
r~ASA Contractor Report 172205 NASA-CR-172205
19830026326

A Performance Analysis of the PASLIB Version 2.1X
SEND and RECV Routines on the Finite Element Machine

J. D. Knott

Kentron International, Inc.
Kentron Technical Center
Hampton, Virginia 23666

Contract NASl-16000
August 1983

111

Ni:ltional Aeronautics and
Space Administration

ltilngley Research Cent.
liampton, Virginia 23665

NF02512

1. SUmlAI{Y

Till' Fi Ili te El('II1t'nt Mach itw 1M HIl experimental array processor
designed tn support research 1n parallel algorithms and architectures.
This report prescnts the results of a case study of communications
using the SEND .. lIld RECV system software routi.nes on the Finite Element
Hachine. followpd by a discussion of the impact of communications
overhead on the efficiency of parallel algorithms.

2. I NTRO DUCTl ON

Computer performance has traditionally been determined by the
architecture of the computer and the level of technology used to
implement that architecture. Con~uter performance can be enhanced by
using a faster technology for a given architecture, or through the use
of innovative architectures which allow the various components of
computat ion to proceed in parallel. The technological approach has
brought about significant increases in computational power, but
technology is thought by many to be approaching its physical limits_
In contrast, the exploration of parallel architectures is in its
inf,gncy. The use of highly parallel architectures to provide
supj:!rcomputer performance has become a major area of interest in
computer science research. An example of such research is the Finite
Element Machine (FEM) currently under construction at the NASA Langley
Research Center.

The FJtnite Element Machine is an array of 36 asynchronous
microcomputers (the Array). each capable of functioning as a st:md
alone computer, coupled to a min:l.computer front end (the Controller).
Current topics of interest in the FEM project include computer
architecture, data management, Array control. and parallel algor:l.thms.

A critical factor affecting algorithm structure and efficiency on
arniY computers is the interconnect ion of processors and the
efftciency of inter-processor I/O. This paper presents an overview of
the architecture of the Finite Element Machine and the systems level
software i.mplemented to support applications, and investigates the
performance of I/O on the Array using the SEND and RECV system library
routines. Several examples are then given to illustrate the impact of
I/O performance on the parallel decomposition of algorithms.

3. THE FINITE ELEMENT MACHINE ARCHITECTURE

The Finite Element Machine is an experimental parallel array
processor designed to support research in architectures and algorithms
for parallel computation [IJ. Ft~ consists of a mini.computer front-end
and an array of 36 asynchronous microcomputers. A block diagram of the
FEM architecture is shown in figure 1. An overview of the FEM
architecture is given below. For a detailed explanati.on of the
architecture of the Array, see [2].

3.1 The Controller

The Controller is a conventional sequential minicomputer which is
used to provide program development tools and mass storage for the
Array. Programs for the Finite Element Machine are co~iled and link
edited on the Controller and then downloaded to the Array. The

Controller also hosts the user interface to the Array which supports
problem def in! t ion, task ini tiation and monitoring. interactive
debugging of user tasks on the Array, and the uploading and analysis
of results.

3.2 The Array

Each microcomputer in the Array contains 3 circuit boards known as
the CPU. I/O-I. and 1/0-2 boards.

The CPU board contains a 16 bit microprocessor, 16 Kbytes of
Eraseab le Programmable Read Only Hemory (EPROM)>> 32 Kbytes of dynamic
Random Access Memory (RAM), a floating point arithmetic unit, two
timers, and serial and parallel I/O interfaces. There is no shared
memory in the Finite Element Machine. However, processors can share
information over any of the four communtcation paths provided by the
architecture. These communication paths consist of a network of
nearest neighbor connections (local links), a time multiplexed global
bus, a cooperative binary flag network, and a cooperative sum/maximum
computation network. The SEND and RECV routines only utilize the local
links and the global bus.

The 1/0-1 board contains circuitry for twelve reconfigurable
serial communication links and the cooperative. sum/maximum network.
Each of the local communication links is a 1.5 Mhz bit serial
interface with an associated hardware FIFO buffer capable of storing
up to 16 words (16 bits per word) of input data. The.local links are
normally connected in a toroidal eight nearest neighbor scheme (see
figure 2.). The link conffguration is dete);'mined by the physical
connections nmde on the front edge of the 1/0-1 board and is in no way
constrained by software. This allows the connectivity of processors in
the Array to be modified (prior to execution) to support a wide range
of interconnection schemes. The perfect shuffle, perfect shuffle
nearest neighbor. and the cube connected cycle are but a few examples
of the interconnection topologies possible on FEM [3,4J.

