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ABSTRACT

The estimation of mixing proportions p l ,p 2 , ... , pm in the mixture

density f(x) = Z
m

pi fi (x) is often encountered in agricultural remoteJ=l
sensing problems in which case the pi 's usually represent crop proportions.

In these remote sensing applications, component densities f i (x) have	 r

typically been assumed to be normally distributed, and parameter estima-

tion has been accomplished using maximum likelihood (ML) techniques. In

this paper we examine minimum distance (MD) estimation as an alterna-

tive to ML where, in this investigation, both procedures are based upon_

normal. components. Results indicate that ML techniques are superior

to MD when component distributions actually are normal, while MD esti-

mation provides better estimates than ML under symmetric departures from

normality. When component distributions are not symmetric, however, it

is seen that neither of these normal based techniques provides satis-

factory results.
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f (x) = pf l (x) + (1-p) f 2 (x) (1.2)

A COMPARISON OF MINIMUM DISTANCE AND
MAXIMUM LIKELIHOOD TECHNIQUES

FOR PROPORTION ESTIMATION

Wayne A. Woodward, William R. Schucany,
Hildegard Lindsey, and H. L. Gray

Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A common objective in remote sensing is the estimation

of the proportions p1,p2,••.,pm in the mixture density

f (x) = p lf 1 (x) + p 2 f 2 (x) + ... + pmfm (x)	 (1.1)

where m is the number of components(crops) in the mixture

and for component i,fi ( x) is a (possibly multivariate)

density. In past practice this density has been assumed to

be (multivariate) normal with X being the reflected energy

in four bands of the light spectrum, certain linear

combinations of these readings, or other derived "feature"

variables. Generally the parameter estimation has been

accomplished using maximum likelihood techniques. In this

paper we examine the use of minimum distance estimation as

an alternative to maximum likelihood and we will compare

the performance of the two estimation techniques when

dealing with mixtures of normal and of non-normal densities

with varying amounts of separation. We will focus on the

mixture of two univariate distributions given by
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We are also assuming that only data from the mixture

distribution are available. Other sampling schemes in which

training samples from the co*iponent distributions are also

available have been discussed by Hosmer(1973),

Redrser(1980), and Hall(1981) among others.

2. ]Estimation in the Mixture of Normals Model

In this section we will assume

(1.2) are normal densities with mea

11 2 1
 02 respectively where it is

parameters u l , all u2, a2, and p are

estimating these parameters will be

that f 1(x) and f2 (x) in

n and variance u , a 2 and
1	 1

assumed that all five

unknown. Techniques for

discussed.

(a) Maximum Likelihood

Several recent articles have dealt with the problem of

obtaining the maximum likelihood estimates ofu
1' 0 2 F 112

2
a 2, and	 p ( Hasselblad(1966),	 Day(1969),	 Wolfe(1970),

Hosmer(1975), Fowlkes(1979), Lennington and Rassbach(1979),

and Redner(1980).) Since the likelihood function

L _ f ( x1 ) f (x 2 ) ... f (X n)(2.1)

where n is the sample size, is not a bounded function in

this case (see Day(1969)), the objective in the maximum

likelihood approach is to find a local maximum of L. This

maximum is usually found by setting the partial derivatives

of log(L) with respect to each of the 5 parameters equal to	
a

zero and solving she resulting set of equations, called the
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likelihood equations. Since closed form solutions of these

equations do not exist, they must be solved using iterative

technques. Hasselblad(1966) and Wolfe(1969) suggested that

these equations be solved by taking advantage of their

fixed point form. Redner(1980) and Redner and Walker(1982)

