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ABSTRACT 

A plasticity theory has been developed to predict the mechanical 

response of powder metals during hot isostatic pressing. The theory 

parameters were obtained through an experimental program consisting of 

hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. 

A nonlinear finite element code was modified to include the theory and 

the results of the modified code compared favorably to the results from 

a verification experiment. 

INTRODUCTION 

In the Hot Isostatic Pressing (HIP) process a sheet metal container 

is fabricated in the approximate shape of a component to be manufactured. 

The container is evacuated, filled with a powder metal and sealed. The 

container is then placed in a HIP facility where it is subjected to high 

temperatures and pressures. For powder metals consisting of nickel base 

superalloys typical HIP temperatures are l150C at pressures of 1000 atm. 

During the HIP all the void space is squeezed out from between the particles. 

After HIP the container is removed and the solid component remains. 

* Work performed as a part of AFOSR Contract F49620-7S-C-0090 
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The HIP process is ideally suited to the manufacture of turbine and 

compressor disks in jet engines and is cost competitive with forging. 

Unfortunately the final shape of the hot isostatic pressed component is not 

a photographic replica of the original container shape. Non-photographic 

distortions are introduced by several sources. Some of these include: intrin­

sic differences in the stiffness of the container at different locations, and 

distortions due to gravitational loading. The cost for constructing components 

by HIP could be substantially reduced if the final shape of the component 

resulting from a given container shape could be predicted. 

The permanent volume reductions inherent to the HIP process, of about 

35 percent, cannot be predicted by classical plasticity theory, which assumes 

no permanent volume changes. Therefore classical plasticity theory must be 

modified to include permanent volume changes. Additionally, volume reductions 

of 35 percent imply linear strains of 10 to 15 percent and therefore large 

strain measures must be employed. 

There have been previous attempts, Refs. 1-9, to describe the 

deformation mechanics of powder metals, but none of these has been 

successfully applied to the prediction of the final shape of hot isostatic 

pressed components. 

A nonvolume preserving plasticity theory has been developed for this 

purpose. The parameters for the theory were found through the execution of 

an experimental program. The theory was added to the MARC* computer code. 

The computer code was used to model a simple verification experiment and the 

* }MRC Analysis Research Corporation 
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results predicted by the code compared favorably to the results of the exper­

iment. Each of the above topics will be discussed in the following sections. 
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PLASTICITY THEORY 

A finite strain plasticity theory requires: (1) specification 

of a yield surface to delineate regions of elastic and plastic response, 

(2) a hardening rule for the expansion of this yield surface, and (3) a 

flow rule for relating stress and strain increments. This flow rule must 

be formulated using large strain, stress and stress rate measures. Each of 

these topics will be considered separately below. 

Yield Surface Formulation 

A yield surface can be developed based on heuristic arguments. Since 

the powder particle orientation is random, the powder aggregate should 

initially respond isotropically. Thus the yield function must be an 

isotropic function and depend on only the stress through its three invariants. 

Also, yielding must occur under hydrostatic pressure and the yield function 

must approach that of a metal as densification progresses. Since invariant 
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II is a linear multiple of the hydrostatic component of stress, and yield 

surfaces for metals are usually defined in terms of invariant J 2 , which is 

the second invariant of the deviatoric stress tensor, both of these invariants 

must appear in the yield function 

(1) 

where the third invariant,J3,of the deviatoric stress tensor has been included 

for completeness, and 

J 2 = 1/2S .. S .. 
1J 1J 

J 3 = 1/6CijkClmnSilSjmSkn is the determinant of the deviatoric 

stress tensor 

Sij = 0ij-l/36ij Okk is the deviatoric stress tensor, and 

0ij is the stress tensor 

Qij is the Kronecker delta 

Cijk is the permutation tensor 

The parameters ha were determined experimentally and depend on deformation 

measures, Tla • 

Assume that a HIP powder metal has unequal responses in tension and 

compression, and that the yield surface has no sharp corners. A simple yield 

function satisfying the above assumptions is 

2 (Il+a)2 B -- +J = 
3 2 (2) 

A yield function of the form of Eq. (2) has previously been proposed by Green 

in Ref. 4, Shima and Dyane in Ref. 7, and Kuhn and Downey in Ref. 8. Equation 
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(2) is an ellipse in 11' tJ2 space (Fig. 1), with deformation dependent 

parameters, a, Band 00' The yield surface is plotted in principal stress 

space with 03 zero in Fig. 2, for the case a = O. 

