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SUMMARY

Approximate solutions are presented in this paper for three nonlinear ortho-
tropic plate problems. The problems are to determine the deformations and forces
in: (1) a thick plate attached to a pad having nonlinear material properties which,
in turn, is attached to a substructure which is then deformed; (2) a long plate
loaded in inplane longitudinal compression beyond its buckling load; and (3) a long
plate loaded in inplane shear beyond its buckling load. For all three problems,
the two-dimensional plate equations are reduced to one-dimensional equations in
the y-direction by using a one-dimensional trigonometric approximation in the
x-direction. Each problem uses different trigonometric terms. Solutions are
obtained using an existing algorithm for simultaneous, first-order, nonlinear, ordi-
nary differential equations subject to two-point boundary conditions. For each
problem, reasons are discussed for choosing the trigonometric terms, ordinary differ-
ential equations are derived to determine the variable coefficients of the trigono-
metric terms, and sample results are presented. This solution procedure provides a
quick, easy way to solve some nonlinear plate problems.

INTRODUCTION

Linear eguations are often inadequate in the analysis of plates that appear in
space vehicle structures and aircraft structures. Some problems of plate analysis
involve stretching and bending coupling so that the strains depend nonlinearly on the
deformations. Other problems may involve nonlinear material properties, such as
those due to plasticity or nonhomogeneous materials. Strength or limits in deforma-
tion may be considered in the design of such plates. Useful estimates of the defor-
mations can usually be found from approximate solutions of the nonlinear equations of
equilibrium. Meaningful strain distributions, however, require much more accurate
solutions of the nonlinear equations.

Many methods are available for solving nonlinear plate problems. A fairly com-
plete survey, with examples of methods used before the high-speed computer was
developed, is contained in reference 1. BAnalytical solutions of the differential
equations are sometimes possible through special devices or inverse procedures.
Direct procedures include iterative methods, such as Newton's method, and methods
which make use of trial and error. For problems involving a parameter of small
value, a regular perturbation method may be employed; for problems involving a bound-
ary layer, methods of asymptotic integration may be employed. Weighted residual
techniques are also available which include the energy method, the Galerkin method,
collocation, and the method of least squares. Finite-element and finite-difference
methods are often used now with the high-speed computer. These available methods
have certain limitations, and solution to many nonlinear plate problems are not read-
ily obtained by these methods.

In the present paper, simplifying assumptions are used in a derivation from
basic relations for plate problems to replace the nonlinear, partial (two-
dimensional) differential equations of plate theory with nonlinear, ordinary (one-
dimensional) differential equations. The derivation employs the principle of wvirtual



work in conjunction with the assumption that the displacements may be represented by
the first few terms of a Fourier series. Solution of the ordinary differential equa-
tions, subject to the boundary conditions which arise naturally in the derivation,
may be obtained by using the algorithm described in the next paragraph.

An algorithm based on Newton's method has been developed by Ientini and Pereyra
(ref. 2) to solve a system of simultaneous first—-order, nonlinear, ordinary differen-
tial equations subject to two-point boundary conditions. The system of equations is
of the form

y' = F(x,¥)

where ¥ 1is the vector of dependent variables, x 1is the independent variable
defined in the interval (a,b), and F is a vector, the components of which may be
nonlinear functions of x and y. The boundary conditions of the problem are speci-
fied by

gly(a),y(b)1 = 0

(The components of g identify each of the boundary conditions.) This algorithm
uses finite differences with deferred corrections, and adaptive mesh spacings are
automatically produced to detect and resolve mild boundary layers.

Approximate solutions for three nonlinear plate problems are presented in this
report. They are as follows: (1) a thick plate attached to a foundation having
nonlinear material properties, which in turn is attached to a substructure, which is
then deformed; (2) a long plate loaded in inplane compression beyond its buckling
load; and (3) a long plate loaded in inplane shear beyond its buckling load. The
first problem is important in designing thermal protection systems for space trans-
portation vehicles and analyzing bonded joints. The second and third problems are
important in structural design to take advantage of the stress-carrying ability of
supported plates beyond the buckling load. The purposes of this paper are (1) to
indicate the reasons for choosing the trigonometric Fourier series terms that are
used, (2) to present the derivation of the differential equations that determine the
coefficients of the Fourier series terms, and (3) to present sample results for each
of the three problems.

SYMBOLS
AL ./,A 5,A L,y
A11 A12 A22 plate extensional stiffnesses
44'755' 66
A33P'A44P'A559 pad extensional stiffnesses
a,b dimensions of rectangular plate parallel to x- and y-axes, respectively

Cx,Cy,Cz constant coefficients of cubic parts of stress-strain laws for pad



D11/Pq2r
plate bending stiffnesses

P22'Pe6

E,G Young's modulus and shear modulus for beam
Ep'Gp Young's modulus and shear modulus for pad
L length of beam

x'My'Mxy bending moments in plate or beam

N ,N ,N inplate stress resultants in plate or beam
Yy x¥

average N i
Nxav g « in plate
average N i
nyav g xy in plate
Nzp normal stress resultant in pad
Qx'Qy transverse shear stress resultants in plate
Q ,0 transverse shear stress resultants in pad
Xp YP
T thickness of pad
t thickness of plate or beam
u,v,w deformation of substructure in x-, y-, and z~directions
u,v,w displacements in x-, y-, and z-directions

u1lu21V01V1lV21
W0:W1,W2,Bx1, arbitrary functions of y in equations (14), (15),

u, V, w, B , and B
sz' v0o' "y1’ Fy2 X Y

uoluslu ’

c

VorVs'Ver arbitrary functions of y in equations (41) for u, v,
LA

GO’ﬁOO arbitary constants in expressions (14)

u total axial displacement of beam

ﬁcn applied compressive displacement

ﬁsh applied shearing displacement

w total deflection normal to beam

X,¥,2 plate or beam coordinates

and (30) for

and w



Bx’By rotations in x- and y-directions

Exl € ¢
b4 neutral surface strains
ny'sz'sz
€ strains in pad
zp’ Yxzp, Yyzp P
K 1K _¢K curvatures
X yV Xy
A half-wavelength in x-direction

Prime (') indicates differentiation with respect to y. Subscripts x and y which
follow a comma indicate partial differential of the principal symbol with respect to
the subscript.