The 1/0-2 board contains the circuitry for the global bus and the
cooperative flag network. The global bus is a 1.25 Mhz time
mUltiplexed 16-bit parallel bus which can transmit to individual
processors in the Array. or to all cooperating processors in the
Array. All processors on the global bus have equal priority and the
bus awards priority on first come, first served basis [5J. The global
bus has hardware FIFO buffers on the input and output lines, each
capable of storing up to 64 words of data.

4. SYSTEM SOFTWARE

The system software packages support applications on FEM. FEM
Array Control Software (FACS) provides the user interface to the
Array, the Nodal Executive (Nodal Exec) is the microcomputer operating
system. and the PASCAL Library (PASLIB) supports PASCAL access to the
unique architectural features of the Finite Element Machine.

4.1 FEM Ar~ay Control Software (FACS)

FACS is a collection of menu driven, user friendly commands used
to control the Finite Element Machine. FACS resides on the Controller
and communicates with the Array via the global bus. The Controller

2

appears to the Array as just another processor on the global bus, and
interfaces directly with the Nodal Executive operating system on a
request/acknowledge basis.

4.2 Nodal Executive

Nodal Exec is the microcomputer operating system embedded in EPROM
on each processor in the Array. Nodal Exec contains a kernel and a set
of command routines. The kernel provides standard operating system
functions such as monitoring, I/O primitives. interrupt handling, and
memory management. The command routines support the Controller/Array
interface and are accessed via the operating system monitor. Command
routine services are requested by the Controller for such functions as
downloading object code. starting and stopping tasks, and uploading
results from the Array.

4.3 PASCAL Library (PASLIB)

PASLIB is a PASCAL callable subroutine library which allows
programmers to access the nonstandard architectural features of FEM.
Application programs for the Finite Element Machine are written in
PASCAL with PASLIB procedures linked in as external procedures. PASLIB
routines nre analagous to the supervisor calion conventional systems
in that thE!y provide an interface to the Nodal Exec operating system
on the mi.crocomputer, but they additionally provide run-time support
for mathematical functions utilizing the floating point unit, and for
the special I/O capabilities of the Array.

5. I/O PERFORMANCE OF SEND AND RECV

SEND and RECV are PASLIB routines used to transmit and receive
data items over the global bus or. local communication links. Data
items range in size from 1 to 255 sixteen bit words. This section
describes the operation of the SEND and RECV PASLIB routines and their
associated interrupt handlers.

5.1 SEND

The SEND routine is used to transfer data to a
proeessor over the global bus or a local link. Data can be
in a synchronous or asynchronous I/O mode although
transparent to the SEND call itself.

neighboring
transferred
the mode is

When the SEND call is executed the processor branches to the SEND
subroutine and copies the data to be transferred into an output
buffer. SEND then calculates and appends a checksum, places the buffer
on the appropriate output queue (either local or global), enables send
interrupts. and returns to the calling program.

When the send interrupt occurs, control is transferred to the
interrupt handling routine and data is transferred from the output
queue to the receiving processor. If the receiver can handle the
incoming data as fast as or faster than the transmitting processor,
one interrupt entry is all that 1.s required. However, if the receiver
removes the incoming data at a slower rate, the hardware FIFO buffer
fills and the transmitting processor will return control to the
interrupted process until the FIFO's can again accept data.

3

5.2 RECV

The RECV routine is used to receive data transmitted over the
global bus or a local link. The operation of the RECV call is
determined by the I/O mode, either synchronous or asynchronous.

Wilen data is detected on either the global bus or local links, a
receive interrupt is generated and the receiving processor branches to
the receive interrupt handling routine.

In the synchronous I/O mode. the interrupt routine buffers
incoming data in a first-in first-out software queue and a call to the
RECV routine will return the first buffer on the queue. If the queue
is empty, a RECV call in synchronous mode will wait for data to
arrive.

In contrast, the asynchronous mode keeps a copy of the last
complete data buffer received and uses a temporary buffer to assemble
incoming data. Whenever the buffer being assembled is complete. the
temporary buffer is written over the permanent copy. The RECV routine
will not wait for data to be received :!.n the asynchronous mode and
will return only the most recently received buffer; any given buffer
may be read more than once, or may be overwritten by a more recent
buffer before it can be read.

