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Abstract 

The FEM-2 parallel computer is being designed using methods differing 

from those ordinarily employed in parallel computer design. The major 

distinguishing aspects are: (1) a top-down rather than bottom-up design 

process, (2) the design considers the entire system structure in terms of 

layers of virtual machines, and (3) each layer of virtual machine is defined 

formally during the design process. The result is a complete 

hardware/software system design. The basic design method is discussed and the 

advantages of the method are considered. A status report on the FEM-2 design 

is included. 

This work supported in part by the National Aeronautics and Space 
Administration under NASA Contracts NASl-17130 and NASl-17070 while the 
authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 
23665. The first author was also supported in part by NSF Grant MCS78-00763. 
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Introduetion 

The Finite Element Machine [1,2] is an array of microprocessors, 

originally designed as a special purpose parallel computer for solution of 

problems in structural analysis using finite element methods. The authors are 

currently in the process of designing a successor, FEM-2, aimed at essentially 

the same applications. 

Parallel Maebine Design 

In most parallel machine design, the basic hardware decisions are fixed 

at an early stage of the design, long before the software organization and 

external environment have been considered in detail. This approach often 

leads to major problems at later stages, where the software and external 

supporting environment must be distorted to match the already fixed hardware 

organization. The general approach of early decision on hardware, followed by 

later detailed software design is seen in the original FEM [1,2], and in most 

other designs reported in the literature, e.g., Blue CHiP [3], TRAC [4], MPP 

[5] to name a few. This design approach is basically a "bottom-up" approach. 

In the FEM-2 design, an alternative "top-down" approach has been 

adopted. While the use of a top-down approach to system design is not novel, 

the particular form this has taken in the FEM-2 design is novel, in the 

context of parallel computer design. Two aspects are of note: 

a. FEM-2 is considered to be composed of layers of virtual machine. Each 

layer defines the view of the system available to one class of users. Four 

layers of virtual machine are currently conceived: (1) The applications user's 

machine (e.g., as defined by the interactive command language), (2) the 

applications programmer/numerical analyst's machine (e.g., as defined by the 
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applications language), (3) the systems programmer's machine (e.g., as defined 

by the operating system structure), and (4) the hardware itself (which if 

microprogrammed may include another layer of virtual machine). 

b. Each layer of virtual machine is formally specified during the design 

process, using the methods of H-graph semantics [6] to construct a formal 

model of each layer. The advantages of this formal specification are 

explained below. 

A virtual machine is composed of (1) various types of data objects, (2) 

various operations on those data objects, (3) various sequence control 

mechanisms for specifying the order of the operations, (4) various data 

control mechanisms for controlling access to data objects by the operations, 

and (5) storage management mechanisms for determining the placement and 

movement of data and code during program execution. 

The FEM-2 Virtual Machines 

Although complete virtual machine descriptions cannot be given here, a 

brief sketch will indicate the general type of results from this design 

approach. Considering each of the four levels of virtual machine, some 

typical data objects, operations, control mechanisms, and storage management 

methods are listed below. 

Application User's Virtual Machine 

The FEM-2 user would typically be a structural engineer using the system 

as an interactive workstation that allows one to store the description of a 

structural model, to invoke applications packages to analyze the model, and to 

display the results. The following is a partial list of the virtual machine 

components at this level. 



Data objects: 

Structure/substructure model 

Grid description 

Node/element description 

Load set 

Displacements of nodes 

Stresses on elements 

Operations: 

Define structure model 

Generate grid 

Define elements 

Solve structure model/load set for displacements 

Calculate stresses 

Data base operations (store model in DB/retrieve) 

Sequence control: 

Direct interpretation of user commands 

Data control: 

Workspace (user local data) 

Data base (long-term storage; shared data) 

Storage management: 

Dynamic storage allocation for models, results, workspaces, etc. 

Data movement between data base and workspace 

Numerical Analyst's Virtual Machine 

The numerical analyst is a research user who views the machine in terms 

of a high-level language that allows him to specify directly the data 

structures, operations and their sequences, and the parallelism in the linear 
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algebra necessary to implement efficiently a structural engineer's 

application. We assume as a base a sequential language such as Fortran, 

Pascal, or Ada, and only mention some of the new constructs needed for 

effective control of the para11el processing and data distribution in the 

parallel system. 

Data objects: 

Windows on arrays (e.g., row, column, block descriptors, for remote access to 

non-local data) see [6] for more details 

Operations: 

Tasks (programmer-defined parallel procedures) 

Window operations: create window, access/assign data visible in a window 

Broadcast data to a set of tasks 

Linear algebra operations: inner product, vector operations, etc. 

Sequence control: 

Forail loops -- do all iterations in parallel if possible 

Pardo ••• end -- do all statements in parallel 

Task control: initiate a task, pause, resume a paused task, terminate 

Remote procedure ca11 - location determined by location of data visible in a 

window 

Data control: 

All data owned by a single task 

Data accessible non-locally only via windows 

Windows may be transmitted as parameters, further partitioned, stored as 

values of variables, etc. 

