
leASE
~ARALLEL ARCHITECTURES FOR ITERATIVE METHODS
ON ADAPTIVE, BLOCK STRUCTURED GRIDS

Dennis Gannon

and

John Van Rosendale

Contract Nos. NASl-17070, NASl-17130
August 1983

IV itSit- -C-f: -/7:;', 196

NASA-CR-172195
19830026341

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, U-pton, Virginia 23665

Operated by the Universities Space Research Association

I\U\SI\
National Aeronautics and
Space AdrTinistration

~R"II allic....
t-IamJ*Jn. Virginia 23665

1111111111111 1111 11111 11111 I1111 1111111111111
NF02504

LIBRARY COpy
SfP 2"1 m3

J.ANGLEY RESEARCH CENTER
UBRARY. NASA

HAMPTON.. VIRGINIA

Parallel Architectures for Iterative :Methods on
Adaptive. Block Structured Grids.

Dennis Gannon

Department a/ Computer Sciences, Purdue University

John Van Rosendale

ICASE, NASA Langley Research Center

ABSTRACT

This paper proposes a parallel computer architecture well suited to the

solution of partial differential equations in complicated geometries.

Algorithms for partial differential equations contain a great deal of

parallelism. But this parallelism can be difficult to exploit, particularly

on complex problems. One approach to extraction of this parallelism is the

use of special purpose architectures tuned to a given problem class. The

architecture proposed here is tuned to boundary value problems on complex

domains. An adaptive elliptic algorithm which maps effectively onto the

proposed architecture is considered in detail.

Two levels of parallelism are expol1ted by the proposed architecture.

First, by making use of the freedom one has in grid generation, one can

construct grids which are locally regular, permitting a one to one mapping of

grids to systolic style processor arrays, at least over small regions. All

local parallelism can be extracted by this approach. Second, though there may

not be a regular global structure to the grids constructed, there will still

be parallelism at this level. One approach to finding and exploiting this

parallelism is to use an architecture having a number of processor clusters

connected by a switching network. The use of such a network creates a highly

flexible architecture which automatically configures to the problem being

solved.

Research supported by the National Aeronautics and Space Administration
under NASA Contract Nos. NASl-l7070 and NASl-17130 while the authors were in
residence at the Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23665. Additional
support for the first author was provided by NSF Grant MCS-8108512.

i

I. INTRODUCTION

The development of larger and faster computers is being driven by a
number of application areas where to days computers are not adequate. One
of the most important of these areas is the numerical solution of partial
differential equations. No computer in existence could tackle the problem of
accurately modeling air flow over realistic aircraft configurations. This is so
even if one neglects all time dependent effects. Similar remarks could be
made about partial differential equations arising in a number of applications
areas.

Faced with these needs, one could hope for computers similar to
present designs, but with memory size and speeds thousands of times
greater than current models. While no major technological barriers impede
the development of such memories, the speed of switching elements seems
to be reaching a plateau.

The solution must lie in the use of parallelism. With device densities ris
ing rapidly, and prices dropping correspondingly, computers having hun
dreds or thousands of processors will be practical within a decade. Such
computers will present a challenge to both the computer architect and
numerical analyst. From the architects point of view, current problems like
processor communication and synchronization will become more trouble
some. But the changes facing the numerical analyst may be much more
sweeping.

- 2 -

In the past, the programmer or numerical analyst was able to design
algorithms taking relatively little cognizance of the architectures on which
they would run. With the advent of highly parallel computation, this situa
tion may be drastically altered. It may be that the available parallelism can
be exploited only by special purpose architectures tuned to a given problem
or problem class. Too, the algorithms employed will probably be highly
architecture dependent, chosen as often for architectural reasons as for
traditional numerical analysis reasons. More precisely, the impact of error
analysis on algorithm design should change little, but complexity questions
will tend to revolve around architectural considerations.

With the exception of the FEARS project (Zave, 1979) much of the recent
work in computer architectures has been stimulated by a small set of simple
numerical problems. Great attention has been paid to such problems as
finding efficient architectures for Fourier transforms or band solution algo
rithms. Less tractable, and equally important problems, such as Lagrangian
hydrodynamics, have received scant attention.

