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SUMMARY 

Approximate  solutions  are  presented  in  this  paper  for  three  nonlinear  ortho- 
tropic  plate  problems. The problems  are  to  determine  the  deformations  and  forces 
in: ( 1 )  a  thick  plate  attached to a  pad  having  nonlinear  material  properties  which, 
in turn,  is  attached  to  a  substructure  which  is  then  deformed; (2) a  long  plate 
loaded  in  inplane  longitudinal  compression  beyond  its  buckling  load;  and (3) a  long 
plate  loaded  in  inplane  shear  beyond  its  buckling  load.  For  all  three  problems, 
the  two-dimensional  plate  equations  are  reduced  to  one-dimensional  equations in 
the  y-direction  by  using  a  one-dimensional  trigonometric  approximation  in  the 
x-direction.  Each  problem  uses  different  trigonometric  terms.  Solutions are 
obtained  using  an  existing  algorithm  for  simultaneous,  first-order,  nonlinear,  ordi- 
nary  differential  equations  subject  to  two-point  boundary  conditions.  For  each 
problem,  reasons  are  discussed  for  choosing  the  trigonometric  terms,  ordinary  differ- 
ential  equations  are  derived  to  determine  the  variable  coefficients  of  the  trigono- 
metric  terms,  and  sample  results  are  presented.  This  solution  procedure  provides  a 
quick,  easy  way  to  solve  some  nonlinear  plate  problems. 

INTRODUCTION 

Linear  equations  are  often  inadequate  in  the  analysis  of  plates  that  appear in 
space  vehicle  structures  and  aircraft  structures.  Some  problems  of  plate  analysis 
involve  stretching  and  bending  coupling so that  the  strains  depend  nonlinearly  on  the 
deformations.  Other  problems  may  involve  nonlinear  material  properties,  such  as 
those  due  to  plasticity  or  nonhomogeneous  materials.  Strength  or  limits  in  deforma- 
tion  may  be  considered  in  the  design  of  such  plates.  Useful  estimates  of  the  defor- 
mations  can  usually  be  found  from  approximate  solutions  of  the  nonlinear  equations  of 
equilibrium.  Meaningful  strain  distributions,  however,  require  much  more  accurate 
solutions  of  the  nonlinear  equations. 

Many  methods  are  available  for  solving  nonlinear  plate  problems. A fairly  com- 
plete  survey,  with  examples  of  methods  used  before  the  high-speed  computer  was 
developed,  is  contained  in  reference 1. Analytical  solutions  of  the  differential 
equations  are  sometimes  possible  through  special  devices  or  inverse  procedures. 
Direct  procedures  include  iterative  methods,  such  as  Newton's  method,  and  methods 
which  make  use  of  trial  and  error.  For  problems  involving  a  parameter  of  small 
value,  a  regular  perturbation  method  may  be  employed;  for  problems  involving  a  bound- 
ary  layer,  methods  of  asymptotic  integration  may  be  employed.  Weighted  residual 
techniques  are  also  available  which  include  the  energy  method,  the  Galerkin  method, 
collocation,  and  the  method  of  least  squares.  Finite-element  and  finite-difference 
methods  are  often  used  now  with  the  high-speed  computer.  These  available  methods 
have  certain  limitations,  and  solution  to  many  nonlinear  plate  problems  are  not  read- 
ily  obtained by these  methods. 

In the  present  paper,  simplifying  assumptions  are  used  in  a  derivation  from 
basic  relations  for  plate  problems  to  replace  the  nonlinear,  partial  (two- 
dimensional)  differential  equations  of  plate  theory  with  nonlinear,  ordinary  (one- 
dimensional)  differential  equations.  The  derivation  employs  the  principle  of  virtual 



work  in  conjunction  with  the  assumption  that  the  displacements  may be represented  by 
the  first  few  terms  of  a  Fourier  series.  Solution  of  the  ordinary  differential  equa- 
tions,  subject  to  the  boundary  conditions  which  arise  naturally  in  the  derivation, 
may be obtained  by  using  the  algorithm  described  in  the  next  paragraph. 

An algorithm  based  on  Newton's  method  has  been  developed  by  Lentini  and  Pereyra 
(ref. 2)  to  solve  a  system  of  simultaneous  first-order,  nonlinear,  ordinary  differen- 
tial  equations  subject  to  two-point  boundary  conditions.  The  system  of  equations  is 
of  the  form 

y' = i(x,i) 
- 

where 7 is  the  vector  of  dependent  variables,  x  is  the  independent  variable 
defined  in  the  interval  (a,b),  and F is  a  vector,  the  components  of  which  may  be 
nonlinear  functions  of  x  and y. The  boundary  conditions  of  the  problem  are  speci- 
fied  by 

- 
- 

(The  components  of S identify  each  of  the  boundary  conditions.)  This  algorithm 
uses  finite  differences  with  deferred  corrections,  and  adaptive  mesh  spacings  are 
automatically  produced  to  detect  and  resolve  mild  boundary  layers. 

Approximate  solutions  for  three  nonlinear  plate  problems  are  presented  in  this 
report.  They  are  as  follows: ( 1 )  a  thick  plate  attached  to  a  foundation  having 
nonlinear  material  properties,  which  in  turn  is  attached  to  a  substructure,  which  is 
then  deformed; ( 2 )  a  long  plate  loaded  in  inplane  compression  beyond  its  buckling 
load;  and ( 3 )  a  long  plate  loaded  in  inplane  shear  beyond  its  buckling  load.  The 
first  problem  is  important  in  designing  thermal  protection  systems  for  space  trans- 
portation  vehicles  and  analyzing  bonded  joints.  The  second  and  third  problems  are 
important  in  structural  design  to  take  advantage  of  the  stress-carrying  ability  of 
supported  plates  beyond  the  buckling  load.  The  purposes  of  this  paper  are ( 1 )  to 
indicate  the  reasons  for  choosing  the  trigonometric  Fourier  series  terms  that  are 
used, ( 2 )  to  present  the  derivation  of  the  differential  equations  that  determine  the 
coefficients  of  the  Fourier  series  terms,  and ( 3 )  to  present  sample  results  for  each 
of  the  three  problems. 

