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ABSTRACT 

This paper proposes a parallel computer architecture well suited to the 

solution of partial differential equations in complicated geometries. 

Algorithms for partial differential equations contain a great deal of 

parallelism. But this parallelism can be difficult to exploit, particularly 

on complex problems. One approach to extraction of this parallelism is the 

use of special purpose architectures tuned to a given problem class. The 

architecture proposed here is tuned to boundary value problems on complex 

domains. An adaptive elliptic algorithm which maps effectively onto the 

proposed architecture is considered in detail. 

Two levels of parallelism are expol1ted by the proposed architecture. 

First, by making use of the freedom one has in grid generation, one can 

construct grids which are locally regular, permitting a one to one mapping of 

grids to systolic style processor arrays, at least over small regions. All 

local parallelism can be extracted by this approach. Second, though there may 

not be a regular global structure to the grids constructed, there will still 

be parallelism at this level. One approach to finding and exploiting this 

parallelism is to use an architecture having a number of processor clusters 

connected by a switching network. The use of such a network creates a highly 

flexible architecture which automatically configures to the problem being 

solved. 

Research supported by the National Aeronautics and Space Administration 
under NASA Contract Nos. NASl-l7070 and NASl-17130 while the authors were in 
residence at the Institute for Computer Applications in Science and 
Engineering, NASA Langley Research Center, Hampton, VA 23665. Additional 
support for the first author was provided by NSF Grant MCS-8108512. 
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I. INTRODUCTION 

The development of larger and faster computers is being driven by a 
number of application areas where to days computers are not adequate. One 
of the most important of these areas is the numerical solution of partial 
differential equations. No computer in existence could tackle the problem of 
accurately modeling air flow over realistic aircraft configurations. This is so 
even if one neglects all time dependent effects. Similar remarks could be 
made about partial differential equations arising in a number of applications 
areas. 

Faced with these needs, one could hope for computers similar to 
present designs, but with memory size and speeds thousands of times 
greater than current models. While no major technological barriers impede 
the development of such memories, the speed of switching elements seems 
to be reaching a plateau. 

The solution must lie in the use of parallelism. With device densities ris­
ing rapidly, and prices dropping correspondingly, computers having hun­
dreds or thousands of processors will be practical within a decade. Such 
computers will present a challenge to both the computer architect and 
numerical analyst. From the architects point of view, current problems like 
processor communication and synchronization will become more trouble­
some. But the changes facing the numerical analyst may be much more 
sweeping. 
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In the past, the programmer or numerical analyst was able to design 
algorithms taking relatively little cognizance of the architectures on which 
they would run. With the advent of highly parallel computation, this situa­
tion may be drastically altered. It may be that the available parallelism can 
be exploited only by special purpose architectures tuned to a given problem 
or problem class. Too, the algorithms employed will probably be highly 
architecture dependent, chosen as often for architectural reasons as for 
traditional numerical analysis reasons. More precisely, the impact of error 
analysis on algorithm design should change little, but complexity questions 
will tend to revolve around architectural considerations. 

With the exception of the FEARS project (Zave, 1979) much of the recent 
work in computer architectures has been stimulated by a small set of simple 
numerical problems. Great attention has been paid to such problems as 
finding efficient architectures for Fourier transforms or band solution algo­
rithms. Less tractable, and equally important problems, such as Lagrangian 
hydrodynamics, have received scant attention. 

One class of numerical algorithms which is well understood, yet offers a 
great deal of the complexity frequently present in real world applications, is 
adaptive iterative solution of elliptic partial differential equations. This 
paper proposes an algorithm-architecture pair for the adaptive solution of 
elliptic problems in complicated domains. An attempt is made to point out 
and extract as much of the parallelism present as possible. We also attempt 
to retain as much flexibility in both the algorithm and architecture as possi­
ble. 

The plan of the paper is as follows. Section II and III present the data 
structure and numerical algorithm being considered. Section IV describes 
our proposed architecture. The final section draws some tentative conclu­
sions and suggests directions for further research. 

II. DATA STRUCTURE 

In this section we present our data structure for the finite element reso­
lution of complex three dimensional domains. The data structure chosen 
permits the use of adaptive refinement and multigrid solution techniques. 
Our focus is on simple scalar elliptic partial ditr~rential equations, such as 
the Poisson or Helmholtz equations, and finite element grids consisting of 
trilinear isoparametric elements. 