have pointed out that this fixed point technique 	 is

essentially an application of the EM algorithm (see

Dempster, Laird and Rubin(1977)) with the only difference

being that using the EM algorithm, the estimates of ai and

a2 at step k involve the updated kth step estimates of u1

and 112

Fowlkes(1979), on the other hand, maximized the

likelihood function directly by utilizing a quasi-Newton

method for minimizing -log(L) and found that good starting

values	 were	 crucial	 for	 acceptable	 performance.	
t

i	 Hosmer(1975) stated that using the likelihood equations,
1

starting values were not a serious problem in his

r experience. In order to determine which of the two

techniques seemed preferable in our simulation studies we

replicated simulations performed by Fowlkes in which

various sets of poor starting values were used to initiate

the minimization procedure. We simulated realizations from

the mixture utilized by Fowlkes and estimated the

parameters using both direct maximization and the EM

algorithm. The results of our simulations indicate that

the EM algorithm approach is preferable and hence we have

used this technique for obtaining MLEs in ou'r simulations.

t
f, r

4



(b)Minimum Distance

4

Although ML estimation 	 procedures are	 known to	 have

certain	 optimality	 properties,	 their	 sensitivity	 to

violations	 of	 the	 underlying	 assumptions	 is	 also

recognized. The development of estimation procedures	 which

perform	 well	 even	 under	 moderate	 deviations	 from

assumptions has been 	 a topic of	 major interest in 	 recent

literature.	 One	 of	 these	 robust	 procedures	 which	 has

received recent attention is 	 that of minimum	 distance(MD)

estimation	 introduced	 by	 Wolfowitz(1957).	 Parr	 and

Schucany(1980), for example, have shown that MD	 techniques

provide robust estimators	 of the location	 parameter of	 a

symmetric distribution.	 Minimum	 distance	 estimation	 has

been used for parameter estimation in the mixture model 	 by

Choi.	 and	 Bulgren(1968)	 and	 MacDonald(1971)	 with	 some

success	 although,	 to	 our	 knowledge,	 the	 question	 of

sensitivity to	 assumptions in	 this setting	 has not	 been

addressed.	 These	 previous	 authors	 assumed	 that	 the

parameters of the	 component distributions 	 were known	 and

that only the mixing proportion(s) was to be estimated.

In	 order	 to	 briefly	 describe	 minimum	 distance

estimation, we let xl,x,,...,xn denote a random sample	 from

a population	 with	 distribution	 function	 F	 and	 let	 Fn

denote the.empirical distribution function, 	 i.e.	 Fn(x)=k/n

where k is the	 number of observations	 less than or	 equal

to	 x.	 Further,	 let`W = { H
e :A6 }
	 denote	 a	 family	 of

distributions	 depending on	 the	 possibly	 vector	 valued

z

4 If	 ''

tZ
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parameter d. The MD estimate of a is that value of a for

which the distance between F n and He is minimized. it is

not necessary that Fc1f: Of course, when a mixture of two

normals is used as the projecHi,.)n family, He becomes

X	 1 y`u l 2	 1 yTu 2 2
1	 - 2( ^ )	 x 1	 - 2( o )

He	 e	 1	 dy + (1-p) j	 e	 2	 dy.(x) = p --_
2► 	 U	 _co if o 2

Certain considerations become obvious at this point.

First, we must define what we mean by the "distance"

between two distributions. Several such distance measures

have appeared in the literature. The reader is referred to

the article by Parr and Schucany(1980) for a discussion of

these measures. For our purposes we have chosen the

Cramer-von Mises distance, W 2 , between distribution

functions G  and G 2 which is given by

W2 =

co

 j [G1 (x) -G 2 (x) l 2dG2 (x) .
_ao

in our setting a computing formula for the Cramer-von

Mises distance between 
n 

and H 8 is given by

2_ ^	 [1	
n	

) _ i^.5^2
Wn 

_ ,.2n + E H e (Yi	
ni=1

where Y 	 is the ith order statistic. The similarity

between W 2 and the sum of squared differences between the
n

empirical distribution function F n and H e used by Choi and

Bulgren(1968) should be noted.

