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l. SUMMARY

The Finfte  Element Machine 19  an experimental array processor
designed to support research in parallel algorithms and architecturese.
This report presents the results of a case study of communications
using the SEND and RECV system software routines on the Finite Element
Machine, followed by a discussion of the impact of communications
overhead on the efficiency of parallel algorithms.

2. INTRODUCTION

Computer performance has traditionally been determined by the
architecture of the computer and the level of technology used to
implement that architecture. Cowmputer performance can be enhanced by
using a faster technology for a given architecture, or through the use
of  innovative architectures which allow the various components of
computation to proceed in parallel. The technological -approach has
brought about ' significant increases 1in computational power, but
technology is thought by many to be approaching its physical limits.

In contrast, ‘the exploration of parallel architectures is in its
infancy. The wuse of highly parallel architectures to provide

supercomputer performance has become a major area of interest in
computer science research. An example of such research is the Finite
Element Machine (FEM) currently under construction at the NASA Langley
Research Center.

The Finite Element Machine is .an array of 36 ‘asynchronous
microcomputers (the Array), each capable of functioning as a stand
alone computer, coupled to a minicomputer front end (the Controller).
Current topics of interest . in the FEM project include computer
architecture, data management, Array control, and parallel algorithms.

A critical factor affecting algorithm structure and efficiency on
array computers is the interconnection of processors and the
efficiency of inter-processor 1/0. This paper presents an overview of
the architecture of the Finite Element Machine and the systems level
software implemented to support applications, and investigates the
performance of I/0 on the Array using the SEND and RECV system library
routines. Several examples are then given to illustrate the impact of
1/0 performance on the parallel decomposition of algorithms.

3. THE FINITE ELEMENT MACHINE ARCHITECTURE

The Finite Element Machine is an experimental parallel array
processor designed to support research in architectures and algorithms
for parallel computation [l]. FEM consists of a minicomputer front-end
and an array of 36 asynchronous microcomputers. A block diagram of the
FEM architecture is shown in figure 1. An overview of the FEM
architecture 1is . given below. For a detailed explanation of the
architecture of the Array, see [2].

3.1 The Controller
The Controller is a conventional sequential minicomputer which is

used to provide program development tools and mass storage for the
Array. Programs for the Finite Element Machine are compiled and 1link

edited on the Controller and then downloaded to the Array. The



Controller also hosts the user interface to the Array which supports
problem definition, task initiation and monitoring, interactive
debugging of user tasks on the Array, and the uploading and analysis
of results.

3.2 The Array

Each microcomputer in the Array contains 3 circuit boards known as
the CPU, 1/0~1, and I/0~2 boards. :

The CPU board contains a 16 bit microprocessor, 16 Kbytes of
Eraseable Programmable Read Only Memory (EPROM), 32 Kbytes of - dynamic
Random Access Memory (RAM), a floating point arithmetic unit, two
timers, and serial and parallel 1/0 interfaces. There 1s no shared
memory in the Finite Element Machine. However, processors can share
information over any of the four communication paths provided by the
architecture. These communication paths consist of a network of
nearest neighbor comnections (local links), a time multiplexed global
bus, a cooperative binary flag network, and a cooperative sum/maximum
computation network. The SEND and RECV routines only utilize the 1ocal
links and the global bus.

The I/0~1 board contains cirecuitry for twelve reconfigurable
serial communication links and the cooperative sum/maximum network.
Each of the local communication links 1is a 1.5 Mhz bit serial
interface with an associated hardware FIFO buffer capable of storing
up to 16 words (16 bits per word) of input data. The local 1links are
normally connected in a toroidal eight nearest neighbor scheme (see
figure 2.). The link configuration 1s determined by the physical
connections made on the front edge of the I/0~1 board and is in no way
constrained by software. This allows the connectivity of processors in
the Array to be modified (prior to execution) to support a wide range
of interconnection schemes. The perfect shuffle, perfect shuffle
nearest nelghbor, and the cube connected cycle are but a few examples
of the interconnection topologies possible on FEM [3,4].