A large strain theory of plasticity based on Eq. (2) can be developed by 

decomposing the symmetric part of the veloci,ty gradient tensor, D ij into elastic 

and plastic parts, or 

(3) 

p 
The plastic deformation rate D .. is assumed to be given by an associated 

~J 

flow rule 

. 

P 
D .. 
~J 

• af 
= ).-­

aOij 
(4) 

Where ). is a scalar function greater than zero. The choice of the deformation 

parameters, n , and the specification of the flow rule will be discussed in 
a 

the following two sections. 

Choice of Hardening Deformation Parameters 

In this section, strain hardening of a compacting metal powder is discussed 

and parameters to characterize hardening are identified. This is necessary 

to complete the specification of the plastic deformation. Initially, the yield 

surface of the powder aggregate will be small. During the compaction and sintering 

process yield strength will grow and the yield surface will expand. Compaction 

alone will cause growth of the yield surface along only the II axis (Fig. 1) with 

a theoretical limit corresponding to full densification. Yield stress in shear 

will be less affected by compaction. Additionally, yield strength will grow 
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in all directions of stress space with increased sintering time. Thus, there 

exists a time dependent hardening phenomenon unique to powder metallurgy. Since 

plastic deformations are assumed to occur instantaneously, time enters the plas­

ticity theory as a parameter defining yield surface size at the time of plastic 

deformation. 

The process of strain-hardening in triaxial pressure will primarily be a 

geometric effect on the microscopic scale. There could also be a contribution 

to the apparent macroscopic hardening due to real strain hardening of the particles 

as they experience large plastic shearing deformations. Such an effect could 

raise the effective yield strength of the metal particles. The separate contrib­

utions of matrix hardening and void reduction can be determined from systematic 

experiments using different initial volume fractions. 

Initially, powder particles contact each other at isolated points. As pressure 

is applied, the contact areas and the powder stiffness increase. The macroscopic 

result is strain hardening of the powder due to macroscopic shrinkage. In the 

limit the powder is completely compacted and the response to further pressure 

increments is elastic dilation; the plastic bulk molulus has become infinite. 

An obvious choice for a deformation mea~ure, n
l

, is the void volume fraction. 

The void volume fraction is a measure of the macroscopic shrinkage and should 

reflect an increase in stiffness due to an increase in contact area between 

the individual particles, or 

v 
(5) 

The void volume fraction does not represent any permanent changes that occur 

during plastic deformation. If as in classicial plasticity theory the effective 
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plastic strain is used this would not represent all of the permanent deformations 

since permanent volume changes would not be represented. A third deformation 

measure, the plastic volume change would then be required. 

Rather than use the permanent volume change and the effective plastic strain 

as two independent deformation measures, a single measure, the plastic work, 

would be sufficient to represent both effects. Therefore, let 

(6) 

In classicial volume preserving plasticity theory using either the plastic work 

or the effective plastic strain produces exactly the same re~lt. The plastic 

work, or equivalently the inelastic energy dissipation has been used previously 

to describe nonlinear material response, for example, in Refs. 9 and 10. 