The proposed data structure is based on body fitted finite element grids 
made of macro-elements or cells. Each of our cells is an 8 x 8 x 8 grid of tri­
linear isoparametric elements. The use of such cells has advantages from 
both the architectural and data structure point of view. From the data 
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structure side, it creates and attractive homogeneity, and requires less 

storage than completely general grids. From the architectural side, it 
enables the use of fast special purpose hardware designed to handle the 

fixed size blocks of data occurring. 

To create such cellular grids, we begin by assuming the domain is 
covered by curved rectangular or hexahedral regions having disjoint interi­

ors. Each of these curved rectangular regions will become a cell in the ini­
tial grid. Associated with each curved rectangular region, we have a map­

ping from the canonical rectangle [O,lJ x [0,1] x [O,lJ onto the given curved 
rectangular region, as in Figure 1. 

Figure 1. Mapping from Reference Cube to Physical Domain 

The subdivision of a given domain into curved rectangular regions, 
defined by mappings like that in Figure 1, is a complex computer aided 

design problem. The necessity of having well defined and invertible Jacobi­
ans, usual in finite element theory, applies here as well, greatly complicating 
this problem. At a minimum, this requirement forces the angles at which 
the sides of curved rectangular regions meet along edges to be bounded 

away from 0 degrees and 180 degrees. These grid generation problems, 
though extremely difficult, are in principal solvable. Figure 2 shows the 
decomposition of a tetrahedron into four curved rectangular regions, show­

ing that there is no loss of generality in restricting to domains composed of 
curved rectangular regions. 

Associated with each of these curved rectangular regions we have an 
ancestral cell. The collection of all ancestral cells form the initial grid used 
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Figure 2. Decomposition of a Tetrahedron into Curved Rectangular Solids 

Figure 3. Refinement of a Cell into Eight Children 

by the multigrid solution algorithm. This initial grid will be refined adap­
tiveiy during the course of the computation. Figure 3 shows the refinement 

of an ancestral cell into eight children. 
Associated with each cell, which is really an 8 x 8 x 8 macro-element 

composed of 512 trilinear elements, we need three kinds of information: 
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1. geometry information describing the region covered by the cell and 

the grid inside it. 

2. numerical information. such as the local stiffness matrix. 

3. data structure information to keep track of neighborhood relations 

between cells. 

One of the advantages of the use of cells of this type is that items 1 and 

3 here need be stored only once per cell. rather than separately for each of 

the trilinear finite elements. 

We turn now to a closer examination of these three types of information 

associated with each cell. 

A Geometric Information 

The geometry information associated with each cell is the region in the 

physical domain it occupies. and the location of all mesh points within it. 

Each cell must be either an ancestral cell or the child of an ancestral cell 

created by adaptive refinement. If it is ancestral. it covers the curved rec­

tangular region p([O.l] x [O.lJ.x [0.1]). where p is its associated mapping. as 

in Figure 1. If this cell is a child it covers the region p([ro. rl] X [so. Sl] x [to. 

t 1]). for parameters TO. r l . So. Sl. to. t 1. and where p is the coordinate 

transformation mapping associated with its ancestor. 

B. Numerical Information 

Associated with each cell we need ~olution. residual and data vectors. 

and also the set of matrix coefficients. The three vectors here can be stored 

as 9 x 9 x 9 arrays of reals. This implies redundant storage along the boun­
daries. since boundary mesh points will be shared with other cells. The 

matrix coefficients are best stored as 27 point difference formulas associ­

ated with each of the 729 mesh points in the 9 x 9 x 9 grid. The alternative. 

storing the element stiffness matrices for each element is wasteful of 
storage. 

C. Data Struc ture Information 

The data structure must permit dynamic allocation of cells. in order to 
allow adaptive refinement and must also keep track of a number of kinds of 

relationships between cells. We must be able to extract neighborhood rela­

tionships. including the relative size and orientation of neighbors. in order to 

perform relaxation iterations. We must also maintain parent-child relation 

ships. as these are required in multigrid iteration. Finally. we must keep 

track of storage allocation in the computer architecture. Storage allocation 
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will be discussed briefly in section 4. 