One class of numerical algorithms which is well understood, yet offers a
great deal of the complexity frequently present in real world applications, is
adaptive iterative solution of elliptic partial differential equations. This
paper proposes an algorithm-architecture pair for the adaptive solution of
elliptic problems in complicated domains. An attempt is made to point out
and extract as much of the parallelism present as possible. We also attempt
to retain as much flexibility in both the algorithm and architecture as possi
ble.

The plan of the paper is as follows. Section II and III present the data
structure and numerical algorithm being considered. Section IV describes
our proposed architecture. The final section draws some tentative conclu
sions and suggests directions for further research.

II. DATA STRUCTURE

In this section we present our data structure for the finite element reso
lution of complex three dimensional domains. The data structure chosen
permits the use of adaptive refinement and multigrid solution techniques.
Our focus is on simple scalar elliptic partial ditr~rential equations, such as
the Poisson or Helmholtz equations, and finite element grids consisting of
trilinear isoparametric elements.

The proposed data structure is based on body fitted finite element grids
made of macro-elements or cells. Each of our cells is an 8 x 8 x 8 grid of tri
linear isoparametric elements. The use of such cells has advantages from
both the architectural and data structure point of view. From the data

- 3 -

structure side, it creates and attractive homogeneity, and requires less

storage than completely general grids. From the architectural side, it
enables the use of fast special purpose hardware designed to handle the

fixed size blocks of data occurring.

To create such cellular grids, we begin by assuming the domain is
covered by curved rectangular or hexahedral regions having disjoint interi

ors. Each of these curved rectangular regions will become a cell in the ini
tial grid. Associated with each curved rectangular region, we have a map

ping from the canonical rectangle [O,lJ x [0,1] x [O,lJ onto the given curved
rectangular region, as in Figure 1.

Figure 1. Mapping from Reference Cube to Physical Domain

The subdivision of a given domain into curved rectangular regions,
defined by mappings like that in Figure 1, is a complex computer aided

design problem. The necessity of having well defined and invertible Jacobi
ans, usual in finite element theory, applies here as well, greatly complicating
this problem. At a minimum, this requirement forces the angles at which
the sides of curved rectangular regions meet along edges to be bounded

away from 0 degrees and 180 degrees. These grid generation problems,
though extremely difficult, are in principal solvable. Figure 2 shows the
decomposition of a tetrahedron into four curved rectangular regions, show

ing that there is no loss of generality in restricting to domains composed of
curved rectangular regions.

Associated with each of these curved rectangular regions we have an
ancestral cell. The collection of all ancestral cells form the initial grid used

- 4-

Figure 2. Decomposition of a Tetrahedron into Curved Rectangular Solids

Figure 3. Refinement of a Cell into Eight Children

by the multigrid solution algorithm. This initial grid will be refined adap
tiveiy during the course of the computation. Figure 3 shows the refinement

of an ancestral cell into eight children.
Associated with each cell, which is really an 8 x 8 x 8 macro-element

composed of 512 trilinear elements, we need three kinds of information:

- 5 -

1. geometry information describing the region covered by the cell and

the grid inside it.

2. numerical information. such as the local stiffness matrix.

3. data structure information to keep track of neighborhood relations

between cells.

One of the advantages of the use of cells of this type is that items 1 and

3 here need be stored only once per cell. rather than separately for each of

the trilinear finite elements.

We turn now to a closer examination of these three types of information

associated with each cell.

A Geometric Information

The geometry information associated with each cell is the region in the

physical domain it occupies. and the location of all mesh points within it.

Each cell must be either an ancestral cell or the child of an ancestral cell

created by adaptive refinement. If it is ancestral. it covers the curved rec

tangular region p([O.l] x [O.lJ.x [0.1]). where p is its associated mapping. as

in Figure 1. If this cell is a child it covers the region p([ro. rl] X [so. Sl] x [to.

t 1]). for parameters TO. r l . So. Sl. to. t 1. and where p is the coordinate

transformation mapping associated with its ancestor.