5.3 METHODOLOGY

The performance of I/O on the Array is determined by the overhead
of the initlal PASLIB routine call and the subsequent intern'pt
processing activity. The time for the inUial PASLIB calls for the
SEND and RECV routines is governed by two factors, a fixed overhead
for context switching, buffer allocation. and table lookups. and an
incremental cost for data manipulation based on the buffer size.
Similarly, the interrupt processing routines associated with the SEND
and RECV calls consist of a fixed and incremental cost.

Although it is possible to determine the asymptotic rates of
performance for the communications hardware and the instruction
execution times for the associated PASLIB and interrupt handling
routines. these figures do not accurately predict the performance of
I/O under actual operating conditions. fixed and incremental cost. The
interrupt processing routines may be entered one or more times for any
given SEND call and it is precisely this factor which makes it
difficult to predict the performance of I/O on the Array without
measuring it in operation.

In order to measure the performance of the SEND and RECV PASLIB
routines in actual use, a series of timing studies were run utilizing
both synchronous and asynchronous . communication modes on the local
links and global bus. Since the SEND and RECV routines are entered
only once per call, these times were measured first and then used as a
basis for determining the interrupt times. Interrupt times were then
determined by measuring the time for a series of I/O transmissions and
subtracting the known cost of program control statements and the
PASLIB routine calls. The results of the timing runs for the SEND and
RECV routines are given below.

5.4 SEND PERFOlU1ANCE

The SEND call itself consists of a fixed amount of code for

4

cont~~ apping and mapping, and a variable amount of code which is
dependent 0' the size of the buffer being transmitted. This time will

\
vary for dift rent buffer sizes but will remain constant for each call
with the ~a<iite buffer size. Likewise, the send interrupt routine
consists ofafixed overhead for entry and exit and a fixed time for
each data item transferred, but the number of entries into the
interrupt handler depends on the availability of the transmitting
medium and can vary from call to call. The fi.rst task to accompli.sh in
measuring the SEND time was to determine the fixed time for the PASLIB
routine call.

The fixed overhead and cost per word for the SEND procedure call
was measur,ed and found to be the same for both communications paths in
either I/O mode. This was expected since the I/O mode is transparent
to the SEND routine. Table 1. gives the fixed overhead and the cost per
word for all calls to the SEND routine.

Fixed Overhead Cost Per Word
======-========= ==============

All SEND Calls O. '7123 0.0227

Table 1. SEND Procedure Call - Time in Milliseconds

Once the cost of the SEND call was known, the time spent in
pro1cessing send interrupts was determined. The results for both I/O
modles are given in figures 3.a through 3.d. Here it can be seen that
although the SEND call rate is constant, the interrupt rate changes at
a fi.xed point for both the local links and the global bus. This is
dir1ectly attributable to the receive interrupt processing rate and the
depth of the hardware FIFOs. The receive interrupt rate, as we shall
see in the next section, is substantially slower than the send
intlarrupt rate. Therefore, the send interrupt is loading the hardware
FIFOs faster than the receive interrupt can read them, and as soon as
the FIFOs fill up the send interrupt routine exi.ts and waits for room.
With the additional overhead for repeated send interrupt calls, the
send interrupt cost increases dramatically. This occurs on about the
23rd transmission on the local links (16 word FIFOs) and after
apPlroximatEdy 180 transmissions on the global. bus (combined FIFO depth
of 128 words). If we graph this data as time per word (figures 4.a.
through 4.d.), it is obvious that this transition point yields the
10wl~st cost per word when sending data.

5.5 RECV PERFORMANCE

The RECV PASLIB procedure and the receive interrupt processing
routine both contain a fixed overhead and a cost per word. The total
timE~ for a RECV call is constant for any given buffer size because
there is exactly one procedure call per buffer transfer. The receive
intE~rrupt time can vary depending on the availability of data and the
number of entries into the interrupt processing routine, although it
was discovered that the receive interrupt routine will be entered no
mOrE! than once per SEND in the present ve rs ion of the Nods 1 Exec

5

operating system.
The fixed overhead and cost per word for the RECV procedure call

was measured in the synchronous and asynchronous I/O modes on both the
local links and global bus. The fixed overhead and a cost per word for
each of the RECV I/O modes is given in Table 2.