APPLICATIONS

Derivations of ordinary differential equations are presented in this section for
(1) a thick plate on a nonlinear foundation, (2) the postbuckling behavior of long
plates in compression, and (3) the postbuckling behavior of long plates in shear.
The choices of trigonometric Fourier series terms used for each plate problem, and
the rationale for choosing these terms, are discussed. To clarify the derivation of
the differential equations for the aforementioned problems, the governing equations
for a simpler problem - the deep beam on a nonlinear foundation ~ is derived first.
The deep~beam problem is the one-dimensional counterpart of the two-dimensional
thick-plate problem and shows in a much simpler problem the steps involved in deriv-
‘ing the differential equations of equilibrium from the principle of virtual work.

Deep Beam on Nonlinear Foundation

As indicated in figure 1, the beam is attached to the top of a pad, which is
attached to a substructure that may be deformed in the x~ and z-directions (U and W).
The effects of transverse shearing are included, in addition to extension and bend-
ing. The pad resists transverse extension and shearing and has nonlinear material
properties. The problem is to determine the strains in the beam and in the pad due
to deformation of the substructure. Generally, the beam is considered to be much

stiffer than the pad.

Let u be the x-displacement of the neutral surface, w the deflection of the
neutral surface, and B, the rotation. The neutral surface strain is then
€ = u' (1

the transverse shearing strain is

Yxz = Bx W (2)



and the curvature of the neutral surface is
kK = B 3
Bx (3)

The bottom of the beam thickness t displaces u - (t/2)B_; thus, the rotation of
the pad of thickness T is [u - (t/2)ﬁx -~ U]/T. The average deflection of the pad
is {(w + W)/2; the transverse shearing strain in the pad is then

u - (t/2)B, - U
T + 2

(4)

the sum of its rotation and slope. The beam is assumed to be much stiffer than the
pad; accordingly, the slope of the beam w' 1is neglected in comparison with the
substructure slope W'. Therefore, the transverse shearing strain in the pad is

u - (£/2)B, - U

szp = T +—é— (5)

The extension of the pad w - W over the thickness T determines the transverse
extensional strain in the pad as

_w - W
szp B T ()

The virtual work of the system for a beam of unit width and of length L is

L
e J; (Nx éex * Mx 6Kx * Qx 6sz * NZP 6829 * QXP 6YXZP) o 7)

where the coefficients of the virtual strains are force resultants. Substitution for
the strains and integration by parts and rearrangement results in

L
1] 1 | . t
8 = J(; [(—Nx + 5 pr) Su + (Qx - M- s pr) SBX

1 L
+ (-Q; + T sz) éw] dx + (Nx du + Mx 6Bx + Qx 6w)0 (8)

According to the principle of virtual work, the virtual and actual displacements
must satisfy the same boundary conditions, but the virtual displacements are arbi-
trary in the interior region. For equilibrium, the virtual work is an extremum;



8l = 0. Therefore, equation (8) for virtual work can be replaced by the following
differential equations and boundary condition terms:

1
-N'" + — =
Nyt =0

Q. ~ M - 55 pr =0

1 (9)
-Q' + -'i‘- sz 0

L L L
(Nx (Su)o =0 (Mx GBX)O =0 (Qx Gw)0 =0

Products of forces and virtual displacements appear in the boundary terms. The edges
of the beam are free; therefore, N_ = =Q., =0 at x =0 and L. For other
problems, the displacements can be taken to be equal to zero or combinations of
forces and displacements (such that the above expressions are satisfied) can be set
equal to zero.

A linear stress~strain law is assumed for the beam as follows:

h

N = Ete = Etu'

X X

3 3
Et Et” _,
—— ——— —J —————— 1

M =T %% T 1 B ¢ (10)
Q =Gty = Gt(B_+ w')

X /

For the pad, a cubic nonlinear stress-strain law is assumed as follows (see fig. 1):

N

3
E T‘G: + C_¢€ >
zp P zZp zZ zZp

3
QXP GPT (szp + nyxzp>

(11)

The equations expressing the stress-strain law assumed for the beam equations (10)
and the equilibrium equations (9), together with the stress-strain law for the pad
equations (5), (6), and (11) can be identified as six simultaneous first-order,
ordinary, nonlinear differential equations with unknowns u, Bx' w, Ny, Mg,

and Qx with boundary conditions. This system of equations may be readily solved by
the algorithm discussed in the Introduction. The six equations in the desired form
are as follows: '

Q' = X (12a)



B = (12b)
X Et3

QX
W= X - g (12c)

u - (£/2)B, - U ' u - (t/2)B, - U E
N'=G§ Px +W—+c[ /2) By +E-—:|$ (124)
X p T 2 b4 T 2
G t{u - (t/2)B_ - U . [u-(t/Z)B - .]3