plate  ext 1'A12,A22' 
A 44'A551A66 

SYMBOLS 

.ensional  stiffnesses 

A33p  A44p  A55p pad  extensional  stiffnesses 

arb dimensions  of  rectangular  plate  parallel  to x- and  y-axes,  respectively 

Cx,C  ,C constant  coefficients  of  cubic  parts  of  stress-strain  laws  for  pad 
Y Z  
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plate  bending  stiffnesses 

Young's  modulus  and  shear  modulus  for  beam 

Young's  modulus  and  shear  modulus  for  pad 

length  of  beam 

bending  moments  in  plate  or  beam 

inplate  stress  resultants  in  plate or beam 

average  Nx in plate 

average  N  in  plate XY 

normal  stress  resultant  in  pad 

transverse  shear  stress  resultants  in  plate 

transverse  shear  stress  resultants  in  pad 

thickness  of  pad 

thickness  of  plate  or  beam 

deformation  of  substructure  in  x-,  y-,  and  z-directions 

displacements  in  x-# y-# and  z-directions 

U1#U2#V0#V,#V2# 

wo #W 1 'W2' P,, 
@x2  By0 By1 By2 I arbi,trary  functions  of  y  in  equations (14), (15),  and (30) for 

v#  w# B,, and BY 

arbitary  constants  in  expressions (14) 

total  axial  displacement  of  beam 

applied  compressive  displacement 

applied  shearing  displacement 

total  deflection  normal  to  beam 

plate or beam  coordinates 

U o#us#uc' 

V o#vs#vcI arbitrary  functions  of  y  in  equations (41) for ut v# and  w 

ws#wc 

uo *'oo 
u, 

Ucn 

Ush 

w, 

" 

- 
- 

X#Y*Z 
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@x* By rotations  in x-  and  y-directions 

EX'€ * Y  neutral  surface  strains 

yxy y, , yyz 
E strains  in  pad 
zp' YZP , YYZP 

K r K   r K  curvatures 
X Y X Y  

h half-wavelength  in  x-direction 

Prime ( I )  indicates  differentiation  with  respect  to y. Subscripts  x  and  y  which 
follow  a  comma  indicate  partial  differential  of  the  principal symbol with  respect to 
the  subscript. 

APPLICATIONS 

Derivations  of  ordinary  differential  equations  are  presented  in  this  section  for 
( 1 )  a  thick  plate  on  a  nonlinear  foundation, (2) the  postbuckling  behavior  of  long 
plates  in  compression,  and (3) the  postbuckling  behavior  of  long  plates  in  shear. 
The  choices  of  trigonometric  Fourier  series  terms  used  for  each  plate  problem,  and 
the  rationale  for  choosing  these  terms,  are  discussed. To clarify  the  derivation of 
the  differential  equations  for  the  aforementioned  problems,  the  governing  equations 
for  a  simpler  problem - the  deep  beam on a  nonlinear  foundation - is  derived  first. 
The  deep-beam  problem  is  the  one-dimensional  counterpart  of  the  two-dimensional 
thick-plate  problem  and  shows  in  a  much  simpler  problem  the  steps  involved  in  deriv- 
.ing  the  differential  equations  of  equilibrium  from  the  principle  of  virtual  work. 

Deep  Beam  on  Nonlinear  Foundation 

As indicated  in  figure 1, the  beam  is  attached  to  the  top  of  a  pad,  which  is 
attached  to  a  substructure  that  may  be  deformed  in  the  x-  and  z-directions (U and W). 
The  effects  of  transverse  shearing  are  included,  in  addition  to  extension  and  bend- 
ing.  The  pad  resists  transverse  extension  and  shearing  and  has  nonlinear  material 
properties.  The  problem  is  to  determine  the  strains  in  the  beam  and  in  the  pad  due 
to  deformation of the  substructure.  Generally,  the  beam  is  considered  to  be  much 
stiffer  than  the  pad. 

Let  u  be  the  x-displacement  of  the  neutral  surface, w the  deflection  of  the 
neutral  surface,  and px the  rotation.  The  neutral  surface  strain  is  then 

E = u' 
X 

the  transverse  shearing  strain  is 
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and  the  curvature  of  the  neutral  surface  is 

The  bottom  of  the  beam  thickness  t  displaces  u - (t/2)Bx;  thus,  the  rotation  of 
the pad  of  thickness T is [u - (t/2)BX - U]/T. The  average  deflection  of  the  pad 
is (w + W)/2;  the  transverse  shearing  strain  in  the  pad  is  then 

the sum of  its  rotation  and  slope.  The  beam  is  assumed  to  be  much  stiffer  than  the 
pad;  accordingly,  the  slope  of  the  beam w'  is  neglected  in  comparison  with  the 
substructure  slope W'. Therefore,  the  transverse  shearing  strain  in  the  pad  is 

u - (t/2)Bx - u - W' 
yxzp - T 

+ -  2 

The extension of the  pad  w - W  over  the  thickness 
extensional  strain  in 

E = -  w - w  
ZP T 

The  virtual work 

the  pad  as 

(5) 

T determines  the  transverse 

of the  system f o r  a  beam of unit  width  and  of  length L is 

where  the  coefficients  of  the  virtual  strains  are  force  resultants.  Substitution  for 
the  strains  and  integration  by  parts  and  rearrangement  results  in 

6l-I 

According  to 
must  satisfy 
trary  in  the 

L 
= I [(-N: + T 1 QW) 6u + (Q X - M: - - t 2T 'xp) 6px 

0 

+ (-Q: + $ NZp) 6w] dx + (Nx 6u + M X 6 f3, + Qx 6w) 0 

the  principle  of  virtual  work,  the  virtual  and  actual  displacements 
the  same  boundary  conditions,  but  the  virtual  displacements  are  arbi- 
interior  region.  For  equilibrium,  the  virtual  work  is  an  extremum; 
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6n = 0. Therefore,  equation (8) for  virtual  work  can  be  replaced  by  the  following 
differential  equations  and  boundary  condition  terms: 

Products  of  forces  and  virtual  displacements  appear  in  the  boundary  terms.  The  edges 
of  the  beam  are  free;  therefore, Nx = = Qx = 0 at  x = 0 and L. For  other 
problems,  the  displacements  can  be  taken to be  equal  to  zero  or  combinations  of 
forces  and  displacements  (such  that  the  above  expressions  are  satisfied)  can  be  set 
equal  to  zero. 