Another consideration involves the minimization

procedure to be employed in minimizing W n. Parr and

5
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Schucany used the IMSL quasi-Newton algorithm ZXMIN. Our

comparisons have shown ,however, that the IMSL routine

ZXSSQ which uses Marquardt's(1963) method for minimizing a

sum of squares was significantly faster, usually taking no

more than half the time required by Z'"MIN. In the

simulation studies reported in the next section we have

used the Marquardt minimization procedure when calculating

the MDE. It should be noted that minimization is subject

to the constraints of>0 , a2>0 	 ^, and 0<l . Another finding

which deserves mention before proceeding is that similar

to the technique we havq chosen for calculating the MLE,

the MDE has the desirable property that it is relatively

insensitive to starting values.

3. Starting Values

In order for the estimators discussed in the previous

chapter to be used in practice, starting values for the

iterative procedures must be provided. We have chosen to

obtain starting values in this two component univariate

setting using a partitioning technique which is very easy

to implement. In the discussion to follow we will assume,

without loss of generality, that u l < P 2 . This technique

involves first obtaining the initial estimate of p

denoted by p 0, and then estimating the remaining four

parameters given p0 . Under the current implementation,

only the 9 values .1,.2,...,.9 are allowed as possible

4

i
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values for PO . For eoch allowable value of p ot the sample

is divided into two subsamples

Y  , Y 2 , ...,Yn
1

Y , Y , ... ,Yn
nl+l ni+2

where Yi is the ith order statistic and n i is np o ;rounded

to the nearest integer. The value for p0 is that value of

p for which p (1-p ) (m l-m 2 '2) is maximized, where mj is

the sample median of the jth subsample. The criterion used

here is a robust counterpart to the classical cluster

analysis procedure of selecting the clusters for which the
4

within cluster sum-of-squares is minimized. It is easy to
Y

show, however, that the within cluster sum-of-squares is

minimized in the two cluster case when p (1-p) (xl-- 
2)2 

is	 t

maximized, where 5F is the sample mean of cluster j and
7

and p-n 1/n with n  the number of sample values placed in

cluster 1. Such a clustering is based upon a cut-point,

c , for which all sample values below c are assigned to

the cluster associated with population 1. It must be

observed, however, that due to the overlap between the two

mixture distributions, some sample points assigned to

cluster 1 may be from population 2 and some observations

from population 1 may be in cluster 2. The effect of this
G	 i

truncation of the :right tail in population 1 is that the

sample mean from cluster 1 is likely to underestimate u1

while 2 is likely to be overestimated. In addition o1u  
and

s2 
are likely to be underestimated by s1and s2. If we
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assume that the overlap between the two populations is not

too severe, then the sample values in cluster 1 to the

left of m l are relatively pure observations from

population 1 in which case m l is a "good" estimate of the

population mean in the case of symmetric distributions.

This reasoning also indicates that m 1 and m2 should

provide better estimates of ul and u2 than would x l and'

x2 . In order to estimate the variances of the component

distributions we again will depend upon the fact that the

values to the left of m l and to the right of m 2 are "pure"

samples from populations 1 and 2 respectively. Thus, we

will use only this portion of the data for estimation of

the sample variances. We have used the fact that the

,1t ;J :<, a°.Intorquartile range of a standard normal distribution

is .6745, to estimate a21

m	 r (.25) 2

cl(0)	 _ ( l 6745	 )

where r^q) is the qth percentile from the jth cluster,

j=1,2. Similarly, a2(0) :-.. [(r2(.75)-m2)/.6745]2.

In the next section we will discuss the results of a

major simulation investigation comparing ML and MD

t' t'I th	 1 t c'	 th 't at'	 t c h ' uIQ ima ion. n	 e A	 s^mu a i ns	 ve i er ie	 a nzq es

were initiated by the starting values as discussed in the

previous paragraph. A preliminary simulation investigated

the performance of the starting values described here. In

this preliminary	 study we compared the convergence	 #

is

s
i

4
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initiated from these starting values with that when the

iterative procedures are started at the true parameter

values. The convergence from these two starts was almost

always to the same parameter estimates, a result which

held for both the MLE and MDE. For this reason and results

to be shown in Section 4, we believe this starting value

procedure to be adequate.