The 1/0-2 board contains the circuitry for the global bus and  the
cooperative flag networks The global bus is a 1.25 Mhz time
multiplexed 16«bit parallel bus which can transmit to i1ndividual
processors in the Array, or to all cooperating processors in the
Array. All processors on the global bus have equal priority and the
bus awards priority on first come, first served basis [5]. The global
bus has hardware FIFO buffers on the input and output Ilines, each
capable of storing up to 64 words of data.

4., SYSTEM SOFTWARE

The system software packages support “applications on FEM. FEM
Array Control Software (FACS) provides the user interface to the
Array, the Nodal Executive (Nodal Exec) 1s the microcomputer operating
system, and the PASCAL Library (PASLIB) supports PASCAL access to the

unique architectural features of the Finite Element Machine.
4,1 FEM Array Control Software (FACS)

FACS is a collection of menu driven, user friendly commands used
to control the Finite Element Machine. FACS resides on the Controller
and communicates with the Array via the global bus. The Controller
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appears to the Array as just another processor on the global bus, and

interfaces directly with the Nodal Executive operating system on a
request/acknowledge basis.

4.2 Nodal Executive

Nodal Exec is the microcomputer operating system embedded in EPROM
on-each processor in the Array. Nodal Exec contains a kernel and a set
of command routines. The kernel provides standard operating system
functions such as monitoring, I/0 primitives, interrupt handling, and
memory management. The command routines support the Controller/Array
interface and are accessed via the operating system monitor. Command
routine services are requested by the Controller for such functions as
downloading object code, starting and stopping tasks, and uploading
results from the Array.

4.3 PASCAL Library (PASLIB)

PASLIB is 'a “PASCAL callable subroutine library: which allows
programmers to access the nonstandard architectural features of FEM.
Application programs for the Finite Element Machine are written in
PASCAL with PASLIB procedures linked in as external procedures. PASLIB
routines are analagous to the supervisor call on conventional systems
in that they provide an interface to the Nodal Exec operating system
on the microcomputer, but they additionally provide run—time support
for mathematical functions utilizing the floating point unit, and for
the special 1/0 capabilities of the Array.

5. 1/0 PERFORMANCE OF SEND AND RECV

SEND "and  RECV are PASLIB routines used to transmlt and receive
data items over the global bus or local communication links. Data
items range in size from 1 to 255 sixteen bit words. This section
describes the operation of the SEND and RECV PASLIB routines and their
associated interrupt handlerse.

5.1 SEND"

The SEND routine is used to transfer data to a mneighboring
processor over the global bus or a local link. Data can be transferred
in a synchronous or asynchronous 1/0 mode although +the mode is
transparent to the SEND call itself.

When the SEND call is executed the processor branches to the ' SEND
subroutine and copies the data to be transferred into an output
buffer. SEND then calculates and appends a checksum, places the buffer
on the appropriate output queue (either local or global), enables send
interrupts, and returns to the calling program.

When the send interrupt occurs, control is. transferred to the
interrupt  handling routine and data is transferred from the output
queune to the receiving processor. If the receiver can handle the
incoming data as. fast as or faster than the transmitting processor,
one interrupt entry is all that is required. However, if the receiver

removes the incoming data at a slower rate, the hardware FIFO buffer
fills and the transmitting processor will return control to the

interrupted process until the FIF0O’s can again accept data.




5.2 - RECV

The RECV routine is used to receive data transmitted over the
global bus or a local link. The operation of the RECV call 1is
determined by the I/0 mode, either synchronous or asynchronous.

When data is detected on either the global bus or local links, a
receive interrupt is generated and the receiving processor branches to
the receive interrupt handling routine.

In  the  synchronous 1I/0 mode, the interrupt vroutine buffers
incoming data in a first-in first—out software queue and a call to the
RECV routine will return the first buffer on the queue. If the queue
is empty, a RECV call in synchronous mode will wait for data to
arrive.

In contrast, the asynchronous mode keeps a copy of the last
complete data buffer received and uses a temporary buffer to assemble
incoming data. Whenever the buffer being assembled is complete, the
temporary buffer is written over the permanent copy. The RECV routine
will not wait for data to be received in the asynchronous mode and
will return only the most recently received buffer; any given buffer

may be read more than once, or may be overwritten by a more recent
buffer before it can be read.