B. Numerical Information

Associated with each cell we need ~olution. residual and data vectors.

and also the set of matrix coefficients. The three vectors here can be stored

as 9 x 9 x 9 arrays of reals. This implies redundant storage along the boun
daries. since boundary mesh points will be shared with other cells. The

matrix coefficients are best stored as 27 point difference formulas associ

ated with each of the 729 mesh points in the 9 x 9 x 9 grid. The alternative.

storing the element stiffness matrices for each element is wasteful of
storage.

C. Data Struc ture Information

The data structure must permit dynamic allocation of cells. in order to
allow adaptive refinement and must also keep track of a number of kinds of

relationships between cells. We must be able to extract neighborhood rela

tionships. including the relative size and orientation of neighbors. in order to

perform relaxation iterations. We must also maintain parent-child relation

ships. as these are required in multigrid iteration. Finally. we must keep

track of storage allocation in the computer architecture. Storage allocation

- 6-

will be discussed briefly in section 4.

These data structure issues for locally refined grids are inherently com
plex, and made more so here by the need to rapidly access data structure
information in the course of the computation. The data structure chosen is
based on a global numbering of nodes, and requires that mesh size vary by
at most a factor of two from a cell to its neighbor. Space does not permit
detailed description of this data structure here, but it will be described in
detail when we present the results of the completed study.

III. ADAPTIVE SOLUTION ALGORITHM

An adaptive multigrid solution algorithm can be based on the data
structure described in the last section. Such a solution algorithm requires
six basic numerical operations.

1. Form the stiffness matrix on a cell.

2. Form scaled data vectors on all cells.

3. Perform a Jacobi smoothing iteration on a multigrid level.

4. Perform a multigrid projection from one multigird level to the
next coarser level.

5. Perform a multigrid injection from a multigird level to the
next finer level.

6. Form an estimate of the local truncation error on a cell.

Designing multigrid algorithms built from these operations is reasonably
straight forward and is discussed in detail in the report (Gannon and Van
Rosendale 1983). Mathematically, operation 6, estimating the truncation
error, is the most subtle. But from a data structure or architectural point
of view, operations 2, 3 and 4 are the most difficult, because of the complex
data movements involved. The basic structure of operations 3, 4 and 5 are
similar. Operation 3 is described in more detail in section IV.C.

IV. ARCHITECTURE

The computations described in the previous section contain two distinct
levels of parallelism which may be exploited. These computations are, at
their lowest level, composed of array operations on the cells of the global
mesh. The matrix product Au and the multigrid injection and projection
operators are highly parallel array computations on each cell. These matrix

- 7-

computations form a core of operators that dominate the serial complexity
of our adaptive multigrid algorithm. Since the cells here are relatively small
and since these computationally intensive operations are quite simple, a
large systolic array (Kung and Leiserson, 1980) or an SIMD processor like the
Burroughs BSP would be well suited to these computation.

Parellelism is also available at a higher level, since operations on
different cells in the global mesh can be done concurrently. A virtual
machine that would be ideal for the algorithms here consists of a network of
processors organized as a complete graph with one cell per processor. More
realistically, a system of processors communicating through a high
bandwidth switching network, such as in the TRAC system (Kapur, Lipovski,
Premkumar 1980) or PASM (Siegel. 1979) could be used, with grid cells
mapped onto these processors in a many to one manner. Then each proces
sor would be responsible for computation on each of its assigned cells.

The primary difficulty with this scheme is that an operation, such as a
relaxation iteration, introduces data dependencies in the form of partially
computed residuals along shared faces or edges of adjacent cells. If these
adjacent cells are assigned to different processors, then the partial result
data must be passed from one processor to the other over the switching net
work. The problem of optimally scheduling the computations on a general
grid can be extremely difficult if network delays are significant. If on the
other hand. computation. task scheduling and communication can be
sufficiently overlapped, then it would be possible to use arrival of partial
result data and the availability of hardware (such as a free floating point
unit) as a mechanism for dynamically scheduling local cell computations.
This is known as the "data driven" approach to task scheduling.

Both levels of parallelism can be simultaneously exploited if the algo
rithms and architecture are carefully matched. As one approach to achiev
ing this, we propose a system architecture based on low level SIMD or sys
tolic array computations, governed by a data flow synchronized. distributed
operating system. The proposed hardware is organized as 16 "local clusters"
communicating with each other through a message switching network. A glo
bal control processor also communicates with all local clusters via a shared
bus as illustrated in Figure 4. The overall system organization is similar to
that of the Cedar project (Gajski. Kuck. Lawrie. Sameh 1983).