4. Simulation Results

In the previous two sections we have discussed ML and

MD estimators for the parameters of the mixture of two

distributions. In this section we report the results of

simulations designed to compare these two estimators when

the component distributions are normal and when they are

non-normal. In addition we have made our comparisons under

varying	 degrees	 of	 separation between	 the	 two

distributions. All computations were performed on the CDC	 q

6600 at Southern Methodist University.

In our comparison of the MDE and MLE we have begun by

comparing their performance when the normality assumption

is valid, i.e., when the component distributions actually

t are normal. We should mention that because of the

optimality properties of the MLE we would expect that the

4 MLE would be superior in this situation. Since in practice

the validity of the normality assumption is subject to

question, we are also very interested in the performance

of the MDE and XLE when the component distributions are

	

y	
jl

9

I{	 999a
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not normal. To this end we have simulated mixtures in

which the component distributions are distributed as a

Student's t with 4 degrees of freedom. We simulated 500

samples of size n=100 from mixtures of normal and of t(4)

components for each of the following parameter

configurations:

Mixing proportion

.25

.5Q

.75

Variances

2	 2
al = a2

a2 = 2a2

The nature of the mixture model also depends on the

amount of separation between the two	 component

distributions.. While, for 	 sufficient separation,	 the

mixture model	 has	 a characteristic	 bimodal	 shape,

Behboodian(1970) has shown, for example, that a sufficient

condition for	 the mixture	 density (of	 two	 normal

components) to be unimodal is Q)at Iul u2 1 <2min(al,a2). Of

course, in	 this situation,	 parameter estimation	 is

difficult. _i

For purposes of quantifying this separation between

the components, we will define a measure of "overlap"

between two distributions. Without loss of generality we

#3,
_.	 t
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assume that population 1 is centered to the left of

population 2. We define "overlap" to be the probability of

misclassification using the rule.

Classify an observation x as:

population 1 if x < x C

population 2 if x > xC,

where x  is the unique Point between u l and u 2 such that

pf 1. ( xc ) = (1-p)f2(xc)

We have based our current study on "overlaps" of .03 and

.10. In Figure 1 we display the mixture densities associated
	

2

with normal components and a 2 = a2. For each mixture, the
scaled components pf 1 (x) and (1-p)f 2 (x) are also shown. Note

that the densities for p=.75 are not displayed here since

when a 2= a2, it follows that fp (x)=f l p (u l+u 2-x)where fh(x)

denotes the mixture density associated with a mixing

proportion of h. Thus the shapes of the densities at p=.75

can be inferred from those at p=.25. Likewise, parameter

estimation for p=.75 is not included in the results of the

simulations when a l- a2.

Although both estmation procedures provide estimates of

all 5 of the parameters, only the results for the estimation

of p will be shown since the mixing proportion is the

parameter of primary interest. In addition, when dealing

with the non-normal mixtures, the remaining parameter

f ^;



FIGURE 1 — Mixture Densities Associated with

Normal Components and a2 = a2 = 1
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estimates often do not have a meaningful interpretation. In

these simulations we have used the procedure discussed in

the previous section to obtain starting values. It should be

noted that	 although we	 refer to mixtures of	 t(4)

distributions hexer they are actually mixtures of

distributions associated with the random variable T'=aT+br

where It has a t(4) distribution. These modifications are

made in order to obtain the desired separation and variance

ratios.

In Table 1 we show the results of the simulation

comparing the performance of the MLE and MDE. In particulars

let pi denote the estimate of p for the ith sample. Then

based upon the simulations, estimates of the bias and MSE

are given by:

bias = n	 E s (pi-p)
s i=1

^	 1	 ns	 2
MSE _ — E (p.-p) r

ns i=1	 i

e where ns is the number of samples. It should be noted that
nMSE is the quantity actually given in the table. In

addition, we provide the ratio

E = DISE (MLE )

MSE MDE

as an efficiency measure.