Local Sync
Global Sync
Local Async
Global Async

Fixed Overhead
================

0.3492
0.3492
0.3817
0.3817

Cost Per Word
=============

0.0548
0.0548
0.0163
0.0163

Table 2. RECV Procedure Call - Time in Milliseconds

In contrast to the SEND routine, the fixed overhead and cost per
word in the RECV is different for synchronous and asynchronous
transmissions. This was expected since the I/O mode is embedded in the
RECV and receive interrupt routines. The asynchronous receive must
lock out receive interrupts while reading the last complete copy of
data to prevent the interrupt routine from overwriting the data being
read. As a result, the fixed overhead for the asynchronous mode is
greater than the fixed overhead for the synchronous mode. However, the
synchronous cost per word is much greater than the asynchronous
because the synchronous mode must handle queue pointers in a circular
buffer whereas the asynchronous simply reads from a fixed buffer.

Having found the cost of the RECV call, a series of timing tests
was run to determine the interrupt processing time. The results are
given in figures 5.a through S.d. Here it can be seen that both the
RECV call rate and the interrupt processing rate are linear. This is
expected since the receive interrupt processing rate is slower than
the send interrupt rate, and indicates that all data is received in
one interrupt. The representation of the interrupt time on a per word
basis is asymptotic (figures 6.a through 6.d) and therefore the larger
the buffer the less receiving a buffer costs.

6. IMPACT ON ALGORITHMS

The cost of I/O on parallel processing arrays is a fundamental
factor in the performance of most algorithms. In general. efficient
decomposition of algorithms into parallel components requires that the
time saved for arithmetic operations exceed the time for the I/O
required to support the distributed computations. This can be
demonstrated by doing an analysis of a simple summation of 32 single
precision values. Given that a single precision add takes 475 us, and
using the total I/O time of 3400 us for two word (single precision)
transfers, let us look at several approaches to the partial summation
problem as outlined by Hockney and Jesshope [6J. The first approach is
to simply compute the sum sequentially on one processor. This requires
0-1 additions and no transfers. Given n - 32, the sequential approach
takes (n-l) * 475 us, or a total of 14~725 us. A second approach is to

6

distribute pairs of values to sixteen processors, sum the pairs, pair
results. sum the pairs, pair results, etc. This method requires 10g2n
paralle1 additions and (log2n)-1 parallel transfers and would seem to
promise an improvement over the sequential method. However, the total
time for this method is (5 * 475) + (4 * 3400) ;= 15,975.which is more
than the sequential time. Here we have eliminated 26 adds at a savings
of 12,350 us, but we have introduced an additional 13,600 us for
transferring data. A third method for summation might be to divide the
work between only two processors, requiring (n/2) additions and only 1
transfer. The total time for this third approach is only 11,000 us, a
25% reduction of the sequential time. This savings results from
eliminating 15 adds while introducing only one transfer. Clearly,
given the ratio of I/O to arithmetic cost the solution time is more
dependent on the I/O introduced by the transmission of data than it is
on the degree of parallelism achieved in the algorithm. This might
require a 111 approach other than the ortginal FEM concept [7] of
aSSigning one finite element node to each processor. While assigning
one finitl~ element node per processor minimizes the time for floating
point arithmetic by distributing the work across the Array, it can
increase the total solution time by introducing highly inefficient
I/O. The Multi-Color SOR algorithm [8] demonstrates the effectiveness
of ibalancing the I/O and arithmetic on the Array by assigning multiple
nodes to a single processor.

Since the I/O SEND and RECV routines contain a fixed overhead, one
way to decrease the overall cost of I/O is to transmit blocks of data.
By transmitting data in blocks. the overall cost per word is decreased
bec.:lUse the fixed overhead for I/O is di$tributed over the enti.re
blolck of dlita. figures 7.a, 7.b, and 7.c. provide a summary of the
per:formancl~ of the SEND and RECV routines in version 2.1X of PASLIB.
Thb total I/O time is given on a cost per word basis in figures 8.a,
and 8.b. These graphs provide a basis for the optimization of
algorithms by allowing FEM applications programmers to choose the
optimal I/O mode and medium for any given buffer size. For example,
the cost pl~r word of transmitting 20-word buffers (lO single precision
real numbers) on the global bus in synchronous mode is only a third of
the cost per word for 2-word buffers. By selecting the appropriate
communicat:ton link and mode, and by taking advantage of blocking, the
cost of I/O can be substantially reduced.