Development of Flow Rule 

It is now possible to describe the symmetric part of the velocity gradient 

tensor, Dij in terms of the stress rate, for small strains, using Hooke's Law for 

the elastic response and Eq. (4) for the plastic response in the form 

where for small strains 

= L e.p 
ijkl 

In general the yield function is of the form 

f(Oi" h ) = 0 J, a 

(7) 

(8) 

(9) 

where elastic deformations occur when f < 0 and plastic deformations occur 

when f = 0 and where h are parameters in the yield surface dependent on de­
a 

formation history measures n
S

' or 
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Assume that the plastic deformations are given by an associated flow rule 

Using Hooke's law for the elastic deformations 

the total strain rate can be written as 

Equation (9) can be equivalently written as 

• af 
f =-­

aO
ij 

In Ref. 11, Parks has shown that 

where 

() = a( )/at 

The quantity kl can be determined from 

and k can be found from 
2 

n = v = (l-v)D = ~kl 
1 kk 

n = wP = o .. D~. = ~k2 
2 ~J ~J 

For the yield surface of Eq. (2), from Ref. 11 

'U 2 2 
kl 'U"3 (l-v) B (Il+a) 

Equations (7) through (13) can be solved to give 
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(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 



where 

The quantities 
ah 

a 
-- are anS 

af af 

E 
daij ilokl 

Le •p = °ikOjl -ijk] 1 + v af af (11") -- H 
aOmn damn 

(21) 

hardening parameters which are determined from the 

mechanical test results and described in the section on Material Property 

Determination. A more detailed discussion of the plastic flow rule can be 

found in Ref. 12. 

Large Strain Flow Rule Considerations 

Following McMeeking and Rice, Ref. 13, when using the current deformed state 

as the reference configuration, all stress measures coincide. However, the 

rates associated with these stress measures do not coincide. A stress rate which 

is useful for expressing large deformation consitutive laws is the Jaumann, or 

corotationa1 rate (Ref. 14). The Jaumann rate of Cauchy stress is 

'iJ 

0ij = 0ij - 0ip npj + nip 0pj (22) 
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where G .. is the material time rate of Cauchy stress G
iJ

. and 
l.J 

The constitutive law of interest is of the form 
iJ 
Gij :: L ijkl Dkl (23) 

where L denotes the rate moduli. Dij is the symmetric part of the velocity 

gradient tensor. 

L
ijkl 

is developed 

c·p 1 l Lijk1 = Lijkl - 2 

in Ref. 15 for large strains as 

e·p 
and L

ijkl 
is the small strain elastic-plastic stiffness in Eq. (21). 

tensor L
ijkl 

is not symmetric due to the presence of the last term. or 

L ij k1 .f ~lij 

For a hydrostatic pressure 

a = Po .. 
ij l.J 

(24) 

The 

the tensor is symmetric and since this should be the primary part of the loading 

during the HIP process, the last term should produce a nearly symmetric stiffness. 

It, therefore, was decided to separate the last term into symmetric and un-

symmetric parts, and add the symmetric part to the stiffness matrix and transfer 

the unsymmetric part to the loading side of the governing equations. 
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MATERIAL PROPERTY DETERMINATION 

To predict the mechanical response of metal powder subjected to the HIP 

process it is necessary to know the mechanical properties of the metal during 

the HIP cycle. These mechanical properties can be obtained by removing test 

specimens from the HIP facility at various stages in a HIP cycle. The partial 

HIP samples would represent the powder at various stages for a pressure-tem­

perature history. A complete description of the mechanical properties can 

then be obtained by postulating yield surfaces, flow rules, hardening laws 

and creep properties and comparing these predictions to the results of 

mechanical tests on the partial HIP samples. 

Partial HIP Tests 

The UTRC HIP facility has been utilized to process powder metals through 

temperature-pressure-time profiles closely paralleling the procedure used to 

fabricate full size turbine disks to near net shape. 

The HIP facilities allow several partial HIP samples to be preheated 

simultaneously. Since the powder is initially weak a container is required 

to retain the powder shape for temperatures exceeding 2000 F (1100 C). There­

fore, all specimens were preheated at 2000 F (1100 C) and 1 atm for 12 hr. 