A linear  stress-strain  law  is  assumed  for  the  beam  as  follows: 

N =  
X 

M =  
X 

Q, = 

For  the  pad,  a 

Et&, = Etu' 

cubic  nonlinear stress-strain  law  is  assumed  as  follows  (see  fig. 1 ) :  

The  equations  expressing  the  stress-strain  law  assumed  for  the  beam  equations  (10) 
and  the  equilibrium  equations (9), together  with  the  stress-strain  law  for  the  pad 
equations (S), (6), and (11) can  be  identified  as six simultaneous  first-order, 
ordinary,  nonlinear  differential  equations  with  unknowns u, Bx, w, NX, M,, 
and Qx with  boundary  conditions. This system  of  equations  may  be  readlly  solved  by 
the  algorithm  discussed  in  the  Introduction.  The six equations  in  the  desired  form 
are  as  follows: 

NX u' = - 
Et 

6 



1 2Mx 

Et 3 
p' = - 
X 

Thick  Plate  on  Nonlinear  Foundation 

For  a  thick  plate  on  a  pad  with  nonlinear  material  properties  and  substructure, 
the  idealization  to  a  deep  beam  discussed  in  the  preceding  section  would  not  be 
satisfactory  if  deformations  across  both  the  length  and  width  of  the  plate  are  impor- 
tant.  This  derivation  is  the  two-dimensional  extension  of  the  beam  problem  (see 
fig. 2 for  the  coordinate  system),  and  the  substructure  is  permitted  to  deform  V  in 
the  y-direction  as  well  as  the  U  and  W  in  the x-  and  z-directions,  respectively, 
for  the  beam.  However,  the  U,V,W  deformations  considered  are  limited to 

- - 
U = uoo + uox + ul(y) sin - + u,(y) sin - 7CX 27CX 

a  a 

nX v = V0(y) + V1(y)  cos - + V2(y)  cos - 2nX 
a  a 

w = W0(y) + W1(y)  cos - + W2(Y)  cos - 7CX 2nX 
a  a 

where  the  barred  quantities  are  constants,  and  the  indicated  functions  of  y  can  be 
chosen  as  desired. As for  the  deep  beam,  transverse  shearing  is  permitted  in  the 
thick  plate,  and  the  plate  is  considered  to  be  much  stiffer  than  the  pad.  The  pad 
has  nonlinear  material  properties  and  resists  transverse  extension  and  shearing  in 
both  the x- and  y-directions. To make  use  of  the  algorithm  described  in  the  Intro- 
duction,  it  is  necessary  to  make  approximations  and  derive  ordinary  differential 
equations  to  replace  the  partial  differential  equations  of  plate  theory. 

In  some  linear  problems  solved by  the  use of Fourier  series,  the  loading  terms 
are  expanded  in  Fourier  series,  and  the  solution  is  in  the  form  of  a  Fourier  series 

7 



which  is  exact  term  by  term.  For  various  approximations,  the  series  may  be  limited 
to  the  first  few  terms  of  the  series. A similar  approximate  method is used  here  for 
a  nonlinear  problem.  The  substructure  deformations  represented  by  equations  (13)  can 
be considered  to  be  loading  terms,  and,  after  identifying  the  first  few  terms  of  the 
series  for  the  solution,  no  further  terms  are  considered  (and  no  further  approxima- 
tions  are  made) . 

Trigonometric  terms  of  the  same  form  as  those  considered  for U, v, and W in 
equations  (13)  are  assumed  for  the  plate  displacements u, v, and  w  in  the x-, y-, 
and  z-directions  as  follows: 

- - 7CX 
u = uoo + uox + ul(y)  sin - -I- u2(y)  sin - a 

n;X 2 m  
a  a w = wo(y) + wl(y)  cos - + w2(Y)  cos - 

Similar  trigonometric  terms  are  assumed  for  the  plate  rotations  ?x and By as 
follows : 

(y)  sin - 2 m  
a 

m - + py2 cos - 
a  a 

The  neutral  surface  strains  and  curvatures  in  the  plate  are 

(16) 

EX = u 

Ey = vrY 

,X 

\ 
Yxy = u  IY + v,x KX - @x,x 

yxz = Bx + w , x  KY - BY,, 

Yyz = By + ” IY Xy = @x,, + By,, 

- 

- 

The c o m a  before a subscript  denotes  partial  differential  with  respect  to  that  sub- 
script.  The  strains  in  the  pad  are  given  as 

8 



E =- w - w  
ZP T 

B y  s u b s t i t u t i o n  from equat ions  (14)   and  (151,   the   s t ra ins   and  the  curvatures   are  

- 7c 7Dc 27c 2nx 
EX = uo + u1 - cos - 

a a + u2 a cos - 
a 

7cX 2 7cx 
E = vc, + vi   cos  - + v i  cos - Y a a 

7Dc T )  s i n  - + ( px2 - 2m 
yxz = ( @x1 - w1 a a w2 2)  s i n  - a 

( 18a) 
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t 
- ) (- - ) ] (u1 - 7 @x1 - w1 .) ax 

Yxzp = $[(coo - 00 + u o - u  0 x + 
"_ "_ 

T 
"- sin - 
2 a  a 

t v " @  - v o  W' 
0 2  yo 

yYzP 
- - 

T T + -  2 cos - a 

t 

+ 
a 

wo - wo + w1 - w1 .x w2 - w2 
E =  cos - + 2 m  
ZP T  T a T a cos - 

(18i) 

(18k) 

With  no loss in  generality,  the  constants  appearing  in u can  be  set  equal  to the 
corresponding  constants  appearing  in U as  follows: 