Tasks may communicate through windows 



Storage management: 

Dynamic creation of data objects by a task 

Data lifetime - lifetime of owner task 

Dynamic creation of multiple task replications 

Local data of a task retained over pause/resume 

System Programmer's Virtual Machine 

By specifying the run-time representation of tasks, their scheduling, the 

communication between them, and the storage representation of the data, the 

system programmer's virtual machine is used to implement the numerical 

analyst's virtual machine. 

machine components. 

Data objects: 

Code blocks/constants blocks 

The following is a partial list of the virtual 

Task/procedure activation records (local data) 

Window descriptors 

Storage representations for scalars, arrays, etc. 

Messages from tasks: 

initiate K replications of a task of type T 

pause and notify parent task 

resume a child task 

terminate and notify parent 

remote procedure call 

remote procedure return 

load code/constants 
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Operations: 

Usual sequential operations: arithmetic, procedure call, etc. 

Library routines for linear algebra operations 

Format and send message (one of the 7 types above) 

Decode and execute message (e.g., an initiate task message may require the 

following steps: find code for task, allocate an activation record, copy 

parameters from the message queue into activation record, enter task in ready 

queue) 

Sequence control: 

Usual sequential language control structures 

Data control: 

Usual sequential language structures 

Storage management: 

General heap with variable size blocks 

Hardware architecture 

The requirements imposed by the upper levels of virtual machine suggest 

that the architecture should be chosen to effectively support: 

Large scale dynamic task initiation 

Remote access to local data (through windows) 

Large messages (between tasks, and from a task to the operating system) 

Irregular communication patterns 

Large storage requirements; dynamic allocation 

Fast linear algebra operations (to extract the low-level parallelism 

available in these operations) 



In addition, several additional requirements are imposed independently: 

Use off-the-shelf hardware/software if possible 

Provide a way to extend the system to larger configurations easily 

Provide reconfigurability to isolate faulty hardware components 

Provide multi-user access 

From these requirements, an architecture is evolving that is configured 

as clusters of processing elements organized around a shared memory. Sets of 

clusters communicate through a common communication network. Within each 

cluster, one PE runs the operating system kernel, which fields incoming 

messages and assigns available PE's to process them. Messages arriving in the 

input queue of any cluster can be processed by any available PE. Since this 

architecture will be described at length in other papers, no detailed design 

is given here. 

Formal Specification of Virtual Machines 

By formally specifying the data objects, operations on those data 

objects, control mechanisms, and storage management techniques of each virtual 

machine level, a detailed software/hardware design can be obtained that 

specifies the function of each level as well as its implementation on the next 

lower lever. Our research uses the methods of H-graph semantics [7] for 

making this formal specification. H-graph semantics is a mathematical 

modeling method for software/hardware systems that can be used to construct a 

precise mathematical model of each virtual machine level. The data objects 

are modeled as hierarchies of directed graphs (H-graphs) in which the nodes 

represent abstract storage locations and the arcs represent access paths. 

Da ta types are modeled using formal "H-graph grammars," a type of BNF grammar 
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in which the "language" defined is a set of H-graphs representing a class of 

data objects. Operations (procedures) on the data objects are modeled as "H

graph transforms," which are functions defining transformations on the H-graph 

models of data objects. H-graph transforms may invoke each other in the usual 

manner of subprogram calling hierarchies to determine the overall flow of 

control in a model of a virtual machine. 

In the FEM-2 design process, each layer of virtual machine is designed 

first, starting with the top layer and considering each layer as defining the 

requirements that must be satisfied by the design at the level below. Several 

iterations through the four levels are made, adjusting the design to find an 

appropriate mix of hardware and software at each level. As the design begins 

to "firm up", the individual virtual machines are defined formally. The 

precise formal definitions are then used as the basis for simulations of the 

various virtual machine levels. Simulations to measure the storage, 

processing, and communication patterns in typical FEM-2 applications and to 

determine the ease of programming the machine at the various levels are of 

particular importance. The ultimate result is to be a detailed design of the 

hardware and software, completely specified at each level in terms of its 

function and its implementation on the next lower level of virtual machine. 

Conclusion 

A major advantage of the top-down, layers of virtual machine, design 

approach is that it forces a design of the entire system structure, including 

I/O (virtual) devices, global control strategies, interfaces with the outside 

environment, etc. at an early design stage. It also allows the potential 

parallelism at various levels to be considered in detail: parallelism in user 



requests for simultaneous solution of several independent problems, 

parallelism in the substructure analysis of a larger structure, parallelism in 

the finer structure of solution of a particular system of simultaneous 

equations, etc. A third advantage is that the entire design process may be 

iterated, adjusting the design of each virtual machine level, until the proper 

match of hardware and software organizations is found. 

Current Status 

The FEM-2 design effort has been underway since December 1982. At 

present the first iteration of the design of the four layers of virtual 

machine is nearing completion. Several scenarios of use of the numerical 

analyst's virtual machine have been carried out in detail, using a detailed 

design of a typical algorithm to get quantitative estimates of processing 

requirements, storage requirements, and communication requirements for a 

typical large-scale application. One such analysis is reported in [8]. H-

graph semantics definitions of the various levels are being constructed. 
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