Another factor directly impacting the cost of I/O is the
connectivity of the Array. The ability to transmit data directly to
distant processors significantly increases I/O performance on
algorithms requiring such transfers. Let us consider the above
summation problem on two possible switching networks. Assuming that
data is initially distributed across thirty-two processors (one value
per processor), the basic algorithm is to patr values and sum the
pairs. This is repeated until one processor contains the sum of all
values. Using a nearest neighbor (strictly left-right) connectivity
the summation would require n-1 parallel shifts (transfers) and log n
parallel additions at a total cost: of 107,775 us. This same algorit~m
executed on the Array using a nearest neighbor perfect shuffle
connectivity would still require log?n additions, but the transfers
are reduced to log,n for a total ~ost of only 19,375 us. Obviously,
the ability to transf~r to any processor in the Array offers an order
of magnitude decrease in execution time for algorithms requiring long
distance communication.

7

NallY algllrithms requIring long distance communication can be
implt'llll'nted by properly conf igtlrlng the local links to provide the
neCt'Hsary communications paths. In cases where this is not possible,
the global bus can provide the point to point communications required
across tht> Array. The only restrict ion on using the global bus in this
capacity is the. potential for bus contention when many processors are
attempting to transfer at once. The timing results of this study
indicate that bus contention will never be an issue on the current
implementation of the 36 processor FEM. In fact, the global bus
bandwidth is sufficient to support all 36 processors Simultaneously
transmitting at their maximum rate on the global bus. The rate at
which processors can place data on the global bus is governed by the
send interrupt routine. The fastest interrupt time per word, 108.5 us,
was for asynchronous global bus transmissions of 255 words. However,
this time includes the overhead for repeated calls to the send
interrupt routine. To determine the maximum rate at which any
processor could load data onto the global bus, it was necessary to
examine the code contained in the inner loop of the send interrupt
routine. This code was found to take approximately 55 us per word
which for 36 processors gives an maximum rate of one word every 1.53
us. Since the global bus hardware is capable of transferring one 16
bit data word and its associated identifiers every 800 ns. there is no
possibility of a bus conflict in the current version of Nodal Exec.

7. CONCLUDING REMARKS

The Finite Element Machine is an excellent testbed for the
exploration of parallel architectures and algorithms. The fact that
point-to-point communications are available for all processors in the
Array with no potential for hardware contention on the global bus
opens the door to a broad range of research algorithms and readily
facilitates architecture simulation and modeling.

The I/O performance data provided by this study identifies the
sections of code in the Nodal Exec operating system and PASLIB which
will benifit most from optimization in subsequent versions of system
software. Any optimization of these routines in future revisions of
the system software will invalidate these timings. However, several
concepts highlighted by this study will remain valid regardless of
future I/O performance on FEM, and also apply to MIMD architectures in
general.

First, it is clear that whatever the ratio of I/O time to
arithmetic on the Array, this ratio is critical to the efficiency of
the algorithm. Decomposition of algorithms to maximize the parallelism
in the problem is not a guarantee of efficiency and can actually cause
a loss in performance over a sequential implementation of the same
algorithm. Second, the I/O performance on the Array can be vastly
improved by properly blocking the data to exploit the buffering
provided by the hardware FIFOs and to distribute the fixed overhead
over a number of words. In general, reducing the cost per word of I/O
allows for greater distribution of arithmetic across the Array, which
allows efficient exploitation of an algorithm's parallelism.

8

REFERENCES

1. Sturadsl i, 0.0.; Pel'bh's, S.W.; Crockett. T.W.; Knott, J.D.; and
Adams, L.: The Fini te Element Hachine: An Experiment in
Paralll'L Processing- NASA TM 1184514, July 1982.

2. Jordan, Harry F •• Ed.: The Finite Element Machine Programmer's
Rc:'ference HanuaL Computer Systems Design Group. University
of Color"ado. Boulder, 1979.

3. Stone, H. S.: Parallel Processing with the Perfect
Shuffle. IEEE Transactions on Computers, Vol. C-20. No.2,
Feb. 1971, pp. 153-161.

4. Preparata, F. P.; and Vuillemin, J.: The Cube-Connected Cycles:
A Versatile Network for Parallel Computation. Communications
of the ACM, Vol. 4, No.5, May 1981, pp. 300-309.

S. Knott, J.D.; and Crockett, T.W.: Fair Dynamic Arbitration for a
Multiprocessor Communications Bus. Computer Architecture
NellTs, Vol. 10, No.5, September 1982, pp. 4-9.

