
NASA Contractol' Report 172178

ICASE
MINIHIZING INNER PRODUCT DATA DEPENDENCIES
IN CONJUGATE GRADIENT ITERATION

John Van Rosendale

Contract Nos. NASl-17070, NASl-l7l30
July 1983

NASA-CR-172178
19830026339

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virgi.nia 23665

Operated by the Universities Space Research Association

NJ\5/\
National Aeronautics and
Space A,dministration

Langley Research Center
Har:npton, Virginia 23665

111
NF02531

.Lf..NGLEY RFScAf,(~I" I', :\1 f :'K
LlBRAFlY, NASA

HA!I.':?TON, VIHGtN!A

MINIMIZING INNER PRODUCT DATA DEPENDENCIES

IN CONJUGATI~ GRADIENT ITERATION

John Van Rosendale

Institute for Computer Applications in Science and Engineering

ABSTRACT

The amount of concurrency available in conjugate gradient iteration is

limited by the summations required in the inner product computations. The

inner produc:t of two vectors of length N requires time c*log(N), if N or

more processors are available.

This paper describes an algebraic restructuring of the conjugate gradient

algorithm 'which minimizes data dependencies due to inner product

calculations. After an initial start up, the new algorithm can perform a

conjugate gradient iteration in time c*log(log(N».

Research supported by the National Aeronautics and Space Administration
under NASA Contract Nos. NASl-l7070 and NASl-17130 while the author was in
residence at lCASE, NASA Langley Research Center, Hampton, VA 23665.

i

][ntroduction

Conjugate gradient iteration Is a method of linear equation solution of

great: practical importance. See, for example, Hestenes and Steifel [4],

Concus, Golub and O'Leary [3], or Chandra [2]. It can be used to solve any

linear system

Au = b

WherE! A is symmetric, positive definite, and can be quite efficient when

coupled with various preconditioning techniques. However, CG (conjugate

gradi.ent) iteration involves the computation of inner products at every

iteration. On parallel computers wi th large numbers of processors, the data

dependencies inherent in these inner product calculations will limit the speed

of conjugat.a gradient iteration for large sparse linear systems. This is

pointed out in Schreiber(1) and Adams [1982]. In fact, given sufficiently

many processors, the summation fan--ins in the inner product calculations will

ddmiIllate the computation time on nearly all large sparse linear systems

occurring in practice.

2. C:Onjugat.e Gradient Iteration

This paper presents a solutlon to this problem through an algebraic

restructuring .of the CG Algorithm. Consider first the standard CG

itera.tion. One of a number of mathematically equivalent forms of it may be

given as follows:

(l)Sc.hrieber, R. 1983, Stanford University, California, personal communi­
cation; Schrieber, R., 1981, SIAM J. Sci. Statist. Comput., to be published.

2

u(O)'

u
(n+l)

p
(n)

r
(n)

a.
n

A
n

arbitrary,

= u(n) + A (n)
nP , n=O,l,· • • ,

(n)
n=O,

=
r ,

(n) + (n-l)
r a.np , n=1,2,··· ,

= r(n-l) - A A (n-l)
n-l p , n=1,2, • •• ,

= ---l(~r-:(n ..)..!..,,r (.. n-.;))~
(

(n-l) (n-l»)' r ,r
n=l, 2,· • • ,

=
(r(n),/n»)

((n) A (n»)' p , p
n=O,l,· • • •

The data dependencies here are severe. One cannot generate (r(n),/n»)

until and A n-l are known. But these quantities involve inner

products dependent on r(n-l). As pointed out above, an inner product on

vectors of length N requires time c*log(N) • Thus i,t would seem that a CG

iteration could not be done faster than in time c*log(N).

3. Idea of New Algorithm

This natural seeming idea, that a CG iteration on vectors of length N

cannot be done faster than in time c*log(N), turns out to be incorrect. To

see why, consider the computation of a typical inner product required,

(
(n) (n») r , r •

By the formulas above, r(n) is given as

(n) r ::: r(n-l) _ A A (n-I).
n-l p

3

Now suppose we know r(n-I) and p(n~l) but not the value of A 1. n-

In this case we would be unable to evaluate (r(n),r(n»), but we could still

perform most of the work involved in evaluating this inner product.