5.3 METHODOLOGY

The performance of I/0 on the Array is determined by the overhead
of ~the -initial PASLIB routine call and the subsequent interruvpt
processing activity. The time for the initial PASLIB c¢alls for the
SEND . and RECV routines is governed by two factors, a fixed overhead
for context switching, buffer allocation, and table lookups, and an
incremental cost for data manipulation  based on the buffer size.
Similarly, the interrupt processing routines associated with the . SEND
and RECV calls consist of a fixed and incremental cost.

Although it 1is possible to determine the asymptotic rates of
performance for the communications hardware and the instruction
execution times for the associated PASLIBR and interrupt handling
routines, these figures do not accurately predict the performance: of
I/0 under actual operating conditions. fixed and incremental cost. The
interrupt processing routines wmay be entered one or more times for any
glven SEND call and it 1is precisely this factor which makes it -
difficult to predict the performance of I/0 on the Array without
measuring it in operation.

In order to measure the performance of the SEND and RECV PASLIB
routines in actual use, a series of timing studies were run utilizing
both . synchronous and asynchronous "communication modes on the local
links and global bus. Since the SEND and RECV routines are entered
only once per call, these times were measured first and then used as a
basis for determining the interrupt times. Interrupt times were then
determined by measuring the time for a series of 1I/0 transmissions: and
subtracting the known cost of program control statements and the
PASLIB routine calls. The results of the timing runs for the SEND and
RECV routines are given below.

5.4 - SEND PERFORMANCE

The SEND call itself consists of a fixed amount of code for
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dependent oh the size of the buffer being transmitted. This time will
vary for d: fferent buffer sizes but will remain constant for each call
with the sd@e buffer .size. Likewise, the send interrupt routine
consists of a fixed overhead for entry and exit and a fixed time for
each data item ¢transferred, but the number of entries into the
interrupt handler depends on the availability of the transmitting
medium and can vary from call to call. The first task to accomplish in
measuring the SEND time was to determine the fixed time for the PASLIB
routine call. ,

The fixed overhead and cost per word for the SEND procedure call
was measured and found to be the same for both communications paths in
either I1/0 mode. This was expected since the I/0 mode 1is  transparent
to the SEND routine. Table 1 gives the fixed overhead and the cost per
word for all calls to the SEND routine.

conte;:\\§ apping and mapping, and a variable amount of code which is
5\

Fixed Overhead Cost Per Word

All SEND Calls 0.7123 0.0227

Table 1. SEND Procedure Call = Time in Milliseconds

Once - the - cost of ‘the SEND c¢all was known, the time spent in
processing send interrupts was determined. The results for both I/0
modes are given in figures 3.a through 3.d. Here it can be seen that
although the SEND:call rate is constant, the interrupt rate changes at
a fixed point for both the local links and the global bus. This is
directly attributable to the receive interrupt processing rate and the
depth of the hardware FIFOs. The receive interrupt rate, as we shall
see in the next section, 1is 'substantially slower than the send
interrupt rate. Therefore, the send interrupt is loading the hardware
FIF0s faster than the receive interrupt can read them, and as soon as
the FIFOs £1i11 up the send interrupt routine exits and waits for room.
With . the  additional ' overhead for repeated send interrupt calls, the
send interrupt cost increases dramatically. This occurs on about the
23rd transmission on the 1local 1links (16 word FIFOs) and after
approximately 180 transmissions on the global bus (combined FIFO depth
of 128 words). If we graph this data as time per word (figures 4.a.
through 4.d.), it 1is obvious that this transition point yields the
lowest cost per word when sending data.

5.5 : RECV PERFORMANCE

The RECV PASLIB procedure and the receive interrupt processing
routine both contain a fixed overhead and a cost per word. The total
time for a RECV call is constant for any given bhuffer size because
there . 1s -exactly one procedure call per buffer transfer. The receive
interrupt time can vary depending on the availability of data and the
number of ~entries into the interrupt processing routine, although it
was discovered that the receive interrupt routine will be entered no
more than once per SEND in the present version of the Nodal Exec
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operating system.