During the preheat cycle the powder is encapsulated in quartz and attains 

sufficient strength from sintering to be handled. During the preheat the den­

sity changed from 60 to 65 percent of full density initially to 65 to 70 per­

cent of full density upon completion of the cycle. 
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After the completion of the preheat cycle the samples have the quartz 

container removed and a glass container substituted. At HIP temperatures the 

inside surface of the glass container fuses with the outer powder metal parti-

cles and forms a gas tight seal about the powder metal, and the glass has no 

strength or stiffness. Consequently, a uniform hydrostatic stress is trans-

mit ted to the powder metal. The glass container with the preheated or sintered 

powder metal is next placed in the HIP facility and subjected to a specified 

temperature, pressure time cycle. 

A set of tests was performed at 1800 F (982 C) and various pressure, with 

the maximum temperature and pressure acting for 10 minutes only. These tests 

successfully produced partially dense samples. The test regime was expanded 

to include 1600 F (871 C), 1900 F (1638 C) and 2000 F (1093 C) at appropriate 

pressures and again the time at maximum temperature and pressure was held to 

10 min. 

Some understanding of the compaction process can be obtained by applying 

the hydrostatic pressure plastic compaction model (Ref. 16), where the yield 

pressure was represented by 

[-1n(v: ) -(1- :1 t 1nv1 + a( :1 'it :1 ) 1 (25) 

a = C vi 
-~ 

(I-vi) tan2e (26) 

and 

cos e 
"(:i)( 1 

+ Pi 
8 , and (27) 
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where vi = the initial void volume fraction 

Pi = I-vi is the initial relative density, and 

C % 2.75 

In order to apply the model the yield stress of the powder particle 

material must be known. This data does not exist and therefore the short time 

partial HIP data has to be reduced to determine the yield stress. For each 

of the temperatures, 1600 F (871 C), 1800 F (982 C) and 2000 F (1093 C), the 

yield stress was estimated and Eq. (25) was applied to determine the relative 

density for various applied pressures. Figure 3 presents the results of the 

calculations and demonstrates good agreement for the yield stresses given by 

T 

0y = (1.1 x 109 kSi)e - 120.7 R = 7.58 x 10 
( 

12 
-T 

/ 2) 67 K nt m e (28) 

Equation 28 results in yield stresses that are somewhat low for superalloys. 

Three facts could account for this: (1) the yield stress for the pre-HIP pow-

der metal is generally lower than for the fully consolidated power, (2) the 

strain rate during a partial HIP cycle is relatively slow and therefore pro-

duces a somewhat lower effective yield stress, and (3) the creep rates at high 

temperatures are relatively high, producing an apparently lower yield stress. 

Mechanical Tests 

To determine the shape of the yield surface several types of mechanical 

tests are required. Each type of test produces one point on the yield sur-

face. There is one point on the surface that is known: the hydrostatic 
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pressure of the HIP process. A compression test performed at temperature will 

provide a second point on the yield surface and will also provide some infor­

mation on the elastic, hardening and plastic flow of the material. Tension 

tests performed at.·temperature, when compared to a compression test performed 

at temperature, will determine the symmetry of the yield surface. The compres­

sion tests are the most important tests to be performed since they produce 

a hydrostatic pressure which is the predominant loading feature during a HIP 

cycle. Two deformation measures will be used to characterize the yield sur­

face; the void volume fraction and the plastic (nonrecoverable) work. There­

fore, the measurement of the axial length change is not sufficient to deter­

mine the mechanical response and a measurement of the volume will also be re-

quired. The final volume of a compression specimen was measured after a com-

pleted test but this does not provide a complete description of the path to the 

final state. 

More than thirty compression tests were performed. Three of these tests 

were used to size the compression specimens and determine the test conditions. 

