General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
NASA

Technical Memorandum 85077

LITERATURE RELEVANT TO REMOTE SENSING OF WATER QUALITY

Elizabeth M. Middleton, Richard F. Marcell

JULY 1983

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771
PREFACE

This bibliography was prepared in response to a need for a comprehensive literature source to support research pertaining to remote sensing of water quality. This need was identified in 1980 as a priority by the working group on Remote Sensing of Water Quality associated with the American Society of Photogrammetry's Hydrospheric Sciences Committee (the Remote Sensing Applications Division). An attempt was made to compile as complete a listing as possible from domestic and foreign literature available in English as of March 1983.

We would like to thank the following people whose contributions were invaluable: Thomas Alfoldi, Ottawa, Canada; John C. Munday, Gloucester Point, Virginia; Charles Trees, College Station, Texas; Siamak Khorram, Durham, North Carolina; Robert Ragan, College Park, Maryland and all our other friends and colleagues who made reference materials available to us. Technical assistance by Joseph Langdon and Babu Banerjee is also gratefully acknowledged.

We are confident that this document will be valuable to researchers interested in issues relevant to remote sensing of water quality.

Elizabeth Middleton

Richard Marcell
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Optical Properties and Measurement of Water Characteristics</td>
<td>1</td>
</tr>
<tr>
<td>A. Theory of Water/Light Relationships</td>
<td>1</td>
</tr>
<tr>
<td>B. Empirical and Scientific Investigations</td>
<td>6</td>
</tr>
<tr>
<td>II Interpretation of Water Characteristics by Remote Sensing</td>
<td>10</td>
</tr>
<tr>
<td>A. Color</td>
<td>10</td>
</tr>
<tr>
<td>B. Transparency</td>
<td>13</td>
</tr>
<tr>
<td>1. Turbidity</td>
<td>13</td>
</tr>
<tr>
<td>2. Secchi Disc/Water Clarity</td>
<td>16</td>
</tr>
<tr>
<td>3. Bathymetry/Subsurface Features</td>
<td>16</td>
</tr>
<tr>
<td>C. Suspended or Dissolved Inorganic Matter</td>
<td>19</td>
</tr>
<tr>
<td>1. Suspended Sediment</td>
<td>19</td>
</tr>
<tr>
<td>2. Circulation Patterns</td>
<td>24</td>
</tr>
<tr>
<td>3. Pollutants</td>
<td>27</td>
</tr>
<tr>
<td>D. Biological Materials</td>
<td>29</td>
</tr>
<tr>
<td>1. Plankton, Chlorophyll and Other Pigments</td>
<td>29</td>
</tr>
<tr>
<td>2. Macrophyta and Macrofauna</td>
<td>37</td>
</tr>
<tr>
<td>E. Temperature</td>
<td>38</td>
</tr>
<tr>
<td>F. Miscellaneous Parameters</td>
<td>40</td>
</tr>
<tr>
<td>III Application of Remote Sensing for Water Quality Monitoring</td>
<td>41</td>
</tr>
<tr>
<td>A. Monitoring for General Water Quality Conditions</td>
<td>41</td>
</tr>
<tr>
<td>B. Monitoring for Determination of Eutrophication and Lake Classification</td>
<td>50</td>
</tr>
<tr>
<td>C. Monitoring for Land Use/Water Quality Effects</td>
<td>56</td>
</tr>
<tr>
<td>IV Application of Remote Sensing According to Water Body Type</td>
<td>51</td>
</tr>
<tr>
<td>A. Oceans</td>
<td>61</td>
</tr>
<tr>
<td>B. Coastal Waters</td>
<td>66</td>
</tr>
<tr>
<td>C. Estuarine Waters</td>
<td>72</td>
</tr>
<tr>
<td>D. Inland Water Bodies</td>
<td>75</td>
</tr>
<tr>
<td>V Manipulation, Processing, and Interpretation of Remotely Sensed Digital Water Data</td>
<td>86</td>
</tr>
<tr>
<td>A. Preprocessing/Processing, Calibrations and Corrections (Nonatmospheric)</td>
<td>86</td>
</tr>
<tr>
<td>B. Atmospheric Effects</td>
<td>87</td>
</tr>
<tr>
<td>C. Analysis and Interpretation (Special Techniques and Considerations for Water Studies)</td>
<td>90</td>
</tr>
</tbody>
</table>
LITERATURE RELEVANT TO REMOTE SENSING OF WATER QUALITY

I OPTICAL PROPERTIES AND MEASUREMENT OF WATER CHARACTERISTICS

A. THEORY OF WATER/LIGHT RELATIONSHIPS

B. EMPIRICAL AND SCIENTIFIC INVESTIGATIONS

INTERPRETATION OF WATER CHARACTERISTICS BY REMOTE SENSING

A. COLOR

B. TRANSPARENCY

1. TURBIDITY

Merry, C. Airborne Spectroradiometer Data Compared with Ground Water Turbidity Measurements at Lake Powell, Utah. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. National Aeronautics and Space Administration. CH-155290 1977. 44pp.