The fixed overhead and cost per word for the RECV procedure call
was measured in the synchronous and asynchronous I/0 modes on both the
local links and global bus. The fixed overhead and a cost per word for
each of the RECV I/0 modes is given in Table 2.

Fixed Overhead Cost Per Word
Local Sync 0.3492 0.0548
Global Sync 0.3492 0.0548
Local Async 0.3817 -~ 0.0163
Global Async 0.3817 - 0.0163

Table 2. RECV Procedure Call ~1Time in Milliseconds

In contrast to the SEND routine, the fixed overhead and cost per
word in the RECV is different for synchronous and asynchronous
transmissions. This was expected since the I/0 mode is embedded in the
RECV and receive interrupt routines. The asynchronous receive must
lock out receive interrupts while reading the last complete copy of
data to prevent the interrupt routine from overwriting the data being
read. As a result, the fixed overhead for the asynchronous mode is
greater than the fixed overhead for the synchronous mode. However, the
synchronous cost per word is much greater than the asynchronous
because the synchronous mode must handle queue pointers in a circular
buffer whereas the asynchronous simply reads from a fixed buffer.

Having found the cost of the RECV call, a series of timing -tests
was run  to determine the interrupt processing time. The results are
given in figures 5.a through 5.d. Here it can be seen that both  the
RECV c¢all rate and the interrupt processing rate are linear. This is
expected since the receive interrupt processing rate 1s slower than
the send interrupt rate, and indicates that all data is received in
one interrupt. The representation of the interrupt time on a per word
basis is asymptotic (figures 6.a through 6.d) and therefore the larger
the buffer the less receiving a buffer costs.

6. - IMPACT ON ALGORITHMS

The cost of I/0 on parallel processing arrays is a fundamental
factor in the performance of most algorithms. In general, efficlent
decomposition of algorithms into parallel components requires that the
time saved for arithmetic operations exceed the time for the 1/0
required to support the distributed computations. This can -~ be
demonstrated by doing an analysis of a simple summation of 32 single
precision values. Given that a single precision add takes 475 us, and
using the total 1I/0 time of 3400 us for two word (single precision)
transfers, let us look at several approaches to the partial summation
problem as outlined by Hockney and Jesshope [6]. The first approach-is
to simply compute the sum sequentially on one processor. This requires
n-1 additions and no transfers. Given n = 32, the sequential approach
takes (n=1) * 475 us, or a total of 14,725 us. A second approach is to
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distribute pairs of values to sixteen processors, sum the pairs, pair
results, sum the pairs, pair results, etc. This method requires-log,n
parallel additions and (1og2n)~1 parallel transfers and would seem . fo
promise ‘an improvement over the sequential method. However, the total
time for this method is (5 * 475) + (4 * 3400) = 15,975 which is more
than the sequential time. Here we have eliminated 26 adds at a savings
of 12,350 wus,; but we have dintroduced an additional 13,600 us for
transferring data. A third method for summation might be to :divide the
work between only two processors, requiring (n/2) additions and only 1
transfer. The total time for this third approach is only 11,000 us, a
25% reduction of the sequential time. This savings results from
eliminating 15 adds while = introducing only one transfer. Clearly,
given the ‘ratio of I1/0 to arithmetic cost the sclution time is' more
dependent on the I1/0 introduced by the transmission of data than it is
on the degree of parallelism achieved in the algorithm.: This might
require an approach other than the original FEM concept [7] of
assigning one finite element node to each processor..  While assigning
one finite element node per processor minimizes the time for floating
point arithmetic by distributing the work across  the Array, it can
increase the  total 'solution time by introducing highly inefficient
I/0. The Multi-Color SOR algorithm [8] demonstrates the effectiveness
of balancing the 1/0 and arithmetic.on the Array by assigning multiple
nodes to a single processor.

Since the 1/0 SEND and RECV routines contain a fixed overhead, one
way to decrease the overall cost of 1/0 is to transmit blocks of data.