These data structure issues for locally refined grids are inherently com­
plex, and made more so here by the need to rapidly access data structure 
information in the course of the computation. The data structure chosen is 
based on a global numbering of nodes, and requires that mesh size vary by 
at most a factor of two from a cell to its neighbor. Space does not permit 
detailed description of this data structure here, but it will be described in 
detail when we present the results of the completed study. 

III. ADAPTIVE SOLUTION ALGORITHM 

An adaptive multigrid solution algorithm can be based on the data 
structure described in the last section. Such a solution algorithm requires 
six basic numerical operations. 

1. Form the stiffness matrix on a cell. 

2. Form scaled data vectors on all cells. 

3. Perform a Jacobi smoothing iteration on a multigrid level. 

4. Perform a multigrid projection from one multigird level to the 
next coarser level. 

5. Perform a multigrid injection from a multigird level to the 
next finer level. 

6. Form an estimate of the local truncation error on a cell. 

Designing multigrid algorithms built from these operations is reasonably 
straight forward and is discussed in detail in the report (Gannon and Van 
Rosendale 1983). Mathematically, operation 6, estimating the truncation 
error, is the most subtle. But from a data structure or architectural point 
of view, operations 2, 3 and 4 are the most difficult, because of the complex 
data movements involved. The basic structure of operations 3, 4 and 5 are 
similar. Operation 3 is described in more detail in section IV.C. 

IV. ARCHITECTURE 

The computations described in the previous section contain two distinct 
levels of parallelism which may be exploited. These computations are, at 
their lowest level, composed of array operations on the cells of the global 
mesh. The matrix product Au and the multigrid injection and projection 
operators are highly parallel array computations on each cell. These matrix 



- 7-

computations form a core of operators that dominate the serial complexity 
of our adaptive multigrid algorithm. Since the cells here are relatively small 
and since these computationally intensive operations are quite simple, a 
large systolic array (Kung and Leiserson, 1980) or an SIMD processor like the 
Burroughs BSP would be well suited to these computation. 

Parellelism is also available at a higher level, since operations on 
different cells in the global mesh can be done concurrently. A virtual 
machine that would be ideal for the algorithms here consists of a network of 
processors organized as a complete graph with one cell per processor. More 
realistically, a system of processors communicating through a high 
bandwidth switching network, such as in the TRAC system (Kapur, Lipovski, 
Premkumar 1980) or PASM (Siegel. 1979) could be used, with grid cells 
mapped onto these processors in a many to one manner. Then each proces­
sor would be responsible for computation on each of its assigned cells. 

The primary difficulty with this scheme is that an operation, such as a 
relaxation iteration, introduces data dependencies in the form of partially 
computed residuals along shared faces or edges of adjacent cells. If these 
adjacent cells are assigned to different processors, then the partial result 
data must be passed from one processor to the other over the switching net­
work. The problem of optimally scheduling the computations on a general 
grid can be extremely difficult if network delays are significant. If on the 
other hand. computation. task scheduling and communication can be 
sufficiently overlapped, then it would be possible to use arrival of partial 
result data and the availability of hardware (such as a free floating point 
unit) as a mechanism for dynamically scheduling local cell computations. 
This is known as the "data driven" approach to task scheduling. 

Both levels of parallelism can be simultaneously exploited if the algo­
rithms and architecture are carefully matched. As one approach to achiev­
ing this, we propose a system architecture based on low level SIMD or sys­
tolic array computations, governed by a data flow synchronized. distributed 
operating system. The proposed hardware is organized as 16 "local clusters" 
communicating with each other through a message switching network. A glo­
bal control processor also communicates with all local clusters via a shared 
bus as illustrated in Figure 4. The overall system organization is similar to 
that of the Cedar project (Gajski. Kuck. Lawrie. Sameh 1983). 

Each local cluster consists of four units. 

1. A local control processor (LCP) which communicates with the global 
controller and coordinates the activities of the other devices in the 
cluster. 
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2. A configurable mesh of floating point processing elements (PEs) known 
as the array unit (AU). 

4. A network inpul processor called lhe receive unil (RU). 

4. A network oUlpul processor know as lhe stnd unil (SU). 

Global 
Con-

troller 

Interconnection Network 

Figure 4. System Organization. 

