relaxation" toward zero mean stress. Both phenomena occur 

whether the material response is stable or not. 

Under variable amplitude cycling, metals have a strong memory of their 

most recent point of reversal. 

If the number of cycles is large enough, then effects of prior plastic 

history tend to disappear. More precisely a material has a "fading" memory, 

in termsof the intrinsic time scale SI of the history of plastic deformation 

that preceded the cyclic history ~ 7_1, as the latter progresses. 

Attempts to describe the above phenomena analytically in terms of con-

stitutive laws have been tried. However, so far, an elegant, simple but real-

istic constitutive law is still not at hand. 

In this paper, we use a recent model of endochronic theory in the study 

of cyclic plasticity of stable materials. This model, proposed by Valanis 

113/, has been applied to metals by authors il~/. In the case of normalized 

mild steel, it is shown that the constitutive equations derived from the theory 

can predict quantitatively stable hysteresis loops pertaining to various strain 

amplitudes. The broader capability of the theory is critically tested by 

demonstrated agreement with the observed cyclic response of normalized mild 

steel to variable uniaxial strain amplitude histories. In the final section 

we show that cyclic ratcheting and cyclic relaxation are phenomena which are 

readily predicted by the present theory. 
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1. A BRIEF REVIEW OF THE ENDOCHRONIC THEORY 

In the late 1960 1 s, the formulation of constitutive theories of visco-

elastic materials from concepts of irreversible thermodynamics and internal 

state variables reached an advanced level of development. It was natural to 

inquire if a similar approach could be used to establish a theory of plasticity, 

and the attempt by Valanis to explore this question led to the development of 

the endochronic theory in 1971 ~1~/. 

In its early stages of development, the theory rested on the notion that 

the stress response of dissipative materials is a function of the deformation 

(strain) path. When the material behavior considered is rate-independent, the 

path in question must also be rate independent. The early version of the 

endochronic theory was constructed in terms of a path in the strain space €, ,. 
~J 

In this space, every point represents a deformation (strain) state. A sequence 

of strain states traces a path in this space (Figure 1). The distance along 

the path between the two strain states P and pi is denoted by d~. If P, a 

fourth order positive definite tensor, is the metric of the space, then 

(1.1) 

The tensor P is a material property in the sense that in general it will vary 

from material to material. Since successive strain states on a strain path 

are distinct and d~ is always positive, the latter can serve as a time measure 

which is a property of the material at hand, since P is such. The length of 
~ 

the path ~ is then an intrinsic time scale where "time" is used here in a very 

general sense. The stress at point P is not determined simply by the strain 
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at P, but by the history of the strain along the path OPe Materials for 

which the stress is a function of the history of strain with respect to an 

intrinsic time scale, have been called "endochronic" by the first author 

and the theory of the mechanical response of such materials is called 

"endochronic theory". 

In the applications, it was found that it is appropriate to define an 

intrinsic time scale z which is related to the intrinsic time measure ~, by 

the relation: 

dz = d~ 
f 

(1. 2) 

where f is a function of the history of strain. The function f, generally 

considered to be a function of ~, is of thermodynamic origin and is related 

proportionally to the degree of internal friction in a material. If a material 

hardens, f(~) increases with ~; if it softens, f decreases with ~ and is constant 

otherwise. 

The power of the thermodynamic development that follows lies in the fact 

that it does not depend on an explicit definition of z. Thus one can envision 

a thermodynamic framework, applicable to a large class of materials, from 

which an explicit constitutive equation, pertaining to a sub-class, can be 

obtained by simply choosing the appropriate form of z. 

The intrinsic time defined by equation (1.2) leads to a so-called simple 

endochronic theory. In the case of linear isotropic theory the constitutive 

equations so derived can be decomposed into deviatoric and hydrostatic parts. 