. - 95 X w' X W
M' = Qx 5 l T + 5 + CX T + > (12e)
e L R U A (12£)
% = | T z\ T

Thick Plate on Nonlinear Foundation

For a thick plate on a pad with nonlinear material properties and substructure,
the idealization to a deep beam discussed in the preceding section would not be
satisfactory if deformations across both the length and width of the plate are impor-
tant. This derivation is the two-dimensional extension of the beam problem (see
fig. 2 for the coordinate system), and the substructure is permitted to deform V in
the y-direction as well as the U and W in the x- and z~directions, respectively,
for the beam. However, the U,V,W deformations considered are limited to

- - . TX . 2mX
U = Ugg + Ugx + U1(y) sin ;— + Uz(y) sin —;—
X 27X
V = Vg(y) + Vq(y) cos - + V,(y) cos - (13)
X 2%
W = Waly) + Wye(y) cos — + W,(y) cos —
0 1 a 2 a

where the barred quantities are constants, and the indicated functions of y can be
chosen as desired. BAs for the deep beam, transverse shearing is permitted in the
thick plate, and the plate is considered to be much stiffer than the pad. The pad
has nonlinear material properties and resists transverse extension and shearing in
both the x- and y-directions. To make use of the algorithm described in the Intro-
duction, it is necessary to make approximations and derive ordinary differential
equations to replace the partial differential egquations of plate theory.

In some linear problems solved by the use of Fourier series, the loading terms
are expanded in Fourier series, and the solution is in the form of a Fourier series



which is exact term by term. For various approximations, the series may be limited
to the first few terms of the series. A similar approximate method is used here for
a nonlinear problem. The substructure deformations represented by equations (13) can
be considered to be loading terms, and, after identifying the first few terms of the
series for the solution, no further terms are considered (and no further approxima-
tions are made).

Trigonometric terms of the same form as those considered for U, V, and W in
equations (13) are assumed for the plate displacements u, v, and w in the x-, y-,
and z-directions as follows:

- - ., TX . 21X
u = ugg + ugx + uq(y) sin T + uy(y) sin -
™ 27X
v = V4a(y) + vq(y) cos — + v,{y) cos — (14)
0 1 a 2 a
X 27
w = wy(y) + wq(y) cos - + wz(Y) cos -

Similar trigonometric terms are assumed for the plate rotations Bx and BY as
follows:

™ . 21X
BX = Bx1(y) sin ;— + sz(y) sin —a—

(15)

T
By = Byo(¥) + Byq(¥) cos = + B,5 cos ——

The neutral surface strains and curvatures in the plate are

Ex = U, x Yy = Y,y ¥ V,x Ky = Bx,x
Ey = VIY Yxz = Bx + le KY = BYIY (16)
Yyz = By * v,y Kxy = Bx,y ¥ By,x

The commma before a subscript denotes partial differential with respect to that sub-
script. The strains in the pad are given as

u- (t/2)B, - U W
szp = T = (17a)




v~ (t/2)B_~V W
Y = b4 + —X (17b)
yzp T 2

=¥ W (17c)

By substitution from equations (14) and (15), the strains and the curvatures are

=, T = + 27 2mx (18a)
e, = U u, - Ccos — u, — COS§ —— a
X 0 13 a 2 a a
X 27X
€, = vh + vy cos — + vi cos — 18b
Y 0 V1 € a 2 a ( )
= ' T : ™ ! 2my —2‘":X 18
ny_(u1'v1 ;)s:.na—+ u; = vy a—)SJ.n N (18c)
. 2% . 2T
Yz = (Bx1 Wy —) sin — + (Bx2 - Wy —) sin — (184)
= + wl o+ + w iy + + wl) cos Eﬁf (18e)
Yyz = ByO hdo} (By1 w1> cos a (BYz w2) a
_ T ire 27 2mx
Ky = BX‘I ; cos a— + BXZ :'-,1— cos T (18£)
4Bl cos X 4 gl cos X (18g)
Ky = Byo * By1 cos 2 Bya cos 3 9
_ . T . TX . . 27 . 27X (18h)
Kxy = (BX1 By1 a) sin (BXZ By2 a >Sln a



u, - B W
1[/= - = = 1 2 "x1 1 1n X
= -— + - + e e . — —— —
Yezp ~ T [(Uoo “oo) (Uo “o)x] T 2 a/ %" 3
t
- = - W
273 "% Yoo ip 27T
T 2 a a (181i)
t t
- = - W' - = - '
_ Yo "3 B0 Y Lo (Y173 Bor — V4 .\ "1 cos T
szp T 2 T °% 3
t
v, ~=f., -V w!
2
+ |22 ¥ 2 4 5] cos == (183)
wn - W w, - W W, - W
_ 0 0 1 1 X 2 2 21X
zp = T + T cos — + T cos — (18k)

With no loss in generality, the constants appearing in u can be set equal to the
corresponding constants appearing in U as follows:

The stress-~strain laws for the plate are

Nx = B1i8x + B2ty % = B44Vxz My = D11kx * DoKXy
Ny = Baay + Rqp8y Q = PssYyz My = DaoKy + DKy (19)
Nyy = Pe6Yxy My = De6¥xy

The stress—-strain laws for the pad are
Qp a4p Yxzp xYxzp
Qp = Bgsyl + Coysp) 2
yp = ®55p‘Yyzp T “yYyzp (20)

= 3
sz = A33p(€zp + CZEZP)

10




The form of the force and moment resultants for the plate in terms of the trigonomet-
ric terms in the x-direction with coefficients, functions of vy, is similar to the
form of the strain for the plate:

2mx )