Each local cluster consists of four units.

1. A local control processor (LCP) which communicates with the global
controller and coordinates the activities of the other devices in the
cluster.

- 8 -

2. A configurable mesh of floating point processing elements (PEs) known
as the array unit (AU).

4. A network inpul processor called lhe receive unil (RU).

4. A network oUlpul processor know as lhe stnd unil (SU).

Global
Con-

troller

Interconnection Network

Figure 4. System Organization.

The global conlroller is viewed as a conventional. bul reasonably power
ful, fronl end processor which communicates wilh the local clusters by a
system of message passing. Upon command from the global controller the
local controllers initiate tasks such as Jacobi smoothing or truncation error
estimation. Decisions about local refinement are made by lhe global con
troller based on information relurned by the local controllers. The global
controller also originates and distributes the data structure information to
the resL of the system. In particular, when ccll i is to be dynamically allo
cated, it is assigned to processor cluster imod 16. This approach to storage
allocation equilizes, approximately. the storage and computation per proces
sor cluster, though it induces more inter-processor communication than
would be required by more subtle storage allocation schemes.

A Local (luster Ha.rdwa.re

The local controller and processing element array unit are modeled
after one configuralion of the CHiP syslelIl (Snyder. 1982) which is being
designed for implementation on a single silicon wafer. The processors in the
array are organized as a "nearest neighbor", toroidallaUice - each processor
Pi; is connected to the 8 processors defined by p(, ± Imod 9)(; ± Imod 9)' As shown

- 9 -

in Figure 5 (for a 4 by 4 sublaUice), the PE array has two other networks
interwoven with it. These networks are used for "parallel by row" loading
and unloading of the local memories of the processing elements.

lend Unlt

lIIecelve Unlt

Figure 5. Array Unit Processing element organization

A moderately intelligent memory interface to the I/O networks permits the
system to overlap the computation on one cell with data input on another
cell and data output on a third.

Each processing element is assumed to have access to approximately 8K
words of local storage which is sufficient to store the matrix components,
solution vector and several temporary vectors for up to 20 cells per AU. This
is also sufficient space to house the "microprograms" for each of the distinct
computational tasks required in the multigrid algorithm. The array unit can
be preprogrammed to perform any of the matrix operations required for
computations OIl one cell. The 2 dimensional processor array can process a
3 dimensionul "cube" of data as a sequence of 2 dimensional slices. Assum
ing an instruction cycle of 1 us a well designed PE can be shown to compute
the matrix product Au on one cell in about 500 microseconds. This is assum
ing a cell size of 8 x 8 x 8. The speed here is limited both by the arithmetic

- 10 -

speed of the processor array and by the necessity of fetching the stiffness
matrix elements from the processor cluster memory. About 30 add
multiplies are required, while 14 or 27 matrix elements must be fetched
from memory per mesh point per iteration. These timing issues will be
covered in more detail in a forth coming paper describing our architecture
simulation in detail.

If a grid structure is composed of cells Ct , i = l..m, then any linear
operator A defined as a sum of cell integrals can be expressed as a nondis
joint sum of matrix products of the form

m
Au = ~Atui

i=l

where u i is the vector of coefficients of u on q and Ai is the corresponding
matrix defined by the integrations of A restricted to q. The summation
takes place over the vector components corresponding to vertices of the
grid that are shared by two or more cells. To extend the cell product com
puted as systolic array operations for individual cells to a "grid wide" pro
duct requires that the above summation be completed.

Each local cluster contains, for each of its cells, a list of adjoining cells
and a description of the corresponding intersections (faces, edges and ver
tices). The send unit, upon command from the local controller, accesses the
partial result data from the array unit memories one row at a time until a
complete face or edge has been buffered. It then forms a network message
using the adjoining cell record as a network addrt!ss tag.

The receivE: unit at the destination local cluster stores the data in the
array unit memories and signals the local controller that a message has
arrived for the targeted cell.