The deviatoric stress s is related to the history of the deviatoric strain e 

by the linear functional relation: 
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ae 
dz' 

(1. 3) ~(z - z') 
az' 

where in the reference configuration, s is zero, z = 0, and the shear modulus, 

~(z), is given by a Dirichlet series, i.e., 

n 

~ (z) = Ace + ~ 
r=l 

(1. 4) 

where A ,A and B are positive constants. The hydrostatic stress, 0H' is 
ce r r 

related to the history of volumetric strain, e, in a similar fashion by the 

linear functional relation: 

ae 
K(z - z') dz' 

dZ' 
(1. 5) 

where 0H = 0kk/3 and e = £kk' in the usual notation where the summation con­

vention is employed. The bulk modulus, K(z), is given by a Dirichlet series 

of the form of equation (1.4). Note again that 0H = 0 in the reference 

configuration. 

For further details of the derivation of equations above see ~1~/, where 

it is shown that both ~(z) and K(z) are composed of finite sums of positive 

exponentially decaying terms. In particular, ~(O) and K(O) are the shear 

and bulk elastic moduli, respectively. 

The simple endochronic theory has been applied with success to a number 

of problems of practical interest 17,15,16/. 

Despite this fact, it failed to predict closed hysteresis loops for 

"small" unloading-reloading processes in one-dimensional conditions. For 
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such deformation histories, the theory predicted a slope at the reloadin9 point 

that was smaller than the unloading slope at the same point. This feature of 

the theory is at odds with the observed behavior of most metals. 

It was shown that the openness of the hysteresis loops is thermodynamic 

in nature and has to do with the fact that the intrinsic time rate of dissi­

pation at the onset of unloading is equal to the intrinsic time rate of dissi­

pation upon continuation of loading. However, from experience, most rate­

insensitive materials initially unload in an elastic manner and, therefore, 

with essentially zero rate of dissipation. In view of this, the discrepancy 

between prediction and observation was bound to arise 117/. 

It .was subsequently demonstrated, however, that if the measure of intrinsic 

time is redefined in terms of the increment of plastic strain, the rate of 

dissipation at the onset of unloading and reloading is, in fact, zero. There­

fore, it was appropriate to adopt the plastic strain increment as the measure 

of intrinsic time. Moreover, the constitutive equations (1.3) and (1.5) are 

recast in a form whereby the stress is related to the history of plastic strain. 

This was done by the first author recently ~lZI. This model was used to prove 

mathematically the existence of yield surface and that the kinematic hardening 

rule is a consequence of the theory. Of greater theoretical and practical 

consequence, however, is the fact that new measure of intrinsic time makes 

feasible the complete elimination of the yield surface by shrinking its size 

to zero and thereby reducing the surface to a point. This is done by intro­

ducing weakly singular kernel functions in the linear functional representation 

of stresses in terms of history of plastic strain by allowing the kernel 

functions to possess an integrable singularity at the origin (i.e. z = 0). On 

the basis of the above considerations, endochronic constitutive equations of 
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isotropic materials, which exhibit yielding immediately upon application of 

loading, are as follows 

p (0) = co (1. 6) 

O'kk 
= jZoH K (0) = co (1. 7) 

and 

where D and H denote the deviatoric and hydrostatic state, respectively. Also 

ds 
(1. 8) 

(1. 9) 

where ~l and Kl are the appropriate elastic moduli. The intrinsic time scale 

increments dZ
H 

and dZ
D 

are related to the intrinsic time measures by the 

equations: 

(1.10 ) 

(1.11) 
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where 

= I de~. de~. I ~ 
~J ~J 

(1.12 ) 

(1.13) 

Here I· I denotes the absolute value. Other more general definitions are 

possible, see reference /13/. The kernels p and K are given by the series 

<Xl 

2: 
-Cl Z 

p (zD) 
r D = p- e 

r 
(1.14 ) 

r=l 

<Xl 

2: 
-w Z 

I<' (zH) = r H 
Kr e (1.15 ) 

r=l 

which must be convergent for all values of Z > 0, but should diverge at z = O. 