N, = N_q(y) + Ny 4(y) cos . + Ny 5(y) cos -

= (y) s 21X

NY = NyO(Y) + Ny1(y) cos = + Nyz y) co "
X . ™ . 2mX
xy = ny1(y) sin ;— + nyz(y) sin —;—

X 27X

M, = M, o(y) + Mg 4(y) cos -t M, ,(y) cos -

P (21)
I M, 5 (y) il
MY = Myo(y) + My1(y) cos T + v2 (¥ cos "

271X
M = i —— : —
Xy Mxy1(y) sin Y + Mxyz(y) sin :

=X . 2mx
Q = u1(y) sin — + Q.o (¥) sin —

TX 27X
Qp = Qol¥) + Quq(y) cos — + Qu2(y) cos — )

However, the form of the force resultants for the pad include terms

. X . 21x ., 6T1x )
= = + 224 . o2,
pr pr1(Y) sin — prz(y) sin —— + + pr6(y) sin —
QO =0 (y) +Q (y)cos ZE 4o (y) cos 2= 4 ... +0 _(y) cos B > (22)
YP yp0 yp1 a yp2 a ¥p6 a
N =N (y) +N__(y) cos X+ N___(y) cos 2 4 +N__(y) bmx
zp zp0 'Y zp1' Y a zp2'Y a Tt zp6 Y’ ©°% 73

11



The first few of these coefficients are

Qxp1 = Paap|Yxzp1
Qxp2 = Pagp Cksz
Qypo = Bssp Dyzpo

Qp1 = Bss5p |Yyzp1

Qyp2 B ASSPLﬁYZPz

zp0 33p LSZO

zp1 33p | 21
sz2 = A33p[?22 *
where

szp1 =

All the other pad

12

t
lw

1 + 2 \]
Cx(ﬁ Yizp1 szp1szpg>

w

2 1.3
-3 cx(%sz1szp2 + E’szp2>

2 1.3 1 2
+ 3Cy<7y2p0Yy291 * Yyzp0Yyzp1Yyzp2 * 7 Yyzp1 * 3 YYZP1YYZP2>]

2 1 2 1 3
+ 3CY<YYZPOYYZP2 * 3 YyzpoYyzpl * 7 YyZPZ)]

pia

t "
(u1 ":z'Bx1"U1)T'2_

strain coefficients are similar. (See egs.

e (+3 4+ 32 2 .3 2 ., 3.2
y\Yyzpo * 3 YyzpoYyzpt1 ¥ 3 Yyzp0Yyzp2 * 7 Yyzp1Yyzp2

)

(23)



The virtual work of the system for a plate of width b and length a is

b ra
811 = J(; J;) (Nx 5e:x + NY 5ay + ny 5ny + Q. 6sz + Qy 5yyz

+M 8k +M 8k + M Sk
X x y y Xy Xy

+ Q 8y + Q Sy + N d¢e >dx dy (24)
Xp Xzp Yp yzp zZp zp

Substituting for the force and moment resultants from equations (21) and equa-
tions (22), substituting for the strains from equations (18), and integrating over
x vresults in

b
= a T _2_12 v v '
8l = 3 J(; [Nx1 6u1 5+ Nx2 6u2 5 + ZNY0 6v0 + Ny1 6v1 + Ny2 6V2
- . - 2m - I
* NXY1 <6u1 6V1 a) * ny2 <6u2 6V2 a )+ Qx1 <5Bx1 6w1 a)

27 ' '
+ Qx2<65x2 - 6w2 é—) + 2QY0(6ﬁy0 + <Sw0) + Qy1(<SBy1 + 6w1)

* Q0B 5 + wy) + M, BB, 2 My 8B, ? +2M oo 9Bgg
Moy OB, t M, OB, F Mxy1(66}'(1 - 8,4 g) Mxy2<55;<2

- By in) Qpi %(5 1 ; 6Bx1> Up2 ;(‘Suz ; ‘Sﬁxz)

* Qypo 'l‘(é o~ 12: 6By0) *+ Qyp1 %é‘” - % 6By1)

6w2] dy (25)

13



Because of the integration properties of products of orthogonal functions, only
the first few coefficients for the forces in the pad appear. Integration by parts

results in

b Q
= 2 N K xp 1 + [-N' + N 2
2t 2 J; [( ny1 + Nx1 a + T ) 6u1 xy2 x2 a

Thus, the principle of virtual work requires satisfaction of the following differen-
tial equations and choice of boundary conditions:

PR Zxpt
ny1 a x1 T (26a)
Q
N _ 2T N + Xp2 (26b)

' ypo 26
NyO T (26c)

14



v T yp1
Ny1 a ny1 + T
2T Qyp2
’ = e ——
Ny2 a nyz + T
Q t
. - X _ =xp1
Mxy1 a Mx1 + Qx1 27
t
271 pr2
t = — — et
M2 =3 ™2t & - 37
t
wo=g - ypot
y0 y0 27T
Q t
v - _ X + _ Zyp1
My1 a Mxy1 Qy1 27
Q
27 yp2
' = - = +
My2 a Mxy2 Qy2 2T
N
Q' = zp0
y0 T
C og T, lzpd
v 1 x1 a T
27 zp2
] = - = o+
Qy2 sz a T
b _ b
xy 1 5“1|o = Ny2 6“2‘0
_ b
Nyo évol =0 71 6v1 0
b _ b
Mxy1 5p 1|0 B Mxyz 55x2|0

b_

(264)

(26e)

(26f)

(26qg)

(26h)

(261)

(263)

(26k)

(261)

(26m)

(26n)

(260)

(26p)