The remaining tests were all completed in a similar manner. The specimens 

consisted of a right circular cylinder 0.5 in (.127 em) long by 0.2 in. (0.51 

cm) in diameter. Each specimen was placed in a furnace in an inert gas and 

brought up to the temperature at which the specimen was hot isostatically 

pressed. At temperature the specimen was subjected to compression crosshead 

displacement rate of 0.0025 in./min (0.00635 em/min) and the load was recorded. 

After the load leveled out, the crosshead rate was doubled to 0.005 in./min 

(0.00127 em/min). 
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The average values for the height, diameter, and volume change measurements 

are presented in Table 1 along with the standard deviations. From the last 

column in Table 1 it can be seen that over all the samples there was a sig­

nificant decrease in the height and a significant increase in the diameter, 

while there was essentially no change in the volume. 

A total of 14 tensile tests were completed and resulted in significantly 

lower yield stress values than the compression tests, especially at 2000 F 

(1093 C). The low tensile yield stresses could be a result of the presence 

of voids which would be adjacent to the particle interfaces. Tensile stresses, 

which are amplified at the void, would tend to separate the particles producing 

a smaller apparent yield than compression stresses which would tend to close 

the voids. Microscopic examination and room temperature tensile tests (Ref. 

14), indicated the powder was not contaminated. 

The uncertainty associated with the tensile test results necessitated the 

use of the experimental observation that the volume was conserved during com-

pression. 

Interpretation of Mechanical Test Results 

The mechanical tests indicated that there is little or no volume change 

in compression. Coupling this fact with the hydrostatic pressure yield stress, 

Py ' and the compressive yield stress 0c will determine all of the yield param­

eters in Eq. (9) as 

(29) 
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where 

3 
2 

q 

a = a 
o c 

3 P 
q = --y -1 

a 
c 

(30) 

(31) 

(32) 

The experimental results for the tensile yield stress, aT' were not reliable 

but can be determined from Eq. (2) as 

(33) 

Normalizing the compressive yield stress data, ac ' with respect to the 

initial powder particle yield stress, a ,shows that this ratio is approxi­
y 

mately a linear function of relative density as shown in Fig. 4, or 

~= b(~) 
Y I-Vi 

(34) 

where Py is evaluated from Eq. (61) by setting P equal to Py 

v is void volume fraction 

vi is initial void volume fraction, and 

b can be determined by requiring the tensile yield stress to vanish 

at the initial void volume fraction, or 

From Eqs. (32) and (33), the above condition on b is 
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Then from Eqs. (25) and (34) 

lim Py 2 
-=-

v~i crc 3 

C 
b = ---

2 
tan e 

where e is given by Eq. (27) and C ~ 2.75 • 

(35) 

(36) 

. 
The temperature, T, and strain rate, £, dependence have been included 

in the initial particle yield stress, cry' A good fit occurs when 

for uniaxial stress conditions. 

A good fit to the specimens partially densified in the HIP facility 

occurs if 

E ~ 0.00315/min. 

The parameters in Eq. (37) are 

T o 

a. 

. 
£ 

o 

1.074x1010 kis (7.41x1013 nt/m2) 

= 120.7 R (67.06 K) 

= 0.03403, and 

= S.14Sx10S/min • 

(37) 

Equations (29) through (37) are the plastic formulation added to the }~RC code, 

and are compared to the experimental measurements in Figs. 3, 4, and 5. The 

agreement is good if the volumetric creep under hydrostatic pressure is included 

(Fig. 3). Volumetric creep will move points subject to HIP for more than 10 
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min (the solid symbols in Fig. 3) to the right of the line representing 

instantaneous plastic deformation. 

Although little work hardening was observed during the compression tests, 

it may have an influence on the final deformations, and therefore an approxi-

mate hardening law of the form of Eq. (38) below was assumed. 

(38) 

where wP 
is the plastic work, aI' a 2 are constant work hardening parameters. 