The above equations summarize the new model of the isotropic endochronic theory. 

In conclusion, two significant results are accomplished: (1) The slope of 

the deviatoric (or hydrostatic) stress-strain curve at points of unloading and 

reloading or strain rate reversal is always elastic, i.e., equal to the slope 

at the origin of the appropriate stress-strain curve. (2) The hysteresis loops 

in the first quadrant of the stress-strain space are always closed. For 

details see reference /13/. 

Constitutive Relations in Tension-Torsion 

The constitutive equations that apply in this specific case are found from 

equations (1.6) and (1.7) and are given below. 
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J:O p 
T = p (Z - Z I ) 

dn d I -- z 
D D dZ I D 

D 

(1.16) 

J:O K(ZD - Z~) 
d 

(e:P - e:P ) dz' °1 = dZ' 1 2 D 
D 

(1.17) 

= 1:° K(Z - z') d ( e:P + 2e:P ) dz' 
°1 H H dZ' 1 2 H 

H 

(1.18) 

where e:~ and cr. are the axial plastic strains and stresses, respectively, 
~ ~ 

along the axes x. and e:P = ~P3 to satisfy the condition of isotropy. Also T 
~ 2 

and nP stand for s12 and ei2' respectively, in the notation of equation (1.6). 

Because in the experiments to be investigated the hydrostatic strain was 

not measured we shall proceed to make the usual (approximate) assumption of 

elastic hydrostatic response, in which case equation (1.7) does not apply, 

but instead the plastic incompressibility condition 

(1.19) 

is used. In the following, we will omit the subscripts D and H. 

In light of the above hypotheses and in view of equations (1.16) and 

(1.19) the appropriate constitutive equations in tension-torsion are the 

following: 

p 
p (z - z') E..!L dz' 

3z' (1. 20a) 
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where 

3e:P 
1 

E (z - z') -- dz' 
dZ' 

E(z) = 3 p(z) 

dz = dZ
D 
=~ 

f (I;) 

2 
dl; = dl;D = I[ (de:P - de:P ) 

3 1 2 

(1.20b) 

(1. 20c) 

(1. 21) 

(1. 22) 

2 2 ~ 
+ 2 (dnP) ] I (1.23a) 

Alternatively. dl; can be expressed in terms of the engineering shear strain 

yP = 2nP , in which case, upon using equation (1.19), 

(1. 23b) 

In the applications that follow we will use the above equations in the 

study of cyclic response to a variety of test conditions. 
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2. APPLICATIONS TO STEADY CYCLIC RESPONSE 

In subsequent applications, it is expedient to rescale d~ by a constant 

Ii so that 

(2.1) 

The values of p(z) and E(z) are rescaled by the same constant. 

cyclic Shear Response 

It follows from equation (2.1) that in pure shear 

d~ (2.2a) 

In addition, if the cyclic response is steady, then f(~) is a constant, which 

we set equal to 1. Thus equation (1.22) becomes 

(2.2b) 

In reference /13/, we let p(z) be a function of the form 

where P 
o 

-ct 
= Po z 

and ct are material constants and 0 < ct < 1. 

(2.3) 

This type of kernel 

satisfies the constraint imposed by equation (1.6) and leads to the Ramberg-

Osgood equation for the tensile response. In view of these remarks, we use 

equation (2.3) for the present study. 
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Upon substitution of equation (2.3) in equation (1.20a), the shear 

stress is expressed.asa function of the history of plastic strain as follows: 

Po dyP d ' 
a dz' z 

(z - Z ') 

(2.4) 

At the completion of n reversals and by virtue of equations (2.2a, b) and (2.4), 

the following relation applies, 

1" = (_l)i-l 
Po 1Z 

--~-- dz ' + (-1) 
(z - z') a 

z 
n 

Po 
--~--dz' (2.Sa) 

a 
(z - z I ) 

where z. denotes the value of z at the point where the ith reversal has been 
~ 

completed and z 
o 

result 

def 
O. 