15



b _ b _ =
Mo 8B,0lb =0 My 5sy1‘0 0 M 66y2|0 0 (26q)

b _ b _ b _
90 6w0|0 =0 Q1 6w1lo 0 0 5w2|0 0 (261)

The boundary condition assumed for the results presented in this paper is that
the edges are free. Therefore, the stress and moment resultants are zero; so at

y =0 and b

The system of first~order, ordinary differential equations to be solved for this
problem are presented in terms of the following 26 unknowns:

Uqr Uyr Vor Var Voo Wor Wor Wor Bgr Beor Bogr Byqr By

s M s M, M M
X

N N N M
‘ * Noor Ny Moot Lot %1t Far Mg Mag2 Mot Yot Mo

xy1 xXy2 y0

Equations (26), which were obtained from the virtual work, present 13 of the differ-
ential equations used. The remaining 13 equations were obtained from the strain-
displacement relations (egs. (18)), the stress-strain relations (egs. (19)) for the
plate, and equations (21). These remaining equations are as follows:

T ny1
u; = 2 v1 + = (27a)
66
N
u! = 2—“ v, * AXY2 (27b)
66
N A
22 22

16



x2

y0

v1

y2

y0
-8
A55 y0
Qy1 -
A55 v1
vz _ g
A55 y2
M
=DXY1+EB1
66 a 'y
_ Txy2 2w g
D66 a y2
_ Myo
Da2

It

le - Elg i B
D D a "x1

22

My2 (D12)311:_ 5
D22 D a x2

(274)

(27e)

(27£)

(279)

(27h)

(274i)

(273)

(27k)

(271)

(27m)

17



In addition, the stress—strain laws for the plate directly result in

T
%1 ‘A44<Bx1 ‘Ew1)
(28)
27
%2 = A44(sz 'E—w2>
and, after some elementary manipulation, result in
2 A
A A
12)'n 12
N . =\a, - =u, +|{—]n
x1 11 A22 a 1 A22 y1
2
A
12)211: 12
N_=1a_  -—)J=u_+]—]N
%2 oA, Ja 2 A22> v2
;
2
D
12) T 12
M, =D, . - — B, +{=—"1]M
x1 11 D22 a "x1 D22) v1
2
D D
12 27 12
=\p,, -—= = . +—)m
D a x2 D22 y2 )

22

Sample results for this problem are presented subsequently.

Long Plate in Compression Loaded Beyond Buckling

The analysis of the postbuckling behavior of long, rectangular orthotropic
plates in longitudinal compression is presented in this section, The plate has a

and the long edges are supported. The following sketch
i w of half-wavelength A:

length a and a width b,
of a buckled plate identifies the periodic deflection

Uknlz
]

\ {
+ 3 i _ 1 ! i !
I \ / / |
4 N\ X\I

Ucn/2
ii/ NODAL LINE —\

/
\
’l

18



At buckling, the equations for w are satisfied by

in &
w1(y) sin N

< s = 1 = 1
n fied by - X_._) and L -2
and the equations for u and v are satisfie Y ucn(a 2) Vo(b 2)’

respectively, where ﬁcn and 60 are constants. The study of the postbuckling
behavior of a plate presented in reference 3, which solves for the unknowns in the

order of their importance (perturbation method), indicates that the next group of
terms to be considered are

(y) si 2mx
u,(y) sin ==

v,(¥) cos =¥

The next term to be considered is

(y) sin X
woly) sin X

However, for up to three or four times the buckling load, the coefficient w was

found to be very small compared with w, for a long plate (ref. 3). Accordingly,
the assumed displacements are

[
I

= X _ 1 + () . 27X
Yenlza = 2 uplyl) sin —¢

<
I

27X
voly) + v,(y) cos == (30)

w=w_(y) sin Ix
1 A

Thus, the deflection w is assumed to be sinusoidally periodic with half-wavelength
A+ The deflection w is exact at buckling, the displacements u and v are sinu-
soidally periodic with half-wavelength A/2, and u has an extra term which is
linear in the x-direction associated with the constant ﬁcn which is specified. No
further approximations are made.

A Lévy-type solution is developed for the postbuckling behavior of long plages
in compression. The neutral surface strains and curvatures as given by Von Karman
nonlinear plate theory are

£ =u + 1 w2
X X 2 T ,x
-cn 27 27X 1 n\z 2 27X
='T+U2TCOST+Z(X)W1 1+ cos = (31a)
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Y 'Y 1y
27X 1 2 27X
- [ ] + ] — o — L] - ——
v0 v2 cos X 7 LM (1 cos y ) (31b)
Y =u + v + w
Xy I3’ X X .Y
27 1 A 21X
= v == + — = s —
Qb Vs > %) X) sin =5 (31c)
T 2 X
= - = [= in — 3
K w,xx (K) v, sin X (314)
. TX
K = =-w = -wW" sin — (31e)
y YY 1 A
K = =2w = =2w' I cos I (31£)
Xy Xy 1 a A

From the stress-strain law for an orthotropic plate, the form of the stress resul-
tants can be identified as follows:

22X 0
Nx a A11€x + A12€y - NxO(y) * Nx2(y) cos A
N =A e +A_e =N_(y) +N_ (y) cos 2=
v 22%y 125 T “yo'Y y2'¥! €08 7§
. 2mX
ny = A66ny = nyZ(Y) sin =&
(32)
., X
M = Digkx ¥ Doy = Myy sin g
. X
= + 3 ——
My D22Ky D12KX MY1 sin Y
— = Ix
MXy = D66ny Mxy1(y) cos X J
where
u 2
cn 1/(= 2 ' 1,2
= - ——+ I + + —
L +4<x> vy A12("0 2 Y1 (33a)
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The virtual work of the system is

b A
f f ‘(N e + N 8 + N 8y
0 0 X X Y )% Xy Xy

Substitution of equations (31) and (32) into equation (34) and integration over

results in

81l

811

N >

+M &k +M Hk +M
X x A4 Y X

Sk
Xy

) dx dy

(33b)