The  stress-strain  laws  for  the  plate  are 

Nx = A1 1EX + A1 257  Qx = A44Yxz 

Ny = A225 + A12Ex Qy = A55Yyz 

Nxy = A66Yxy 

The  stress-strain  laws  for  the  pad  are 

Qxp - A44p(  Yxzp + CxYxzp) 
- 3 

10 
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The  form  of  the  force  and  moment  resultants  for  the  plate  in  terms  of  the  trigonomet- 
ric  terms  in  the  x-direction  with  coefficients,  functions  of y, is  similar  to  the 

However,  the  form  of  the  force  resultants  for  the  pad  include  terms 

Q, Q,, (Y) sin - - - m 2KX + + QXp2(y) sin - . . . + Qxp6 ( y) sin - 6nx 
a  a  a i 

N = N (Y) + Nzpl 7cx 

ZP ZPO 
(y) COS - + N  (y) COS - a ZP2  a ZP6 2m + ... + N (y) cos a 

1 1  



The first few of these coefficients are 

[ k 3  

[ Qypl = A55p Yyzpl + 3cy(Y~zpoYyzpl + ~yzpOYyzpl~yzp2 + Yyzpl 4 YyzplY:zp2); 

3 2 3 2 3 2  
Qypo = A55p yyzpo + cy yzpo + ’z YyzpOYyzpl + 5 yyzpoyyzp2 + 4 YyzplYyzp2 11 

3 + -  1 

1 
+ T YYZP2)] QYP2 = A55p  [YYZP2 + 3cy(Y~zpoYyzp2 + 5 ~ y z p o ~ y z p ~  

1 3  

2 1 2 + 3c N ~ p 2  = A33p [‘z2 z ( ~ z O ‘ Z ~  + 7 ‘ ~ 0 ~ ~ 1  + J. 4 E3  22 )I 
where 

t 
W 

- u,))!. - 2 a 
17c 

Yxzpl = (9 - T 8x1 

A l l  the other pad strain  coefficients are similar. (See eqs. (18 ) . )  
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The virtual  work  of  the  system  for  a  plate  of  width  b  and  length  a  is 

6II = J J (Nx 6cx + N 6 c  + N  6yXy + Qx 6yXz + Qy 
0 0  Y Y  XY 

+ M 6 K x  + M 6 K  + M 6 K  
X Y Y  Xy XY 

+ Qxp  6yxzp + Qyp  6yyzp + N ZP 6& ZP )dx dy 
Substituting  for  the  force  and  moment  resultants  from  equations ( 2 1 )  and  equa- 
tions (22 ) ,  substituting  for  the  strains  from  equations ( 1 8 ) ,  and  integrating  over 
x results  in 

b 
6n = 2 [Nxl  6ul a 7c + Nx2 6u2 a 2n + 2 N  6v; + N 6v; + N 6v; 

+ NXyl (6u; - 6vl m) + NXy2 (6~; - 6v2 g) + Qxl (6Pxl - 6w, I) 
YO  Yl Y2 

1 t 1 1 
+ Qyp2 T(s.2 - z 6Py2)  + 2Nzpo T 6wo + Nzpl ?F 6wl 

1 

+ NZp2 ?; 6w2] dy 
1 

13 



6ll = 2 2 lb [(-NLl + Nxl 2 a + s) 6ul + (-NL2 + N  x2 - a  2n 

+ -) Qxp2 T 6u2 + (-2N'  YO + - 2Qypo) T 6vo + - Nxyl -+-) a  QYPl T 6v 1 

+ (-.I y2 - N  xy2 271: a + %) T 6v2 + (-2Qi0 + %) 6w0 

N 
6w1 + (-QG2 - Qx2  T  2 

+ (nL1 + Mxl a + Qxl - -) 2T &pXl + (-ML2 + Mx2 a 71; Qxp 1 2n 

+ Qx2 " 2T 6pX2 + ( 2 M 1  + 2Qy0 - -) QYPot 6py0 + .(-MI - M n 
YO T y l  xyl a 

- -) + 
(-MI - + 'yl 2T 1 y2  Mxy2 a + Qy2  2T 

QYP It 2n - -) QYP2t WY2] dY 

a 
+ z Pxyl 1 xy2  2 Yl Y2  yo 6wo 

+ Qyl 6wl + Qy2 2 xyl  "x, xy2  6px2 

6u + N 6u + 2N 6vo + N 6vl + N 6v2 + 2Q 
YO 

6w + M + M  + 2M + M  

+ M  

Thus,  the  principle  of  virtual  work  requires  satisfaction  of  the  following  differen- 
tial  equations  and  choice  of  boundary  conditions: 

n Qxp 1 N' = - N  + -  
xyl  a  x1 T 

2n N' - Qxp2 
xy2 - a Nx2 + T 

14 



N'  = - N  + -  7c QYP 1 
y l  a Xyl T 

N '  = - - 2n N QYP2 + -  
Y 2  a xy2 T 

M' - T, Q x p P  
xyl - a Mxl + Qxl 

- -  
2T 

27t M' = - Qxp2t 
xy2 a Mx2 + Qx2 - - 2T 

M' - QYPot 
yo - QyO 2T 
" 

M' = - "  7c 

Yl a xyl + Qyl - 2~ 

M' = - - 27c M QYP2t 
Y 2  a xy2 + Qy2 - 2~ 

NzpO Q i o  - " - 

7c zpl QG, - - Qxl Z + T  
N - 

N Qi2 - - - 2 .K  
+ zp2 Qx2 a T 

N 
XY 1 N 6u2I: = 0 

XY 2 

N yo  6v 0 I " = O  0 N y l  6v1 1; = 0 N 6v2 1; = 0 
Y 2  

M 
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M yo  6@yo 0 yl  6Byl 0 ( b  = 0 M (b = 0 M (2%) 

The  boundary  condition  assumed  for  the  results  presented  in  this  paper  is  that 
the  edges  are  free.  Therefore,  the  stress  and  moment  resultants  are  zero; so at 
y = 0 and  b 