Po [ I-a 
1" = -- Z + 2 

I-a 

By simple analysis, the above equation leads to the 

n 

2: (2.Sb) 

i=l 

Equation (2.5b) is suitable for the prediction of the stress response, once 

the functional relationship between z and the (plastic) shear strain history 

is known. 

Cyclic Uniaxial Response --

In this case, we use equations (2.1) and (2.2a, b) to obtain the essen-

tial relation. 

(2.6) 
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In the fashion outlined above, the steady cyclic uniaxial response is found 

from equations (1.20b), (1.21), (2.3) and (2.6) and is given by the relations, 

v3P 
a = __ 0_ [zl-a + 2 

l-a 

n 

2: 
i=l 

If, instead of using equation (2.6), we use 

dz 

then equation (2.7) becomes 

3 Po 1 [l-a 
0=----- z +2 

l-a a/2 
3 

n 

2: 
i=l 

( -1 ) i (z - z.) l-a ] 
~ 

(2.7) 

(2.8) 

(2.9) 

The scaling of the intrinsic time by a constant is a matter of convenience 

and may be done at will, without interference with the theory. We observe 

that equations (2.5b) and (2.9) obey the linear homogeneous transformation 

between indicated stresses and strains given below: 

1: = (2 .lOa ,b) 

To test the validity of the theory, we appeal to the experimental results 

on normalized mild steel obtained by Jhansal and Topper /-6 7. 

Constant Uniaxial Strain Amplitude --

We consider the class of metals whose asymptotic stress response to sus-

tained cyclic strain excitation at constant strain amplitude is a periodic 
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stress history with constant amplitude. Specifically in a uniaxial test of 

this type, the axial stress amplitude ~a is constant and therefore the axial 

plastic strain amplitude ~£P is also constant, following equation (1.8). 

Thus 

(2.11) 

where ~£ is the axial strain amplitude and El is Young's modulus. As a 

result, the value of z during cyclic tension and compression can be found by 

integrating equation (2.8). After an odd number n of reversals has been com-

pleted, the value of z - z can be calculated by integrating the relation 
n 

dz = -d£P with ~£P as the lower limit of integration. If n is even, then the 

relation dz = d£P applies with -~£P as the lower limit of integration. The 

results are as follows: 

and 

z 
n 

= (2n - 1) ~£P 

where in equation (2.12a) "-" is used for n = odd and "+" for n 

Equation (2.12b) applies to both cases. 

(2.l2a) 

(2.12b) 

even. 

Upon substitution of equations (2.12a, b) in equation (2.9), one obtains 

the result 
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3 p 1 I-a 
= -..£ -- (L\e:P ) F (a,x) 

I-a 3a/2 n 

F (a,x) = (2n ± x)l-a + 2 
n 

n 

2: 
i=l 

i I-a 
(-1) (2n - 2i + 1 ± x) 

(2.13) 

(2.14a) 

(2.14b) 

where the "+" and "_" signs correspond to n even and n odd, respectively. 

The algebraic value of the peak stress (i.e., stress amplitude) is found from 

equation (2.14b) by choosing n odd and setting x = 1 in equation (2.14b), i.e., 

F 
n 

(a) 
I-a 

= (2n - 1) + 2 

n 

2: 
i=l 

i 
(-1) 

I-a 
(2n - 2i) (2.14c) 

where n = I, 3, 5, ...• The peak stress at n = even is given by the same 

equation, i.e., equation (2.14c). Thus equation (2.14c) is applicable for 

all n. It can be shown that, in the limit of n~~, F converges to a constant 
n 

F~(a), where F~ varies with a but is essentially close to unity. For instance, 

for a = 0.864, F is equal to 1.03 /14/. Thus the asymptotic value of L\cr as 
~ 

n tends to infinity is given by the equation 

(2.15) 

This is the equation of the cyclic str~ss-(plastic) strain curve. 