B. The Switching Network

The processor clusters communicate asynchronously through a crossbar
message switching network. In spite of the large number of processor ele
ments, the demands on the switching network turn out to be quite modest:
one can easily show that over 95 percent of the communication takes place
within processor clusters, rather than between them. Even so, transmitting
the remaining 5 percent is a non-trivial task if the machine is expected to
perform in the gigaflop range.

1\. reasonable network for the system described here is illustrated in Fig
ure 6a. Figure 6b gives a detail of each shltch node. This network imple
ments a full crossbar switch by bucket brigading. Messages at the inputs
percolate upward along columns until they reach the row corresponding to

- 11 -

a

OUT

,~

-~ ..
IN

Y
- OUT

IN

~
I

Figure 5. a). Communication Network. b) Node detail.

their target address. Then they are switched onto this row and bucket bri
gaded out to the right.

C. The Local auster System Software.

The local controller has the responsibility for managing the resources
and scheduling the computations on each of the cellr assigned to it. Each
cell is viewed as having a virtual processor which may execute any of several
"cell processes".

A cell process consists of a sequence of tasks. For example, the cell pro
cess for a relaxation it.eration that would be executed on each cell of a
specified grid level goes roughly as follows:

RelaxatioI4rocessl x: celli ~

(
1. request the A.U. to do c.\ matrix multiply on

cell x.
2. request the send unit to transmit the partial

result face data to all adjoining cells.
3. wait for the arrival of partial result face data

from adjoining cells.
4. request the A.U. to add the partial results and

.... -

- 12 -

to compute u : = u + "A.(f -Au).

5. signal the global controller that an iteration
is complete on cell x.

A schematic representation of 3 processors executing a relaxation on a grid
consisting of 9 cells is given in Figure 7. The dotted lines between processes
represent the flow of messages through the network to waiting cells.

I I I I

, , ,

~_I ''-_-..01 I~_----,
Figure 7. Nine Concurrent Relaxation Processes on Three Processors.

In a similar manner cell processes are constructed for the other basic solu·
tion operations, such as the matrix assembly and interpolations between
grid levels.

The operating system for each local control processor is interrupt
driven and is organized as a set of resource monitors (Hoare, 74) for the
A.U., the send unit, the receive unit and for messages from the global con
troller. Each cell has a cell descriptor record which, in addition to its
geometric attributes, lists its current process and task state. Each resource
monitor maintains a queue of waiting cells (a list of descriptor records) and
a pointcr to a descriptor for the cell currently in control of the device. When
a cell process of a cell requests service from a device, it invokes the
appropriate monitor, which places that cells descriptor on the queue of wait
ing cells.

- 13-

The global control message monitor maintains a queue of "jobs" for each
cell. Messages that arrive from the global controller cause an interrupt and
the LCP puts the message in the appropriate queue. When a cell completes a
process it enters an idle state and the system initiates a new process by
fetching the next command from the queue.

V. CONCLUSION.

Using simulation techniques, we are investigating several questions of
system performance. The first of these is the problem of estimating the sys
tem overhead due to local controller task scheduling. Preliminary simula
tion results indicate that a system with a 1 microsecond cycle time for all
local cluster operations would have software overr.ead that would consume

10-25% of total execution time, depending on the degree of multiprogram
ming. At this clock rate, a system with 16 array uni~s, each consisting of a 9
by 9 array of processor elements, has a possible throughput of 1.3 gigaflops.
Accounting for software overhead and a 100 microsecond message delay, the
achieved performance is in excess of 800 megaflops. This result was obtained
using a multigrid program on a model problem having 93 cells. The switch
ing network needed to communicate 12 words per clock cycle on average.
As the complexity of the problem increased the performance increased to
over 900 megaflops with an increase of message traffic to only 14 words per
clock cycle. The amount of data transmitted by the switching network turns
out to be only about 2 percent as large as the amount of data transmitted
between the processor elements and their attached memory. This low mes
sage traffic justifies uur claim that a reasonably simple network will provide
all the global communication required in this class of algorithms. A more
complete analysis will be published when the study is complete.

Among the questions under current study are:

1. The effect of different degrees of multiprogramming on system perfor
mance. As the number of cells per local cluster increases, the utiliza
tion of the array units rises until the system is saturated. The exact
form of this performance curve is being studied.