Upon viewing the results, it can be seen, as expectedr

that the bias and RISE associated with the MLE were generally

smaller than those for the MDE when the components were
K

13
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Overlap = .03
Bias	 nMSE	 E

MLE MDE	 MLE MDE

	

.029	 .020	 .88	 .44 2.00

	

-.005	 .000	 .47	 .27 1.74

	.044	 .029

	

.010	 .001

-.012 -.016

5	 .61 1.56

5	 .30 1.83

7	 .36 1.58

t

Clt g sxl^'v`as. ^.; . ..a J .
14

OF POOR QUA 11
TABLE 1

Simulation Results Comparing MLE and MDE

i Sample Size = 100
Number of replications = 500

NORMAL
Overlap = .10 Overlap = .03

Bias nMSE* E	 Bias nMSE E
al = 02 MLE MDE MLE MDE MLE	 MDE MLE MDE

p = .25 .052 .125 4.26 7.80 .55	 .008	 .026 .54 1.09 .50

p = .50 .000 .010 3.21 3.86 .83	 .000	 .001 .38 .42 .90

a2 = 202

p = .25 .002 .084 2.25 5.30 .42	 .006	 .027 .49 .96 .51

p = .50 -.009 .005 2.41 2.79 .86	 .009	 .008 .42 .44 .95

p = .75 -.086 -.137 4.87 8.36 .58	 -.002	 -.024 .47 1.08 .44

t(4)

Overlap = .10
2_ 2	 Bias	 nMSE	 E

al - 
a 2 MLE '	MDE	 MLE	 MDE

p = .25	 .096	 .104	 7.35	 6.18 1.19

p = .50	 .015	 .004	 5.59	 1.82 3.07

01 = 202

p = .25	 .061	 .098	 4.63	 5.20	 .89

p = .50	 .028	 .022	 4.49	 1.80 2.49

p	 .75 -.076 -.058	 7.84	 3.68 2.13

*nMSE = n times the MSE where n = sample size

h

40
4

1;	 ;s

s
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normally distributed. This relationship between the

estimators held for both overlaps. The MLE and MDE were

quite similar at p=.5 while for p=.25 and p=.75 the

superiority of the MLE is more pronounced.

For the t(4) mixtures the relationship between MDE and

MLE is reversed in that the MDE generally has the smaller

bias and MSE. The superiority of the MDE in this case is due

in part to the heavy tails in the t(4) mixture. The MLE

often interpreted an extreme observation as being the only

sample value from one of the populations with all remaining

observations belonging to the other. Due to the well known

singularities associated with a zero variance estimate for a

component distributicr',, Day(1969), we were concerned that

the observed behavior of the MLE was due to the fact that we

did not constrain the variances away from zero.

However,simulat,ion results in which equal variances were

assumed (which .removes the singularity) and also those which 	 Aa
used a penalized MLE suggested by Redner (1980) were very

	
a

similar to those quoted here.

Although the MSE is a widely used measure among

statisticians for assessing the performance of an estimator,

the practical implications, for example, of an estimator

having an MSE three times larger than that for another

estimator, may not be immediately apparent. Recall that each

MSE quoted in Table l is based upon 500 estimates of p. In

order to provide a better appreciation for the practical

impact of differences in MSE, in Figure 2 we display

histograms of the 500 estimates of p associated with three

r	 .^



aiLnLnO

t
 
P
+

WO

M
	

N
	

e-I

btv
 ^

N
 
O

M
 
N

P
C
I
 4
4

a
Ô
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different MSEs in the table. The true value of p in each

t case is p=.5. It is obvious that as the MSE increases, the

perfor^ttance of the estimator deteriorates. Notice that the

MSE for Figure 2(c) is approximately three times greater

than the MSE associated with Figure 2(a), while the MSE for

Figure 2(b) is aprroximately twice that for Figure 2(a).

Thus, froio these	 histograms, an	 intuitive feel	 for

efficiency ratios of E=2 and E=3 can be obtained.

A very surprising result is that the starting values
i

obtained using the procedure outlined in Section 3 produced

estimators which were competitive with both the MLE and MDE.