Cyclic steady response in shear can be found in a similar fashion or 

by using equations l2.10a, b). 
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To test the validity of the theory, we use experimental data on normalized 

mild steel i 6_/. In reference / 6 /, a set of stable uniaxial hysteresis 

loops corresponding to various constant strain amplitudes was presented in the 

stress-strain space. A propos of the ensuing theoretical predictions we note 

that the geometric shape of the loops is given by equation (2.13), whereas 

the peak stresses are given by equation (2.15). We also note that there are 

only two undetermined parameters in these equations, a and p. The form of 
o 

equation (2.15) was corroborated in reference /14/ where a semi-logarithmic 

plot of the experimental values of ~a vs ~EP gave rise to a linear relation. 

The plot also determines a and p which were found to be 0.864 (a pure number) 
o 

and 48.4 MPa (7.02 ksi), respectively. These values are then used in equation 

(2.13), and the shape of the hysteresis loops is thereby calculated. Agree-

ment between theory and experiment is excellent as shown in Figure 2. 

We wish to devote a few lines to these powerful results. The reader will 

note that two constants are sufficient to define the cyclic stress- (plastic) 

strain response as well as the hys~eretic behavior of normalized mild steel. 

It is also pertinent to mention that the analytical expressions involved 

(equations (2.13) and (2.15» are not empirical formulae but closed forms 

derived from a general constitutive equation pertaining to three-dimensional 

histories. Also of importance is that the prediction of unloading and reload-

ing behavior did not necessitate special rules or special treatment but was 

dealt with routinely, as part of the total experimental history of interest. 

Specifically, the celebrated Bauschinger effect is predicted quantitatively 

and correctly from one and the same constitutive equation. 

We make in passing, an observation of historical interest. Equation 

(2.15) agrees with the empirical relationship proposed by Landgraff et ale / 2 / 
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for steels, i.e., 

where I-a ranges from 0.12 to 0.17. In our case, I-a = .136. 

Variable Uniaxial Strain Amplitudes --

To extend the experimentally verified domain of validity of the theory 

and to broaden our view of its capabilities, we test it under conditions of 

variable uniaxial strain amplitude histories. The stress response to such 

histories is found by using equations (2.13) and (2.14b). The analytical 

results are compared with the experimental data on normalized mild steel ~-6_/. 

The experiment consists of a constant uniaxial strain amplitude cyclic test 

(until stable hysteresis loops are reached) followed-by a variable uniaxial 

strain amplitude test. The experimental data are shown in Figure 3. Despite 

the complexity of the history, agreement between theory and experiment is 

obtained and shown in Figure 3. Again the theory predicts the stress history 

routinely without the use of special rules present in other theories ~3,5,6,10, 

l~/. At this point, we may reasonably conclude that the theory as expressed 

by equation (2.5b) (or equation (2.9)) is suitable for the prediction of the 

stress response to cyclic straining, in the case of normalized mild steel. 

Cyclic Relaxation --

Here we address the case where the plastic shear strain is increased 

monotonically to a value Y~ , and is followed by a cyclic shear strain history 

with amplitude ~yp about a mean value yP 
o 
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To calculate the stress response we use equation (2.5b). The cyclic 

shear strain history is shown in Figure 4. With reference to Figure 4, to 

make the following definitions 

(2.l6a) 

(2.l6b) 

The value z. of z at ith reversal, is found from equation (2.2b). Thus 
~ 

z. = yP + (2i - 1)6yP, i 
~ 0 

1, 2, ... n. (2.17) 

After n reversals have been completed, the value of z at the current shear 

strain yP is 

where 

-p 
y 

(2.18) 

(2.19) 

and the minus and plus signs correspond to n odd and even respectively. The 

shear response, after n reversals is found upon using equations (2.5b), 

(2.17) and (2.18). Specifically, 

pol-a 
T = (6yP) F (a x , x) 

I-a n ' 0 
(2.20) 
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where 

- I-a 
F (a, x , x) = (2n + x + x) 

n 0 0 

n 

+ 2 2; (-1) i (2n - 2i + 1 + x) 
I-a 

(2.21) 

i=l 

and 

(2.22a) 

(2.22b) 

If n = odd, then x varies from 1 to -1; while if n even, then x varies 

from -1 to 1. 