The  system  of  first-order,  ordinary  differential  equations  to  be  solved  for  this 
problem  are  presented  in  terms of the  following  26  unknowns: 

Nxyl'  Nxy2' N yo'  Nyl'  Ny2'  Qyo'  Qyl'  Qy2'  Mxyl'  xy2'  yo'  yl' y2 M M M M  

Equations  (26)'  which  were  obtained  from  the  virtual  work,  present  13 of the  differ- 
ential  equations  used.  The  remaining  13  equations  were  obtained  from  the  strain- 
displacement  relations  (eqs. (18))' the  stress-strain  relations  (eqs. (19)) for  the 
plate,  and  equations  (21).  These  remaining  equations  are  as  follows: 
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N 

1 

N 
v' 

= - - (+ Y2 A12 27c 

A22 a 2  

w' = - QY 0 - 
O A  55 $YO 

- X Y l  7c 
M 

D6 6 a By1 
p 1  - - + - 

M 
YO 8G0 = - 

D22 

(271) 
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In   addi t ion ,   the   s t ress -s t ra in   l aws   for   the   p la te   d i rec t ly   resu l t   in  

and, a f t e r  some elementary  manipulat ion,   resul t   in  

2 

Nxl = (Al1 - 2): 22 U1 + (2)N 22 Yl 

Mxl = (Dll - 5): 'x1 
+ (E) Myl 

2 

N x 2  = (All - >)gu2 22 + (2)N 22 Y2 

2 

D 
2 

M x2  = (Dll - $)? Px2 + (2) M 
22  22 Y 2  

a 

Sample r e s u l t s   f o r   t h i s  problem are   presented  subsequent ly .  

Long P la t e  i n  Compression Loaded Beyond Buckling 

The ana lys i s  of the  postbuckling  behavior  of  long,  rectangular  orthotropic 
p la tes   in   longi tudina l   compress ion  i s  p resen ted   i n   t h i s   s ec t ion .  The p la te   has  a 
length a and a width  b,  and  the  long  edges  are  supported. The following  sketch 
of a buck led   p l a t e   i den t i f i e s   t he   pe r iod ic   de f l ec t ion  w of  half-wavelength A :  

1 8  



At  buckling,  the  equations  for  w  are  satisfied  by 

w ( y)  sin - 1 h 
m 

and  the  equations  for u and v are  satisfied  by -U (2 - $) and Go@ - +), - 
cn  a 

respectively,  where iicn and To are  constants.  The  study  of  the  postbuckling 
behavior  of  a  plate  presented  in  reference 3, which  solves  for  the  unknowns  in  the 
order  of  their  importance  (perturbation  method),  indicates  that  the  next  group  of 
terms  to  be  considered  are 

u (y)  sin - 2 m  
2 A 

The  next  term  to  be  considered  is 

w  (y)  sin - 3 m  
3 h 

However,  for  up  to  three  or  four  times  the  buckling  load,  the  coefficient  w3  was 
found to be  very  small  compared  with w, for  a  long  Plate  (ref. 3). Accordingly, 
the  assumed  displacements  are 

u =  

Thus,  the  deflection  w  is  assumed  to  be  sinusoidally  periodic  with  half-wavelength 
A. The  deflection  w is exact  at  buckling,  the  displacements  u  and v are  sinu- 
soidally  periodic  with  half-wavelength  A/2,  and  u  has  an  extra  term  which  is 
linear  in  the  x-direction  associated  with  the  constant iicn which  is  specified. NO 
further  approximations  are  made. 

A Gvy-type solution  is  developed  for  the  postbuckling  behavior  of  long 9la;es 
in compression.  The  neutral  surface  strains  and  curvatures  as  given  by  Von  Karman 
nonlinear  plate  theory  are 

- 
U - -" cn  cos + ; (F, \2 w12 (1 + cos 
a + u2 h (3 la) 
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& = v  + L w 2  
Y rY 2 1Y 

= v' + v' cos - + - w' 
0 2 h 4 1  2m> A 2m 2(1 - cos - 

yxY 
= u  + v  + w  w 

rY ,X ,x rY 

2~ v + - w w' 2) sin A 2 2 l l h  
1 2m 

(3 lb) 

(3 IC) 

K = -W = "w" m 
Y I YY 1 h sin - (3  le) 

From  the  stress-strain  law  for  an  orthotropic  plate,  the  form  of  the  stress  resul- 
tants  can  be  identified  as  follows: 

N x = A  11  E x + A  12&y = Nx0(y) + Nx2(y) cos - 2m 
h 

N = A  + A12Ex = N (Y) + Ny2(y) COS - 2m 
Y 22&Y  YO h 

N = A y = N (y)  sin - 2 7cx 
XY 66 Xy x y 2  h 

Mx = D K + D12~y = Mxl sin - m 
11  x h 

M = D  K + D  m = M sin - y 22 y 12Kx yl h 

M = D  = M (y) COS - 7TX 

xy 6 6 K ~  xyl A 

where 

- 
NxO = [- $ + ($2w12] + A 1 2  (vb Wi2) (33a) 
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Nx2 = A 11 [G h u2 + 1 4 h  (E)2w12] + A12 - a W;") 
- 

N  yo = A 22 (V' 0 + Wi2) 4- A 1 2  [- :(:rW12] 

N x y 2  = A66('i - h 2 n v  2 + " h w w '  2 h 1 1) 

2 

Mxl - Dl(?) w1 - D12W1; 
- 

2 
M = -D W" + Dl 2(;) w 

Y l  22 1 1 

The  virtual work of  the  system is 

rb r h  

6* = Jo J, Y Y  xy  "xy 
(Nx 6~~ + N 6~ + N 

+ M  6~ + M  6~ + M  6~ ) dxdy 
x x  Y Y  XY Xy 

(34) 

(35) 