The global conlroller is viewed as a conventional. bul reasonably power­
ful, fronl end processor which communicates wilh the local clusters by a 
system of message passing. Upon command from the global controller the 
local controllers initiate tasks such as Jacobi smoothing or truncation error 
estimation. Decisions about local refinement are made by lhe global con­
troller based on information relurned by the local controllers. The global 
controller also originates and distributes the data structure information to 
the resL of the system. In particular, when ccll i is to be dynamically allo­
cated, it is assigned to processor cluster imod 16. This approach to storage 
allocation equilizes, approximately. the storage and computation per proces­
sor cluster, though it induces more inter-processor communication than 
would be required by more subtle storage allocation schemes. 

A Local (luster Ha.rdwa.re 

The local controller and processing element array unit are modeled 
after one configuralion of the CHiP syslelIl (Snyder. 1982) which is being 
designed for implementation on a single silicon wafer. The processors in the 
array are organized as a "nearest neighbor", toroidallaUice - each processor 
Pi; is connected to the 8 processors defined by p(, ± Imod 9)(; ± Imod 9)' As shown 
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in Figure 5 (for a 4 by 4 sublaUice), the PE array has two other networks 
interwoven with it. These networks are used for "parallel by row" loading 
and unloading of the local memories of the processing elements. 

lend Unlt 

lIIecelve Unlt 

Figure 5. Array Unit Processing element organization 

A moderately intelligent memory interface to the I/O networks permits the 
system to overlap the computation on one cell with data input on another 
cell and data output on a third. 

Each processing element is assumed to have access to approximately 8K 
words of local storage which is sufficient to store the matrix components, 
solution vector and several temporary vectors for up to 20 cells per AU. This 
is also sufficient space to house the "microprograms" for each of the distinct 
computational tasks required in the multigrid algorithm. The array unit can 
be preprogrammed to perform any of the matrix operations required for 
computations OIl one cell. The 2 dimensional processor array can process a 
3 dimensionul "cube" of data as a sequence of 2 dimensional slices. Assum­
ing an instruction cycle of 1 us a well designed PE can be shown to compute 
the matrix product Au on one cell in about 500 microseconds. This is assum­
ing a cell size of 8 x 8 x 8. The speed here is limited both by the arithmetic 
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speed of the processor array and by the necessity of fetching the stiffness 
matrix elements from the processor cluster memory. About 30 add­
multiplies are required, while 14 or 27 matrix elements must be fetched 
from memory per mesh point per iteration. These timing issues will be 
covered in more detail in a forth coming paper describing our architecture 
simulation in detail. 

If a grid structure is composed of cells Ct , i = l..m, then any linear 
operator A defined as a sum of cell integrals can be expressed as a nondis­
joint sum of matrix products of the form 

m 
Au = ~Atui 

i=l 

where u i is the vector of coefficients of u on q and Ai is the corresponding 
matrix defined by the integrations of A restricted to q. The summation 
takes place over the vector components corresponding to vertices of the 
grid that are shared by two or more cells. To extend the cell product com­
puted as systolic array operations for individual cells to a "grid wide" pro­
duct requires that the above summation be completed. 

Each local cluster contains, for each of its cells, a list of adjoining cells 
and a description of the corresponding intersections (faces, edges and ver­
tices). The send unit, upon command from the local controller, accesses the 
partial result data from the array unit memories one row at a time until a 
complete face or edge has been buffered. It then forms a network message 
using the adjoining cell record as a network addrt!ss tag. 

The receivE: unit at the destination local cluster stores the data in the 
array unit memories and signals the local controller that a message has 
arrived for the targeted cell. 

B. The Switching Network 

The processor clusters communicate asynchronously through a crossbar 
message switching network. In spite of the large number of processor ele­
ments, the demands on the switching network turn out to be quite modest: 
one can easily show that over 95 percent of the communication takes place 
within processor clusters, rather than between them. Even so, transmitting 
the remaining 5 percent is a non-trivial task if the machine is expected to 
perform in the gigaflop range. 