(33c)

(334)

(33e)

(33£)

(33g)

(33h)

(34)

X

(35)
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Integration of equation (35) by parts results in

b
_ A ' 2n P
8 = 3 j(; ;(—nyz + X Nx2> 6u2 2Ny0 6v0

+
| |
<
+

]
2
N
=2
x
—
+
N =
o
>la
N——
]
N
2
k]
(o}
+
2
I
N\/
£
-—d

A b
+ = + + - M -V 36
Z[nyz Su, + M Sy + N &V, , 8B -V, 6w1] (36)
where, by definition,
T 1 1n
= =M! + -—— - - — =
Vo = Mur P B w7 3Ny T NGB T 3 R Moy
(37)
= v
B =)
Thus, the principle of virtual work requires satisfaction of the following differ-
ential equations and choice of boundary conditions:
27
' = a—
ny2 A Nx2
]
NyO =0
(38)
27
N'_ = - N
y2 A xy2
T 2 1= 2 1n
] e g + -
v, (K) x1 2<K> (2Nx0 Nx2)w1 2 A ny2B
b
- (39a)
nyzuzlo 0
b
= (3%
Ny0v0|0 0 )
b
= 39
Nyz"2|o 0 (39¢)
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b _ 39d
MY1B‘0 0 (39d)

vyw1‘g =0 (39e)

Since the variations must satisfy the same boundary conditions as the actual dis-
prlacements, the variation signs were omitted in the boundary terms in equations (39).
For the y boundaries, the simply supported, straightedge boundary condition
requires that at y = 0 and b

The clamped, straightedge boundary condition requires that at y = 0 and b

Thus, Ny,p = 0 throughout the region for both boundary conditions considered. The
simultaneous first-order differential equations to be solved can be written in terms

of the unknowns

N

ya' "

u
v1'

2" Vot Wyr BN o0

v
Y
with vy determined by integration after the other unknowns are determined. The

following differential equations for these unknowns have been determined by manipula-
tion of equations already stated:

N
Xy 2 27 17
u' = —_— v - - W B (40a)
66 A 2 2 h 1
N A 2
g2 1 .2 12[ 2n 1<n) 2]
vi = ="+ - B - —Z|u, — + =[] w (40b)
A
2 292 4 A22 2 A AN 1
M D 2
gro= - X1y Bﬂ(%) W (40c)
22 22
w; =B (404)
A A 2
21) 12 12 27 1w 2
] = —{—= - —_— —_ —_f = 40e
T2 TR, Tv2 T M TR Jha Y 4(x> 1 (40e)
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2T
Po- oo 21 40f
Ny2 N Nxy2 ( )
7\2 1 1@
] = =Y = - — - —_
Mea Dgel\n) B+ 2 NoB = 5 % Nyy2¥i (409)
n2 P12 Do V/r\? 17
Vo = ) 15 Myt T P T AR Vil T2 R Mag2f
22 ¥ 22 ] xy
2(a a2 2u 2
__115 EN + A _.ﬂ - cn.’-ﬁu +§£ W2 w
2\1) |2, v2 13, a A S22 T a\r) v 1 (40h)

Equations (40) are the eight ordinary differential equations to be solved for this
problem. Sample results for this case are presented subsequently.

Long Plate in Shear Beyond Buckling Load
Analysis of the postbuckling behavior of long, rectangular orthotropic plates in
inplane shear is presented in this section. The plate has a width b, and the long

edges are supported. The following sketch of a buckled plate identifies the skewed
periodic deflection w of half-wavelength A:

NODAL LINE
sh/2

NGB!
,+, 7 FEITEEY b
|

“sh/z D —

At buckling (see ref. 4), the equations for w are satisfied by

. T X
ws(y) sin — + wc(y) cos —

A

>

The subscripts s and c¢ refer to sine and cosine. The equations for u and v

are satisfied by Esh(% - %) and 0, respectively. The choice of trigonometric terms

for the shear problem is not as straightforward as for the compression problem.
Guided by experimental and theoretical results for shear which indicate that the
buckle mode does not change much in the initial postbuckling range (as with
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compression), the postbuckling mode in shear is given by the buckling mode and a few
elementary terms beyond. Accordingly, the assumed displacements for this problem are

. X 27X
u = uO(Y) + us(y) sin —— + u_(y) cos >
v =V (y) + v (y) sin .ZL‘:X_ + v (y) cos 2_1D_< (41)
0 s A c A

. X X
ws(y) sin 53— + wc(y) cos 53—

ES
I

No further assumptions are made. Following steps similar to those for compression
loading, the equations of equilibrium as obtained from virtual work are as follows:

N'
xy0

I
o
J

| = e—
nys A Nxc

v = - —

Xyc A Nxs
N' =0

y0

271

' = em—
Nys A nyc
N' o= - 2Ty & (42)
yc A Xys

T 2 T 2 1 1 T
' ==l - - = + = + = '
Vys [()\ st *+ <)\> (Nxows 2 Nxswc 2 Nxcws> )\éxyowc

vl
yc

2 T 2
ch + (_X) (Nxowc -

N w' - l N w')]
Xys C 2 XxXyc s

ST
2
b
(]
£
n
1
(YN
2
%
Q
E
&
1
>la
'éz ~
(=)
N=

1l
|
N = '/\I
>la

Differential equations obtained from the stress-strain law are as follows:

N
u'=—1 xy0

0 2 %(wssc - wcss) T (43a)
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" - 1T -
s =% Ve 2 Kéﬂsss Wc‘sc) *® (43b)

N
2T 17 xXyc
'=-— o w—
Yo A Vs 2X(wssc+wcﬁs)+A (43c)
66
A 2 N
1 2 2 12 1f¢ 2 2 y0
v'=——(B + B )-—-—<—)(w + W )+—— (434)
s A
0 4 c 224)\ s c A22
A 2 N
1 12 27 1= vs
v'=——BB+—u—+—(—)ww + —— (43e)
2 "stc A22 c A 2\ A s ¢ A22
v =-1—<F32'32)' 212)l, ﬂ+'1<E)2("’2-W2> . ye (43f)
4
c 4\"s c A22 s A A s c A22
2 M
12w S
R (i I
22 22
D 2 M
B, = D‘|2 <l7f> Wc-Dyc (43m)
22 22
By definition,
j
! =
w Bs
' o=
w Bc
M o=v -2 8 +N B -N B)-aFf-n w +N_ w
ys ys 2 v0's ys' ¢ yc''s 2 A xy0 ¢ Xys S ? (44)
+ N w)+glrM
Xyc ¢ A xyc
M =v  -ton g o+ + N LY P
ycC yc 2 y0Te ysBs ych 2 xy0 s xyswc
+ N w)-ﬂm J
Xyc s A xys
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Additional equations from the stress-strain law are as follows:

2 )
A 2 A
N 121<3)(wz+wz>+ 12
x0 11 A 4
29 A s c A22 y0
2
U (') | WS RT £ S B il
XS 1 A2 c A 2\%) Ys¥c A2 Vs
2
2
A12 27 1n 2 2 A12
Nee = P11 ~ 3 Ys T a\n) Vs T Ve *\a ve
22 22
5 ? {45)
D 2 D
12 (ﬁ) 12
M _ =1p,, - — =) w + | —M
prec] (11 D2 A s D2 Vs
2
D12 i 2 D12
Mee = P11 ™D % Ye ' \p Myc
2 22
27
M = —
XyS A D66Bc
27
M = - -
Xyc A D66Bs S

Equations (42), (43), and (44) (except for the fourth equation of (42) and the fourth
equation of (43)) are the 18 ordinary differential equations to be solved for this
problem. The fourth equation of (42) shows that N o 1s a constant or zero and the
fourth equation of (43) permits a solution for vy when N_ g4 has been determined
and when the rest of the equations have been solved. The applied shearing displace-

ment ﬁsh enters the problem through boundary condition on ug. Sample results for
this case are presented subsequently.

SAMPLE RESULTS AND DISCUSSION
Sample results are presented for each of the three plate problems. The solution

to each of the problems appears to be more efficient by this method than any other
method, including finite elements and finite differences.
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Thick Plate on Nonlinear Foundation

The thick plate considered has dimensions of 5 in. by 5 in. by 2 in., with
extensional and flexural properties as follows:

A11 = A22 = 51 674 1b/in. D11 = D22 = 17 225 in-1b
A12 = 9301 1b/in. D12 = 3100 in-lb
A = A = = inNne = =

44 55 A66 21 000 1b/in D66 7000 in-1b

The pad is 0.16 in. thick with properties in the initial (linear) range given
by: transverse extension modulus E = 500 psi and transverse shear modulus
Gy =Gy = 12.5 psi. Therefore,

A
33p

80 1b/in.

A = A = 1b/in.
44p 55p 2 /in

The substructure is deformed such that

0.0001(2
‘ 2

U =
vV = 0.0003<~12 - g)
2
W= 0.12 sin ¥ 4 0.03 cos > 4 cos LS + 0.01 sin EEX cos 2mx
b b a b a

where U, V, and W are measured in inches.

The solution was obtained by the present method for the thick plate on the pad

and deformed substructure. The values of the moment M and stress resultant N

at the center of the plate for various values of the pa% cubic stiffness coefficients
are shown in figure 3. When the coefficients are zero, the solution of the equations
is exact. The moment doubles in the range shown as the cubic stiffness coefficients
increase. The stress resultant increases by a factor of about 9 for the same range.

Long Plate in Compression Loaded Beyond Buckling
Equations of equilibrium have been derived in the section entitled "Applica-

tions" which may be solved directly by using the algorithm described in refer-
ence 2. For a given value of the applied compressive displacement ﬁcn’ and for
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prescribed values of the dimensions, the material properties, and the half-wavelength

A, the equations may be solved and the average load intensity Nyay May be
determined as follows:

For finite plates, equilibrium paths can be determined in the postbuckling range
which may be associated with buckling modes or changes in mode. In addition, from
examination of the energy, these paths can be identified as being stable or unstabile.
For an infinitely long plate, consideration may be restricted to wavelength, and, by
comparison with results for finite plates, the wavelength of the stable path corre-
sponds to the wavelength that gives minimum energy. An example of a path which is
not of interest beyond buckling is one that gives zero deflections. The load of
interest for postbuckling studies is the one that corresponds to an applied displace-
ment that is in the postbuckling range and on the equilibrium path corresponding to
the wavelength of interest. For this problem, these conditions are satisfied if

(1) the applied displacement is larger than its buckling value, (2) the results give
nonzero deflections, and (3) various half-wavelengths are tried until a minimum
energy is obtained.