21 



Integration of equation (35) by parts  results in 

6ri = f I" I (  - N k 2  + 5;- 2x Nx2) 6u2 - 2 N '  yo 6vo 

- ( 5 2  + h N W 2 )  6v2 
2.n 

2 
+ [VG + ($2Mx1 + ;($ ( 2 N x 0  + N x2 ) w 1 

I n  
2 h xy2 

+ - - N  

+ zpxy2 h 6u2 + 2 N  6v + N 6v2 - M 6$ - Vy 6w1] E 
YO 0 Y 2   Y l  

where, by definition, 

(37) 
f3 = w' 1 

Thus, the principle of virtual work requires  satisfaction of the following differ- 
ential equations and choice of boundary conditions: 

2.n N '  = - 
xy2 h Nx2 

N'  =C 0 
YO 

N'  = - -  2.n N 
Y 2  h x y 2  

2 
V' = - ( f r M x l  - ;(f) ( 2Nx0 + N  x2lw1 - _  2 l n N  x x y 2  $ 

Y 

N xy2'2 I b = O  0 

N yo v I b = O  0 0 

N y2 v 2 I b = O  0 

2 2  

I 



I 

M = 0 
Y l  

(39d) 

v w  \ b =  0 
Y 1 0  

(39e) 

S ince   the   var ia t ions  must s a t i s f y   t h e  same boundary  conditions as the   ac tua l   d i s -  
placements ,   the   var ia t ion signs w e r e  o m i t t e d   i n   t h e  boundary terms in   equa t ions  ( 3 9 ) .  
For the  y boundaries,   the  simply  supported,   straightedge boundary condi t ion 
r equ i r e s   t ha t  a t  y = 0 and b 

The clamped, s t ra ightedge  boundary  condi t ion  requires   that  a t  y = 0 and b 

Thus, Ny0 = 0 throughout  the  region  for  both  boundary  conditions  considered. The 
s imul t aneous   f i r s t -o rde r   d i f f e ren t i a l   equa t ions   t o  be solved  can be w r i t t e n   i n  terms 
of t h e  unknowns 

with VO determined by i n t e g r a t i o n   a f t e r   t h e   o t h e r  unknowns are determined. The 
fo l lowing   d i f fe ren t ia l   equa t ions   €or   these  unknowns have  been  determined by manipula- 
t ion  of '   equat ions  a l ready  s ta ted:  

N 

2 2  

M 
Y l  D l 1  n p' = - - + w1 

D2 2 D22 

2 

w' = p 
1 

2 

N' xy2 = 2p A22 Ny2 + (Al1 - 2)b2 + -(f)2Wld} 
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B Y 22 

- 
L(2) (-,- Ny2 + kl1  - $)[- 5 a + U2 + ~ ( ~ ~ W l ~ } W  1 (40h) 22 

A12 

Equations  (40)  are  the  eight  ordinary  differential  equations  to  be  solved  for  this 
problem.  Sample  results  for  this  case  are  presented  subsequently. 

Long  Plate  in  Shear  Beyond  Buckling  Load 

Analysis  of  the  postbuckling  behavior  of  long,  rectangular  orthotropic  plates  in 
inplane  shear  is  presented  in  this  section.  The  plate  has  a  width b, and  the  long 
edges  are  supported.  The  following  sketch  of  a  buckled  plate  identifies  the  skewed 
periodic  deflection  w  of  half-wavelength h: 

7 'o;h/_2 
NODAL LI NE 

At  buckling  (see  ref. 4), the  equations  for w are  satisfied  by 

w  (y)  sin - + w  (y)  cos - 7M m 
S h C h 

The  subscripts s and  c  refer  to  sine  and  cosine.  The  equations  for  u  and v 

for  the  shear  problem is not  as  straightforward  as  for  the  compression  problem. 
Guided  by  experimental  and  theoretical  results  for  shear  which  indicate  that  the 
buckle  mode  does  not  change  much  in  the  initial  postbuckling  range  (as  with 
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compression),  the  postbuckling  mode  in  shear  is  given  by  the  buckling  mode  and a few 
elementary  terms  beyond.  Accordingly,  the  assumed  displacements  for  this  problem  are 

7cx w = ws(y) sin + wC(y)  cos XX 

No  further  assumptions  are  made.  Following  steps  similar to  those  for  compression 
loading,  the  equations of equilibrium  as  obtained  from  virtual  work  are  as  follows: 

N' = 0 
YO 

V I  = - [(T)'M~~ + ($'b w - - 1 N W + - 1 N W ) + ;txyoWb 
YS x o s  2 x s c  2 X C S  

1 1 + - N   W ' + - N  
2 xys s 2 xyc c 

YC = - [(;)2M xc + (~)2(Nro~c - NxsWs - 1 Nxcwc) - 
.- 

Differential  equations  obtained  from  the  stress-strain  law  are as follows: 



v' = - 1($ + p.2) - A12 z(x)2(ws2 1 7c + wc2) + A N YO 
0 4 s  

22  22 

M 

c D  w - -  YC 
22 

B y  d e f i n i t i o n ,  

w' = ps 

w' = $, 

S 

C 1 
M' = 1 R  

+ N  xyc w ) - - M  s 271 h xys J 

(43d)  
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Additional  equations  from  the  stress-strain  law  are  as  follows: 

2 

NXO = kl l  - ?x)($ A22 c.2 + wc’> + (k)Nyo A22 

Nxs = - 0  - +)L c h  ?I! + ;(;)2wswj + ()... 

NXC = ( 1 1  - *)[us + ;($ (w”z - -31 + (2) YC 
Mxs = CIl  - i&ps D12 7t + (3% 
MXC = G I l  - &J(X)’WC D12 7t + (2)Myc 

M 
27t 

xys A D66Bc 
“ - 

M - 27t 
Xyc A D66Ps 

_ - -  J 

Equations  (42),  (43),  and (44) (except  for  the  fourth  equation  of  (42)  and  the  fourth 
equation  of  (43))  are  the 18 ordinary  differential  equations to be  solved  for  this 
problem.  The  fourth  equation  of  (42)  shows  that  NyO is a  constant  or  zero  and  the 
fourth  equation  of  (43)  permits  a  solution  for vo when NyO has  been  determined 
and  when  the  rest  of  the  equations  have  been  solved.  The  applied  shearing  displace- 
ment  Ush  enters  the  problem  through  boundary  condition  on uo- Sample  results  for 
this  case  are  presented  subsequently. 