2. SECCHI DISC/WATER CLARITY

3. BATHYMETRY/SUBSURFACE FEATURES

Brown, W., A. N. Polcyn, A. Zellman, et. al. Water Depth

"Korean Coastal water depth, sedimentation and land cover mapped by computer analysis of Landsat imagery." National Aeronautics and Space Administration. NASA TM-79546.

C. SUSPENDED OR DISSOLVED MATTER
1. SUSPENDED SEDIMENT

2. CIRCULATION PATTERNS

3. POLLUTANTS

D. BIOLOGICAL MATERIALS
1. PLANKTON, CHLOROPHYLL AND OTHER PIGMENTS

33

Tassan, S. "Application of a Global Sensitivity Analysis Model

2. MACROFLORA AND MACROFAUNA

Kemmerer, A., J. Benigno, G. Reese, et. al. "Summary

E. TEMPERATURE

F. MISCELLANEOUS PARAMETERS

Carbonate Precipitations in the Great Lakes." Limnology and

Strong, A., H. Stumpf, J. Hart, et. al. "Extensive
Summer Upwelling on Lake Michigan During 1973 Observed by
NOAA-2 and ERTS-I Satellites." Proceedings of the 9th

Investigation of the Upwelling off Northwest Coast of
Africa." Proceedings of the National Aeronautics and Space
Administration Earth Resources Survey Symposium. NASA TM-

Yaksich, S. and K. Krum. Phosphate Management in the Lake

III APPLICATION OF REMOTE SENSING FOR WATER QUALITY MONITORING
A. MONITORING FOR GENERAL WATER QUALITY CONDITIONS

Adams, M., F. Scarpace, J. Scherz, et. al. "Assessment of
Aquatic Environments by Remote Sensing." Institute for
Environmental Studies, University of Wisconsin-Madison.

Water Quality Monitoring System." Proceedings of the 4th
Canadian Symposium on Remote Sensing. 16-18 May 1977. Quebec
City, Quebec, Canada. pp.325-340.

Alfoldi, T. and J. Munday Jr. "Water Quality Analysis by
Digital Chromaticity Mapping of Landsat Data." Canadian

Anderson, K. "Multispectral Analysis of Aquatic Ecosystems in
Chesapeake Bay." Proceedings of the 7th International
pp.2217-2227.

Baker, K. S. and K. C. Smith. "Bio-Optical Classification and
Model of Natural Water II." Limnology and Oceanography.
1981.

Barker, J. Monitoring Water Quality from Landsat Satellite
Observation of Virginia. National Aeronautics and Space

42

Khorram, S. Water Quality Mapping from Landsat Digital Data. School of Geoscience, Louisiana State University, Baton Rouge, Louisiana. 18pp.

Philpot, W. and V. Klemas. The Use of Satellites in Environmental Monitoring of Coastal Waters. College of Marine Studies, University of Delaware, Newark, Delaware. 1979. 79pp.

B. MONITORING FOR DETERMINATION OF EUTROPHICATION AND LAKE CLASSIFICATION

Boland, D and K. Blackwell. "The Landsat-1 Multispectral

"An Empirical Study of Factors Affecting Blue-Green Versus Non Blue-Green Algal Dominance in Lakes." Institute for Water
Research, Michigan State University, East Lansing, Michigan.

C. MONITORING FOR LAND USE/WATER QUALITY EFFECTS

Barker, J. Landsat-1 Data as it has been Applied for Land Use and Water Quality Data by the Virginia State Water Control Board; II, Monitoring Water Quality from Landsat. National Aeronautics and Space Administration. NASA Th X-58168 1975. pp.383-481.

Oman, G. and H. Sydor. "Use of Remote Sensing in Determination of Chemical Loading of Lake Superior Due to Spring Runoff."

IV APPLICATION OF REMOTE SENSING ACCORDING TO WATER BODY TYPE A. OCEANS

Ocean Water and Remote Sensing. Limnology and Oceanography. also University of California, San Diego, Scripps Institute of Oceanography, Visibility Laboratory. SLU Ref. 77-2.

b. COASTAL WATERS

American Society of Civil Engineers. "Coastal Sediments '77." Proceedings of the Fifth Symposium of the American Society of Civil Engineers Waterway, Port, Coastal and Ocean Division.

Johnson, K. "Quantitative Mapping of Chlorophyll a

C. ESTUARINE WATERS

D. INLAND WATER BODIES

Barker, J. "Landsat-1 Data as it has been Applied for Land Use and Water Quality Data by the Virginia State Water Control Board, II, Monitoring Water Quality from Landsat." National Aeronautics and Space Administration. NASA TN X-58168 1975 pp.383-481.

MANIPULATION, PROCESSING AND INTERPRETATION OF REMOTELY SENSED DIGITAL WATER DATA

A. PREPROCESSING/PROCESSING, CALIBRATIONS AND CORRECTIONS (NON ATMOSPHERIC)

B. ATMOSPHERIC EFFECTS

C. ANALYSIS AND INTERPRETATION
(SPECIAL TECHNIQUES AND CONSIDERATIONS FOR WATER STUDIES)

END DATE

NOV. 10, 1983