Characteristic curves are plotted in figqure 4 for the compression of long, iso-
tropic plates and long +45° laminated composite plates with quasi-isotropic lay up.
The average stress intensity coefficient is plotted as a function of the applied
displacement coefficient for the long edges held straight (inplane) and simply
supported or clamped. The isotropic curves apply to isotropic metal or composites
with an isotropic lay up. The +45° laminate curves apply to graphite-epoxy filamen-
tary material with properties given by the following dimensionless guantities:

-+
D12 2D66

VD11D22

= 2.28

2
BiaPon T Ayp T R

A__A
2A66V 11 22

= =-0.431

For the isotropic plate, both these quantities are unity, and for both the isotropic
and +45° laminate,

F22"11 _
A_D
1122

The slope of the load-displacement curve is a measure of the overall plate
stiffness. BAs shown in figqure 4, this curve is a straight line with a slope equal
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to one prior to buckling. After buckling, this line changes slope according to the

Dyy * 2Dgg By2P11
boundary conditions and according to ———=—=— and ———— (See ref. 5.) The
qD11D22 A11D22

+45° laminate has a slightly lower postbuckling slope than the isotropic and, there-
fore, has a slightly lower postbuckling stiffness.

The only assumptions made in this analysis are that Von Karman theory applies
and that the deflection w and the displacements u and v are sinusoidally
periodic with half-wavelengths A and A/2, respectively. Comparisons with experi-
ment show that Von Karman theory is satisfactory. The deflection pattern is exact at
buckling, and, by comparison with other work, this method should be accurate to three
times the buckling load or higher. The results given herein for simply supported
edges are the same as those presented in reference 6. The results given herein for
clamped edges have not been presented previously. The curves for the clamped edges
are similar to the curves for the simply supported edges, except for higher slopes in
the postbuckling range. This difference indicates that clamped plates are stiffer in
the postbuckling range.

Long Plate in Shear Loaded Beyond Buckling

For the plate loaded in shear, equations of equilibrium have been derived in the
section entitled "Applications" which may be solved directly by using the algorithm
described in reference 2. For a given value of the applied shearing displacement
ﬁs , and for prescribed values of the dimensions, the material properties, and the
half-wavelength XA, the equations may be solved and the average shear load intensity
may be determined as follows:

2\
nyav = 2b?\ f f N dx dy

As with the long plate loaded in compression, to get a postbuckling solution, (1) the
applied displacement must be larger than its buckling value, (2) the results must be
on the equilibrium path where the deflections are nonzero, and (3) various wave-
lengths must be tried until the wavelength is obtained which corresponds to minimum
energy. Characteristic curves are plotted in figure 5 for the shearing of long iso-
tropic plates and long +45° laminated composite plates with quasi-isotropic lay up.
The average stress intensity coefficient is plotted as a function of the applied
displacement coefficient for the long edges held straight (inplane) and simply sup-
ported, or clamped. In addition to the parameters mentioned for compression (see

2A_ A

a2
A_A - -
ref. 6), the shear case depends on the value of 11 22 J?——— 12 ﬁﬁ. Comparing

2A V 11 22
the postbuckling slopes shown in figures 4 and 5 shows that the stiffness of plates
buckled in shear is higher than the stiffness of plates buckled in compression.

Again, the only assumptions made in this analysis are that Von Karman theory
applies and that the deflection w and the displacements u and v are sinusoi-
dally periodic with half—wavelengths A and A/2, respectively. Comparisons with
experiment show that Von Karman theory is satisfactory for shear loading. The
deflection pattern and the deformation pattern are skewed, unlike the compression
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case, and the deflection pattern is exact at buckling. The method should also be
accurate to at least three times the buckling load. The results given herein for
simply supported edges are the same as those presented in reference 6. The results
given herein for clamped edges have not been presented previously. BAs with the
plates loaded in compression, the curves for clamped edges are similar to the curves
for simply supported edges, except for higher slopes in the postbuckling range. The
higher slopes indicate that clamped plates are stiffer in the postbuckling range.

CONCLUDING REMARKS

A solution procedure is presented in this paper for three nonlinear plate prob-
lems. This procedure is demonstrated by deriving one-dimensional equations in the
y-direction using a one~dimensional trigonometric approximation in the x~direction
for three different (two-dimensional) plate problems and by presenting sample results
for these problems. For a plate on a nonlinear foundation, the solution is a non-
linear extension of a Fourier series solution of a linear differential equation in
which the loading terms are also expanded in a Fourier series to get an exact solu-
tion, term by term. The postbuckling problems are solved by a nonlinear extension of
the (linear) Lévy—type solution for long plates. The trigonometric terms are exact
for the linear range of stiffness for the plate on the foundation. The trigonometric
terms are exact for initial buckling in the postbuckling problems. The sample-
problem results for the plate on a nonlinear foundation show that with an increase in
nonlinear stiffness of the foundation, the neutral-surface direct stress resultant is
affected much more than the corresponding moment. Postbuckling plate problems
studied include isotropic plates and a #45° filamentary composite laminated plate.
The +45° laminated plate is not as stiff as the isotropic plate in the postbuckling
range for the compression or shear loadings. There is not much difference for com-
pression, but they differ considerably for shear. For both plates and both loadings,
the postbuckling stiffness is higher for clamped edges than it is for simply sup-
ported edges.

Langley Research Center

National AReronautics and Space Administration
Hampton, VA 23665

June 7, 1983
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Figure 1.- Analytical model of deep beam attached to a substructure by a pad with
nonlinear properties.
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Figure 2.- Coordinates for a thick plate attached to a substructure
by a pad with nonlinear properties.
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