In fact, for both the normal and t(4) mixtures, the MSEs

associated with the starting values were lower than those

for the MDE and MLE for every parameter configuration

associated with an overlap of .10. At an overlap of .03,

however, the starting values estimates were generally poorer

than those for the MDE and PILE.

5. Mixtures of Asymmetric Distributions

The simulation results of the previous section focus on

the performance of the MLE and MDE under deviations from the

assumption of normality. However, the t(4) distribution is

symmetric, and recent studies have indicated that there is

often a substantial asymmetry in the component distributions

for variables of interest in agricultural remote sensing. A

Monte Carlo examination of the performance of the MDE and

MLE, assuming normal components, when in fact the component

17



distributions were asymmetric, was performed, and the

results of this examination will be discussed in this

section.

For purposes of our examination, we simulated mixtures

is

of X 2 (9) distributions with p=.5. In these simulations the

two distributions differed from each other only by a

location shift. Actually the component distribution to the

left is X 2 (9) while that to the right is that of a "shifted"

X 2 (9) with origin no longer at 0. This shift was varied to

provide overlaps of .01, .05, and .10. Since our estimation

procedures involve a normality assumption, we used the means

and variances of the two component x 2 (9) distributions and

the true mixing proportions as our starting values. The

problem of obtaining starting values from the data in this

case is being examined. In Table 2 we display the results of

this simulation. Only when the two component distributions

were widely separated (overlap=.01) do the two procedures

provide reasonable results. However, when the two chi-square

distributions are not widely separated, both estimators tend

to seriously underestimate p. In Figure 3 we display the

three mixture distributions on which these simulations were

based. We see there that it is no surprise that the estimate

of p is less than .5, especially for p= .10. Both estimation

procedures view this as a mixture of normals, and therefore

make the reasonable interpretation that the density to the

left has a smaller variance and a mixing proportion less

than .5. These results point out the impact which skewed

distributions can have on the proportion estimation in the
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TABLE 2

Simulation Results

Mixtures of x2 (9) Components

Sample Size - 100
Number of replications = 200

p = .5

MLE ME

p Bias nMSE p Bias nMSE

.10 .28 -.22 6.8 .28 -.22 6.6

Overlap	 .05 .35 -.15 2.7 .37 -.13 2.3

.01 .47 -.03 .4 .45 -.05 .5

1.9

ii

^s.

r

lr

G

is



FIGURE 3

Mixture Densities Associated with x 2 (9) Components
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mixture model when normal mixtures are assumed.

Current investigation into this area centers around

modifying the estimation procedures by assuming that the

underlying component distributions belong to some family of

distributions whose members can be either symmetric or

asymmetric depending on parameter configurations. Nt the

present time, the Weibull distribution is being examined

concerning its usefulness.

6. Concluding Results

We believe that the results of the preceding sections

are of sufficient substance to motivate further research in

the area of MD estimation in the mixture model. Our results

indicate that the MDE is indeed more robust than the MLE in

the sense that it is less sensitive to symmetric departures

from the underlying assumption of normality of component

distributions. Several areas for future investigation have

already been identified in addition to the asymmetric

components problem discussed in Section 5.

First, simulations similar to the ones presented here

should be performed without the assumption of only two

populations in the mixture. The performance of the MDE and

YLE should.be compared when the number of populations is

known and larger than two. In addition the applicability of

the MDE to the problem of estimating the number of

populations also warrants investigation. We plan to examine

these possibilities.
i.

c-
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Second, the problem of applying the MDE to the multivariate

setting is of interest, preliminary indications are that

such an extension will be possible.

Third, the choice of distance measure in the MDE is a

topic of interest. Our results are not meant to imply that

W is optimal.

Finally, the MDE and MLE must ultimately be compared on

real data. Several related practical considerations have not

yet been investigated. For example, when applying these

estimators to LANDSAT data, the number of iterations allowed

must be small due to time constraints. In the simulations
described here, these constraints were not imposed and

iteration was allowed to continue until convergence was

obtained. The performance of the MDE and NILE under

convergence restrictions should be examined.
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