6. Hocknl~y, R.W.; and Jesshope~ C. R. Parallel Computers. Adam
Hilger Ltd., Bristol, Great Britain, 1981.

7. Jordan, Harry F.; and Sawyer, Patricia L.: A
Multi-Microprocessor System for Finite Element Structural
Analysis. Trends in Computerized Structural Analysis and
Synthesis. A. K. Noor and H. G. McComb, Jr. , Editors,
Pergamon Press, Oxford. 1978. pp. 21-29.

8. Adams, Lo; and Ortega, J.: A Multi-Color SOR Method for Parallel
Computation. Proceedings of the 1982 International Conference
on Parallel Processing, August 1982, pp.53-57.

9

.......
o

--------------,

CONT

,,­
,,--Z- ffll',,"O/llrOCIIBllor

I \
I ,

(

!IOqafl",

IHid ""

... ", I ,
\ J---""i.

''----~

'" , ,
, '" ,

/

A AY GLOOAl BUS J

Figure 1. fiNITE ELElV£NT MACHIf\E BLOCK DIAGRAM

t--13

Figure 2. EIGHT NEAREST NE I GHBOR TOPOLOGY.

11

......
N

T
I
PI
E

I
N

'" I
L
L
I
S
f
C
0
Ii
D
S

s..

55."

45.

4'.
,

'" 35.

Je.

25.

It.

I
I

I ,

, , ,
, I " , " ,

, ,
,

I' , ,

, ,
,

I ,
" ,"

ZOTA!. ,

.. ' MTtRRUPTS

-1 _~~======H»CA!.!. '.~
t.

:11. U!l. 21f.

41. 135. '65. 225.

I'«.m/ER Of' ~

Figure 3. a. SEND LOCAL SYNCHRONOUS (PER SEND)

......
w

r
I ,.,
£

1
I'i 4S.
A
I
L .. e.
l
I
S
f 35.
C
0
ff Je. I)
S

15.

1.

, "

4S. 71.

.. ...
, ,

135.

.,

, , ..
, , ,

/;/

lG.

... .,
,

., , ,

fUTlQ OF' 1IOI!fJ)S

Figure 3. b. SEND LOCAL ASYNCHRONOUS (PER SEND)

us.

, ,

,
..,

~ ,

, , *' N"r£~ts

60 •

.......

..;::. 55.
T
I ,..

58.
E

I ,.. 45. ,.
· l 48.
l · · S 35. E
C
0
N Je. D
5

s.

31.

?S. us.

f'UilKR OF' '-05

Figure 3. c. SEND GLOBAL SYNCHRONOUS (PER SEND)

&5.~
6 •.

".j i
I ,. se. r

"·1 I
t;

,.
!
L 4t.
L
• .
5 35. E ,
~

0
N
(I
S

21.

15.

1 ••

... '

MJIItIIER OF WORDS

.. ,
, ,

, , '" ,
'" ,
,

, , ,
feTAL ,

, p HTE~IWPTS

Figure 3. d. SEND GLOBAL ASYNCHRONOUS (PER SEND)

I-'
0'>

T
I ..
r 1.S*e

I
rot

II!
I ,
~

l
1
S
E
C 1.1
0
Ii
0
S

e.

1.

I
I ,
I
\

I
I
\ ,

\
'- ..,.., . ,.. -, - - - - ... - ... - - - - - - .. - - - - - - - - - - - - - - AJi:L ---$, ... ". ,. ... --- EJIiflPT

IU. liU. 2... 255. 'Pi • lts.

f'lN[R Of: WRDS

Figure 4. a SEND LOCAL SYNCHRONOUS (PER YORD)

T
I
M
E

I
~

PI
I
l
L
I
~
E
C
C
,...
t
S

··-l
1.5"

1. Me

'.set
i
I
I
\
\
\

"'~'~--.--.-'------------.~----------------------.-- - 2~s

!d-l_';'::::::;=:;::~;::::::;=:;::=;=::;:=:;::::::;:=::;::::::;;::::=::;:=:;::::::=;;:::~M> CAll •• as

121. lit. 248. 2SS.

4G. .,5, lIS. us .

HURlER OF' YORK

Figure 4. b. SEND LOCAL ASVNCHRONOUS (PER LlORD)

......
OJ

r
I
1'1
E 1.S"

I
N

PI
1
L
L
1
'S
E
C 1
Co
p;
/)
5

t.

a.

\

• ,
\ ,

....... - ... - - - - - -- -_ ... _______________________ - - - - - - - - - - .. - Al~,..s

:U. cu. SUo .ue.
46. '?G. 136. m.

