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ABSTRACT 

The amount of concurrency available in conjugate gradient iteration is 

limited by the summations required in the inner product computations. The 

inner produc:t of two vectors of length N requires time c*log(N), if N or 

more processors are available. 

This paper describes an algebraic restructuring of the conjugate gradient 

algorithm 'which minimizes data dependencies due to inner product 

calculations. After an initial start up, the new algorithm can perform a 

conjugate gradient iteration in time c*log(log(N». 
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][ntroduction 

Conjugate gradient iteration Is a method of linear equation solution of 

great: practical importance. See, for example, Hestenes and Steifel [4], 

Concus, Golub and O'Leary [3], or Chandra [2]. It can be used to solve any 

linear system 

Au = b 

WherE! A is symmetric, positive definite, and can be quite efficient when 

coupled with various preconditioning techniques. However, CG (conjugate 

gradi.ent) iteration involves the computation of inner products at every 

iteration. On parallel computers wi th large numbers of processors, the data 

dependencies inherent in these inner product calculations will limit the speed 

of conjugat.a gradient iteration for large sparse linear systems. This is 

pointed out in Schreiber(1) and Adams [1982]. In fact, given sufficiently 

many processors, the summation fan--ins in the inner product calculations will 

ddmiIllate the computation time on nearly all large sparse linear systems 

occurring in practice. 

2. C:Onjugat.e Gradient Iteration 

This paper presents a solutlon to this problem through an algebraic 

restructuring .of the CG Algorithm. Consider first the standard CG 

itera.tion. One of a number of mathematically equivalent forms of it may be 

given as follows: 

(l)Sc.hrieber, R. 1983, Stanford University, California, personal communi­
cation; Schrieber, R., 1981, SIAM J. Sci. Statist. Comput., to be published. 
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The data dependencies here are severe. One cannot generate (r(n),/n») 

until and A n-l are known. But these quantities involve inner 

products dependent on r(n-l). As pointed out above, an inner product on 

vectors of length N requires time c*log(N) • Thus i,t would seem that a CG 

iteration could not be done faster than in time c*log(N). 

3. Idea of New Algorithm 

This natural seeming idea, that a CG iteration on vectors of length N 

cannot be done faster than in time c*log(N), turns out to be incorrect. To 

see why, consider the computation of a typical inner product required, 

( 
(n) (n») r , r • 

By the formulas above, r(n) is given as 



(n) r ::: r(n-l) _ A A (n-I). 
n-l p 
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Now suppose we know r(n-I) and p(n~l) but not the value of A 1. n-

In this case we would be unable to evaluate (r(n),r(n»), but we could still 

perform most of the work involved in evaluating this inner product. 

Spec.ifically, we can write the recurrence 

( (n) (n») r ,r ( 
(n-I ) ( n-l ) ) r ,r 

+ A2 (A (n-I) A (n-I») 
n-I p , p , 

and can proceed to evaluate all inner products on the right here. If 

subs:equently someone told us the value of A
n

- I we could compute the value of 

( (n) (n») r ,r very rapidly, since only a few more real operations would then be 

needed to c.omplete evaluation of the recurrence relation. 

It is easy to see how this idea can be used to speed the computation of 

the CG algorithm on parallel computers. We have replaced an inner product 

computation requiring data not present until iteration n with inner products 

of vectors present at iteration n-I. Since these vectors are present sooner, 

we have th~lt much longer to perform their inner products, to achieve the same 

parallel computation speed. Stated differently, assuming only the inner 

products limit the speed of the computation, the use of this recurrence 

rel~ltion for (r(n) ,r(n») and the analogous relation for (p(n) ,Ap(n») will 

approximatE!ly double the parallel speed of CG iteration, where it is assumed 

that suffi4:iently many processors are available and that communications cost 

can be neglected. 



4 

4. Recurrence Relations 

The recurrence relation just described is one of a large class of such 

relations which can be exploited to speed up CG iteration. These relations 

will be given in detail in a future paper, but for now we consider only the 

general form of such recurrence relations. Consider the typical inner 

product: 

( (n) (n») r , r 

The value of this inner product may be given in terms of the values of inner 

products of vectors occurring at any previous iteration together with the 

values of the real parameters 

an- 1 ,an- 2 ,···, 

A A •••• 
n-1' n-2' 

For example, for any k > 0, one can derive recurrence relations of the form 

(n) (n») 
2k 

= I (n-k) Ai (n-k») r , r a i r , r 
i=O 

+ fkbi(r(n-k),Aip(n-k») (*) 
i=O 

2k 
+ I (n-k) Ai (n-k») c i p , P • 

i=O 

The coefficients occurring here are polynomials in the 

parameters 

{ a 1 ' a 2 ' • • • , a k ' A 1 ' A 2 ' • • • , A k}· n- n- n- n- n- n-



Similar recurrence relations are available for the other type of inner product 

occuning in CG iteration, (p(n),Ap(n»). 