Spec.ifically, we can write the recurrence

((n) (n») r ,r (
(n-I) (n-l)) r ,r

+ A2 (A (n-I) A (n-I»)
n-I p , p ,

and can proceed to evaluate all inner products on the right here. If

subs:equently someone told us the value of A
n

- I we could compute the value of

((n) (n») r ,r very rapidly, since only a few more real operations would then be

needed to c.omplete evaluation of the recurrence relation.

It is easy to see how this idea can be used to speed the computation of

the CG algorithm on parallel computers. We have replaced an inner product

computation requiring data not present until iteration n with inner products

of vectors present at iteration n-I. Since these vectors are present sooner,

we have th~lt much longer to perform their inner products, to achieve the same

parallel computation speed. Stated differently, assuming only the inner

products limit the speed of the computation, the use of this recurrence

rel~ltion for (r(n) ,r(n») and the analogous relation for (p(n) ,Ap(n») will

approximatE!ly double the parallel speed of CG iteration, where it is assumed

that suffi4:iently many processors are available and that communications cost

can be neglected.

4

4. Recurrence Relations

The recurrence relation just described is one of a large class of such

relations which can be exploited to speed up CG iteration. These relations

will be given in detail in a future paper, but for now we consider only the

general form of such recurrence relations. Consider the typical inner

product:

((n) (n») r , r

The value of this inner product may be given in terms of the values of inner

products of vectors occurring at any previous iteration together with the

values of the real parameters

an- 1 ,an- 2 ,···,

A A ••••
n-1' n-2'

For example, for any k > 0, one can derive recurrence relations of the form

(n) (n»)
2k

= I (n-k) Ai (n-k») r , r a i r , r
i=O

+ fkbi(r(n-k),Aip(n-k») (*)
i=O

2k
+ I (n-k) Ai (n-k») c i p , P •

i=O

The coefficients occurring here are polynomials in the

parameters

{ a 1 ' a 2 ' • • • , a k ' A 1 ' A 2 ' • • • , A k}· n- n- n- n- n- n-

Similar recurrence relations are available for the other type of inner product

occuning in CG iteration, (p(n),Ap(n»).

5. Jtlew Algc)ritbm

To con.struct a more parallel variant of CG iteration based on these

recurrence relations, one begins by selecting a value for the constant k,

which. may be thought of as a look-ahead parameter. Then at iteration n - k,

when vectorl9
(n-k)

r

the inner plcoducts

and
(n-k)

p become available one begins forming all of

(
(n-k) i (n-k») r ,A r , i =0 , 1 , • • • , 2 k ,

(
(n-k) i (n--k»)

r ,A p , i=0,1,···,2k,

(
(n-k) i (n--k»)

p ,A p , i=O,l, ••• , 2k.

The values of these inner products are needed in the recurrence relations for

the inner products

((n) (n») (n) A (n») r ,r ,p ,p

at Jlteraticm n. Thus we arrivE~ at an algorithm whose data movementEI are

sketched in Figure 1.

5

6

u (n-k) u (n-k+l) u (n-l) u (n)

(n-k) (n-k+l) • • • (n-l) (n) p p p p

r (n-k) r (n-k+l) r (n-l) r (n)

inner product calculations

Figure 1. Principal Data Movement in New CG Algorithm.

Clearly the problems of the delays caused by the summations in the inner

products is now solved. If we chose k = log(N), the inner product summation

delays will have no impact on algorithm speed. However, two new issues now

arise. First, we have not dealt with the way in which the parameters

{a a a •• oA A ···A } n-l' n-2' n-k' n-l' n-2' n-k

enter into the recurrence relations. In principle, there could be severe data

dependencies here. Second, there seem to be a large number of inner products

required now, most involving a relatively high power of the matrix A.

Neither of these problems is as serious as it first appears. For the

first, it turns out the coefficients in the recurrence

relations above are polynomials in the parameters

{a a ···a A A ···A } n-l' n-2' n-k' n-l' n-2' n-k

7

which are at most quadratic in each parameter separately. This fact, coupled

with the obl3ervation that the parameters

a a·'· A A •••
n-k' n-k+l' 'n-k' n-k+l'

gradually become available, enables us to effectively perform the coefficient

evaluations in a pipelined fashion. Thus at iteration n, when we need the

inner product (r(n),r(n»), we can have the recurrence relation (*)

completely evaluated, except for performing the summations, or the analogous

SUmmi!ltions :In the recurrence for (p(n) ,Ap(n»). This requires parallel time

log(k) = 10g(10g(N».