HURlER OF _OS

Figure 4. C. SEND GLOBAL SYNCHRONOUS (PER UORD)

T

, ~ I

'" [

I
N

pc
1
L
t
!
S
E
C I. ...
(-

t-
D
~

..... -_________ _ __ ------ IltAL __ _ -- ------------ _______________ --- ~~s

1.)1. SU. 121. lit. 248. 2SS.

,S. ?G. 13S.

I4IJIUO OF WRDS

Figure 4. d. SEND GLOBAL ASVNCHRONOUS (PER YORD)

n.
N
0 10TAL ,

T ,. ,
I ,
1'1

, ,
E

, , , ,
I , ,
N ,

HTE~S ,
it. ,

PI , ,
I , ,
L ,
L

, ,
1

, ,
S St. ,
E
C
0
N
D

'\ S
!

38.

[CV CAl.l.

11 •

••
i. :11.

fClmHR OF YOQ$

Figure 5. a. RECV LOCAL SYNCHRONOUS (PER RECV)

ae.

T

~.".~ I
f'!
r
I
t'I

P! 68."
I T:)'·~. ,
l "TE~JP·S ,
" S se.
E
(,
C
r·
D 4e.
5

)t.

2t.

I'.

1. :u. IU. un. lSI. 21 •• 241, ISS.

41. 7'. lIS. 135. ISS. 195. 225.

MlJM[R OF WORDS

Figure 5.b. RECV LOCAL ASVNCHRONOUS (PER RECV)

'0

8e.
N
N

T
1 ,. 79."
E

I
N

1'1
6e."

I ,
~ ,
~

I
S se.
E
c
C
t-
t 48.
.;

le.

2$.

I •.

1.

45.

, , , ,

75.

,

, , , ,

SUo

,

I"IIRIJER OF' !.BORDS

, , , ,

, , , ,

,
, ,

135.

, , , ,

IS ••

, ,

, , ,
, '" ,

,

lit.

,

, , , ,

1IS.

,
, , ,

,
"

,
, , , ,

22S.

Figure 5.c. RECl) GLOBAL SYNCHRONOUS (PER RECV)

ell CALL

I'V
W

I
~

PI
I ..
L

~ se.
E
(

C
N
t 4 ••
S

30.

at.

1 ••

31. ttl. 121. 1St.

1&. 41. 13S. lH.

I'IUI'IaER OF WRDS

ItS.

, ,

211.

, , '"
, ,

us.

Figure 5. d. REev GLOBAL ASYNCHRONOUS (PER RECU)

, , "'E",-,P'!'S

N
.::::.

T i.Nt

I
/It
r
I
~

Ii! 4

I
:-
I
.:;

[
(
(3.Nt ,.
r
5

2.

--~-------------------.---------------------------- ~S
1I!r-+':::=:;:::::::::;:=::;:::::::;;::::::::;::=;=:::;:=:;:::::=;:=::;::=;r=::;:=;=:::;:=::;:::::::::::;=~CV CAtt '.IN

i. IiIl.

'1'5. 135.

~R OF WORDS

Figure 6. a. RECV LOCAL SYNCHRONOUS (PER IJORD)

N
(J"l

T
I
1'1
r
I
N

/II
I
.~

~

I
S
E
C
(,..
r
5

"1
'·-1
4.'"

3.8M

I. i1. ,1. 121. 1st. UN. 218. 248. 255.

16, 46. 7&. 135. UIS. C!2S.

~ or WORDS

Figure 6. b. RECV lOCAL ASVNCHRONOUS (PER YORD)

6.

N
0'>

T S

I
1'1
r
I
"I ,. 4.'.'
I . ..
I
S
r
(

c 3.Ne
r.;
t'
~

a.

-----~-- ~~S

i. :11. 151. II. 121. 2.8. 255.

46. '?S. us. liS. us.

~IER OF WORDS

Figure 6. c. RECV GLOBAL SYNCHRONOUS (PER "'ORD)

"1
T "-1 I

" £

I
M

'"
4.tH

I
t
t
I
S
E
C
0 3.
N
1)
S

IS. 4&. 135. 11"5. us.

I'GlmJER Of !.lORDS

Figure 6. d. RECV GLOBAL ASVNCHRONOUS (PER YORD)

OCAL SYNC

68.

1'-:>
00

5S.
T
I ,.. se.
E

I
I'f

1'1
I
t 4'.
t
I ..,GLOBAL SV"IC S
E 35. ,

LOILAt .-S-mc
C ,.
0

,. ,
N Je.