Equations (2.21) and (2.14b) differ only in the first term on their right-

hand side. It is x which allows cyclic relaxation to take place. The results 
o 

are shown in Figure 4 where the material constants, found previously, were used. 

We notice that as n is very large, the effect of x in equation (2.21) 
o 

disappears as a result of the relation Lim F (a, x , x) = Foo(a, x). The 
n-+oo n 0 

hysteresis loops then become stable and symmetric with respect to yP and have 
o 

exactly the same shape as those with zero mean shear strain. 

Other Complex Histories 

A strain history of practical importance is shown in Figure 5, where a 

cyclic strain history at a fixed strain amplitude is followed by another at a 

lower strain amplitude. The experimental results are shown in Figure 5. In 
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order to predict the stress response, we use the numerical scheme developed 

in the section on variable uniaxial strain amplitudes. The theoretical 

results obtained are also shown in Figure 5. Again agreement between theory 

and experiment is demonstrated. 

It is important to observe that the decreasing effect of the previous 

history on the stress response to a periodic strain history (cyclic test at 

constant strain amplitude) is the natural consequence of the monotonically 

decaying kernei function used in the present theory, i.e., in equation (2.3). 

This type of kernel does indeed impart to the material a fading memory with 

respect to the endochronic time scale. 

3. CYCLIC RATCHETING 

In this case the cyclic stress history is given. The numerical scheme 

developed in the previous sections is still useful. In addition, an iterative 

method is used to ensure the correct value of the stress at the point of 

reversal. Such schemes are easy to implement in the computer program. For 

purposes of theoretical study, the constitutive equations for shear under 

symmetric and unsymmetric stress cycles were used. Specifically, equation 

(2.5b) with material constants of normalized mild steel found previously, pre­

dicted the cyclic ratcheting phenomena shown in Figures 6(A) - 6(D). It is 

clear that, under unsymmetric stress cycles, the increment of plastic shear 

strain per cycle OY~ is positive and decreasing but not equal to zero, as 

shown in Figure 6(0). This indicates that, whether the material response is 

stable or not, the direction of progressive (plastic) shear strain is in the 

"direction" of mean shear stress. However, in the case of symmetric stress 
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cycles, the first stress cycle gives rise to a hysteresis loop which lies 

toward the right-hand side in the stress-strain space. The subsequent cycles 

will then cause the hysteresis loops to move toward the left-hand side until 

a stable symmetric hysteresis loop is reached. Due to the effects of the first 

stress cycle, the center of stably symmetric hysteresis loops does not lie 

at the origin of the stress-strain space. We find that the sign of the "off­

center" value of the strain is the same as the sign of the strain at the 

point of first reversal. This phenomenon is essentially the counterpart of 

the cyclic relaxation after initial loading as indicated in Figure 4. 

Comparisons between theoretical predictions and experiments must await 

further experimental information. 

4. CONCLUSIONS 

On the basis of the results presented in this paper, we conclude that the 

constitutive equations derived from the endochronic theory are very suitable 

for the analytical prediction cyclic response of stable materials under a 

variety of conditions. Moreover, the theory has its origins in irreversible 

thermodynamics of internal variables shown to be a powerful tool in the deri­

vation of constitutive theories for several classes of materials (e.g. 

viscoelastic, plastic and viscoplastic materials). 

Also noteworthy is the fact that a constitutive equation with two 

material constants, which are easily determined, can predict with computational 

ease the stress (strain) response of a material to a variety of general strain 

(stress) histories, without a need for special rules that are otherwise so 

evident in the literature. 
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