- 

SAMPLE RESULTS AND  DISCUSSION 

Sample  results  are  presented  for  each  of  the  three  plate  problems.  The  solution 
to each  of  the  problems  appears to be  more  efficient  by  this  method  than  any  other 
method,  including  finite  elements  and  finite  differences. 
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Thick  Plate  on  Nonlinear  Foundation 

The  thick  plate  considered  has  dimensions  of 5 in.  by 5 in.  by 2 in., with 
extensional  and  flexural  properties  as  follows: 

A l l  = A = 51 674 lb/in. 
22 D 1 l  - 

D12 - 

44 55 66 D66 - 

- 

A 1  2 = 9301 lb/in. - 

A = A = A = 21 000 lb/in. - 

The  pad  is 0.16 in.  thick  with  properties  in  the  initial 

D22 = 17 225 in-lb 

3100 in-lb 

7000 in-lb 

( linear)  range  given 
by:  transverse  extension  modulus  E = 500 psi  and  transverse  shear  modulus 
G~ = G~ = 12.5 psi.  Therefore, 

A = 80 lb/in. 
3 3P 

A = A  = 2 lb/in. 44p 55p 

The  substructure is deformed  such  that 

u = -0.0001(; - x) 

V = 0.0003(, - y) 
W = 0.12 sin - + 0.03  cos - w cos - + 0.01 sin 3 cos - b  b  a  b  a 

m 2xx 

where U, V, and W are  measured  in  inches. 

The  solution  was  obtained  by  the  present  method  for  the  thick  plate  on  the  pad 
and  deformed  substructure.  The  values  of  the  moment M and  stress  resultant 
at the  center  of  the  plate  for  various  values  of  the pa3 cubic  stiffness  coefficients 
are  shown  in  figure 3. When  the  coefficients  are  zero,  the  solution  of  the  equations 
is exact.  The  moment  doubles  in  the  range  shown  as  the  cubic  stiffness  coefficients 
increase.  The  stress  resultant  increases  by  a  factor  of  about 9 for  the  same  range. 

NY 

Long  Plate  in  Compression  Loaded  Beyond  Buckling 

Equations  of  equilibrium  have  been  derived  in  the  section  entitled  "Applica- 
tions"  which  may  be  solved  directly  by  using  the  algorithm  described  in  refer- 
ence 2. For  a  given  value  of  the  applied  compressive  displacement Ccn, and  for 
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prescribed  values  of  the  dimensions,  the  material  properties,  and  the  half-wavelength 
A, the  equations  may  be  solved  and  the  average  load  intensity  Nxav  may  be 
determined  as  follows: 

*xav 

For  finite  plates,  equilibrium  paths  can  be  determined  in  the  postbuckling  range 
which  may  be  associated  with  buckling  modes  or  changes  in  mode.  In  addition, from 
examination  of  the  energy,  these  paths  can  be  identified  as  being  stable  or  unstable. 
For  an  infinitely  long  plate,  consideration  may  be  restricted  to  wavelength,  and,  by 
comparison  with  results  for  finite  plates,  the  wavelength  of  the  stable  path  corre- 
sponds  to  the  wavelength  that  gives  minimum  energy. A n  example  of  a  path  which  is 
not of  interest  beyond  buckling  is  one  that  gives  zero  deflections.  The  load  of 
interest  for  postbuckling  studies  is  the  one  that  corresponds  to  an  applied  displace- 
ment  that  is  in  the  postbuckling  range  and  on  the  equilibrium  path  corresponding  to 
the  wavelength  of  interest.  For  this  problem,  these  conditions  are  satisfied  if 
( 1 )  the  applied  displacement  is  larger  than  its  buckling  value, (2) the  results  give 
nonzero  deflections,  and ( 3 )  various  half-wavelengths  are  tried  until  a  minimum 
energy  is  obtained. 

Characteristic  curves  are  plotted  in  figure 4 for  the  compression  of  long,  iso- 
tropic  plates  and  long ;t45O laminated  composite  plates  with  quasi-isotropic  lay  up. 
The  average  stress  intensity  coefficient is plotted  as  a  function  of  the  applied 
displacement  coefficient  for  the  long  edges  held  straight  (inplane)  and  simply 
supported  or  clamped.  The  isotropic  curves  apply  to  isotropic  metal  or  composites 
with  an  isotropic  lay  up.  The 245O laminate  curves  apply  to  graphite-epoxy  filamen- 
tary  material  with  properties  given  by  the  following  dimensionless  quantities: 

= 2 . 2 8  

A 1 lA22 - A 1 2  - 2A A 
L 

l 2  66 = -0 .431 
2A66\( 1 1  22 

A A  

The  slope  of  the  load-displacement  curve is a  measure  of  the  overall  plate 
stiffness. As shown  in  figure 4,  this  curve  is  a  straight  line  with  a  slope  equal 
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t o  one pr ior   to   buckl ing.   After   buckl ing,   th is   l ine   changes  s lope  according  to   the 

D12 +- 2D66 and D 

A D  
boundary  conditions  and  according t o  11. (See  ref .   5 . )  me PJ5 11 22 
f450 laminate  has a s l i g h t l y  lower  postbuckling  slope  than  the  isotropic  and,  there- 
fore ,   has  a s l igh t ly   lower   pos tbuckl ing   s t i f fness .  

The only  assumptions made i n   t h i s   a n a l y s i s  are t h a t  Von K&m& theory  appl ies  
and   t ha t   t he   de f l ec t ion  w and the  displacements u and v a re   s inuso ida l ly  
periodic  with  half-w$vefengths h and  h/2, respec t ive ly .  Comparisons  with  experi- 
ment show t h a t  Von Karman theory is s a t i s f a c t o r y .  The de f l ec t ion   pa t t e rn  is e x a c t   a t  
buckling,  and, by comparison  with  other work, t h i s  method should  be  accurate   to   three 
times the  buckl ing  load  or   higher .  The resul ts   g iven  herein  for   s imply  supported 
edges  are   the same as   those   p resented   in   re fe rence  6.  The resu l t s   g iven   here in   for  
clamped  edges  have  not  been  presented  previously. The curves   for   the  clamped  edges 
a re   s imi la r   to   the   curves   for   the   s imply   suppor ted   edges ,   except   for   h igher   s lopes   in  
the  postbuckl ing  range.   This   difference  indicates   that   c lamped  plates   are   s t i f fer   in  
the  postbuckling  range. 