From the uniaxial compression tests it was noted that the compressive 

yield stress seems to level off at about 1.4 times the initial compressive 

yield stress and therefore the constant a l is given by 

a l = 0.286 (39) 

The constant a
2 

was found to vary with temperature approximately by the 

relation 

(40) 
c (~) T~Tc L= 2 t:.T 

a2 0 

0 T>T - c 

where C2 = 9090 psi (6.26 x 106 ~) 
m2 

T :.: 2020 F (1104 C) 
c 

t:.To = 420 F (216 C) 

A more complete discussion of the work hardening evaluation is given in 

Ref. 14. 

The elastic constants are required to complete the formulation but only 

Young's modulus can be derived from the compression test data. The Young's 
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Modulus, E, was assumed to be linear function of void volume fraction, v, 

and an exponential function of temperature, T, given below 

_ T-To 

(41) 

where vi is the initial void volume fraction, and El , To and Tl were chosen 

to provide a good fit to the data, as 

El = 1.5 x 106 psi 

To 1900 F (1038 C) 

Tl = 163 F (72.8 C) 

Figure 6 compares the analytical expression with the resulting mechanical 

test data. The comparison is within the experimental error. Since it was 

not possible to measure radial deflections during the testing, Poisson's ratio 

could not be determined. 

It should be noted that if the tensile strengths were accurately measured, 

a yield surface utilizing: the hydrostatic yield pressure, the compression 

yield stress, the tension yield stress and the fact that volume was preserved 

during compression, could have been tal~en as 

where 8, a, and ao are given by Eqs. (29-31), and 
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(43) 

and J
3 

is the third invariant of the deviatonic stress tensor 

Note that if 0T is given by Eq. (33) the parameter y vanishes. 

With the experimental specification of the parameters the yield surface 

is completely determined. 

MODEL VERIFICATION 

Verification Criteria 

The validation tests were designed to avoid duplication of the uniform 

hydrostatic stress state of the partial HIP tests. The experiments must 

therefore result in a nonvanishing shear stress within the sintered material. 

A nonhydrostatic stress state can be achieved with the application of the 

uniform external pressure if the material has nonhomogenous properties. 

This may be achieved by imbedding in the metal powder a different material, 

for example, steel spheres or fully compacted powder spheres or cylinders. 

Such an experimental configuration will produce a nonhydrostatic stress 

state and will make use of existing hardware and techniques. Metal foil 

could be placed tangent to a steel sphere and the resulting displacements 

measured and compared to the predicted displacements. 

Plastic Analysis for Spherical Inclusions 

Before proceeding with the verification experiments, a finite element 
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model of the experiment was analyzed using a version of the MARC code modified 

to include the powder metal constitutive properties of 7 axisymmetric 

elements illustrated in Fig. 7. Constraints were set to insure only 

spherically symmetric radial displacement would result, The steel sphere 

was modeled as rigid, and therefore the radial displacements were fixed 

in the powder at the surface of the steel sphere. The analysis considered 

only the plastic deformations that would result in raising the external 

pressure to 1000 atm. In Fig. 8, the model resulted in predictions that the 

void volume fraction decreased near the sphere or the density is highest 

near the sphere. At an applied external pressure of 1000 atm all points 

in the specimen are more than 90 percent of full density. The deflections 

of the foil can be easily calculated using the radial displacements and 

are presented as a function of the distance from the center of the foil, 

as shown in Fig. 8. At about 8 ksi (533 atm) the edge of the foil should 

be nearly flat. These conditions had been run during the partial HIP tests 

and produced a relative density of about 0.85, which agrees with the 

predicted results presented in Fig. 8, 

Verification Results 

The specimen design consists of a steel sphere imbedded in a sintered 

rod. A layer of nickel foil is placed tangent to the sphere. One, two, 

or three sphere and nickel foil configurations are placed within the 

sintered bar. Figure 9 illustrates a typical configuration. The first 

verification experiment consisted of a test to insure the configuration 

would HIP properly and was successfully completed, 
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Two sintered bars were hot isostatic pressed, based on the above 

success and the finite element results for a maximum of 10 min at 1800 F, 

(982 C) and 8 psi (533 atm). These bars contained a total of five 0.25 

(0.63 cm) diameter spheres. 