2. The design of efficient 110 algorithms compatible with parallel archi
lectures. As computers become faster, extracting meaningful infor
mation from the reams of output produced becomes an increasingly
difficult problem. Distributed graphics algorithms are being con
sidered.

- 14-

VI. REFERENCES.

Gajski, D, Kuck, D., Lawrie, D., Sarneh, A., (1983) "CEDAR, A Large Scale Mul
tiprocessor," Technical Report, Cedar project, Dept. of Compo Science
University of Illinois at Urbana-Champaign.

Gannon, D., Van Rosendale, J. (1983), "Highly Parallel Multigrid Solvers for
Elliptic PDEs: An Experimental Analysis," ICASE Report 82-36, lCASE,
NASA Langley Research Center, Hampton, Virginia.

Hoare, C. A. H. (1974), "Monitors: An Operating System Structuring Con
cept,", Cornm. ACM 17, 10, pp.549-57, Oct.

Kapur, R., Premkumar, U., Lipovski, J.(1980), "Organization of the TRAC
Processor-Memory Subsystem," AFIPS Conf. Proc. pp.632-629.

Kung, H. T., Leiserson, C. E. (1980), "Algorithms for VLSI Processor Arrays,"
in Mead and Conway, Introduction to VLSI Systems, Addison-Wesley, Read
ing, Ma., pp.271-292.

Siegel, H. J., et. a1. (1979), "An SIMD/MIMD Multimicroprocessor System for
Image Processing and Pattern Recognition," IEEE Conf. on Pattern. Recog.
Image Proc. pp.214-224.

Snyder, L. (1982), "CHiP: The Configurable Highly Parallel Computer," Com
puter, Jan. 1982.

Zave, P., Rheinboldt, W. (1979), "Desi ~n. of an Adaptive, Parallel Finite
Element System," ACM Trans. on Math. ~ oftware. '/01. 5(1), 1979, pp.1-17.

1. Report No. 2. Government Accession No.

NASA CR-172195
4. Titl. IIld Subtitle

Parallel Architectures for Iterative Methods on Adaptive,
Block Structured Grids

7. Author(s)

Dennis Gannon & John Van Rosendale

9. Performing OrQ!lnization Name and Address
Institute tor Computer Applications in Science

an~ Engineering
Mail Stop l32C, NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

15. Supplementary Notes Additional
Langley Technical Monitor:
Final Report

support: NSF Grant MCS -8108512,
Robert H. Tolson

3. Recipient's Catal09 No.

5. Report Date

August 1983
6. Performing Organization Code

8. Performing Organization Report No.

83-39
10. Work Unit No.

11. Contract or Grant No.

NASl-17070, NASl-17l30

13. Type of Report and Period Covered

Contractor report

14. Sponsoring Agency Code

16. Abstrac.l . 11 1 h· 11· d hI· Tn~s paper proposes a para e computer arc ~tecture we su~te to t e so ut~on
of partial differential equations in complicated geometries. Algorithms for partial
differential equations contain a great deal of parallelism. But this parallelism can
be difficult to exploit, particularly on complex problems. One approach to extraction
of this parallelism is the use of special purpose architectures tuned to a given
problem class. The architecture proposed here is tuned to boundary value problems on
complex domains. An adaptive elliptic algorithm which maps effectively onto the
~roposed architecture is considered in detail.

Two levels of parallelism are exploited by the proposed architecture. First, by
making use of the freedom one has in grid generation, one can construct grids which are
locally regular, permitting a one to one mapping of grids to systolic style processor
arrays, at least over small regions. All local parallelism can be extracted by this
approach. Second, though there may not be a regular global structure to the grids
constructed, there will still be parallelism at this level. One approach to finding
and exploiting this parallelism is to use an architecture having a number of processor
clusters connected by a switching network. The use of such a network creates a highly
flexible architecture which automatically configures to the problem being solved.

17. Key Words (Suggested by Author(s))

parallel processing
compu.ter architectures
adaptive methods

19. Security Oassif. (of this report)

Unclassified

18. Distribution Statement

61 Computer Programming and Software

Unclassified-Unlimited

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

16

22. Price

A02

N-305 For sale by the National Technical Information SerVice, Springfield. Virginia 22161

End of Document