Long Pla te   in   Shear  Loaded Beyond Buckling 

For the   p la te   loaded  i n  shear,   equations of equi l ibr ium  have  been  der ived  in   the 
sec t ion   en t i t l ed   "Appl ica t ions"  which may be  solved  direct ly  by using  the  a lgori thm 
described i n  reference 2. For a given  value  of  the  applied  shearing  displacement 
ush,  and  for  prescribed  values of the  dimensions,   the   mater ia l   propert ies ,   and  the 
half-wavelength h ,  the   equat ions  may be  solved  and  the  average  shear  load  intensity 
may be  determined a s  follows: 

- 

A s  with  the  long  plate   loaded  in   compression,   to   get  a postbuckl ing  solut ion,  ( 1 )  t he  
applied  displacement must be la rger   than  i t s  buckling  value, ( 2 )  t h e   r e s u l t s  must be 
on the  equi l ibr ium  path where the  deflections  are  nonzero,   and ( 3 )  various wave- 
lengths must be t r i e d   u n t i l   t h e  wavelength is obtained which  corresponds t o  minimum 
energy .   Charac te r i s t ic   curves   a re   p lo t ted   in  figure 5 for   the   shear ing  of  long  iso- 
t r o p i c   p l a t e s  and  long *45O laminated  composite  plates  with  quasi-isotropic  lay  up.  
The average stress i n t e n s i t y   c o e f f i c i e n t  is p l o t t e d  as a funct ion of the   appl ied  
d isp lacement   coef f ic ien t   for   the   long   edges   he ld   s t ra ight   ( inp lane)  and  simply  sup- 
por ted ,   o r  clamped.  In 

ref .   6) ,   the   shear   case 

the  postbuckling  slopes 

addition  to  the  parameters  mentioned - f o r  compression  (see 
A1  1A22 - A f 2  - 2A A 

depends on the  value of l 2  66. Comparing 
1 1  22 

shown i n   f i g u r e s  4 and 5 shows t h a t   t h e   s t i f f n e s s  of p l a t e s  
buckled  in   shear  i s  h igher   than   the   s t i f fness  of plates   buckled i n  compression. 

Again, the  only  assumptions made i n   t h i s   a n a l y s i s   a r e   t h a t  Von K&m& theory 
app l i e s  and t h a t   t h e   d e f l e c t i o n  w and  the  displacements u and v a re   s inusoi -  
dally  periodic  with  half-w$velengths h and h/2, respec t ive ly .  Comparisons  with 
experiment show t h a t  Von mrm& theory is sa t i s fac tory   for   shear   loading .  The 
de f l ec t ion   pa t t e rn  and the  deformation  pat tern  are  skewed, unlike  the  compression 
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case,  and  the  deflection  pattern  is  exact  at  buckling.  The  method  should  also  be 
accurate  to  at  least  three  times  the  buckling  load.  The  results  given  herein  for 
simply  supported  edges  are  the  same  as  those  presented  in  reference 6. The  results 
given  herein  for  clamped  edges  have  not  been  presented  previously. As with  the 
plates  loaded  in  compression,  the  curves  for  clamped  edges  are  similar  to  the  curves 
for  simply  supported  edges,  except  for  higher  slopes  in  the  postbuckling  range.  The 
higher  slopes  indicate  that  clamped  plates  are  stiffer  in  the  postbuckling  range. 

CONCLUDING REMARKS 

A solution  procedure  is  presented  in  this  paper  for  three  nonlinear  plate  prob- 
lems.  This  procedure  is  demonstrated  by  deriving  one-dimensional  equations  in  the 
y-direction  using  a  one-dimensional  trigonometric  approximation  in  the  x-directiqn 
for  three  different  (two-dimensional)  plate  problems  and  by  presenting  sample  results 
for  these  problems.  For  a  plate  on  a  nonlinear  foundation,  the  solution  is  a  non- 
linear  extension  of  a  Fourier  series  solution  of  a  linear  differential  equation  in 
which  the  loading  terms  are  also  expanded  in  a  Fourier  series  to  get  an  exact  solu- 
tion,  term  by  term.  The  postbuckling  problems  are  solved  by  a  nonlinear  extension  of 
the  (linear) L&y-type solution  for  long  plates.  The  trigonometric  terms  are  exact 
for  the  linear  range  of  stiffness  for  the  plate  on  the  foundation.  The  trigonometric 
terms  are  exact  for  initial  buckling  in  the  postbuckling  problems.  The  sample- 
problem  results  for  the  plate  on  a  nonlinear  foundation  show  that  with  an  increase  in 
nonlinear  stiffness  of  the  foundation,  the  neutral-surface  direct  stress  resultant is 
affected  much  more  than  the  corresponding  moment.  Postbuckling  plate  problems 
studied  include  isotropic  plates  and  a f45O filamentary  composite  laminated  plate. 
The f450 laminated  plate  is  not  as  stiff  as  the  isotropic  plate  in  the  postbuckling 
range  for  the  compression  or  shear  loadings.  There  is  not  much  difference  for  com- 
pression,  but  they  differ  considerably  for  shear.  For  both  plates  and  both  loadings, 
the  postbuckling  stiffness  is  higher  for  clamped  edges  than  it  is  for  simply  sup- 
ported  edges. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
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Figure 1.- Analyt ical  model of deep beam a t t a c h e d   t o  a subs t ruc ture  by a pad  with 
nonl inear   p roper t ies .  
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SUBSTRUCTURE 

Figure 2.- Coordinates  for a t h i ck   p l a t e   a t t ached  t o  a subs t ruc ture  
by a pad  with  nonlinear  properties.  
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