Foil displacement measurements were successfully obtained from three 

of the five spheres and the results of these measurements are presented in 

Fig. 10, along with the prediction from the finite element model. 

The lack of agreement near the center may be due to either the relative 

elasticity of the sphere and powder including thermal effects, which were 

not modeled, or due to the weight of the sphere. The rapid decrease in 

error with position indicates the error may be due to the elastic effects. 

Another source for the difference can be attributed to the fact that the 

foil and the upper and lower bar segments may not have been in contact and 

gradually brought into contact as the HIP progressed. The numerical 

predictions and the experimental measurements agree to within the accuracy 

of the experiment, and verify that an accurate mechanical description of 

the powder response has been developed. 

CONCLUSIONS 

In the analysis developed, classical plasticity theory has been extended 

to include the large permanent changes in volume of about 30 percent that are 

incurred during HIP. The theory developed assumes an isotropic yield surface 

and uses an associated flow rule. The assumed yield surface includes all 

three invariants of the stress tensor although presently the yield surface 
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only uses the first invariant of the stress tensor, and the second invariant 

of the deviatoric stress tensor. 

The parameters in the theory were obtained through an experimental program 

consisting of hydrostatic pressure tests, uniaxial compression and uniaxial 

tension tests. From the hydrostatic pressure tests a simple analytical expres­

sion was developed that predicted the change in density as a function of pres­

sure and temperature. Results of the compression tests indicated that there 

is no measurable change in volume in compression and that the compression yield 

stress is a linear function of void volume fraction. The uniaxial tension tests 

were inconclusive and the results were used for comparison with prediction from 

the theoretical model only. 

Isotropic hardening of the yield surface was assumed to depend on void 

volume fraction and plastic work accumulated. Experimental results showed 

that the primary dependence was on void volume fraction. 

A nonlinear finite element code was modified to include the plasticity 

theory and an experiment was run to verify the theory and the code modifications. 

The verification experiment consisted of steel spheres imbedded in partially 

dense bars of powder metal. Each of the spheres had a layer of foil placed 

tangent to the sphere. The bar, with spheres and foil, was placed in a 

furnace and subjected to a pressure loading of 8 ksi (533 atm) at 1800° F. 

The resulting distortion of the foil was measured and compared to the results 

of a finite element analysis using the modified code. The numerical 

prediction and the experimental measurements agreed to within the accuracy 

of the experiment. 

261 



As a result a modified finite element code exists capable of predicting 

the mechanical reponse of powder metals and is now being applied to predict 

the final shape of components manufactured by the HIP process. 
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Ratio, Final/Initial 

Height 
Diameter 
Volume 

TABLE 1 

STATISTICAL GEOMETRY CHANGES FOR 
COMPRESSION TESTS 

Mean Std. Dev. 
m s 

0.9345 0.029 
1.0330 0.010 
0.9975 0.015 

TABLE 2 

m-l 
s 

-2.25 
3.31 

-0.17 

RESULTS OF ROOM AND HIGH TEMPERATURE TENSILE TESTS 
Room Te",perature 

Spec imen Relative Yield Stress (ksi) 
No. Density 0.2 Percent 

1004 0.990 144 

1098* 0.900 -
1114 0.977 102 

1115 0.984 138 

* Failed in grip 

p2 ('1:4 ) 2 

p=o 

Fig. 1. Assumed ylald surface In 11, J2112 stress space for a" 0 
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Room 
Temperature Yield Strels (k.i) 
Ultima~e 

Stress ksi) at 1800 deg. F 

168 0.022 

82.4 0.126 

156 2.30 

164 -

Fig. 2. Assumed yield surface In principal slress space 
foro3=O,a"O 
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Fig. 3. Hydroslatic yield pressure lesl results 
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Fig. 5. Tensile yield slress results 
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