5. Jtlew Algc)ritbm 

To con.struct a more parallel variant of CG iteration based on these 

recurrence relations, one begins by selecting a value for the constant k, 

which. may be thought of as a look-ahead parameter. Then at iteration n - k, 

when vectorl9 
(n-k) 

r 

the inner plcoducts 

and 
(n-k) 

p become available one begins forming all of 

( 
(n-k) i (n-k») r ,A r , i =0 , 1 , • • • , 2 k , 

( 
(n-k) i (n--k») 

r ,A p , i=0,1,···,2k, 

( 
(n-k) i (n--k») 

p ,A p , i=O,l, ••• , 2k. 

The values of these inner products are needed in the recurrence relations for 

the inner products 

( (n) (n») (n) A (n») r ,r ,p ,p 

at Jlteraticm n. Thus we arrivE~ at an algorithm whose data movementEI are 

sketched in Figure 1. 

5 
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u (n-k) u (n-k+l) u (n-l) u (n) 

(n-k) (n-k+l) • • • (n-l) (n) p p p p 

r (n-k) r (n-k+l) r (n-l) r (n) 

inner product calculations 

Figure 1. Principal Data Movement in New CG Algorithm. 

Clearly the problems of the delays caused by the summations in the inner 

products is now solved. If we chose k = log(N), the inner product summation 

delays will have no impact on algorithm speed. However, two new issues now 

arise. First, we have not dealt with the way in which the parameters 

{a a a •• oA A ···A } n-l' n-2' n-k' n-l' n-2' n-k 

enter into the recurrence relations. In principle, there could be severe data 

dependencies here. Second, there seem to be a large number of inner products 

required now, most involving a relatively high power of the matrix A. 

Neither of these problems is as serious as it first appears. For the 

first, it turns out the coefficients in the recurrence 

relations above are polynomials in the parameters 

{a a ···a A A ···A } n-l' n-2' n-k' n-l' n-2' n-k 
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which are at most quadratic in each parameter separately. This fact, coupled 

with the obl3ervation that the parameters 

a a·'· A A ••• 
n-k' n-k+l' 'n-k' n-k+l' 

gradually become available, enables us to effectively perform the coefficient 

evaluations in a pipelined fashion. Thus at iteration n, when we need the 

inner product (r(n),r(n»), we can have the recurrence relation (*) 

completely evaluated, except for performing the summations, or the analogous 

SUmmi!ltions :In the recurrence for (p(n) ,Ap(n»). This requires parallel time 

log(k) = 10g(10g(N». 

The selcond problem mentioned above, the occurrence of high powers of the 

matrix A in the recurrence relation (*), can be resolved by the use of 

additional recurrence relations. First, observe that there is no need to 

compute powers of the matrix A, s:l.nce we have the recurrences: 

A
i (n-l) + a p • 

n 

only one maltrix vector product. 

Next observe that nearly all of the inner products needed- can also be 

obtained by recurrences. We have 
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_ 2A (r(n-1) Ai +1 (n-1») 
n-1 ,p 

+ A2 (n-1) Ai+2 (n-1») 
n-1 p , p , 

and similar recurrences for the other types of inner products occurring in 

relation (*). Given the values of the inner products 

{ (n) Ai (n)}2k 
r ,r i=O' 

{ (n) Ai (n)}2k 
r ,p i=O' 

{ (n) Ai (n)}2k 
p ,p 1=0' 

at iteration n, we can obtain nearly all of the inner products needed at 

iteration n+1. Only two inner products need to be computed directly. 

6. ComputationalComplexity 

As pointed out above, the summations in the recurrence relations (*) 

require time 

log(k) = log(log(N». r 

'Thus if matrix A has at most d nonzeroes per row or column, this algorithm 

requires parallel time 

max(log(d),log(log(N»). 



The l~equenUal complexity of this algorithm.is essentially the same as that of 

the usual CG algorithm; we still need two inner products and a matrix vector 

product atE!Very iteration. 

9 
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