,
D

, ,
S

,
'" '" ,

25.
, ..

'" ,
'" '" ae.

15.

It.

11t. 21t. 240. ~S.

11. us. us.

MlFlIEIif or: !.lORDS

Figure 7.a. TOTAL SEND TIME (PER SEND)

r..;,
t.O

,.
I -,.,
E

I ,.
pit

!
L
l . •
S
E
C
0
Pi
D
S

"oJ
::0]
....

6$.

se.

....

at.

:aa •
41.

, , ,
...

I'
I'

I' ,
, ,

I' ,

HI..IPII£R OF YORDS

, , ,

, ,
"

UU.

,
, , ,

.-

, , , ,

,
.­,

,
, ,

, , , ,

Figure 7. b. TOTAL RECV TIME (PER RECV)

" " ,

,
"

,
, ,

"
GLOMl. sv~c ,

I.OtAl jl5v"<C

240. m.
m.

1

1~.

w
0

lH.

T
I ue. " E

I lH.
M

PI
9 •. I

1..
1..
I Be.
5
E
C

7 •. 0
N
l)
5 se.

SO .

....
~.

ze.

It .

••

, , ,

~. UIS. 225.

fUiilER OF YORK

Figure 7. CO TOTAL I/O TIME (PER BUFFER)

, , ,
, ,

OCAl 5 :

SLOBiII:' S~

" OCAL AS~

T
1 ..
n

£ 6.".
I
N

PI
I
L S."'
L
I
S
E
C
0 ".eM
~
D
S

3.

ASVNC

•. ~-t----~----~r-----r-----r-----~----'-----~----~-----
1. .,.

I. 4. s. I.

Nl..ftIER OF WORDS

Figure 8.a. TOTAL 1/0 TIME (PER YORD)

W
N

T e.Slte
I
/'I
E

I 8.8M

to<

PI
I e.1"
l
L
!
S
E
C
I)

~NV~~ ________ ~ ______________________________________ ~O~A~ s~c

N
[)
5

_______ ~ _______ Gl.OIAl. SYNC

--------- .. -- • OColll ASVNC

-----________ ------~!.O~L ASVNC

e.!

?S. 173. 239. 255.

R. lS7. au.

I'U'IID Of UORDS

Figure 8.b. TOTAL 1/0 TIME (PER LJORD)

NAS_L<2~-l7.~~Q_~ .. __ _
4 r Itl" dnd SulJtlti"

A Pel'1\ll'mUtll~l:' !\ll:dy,;h; "t' th,,' PA~3L1B Versiun 2.1X SEND
und 1\~;l'V t\,lULitlt-',; ,)U tllv Finite Element Machine

5 Report Date

Auguc;t 1983
6 Performing O'9dn'l31100 Code

_ .. _-_._--------.- - -- .. --- -- --------------------------...... ----------.-------~
Authur IS) 8 Performing O'g'lnllatlon Report No

~--------------------------~
t------------- .-----.----.- -----.--------------------1

\) Perfu,nllngO'!ldlllldllun Ndllle dlld Aljdre~

Kt~ntl'Oll Inter'llutional, Illl'.
Kentroll Technil'al e'entt'r
3221 N. Armisteaci Ave.
Hampt~~_~._;) }~'l)l~ ___________ . _________________ -1

12 Spon'lHlng Ayency Ndllle dnd Ad,jle>s

Natipmd Aeronautics and Space Administration
Washington, D.C. 20540

1 ti $upplemenldfY Notes

Langley Technical Monitar: Dr. Olaf O. Storaasli

16 Abstract

10 W()(k Unit No

11 Contract or Grant No

NASl-16000

13_ Type of Report dnd Period Covered

Contractor Report

505-37-13-01

The Finite Element Machine is an experimental array processor designed to
support research in parallel algorithms and archi tectures .~'his report presents
a case study of cormnunications using the SEND and RECV system software routines

on the Finite Element Machine, followed by a discussion of the effect of I/O
performance on the efficiency of parallel algori thros.

----------------------r--~
17 Key Wurd~ (Suygested tJ., AulhlH (sl I

par'alleL urr:lY !'!',-)l":,;,;l-,r, I 'at':,l j el
archi tecturL', b'illi t t' F:l t:ml'llt ~lal'ilillt"

" ,

18 Olstrobutlon Stdtement

End of Document