1\. reasonable network for the system described here is illustrated in Fig­
ure 6a. Figure 6b gives a detail of each shltch node. This network imple­
ments a full crossbar switch by bucket brigading. Messages at the inputs 
percolate upward along columns until they reach the row corresponding to 
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OUT 

,~ 
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IN 

Y 
- OUT 

IN 

~ 
I 

Figure 5. a). Communication Network. b) Node detail. 

their target address. Then they are switched onto this row and bucket bri­
gaded out to the right. 

C. The Local auster System Software. 

The local controller has the responsibility for managing the resources 
and scheduling the computations on each of the cellr assigned to it. Each 
cell is viewed as having a virtual processor which may execute any of several 
"cell processes". 

A cell process consists of a sequence of tasks. For example, the cell pro­
cess for a relaxation it.eration that would be executed on each cell of a 
specified grid level goes roughly as follows: 

RelaxatioI4rocessl x: celli ~ 

( 
1. request the A.U. to do c.\ matrix multiply on 

cell x. 
2. request the send unit to transmit the partial 

result face data to all adjoining cells. 
3. wait for the arrival of partial result face data 

from adjoining cells. 
4. request the A.U. to add the partial results and 

.... -
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to compute u : = u + "A.(f -Au). 

5. signal the global controller that an iteration 
is complete on cell x. 

A schematic representation of 3 processors executing a relaxation on a grid 
consisting of 9 cells is given in Figure 7. The dotted lines between processes 
represent the flow of messages through the network to waiting cells. 

I I I I 

, , , 

~_I ''-_-..01 I~_----, 
Figure 7. Nine Concurrent Relaxation Processes on Three Processors. 

In a similar manner cell processes are constructed for the other basic solu· 
tion operations, such as the matrix assembly and interpolations between 
grid levels. 

The operating system for each local control processor is interrupt 
driven and is organized as a set of resource monitors (Hoare, 74) for the 
A.U., the send unit, the receive unit and for messages from the global con­
troller. Each cell has a cell descriptor record which, in addition to its 
geometric attributes, lists its current process and task state. Each resource 
monitor maintains a queue of waiting cells (a list of descriptor records) and 
a pointcr to a descriptor for the cell currently in control of the device. When 
a cell process of a cell requests service from a device, it invokes the 
appropriate monitor, which places that cells descriptor on the queue of wait­
ing cells. 
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The global control message monitor maintains a queue of "jobs" for each 
cell. Messages that arrive from the global controller cause an interrupt and 
the LCP puts the message in the appropriate queue. When a cell completes a 
process it enters an idle state and the system initiates a new process by 
fetching the next command from the queue. 

V. CONCLUSION. 

Using simulation techniques, we are investigating several questions of 
system performance. The first of these is the problem of estimating the sys­
tem overhead due to local controller task scheduling. Preliminary simula­
tion results indicate that a system with a 1 microsecond cycle time for all 
local cluster operations would have software overr.ead that would consume 

10-25% of total execution time, depending on the degree of multiprogram­
ming. At this clock rate, a system with 16 array uni~s, each consisting of a 9 
by 9 array of processor elements, has a possible throughput of 1.3 gigaflops. 
Accounting for software overhead and a 100 microsecond message delay, the 
achieved performance is in excess of 800 megaflops. This result was obtained 
using a multigrid program on a model problem having 93 cells. The switch­
ing network needed to communicate 12 words per clock cycle on average. 
As the complexity of the problem increased the performance increased to 
over 900 megaflops with an increase of message traffic to only 14 words per 
clock cycle. The amount of data transmitted by the switching network turns 
out to be only about 2 percent as large as the amount of data transmitted 
between the processor elements and their attached memory. This low mes­
sage traffic justifies uur claim that a reasonably simple network will provide 
all the global communication required in this class of algorithms. A more 
complete analysis will be published when the study is complete. 

Among the questions under current study are: 

1. The effect of different degrees of multiprogramming on system perfor­
mance. As the number of cells per local cluster increases, the utiliza­
tion of the array units rises until the system is saturated. The exact 
form of this performance curve is being studied. 

2. The design of efficient 110 algorithms compatible with parallel archi­
lectures. As computers become faster, extracting meaningful infor­
mation from the reams of output produced becomes an increasingly 
difficult problem. Distributed graphics algorithms are being con­
sidered. 
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