By transmitting data in blocks, the overall cost per word is decreased
because the fixed overhead for 1I/0 is distributed over the entire

block of data. figures 7.a, 7.b, and 7.c. provide a summary .of  the
performance of the SEND . and RECV routines in version 2.1X of PASLIB.
This total I/0 time is given on a cost per word basis in figures 8.a,
and 8.b. These graphs provide a basis for. the optimization of
algorithms by allowing FEM applications programmers  to .choose the
optimal 1I/0 mode and medlum for any given buffer size. For example,
the cost per word of transmitting 20-~word buffers (10 single precision
real numbers) on the global bus in synchronous mode is only a third of
the cost per word for 2-word buffers. By selecting the appropriate
communication link and mode, and by taking advantage of blocking, the
cost of I/0 can be substantially reduced.

Another ~ factor directly impacting the cost. of ‘I/0 :is the
connectivity of the Array. The ability to transmit data directly to
distant processors significantly increases 1/0 performance on
algorithms requiring such transfers. Let wus consider the . above
summation problem on two possible switching networks.  Assuming - that
data 1s initially distributed across thirty=two processors (one value
per processor), the basic algorithm is to pair wvalues and -sum the
pairs. This 1s repeated until one processor contains the sum of all
values. Using a nearest neighbor (strictly . left-right) . connectivity:
the summation would require n-1 parallel shifts (transfers) and log:n
parallel additions at a total cost of 107,775 us. This same algorit%m
executed on the Array using. a nearest neighbor perfect shuffle
connectivity would still require log,n additions, but the: transfers
are reduced tc log,n for a total cost of only 19,375 us. Obviously,
the ability to transfér to any processor in the Array offers an order
of magnitude decrease in execution time for algorithms requiring long
distance communication.
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Many algorithms  requlring  long distance communication can . be
fmplomented by properly configuring the local links to provide . the
necessary communications paths. In cases where this is not possible,
the  global bus can provide the point to point communications required
across the Array. The only restriction on using the global bus in this
capacity is the potential for bus contention when many processors  are
attempting  to transfer at once. The timing results of this study
indicate that bus contention will never be an 1issue on the current
implementation of the 36 processor FEM. In fact, the global bus
bandwidth is sufficient to support all 36 processors simultaneously
transmitting at their maximum vrate on the global bus. The rate. at
which processors can place data on the global bus is governed by  the
send interrupt routine. The fastest interrupt time per word, 108.5 us,
was for asynchronous global bus transmissions of 255 words. However,
this time includes the overhead for repeated calls to the send
interrupt routine. To determine the maximum rate at which any
processor could load data onto the global bus, it was necessary  to
examine the code contained in the inner loop of the send interrupt
routine. This code was found to take approximately 55 us per word
which for. 36 processors gives an maximum rate of one word every l.53
us. Since the global bus hardware is capable of transferring one. .16
bit data word and its associated identifiers every 800 ns, there. is no
possibility of a bus conflict in the current version of Nodal Exec.

7+ CONCLUDING REMARKS

The Finite Element Machine is an excellent testbed for the
exploration of parallel architectures and algorithms. The fact that
point-to-point communications are available for all processors in the
Array with no potential for hardware contention on the global bus
opens the door to a broad range of research algorithms and readily
facilitates architecture simulation and modeling.

The 1/0 performance data provided by this study identifies the
sections of code in the Nodal Exec operating system and PASLIB which
will benifit most from optimization in subsequent versions of system
software. Any optimization of these routines in future revisions of
the system software will invalidate these timings. However, several
concepts highlighted by this study will remain valid regardless of
future I/0 performance on FEM, and also apply to MIMD architectures in
general.

First, it is clear that whatever the ratio of I/0 time to
arithmetic on the Array, this ratio is critical to the efficiency of
the algorithm. Decomposition of algorithms to maximize the parallelism
in the problem is not a guarantee of efficiency and can actually cause
a loss in performance over a sequential implementation of the same
algorithm. Second, the I/0 performance on the Array can be vastly
improved by properly blocking the data to exploit the buffering
provided by the hardware FIFOs and to distribute the fixed overhead
over a number of words. In general, reducing the cost per word of 1/0
allows for greater distribution of arithmetic across the Array, which
allows efficient exploitation of an algorithm’s parallelism.
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