The selcond problem mentioned above, the occurrence of high powers of the

matrix A in the recurrence relation (*), can be resolved by the use of

additional recurrence relations. First, observe that there is no need to

compute powers of the matrix A, s:l.nce we have the recurrences:

A
i (n-l) + a p •

n

only one maltrix vector product.

Next observe that nearly all of the inner products needed- can also be

obtained by recurrences. We have

8

_ 2A (r(n-1) Ai +1 (n-1»)
n-1 ,p

+ A2 (n-1) Ai+2 (n-1»)
n-1 p , p ,

and similar recurrences for the other types of inner products occurring in

relation (*). Given the values of the inner products

{ (n) Ai (n)}2k
r ,r i=O'

{ (n) Ai (n)}2k
r ,p i=O'

{ (n) Ai (n)}2k
p ,p 1=0'

at iteration n, we can obtain nearly all of the inner products needed at

iteration n+1. Only two inner products need to be computed directly.

6. ComputationalComplexity

As pointed out above, the summations in the recurrence relations (*)

require time

log(k) = log(log(N». r

'Thus if matrix A has at most d nonzeroes per row or column, this algorithm

requires parallel time

max(log(d),log(log(N»).

The l~equenUal complexity of this algorithm.is essentially the same as that of

the usual CG algorithm; we still need two inner products and a matrix vector

product atE!Very iteration.

9

10

REFERENCES

[1] Adams, L. [1982]. "Iterative Algorithms for Large Sparse Linear Systems

on Parallel Computers," NASA Contractor Report 166027, NASA Langley

Research Center.

[2] Chandra, R. [1978]. "Conjugate Gradient Methods for Partial Differential

Equations," Ph.D. Thesis, Research Report 11129, Department of Computer

Science, Yale University.

[3] Concus, P., Golub, G. and O'Leary, D. [1976]. "A Generatized Conjugate

Gradient Method for the Numerical Solution of Elliptic Partial

Differential Equations," Sparse Matrix Computations, eds. J. Bunch, D.

Rose, Academic Press, pp. 309-332.

[4] Hestenes, M., and Stiefel, E. [1952]. "Methods of Conjugate Gradients

for Solving Linear Systems," J. Res. Nat. Bur. Std., pp. 409-426.

1. Report No. 3. Recipient's Catalog No.

NASA CR-172178
I 2. Government A-:ession No.

r--------------------------------~-------------------------------.----~~------------------------.-----~ 4. Title. and Subtitle 5. Report Date

Minimizing Inner Product Data Dependencies in Conjugate July 1983
Gradient Iteration 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

John Van Rosendale 83-36

10. Work Unit No.
9. Performing Organization Name and Address

Institute for Computer Applications in Science
111., CQ,f'\.tr_8<it7Q[7Grant No. and Engineering l~AS.L .L U 'U

Mail Stop 132C, NASA Langley Research Center NASl-17130
~~H~a~~~·t~0~n~l.~V~A~.~2~3~6~6~5._~~~~~~~~~~~ __ ~~~~~~~~~13.~~~Report~dP~i~Cov~~

12. Sponsoring Agency Name and Address Contractor report
National Aeronautics and Space Administration
Washington, D.C. 20546

15. Supplementary Notes

Langley Tec:hnical Monitor: Robert H. Tolson
Final Report

16. Abstract

14. Sponsoring Agency Code

The amount of concurrency available in conjugate gradient iteration is limited by
the summati.ons required in the inner product computations. The inner product of two
vectors of length N requires time c*log(N), if N or more processors are available.

This paper describes an algebraic restructuring of the conjugate gradient
algorithm \I,hich minimizes data dependencies due to inner product calculations. After
an i.nitial start up, the new algorithm can perform a conjugate gradient iteration in
time c*log(log(N».

17. Key Words (Suggested by)\uthor(s))

Conjugate gradient:
parallel computation
immer products

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

20. Security Classif. (of this page)

Unclassified

61 Computer Programming and
Software

Unclass if ied·-Unlimi ted

21. No. of Pages

12
22. Price

A02

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

