
NASA Cooaactor B.cpon 172197

leASE
THE FEM-2 DESIGN METHOD

Terrence W. Pratt
Loyce M. Adams
Piyush Mehrotra
John Van Rosendale
Robert G. Voigt
Merrell Patrick

Contract Nos. NASl-17070, NASI-17130
August 1983

NASA-CR-172197
19830026342

INSTITUTE FOIl COMPUTEIl APPLICATIONS IN SCIENCE AND EltGINEERING
NASA Langley Research Center, IIaIIlpton, Virginia 23665

Operated by the Universities Space Research Association

I\U\SI\
National Aeronautics and
Space Administration,R. __ ~
Hampton, Virginia 23665

111
NF02506

LIBRARY COpy
SEP 21 gJ3

lANGLEY RESEARCH CENTER
UBRARY, NASA

HAM~ VIRGINIA

THE FEM-2 DESIGN METROD

Terrence W. Pratt

Department of Applied Mathematics and Computer Science

University of Virginia

Charlottesville, VA 22901

Loyce M. Adams

Piyush Mehrotra

John Van Rosendale

Robert G. Voigt

Institute for Computer Applications in Science and Engineering

Merrell Patrick

Department of Computer Science

Duke University

Durham, NC 27706

Abstract

The FEM-2 parallel computer is being designed using methods differing

from those ordinarily employed in parallel computer design. The major

distinguishing aspects are: (1) a top-down rather than bottom-up design

process, (2) the design considers the entire system structure in terms of

layers of virtual machines, and (3) each layer of virtual machine is defined

formally during the design process. The result is a complete

hardware/software system design. The basic design method is discussed and the

advantages of the method are considered. A status report on the FEM-2 design

is included.

This work supported in part by the National Aeronautics and Space
Administration under NASA Contracts NASl-17130 and NASl-17070 while the
authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA
23665. The first author was also supported in part by NSF Grant MCS78-00763.

i

NB3- 3-J.(O J 3#=

Introduetion

The Finite Element Machine [1,2] is an array of microprocessors,

originally designed as a special purpose parallel computer for solution of

problems in structural analysis using finite element methods. The authors are

currently in the process of designing a successor, FEM-2, aimed at essentially

the same applications.

Parallel Maebine Design

In most parallel machine design, the basic hardware decisions are fixed

at an early stage of the design, long before the software organization and

external environment have been considered in detail. This approach often

leads to major problems at later stages, where the software and external

supporting environment must be distorted to match the already fixed hardware

organization. The general approach of early decision on hardware, followed by

later detailed software design is seen in the original FEM [1,2], and in most

other designs reported in the literature, e.g., Blue CHiP [3], TRAC [4], MPP

[5] to name a few. This design approach is basically a "bottom-up" approach.

In the FEM-2 design, an alternative "top-down" approach has been

adopted. While the use of a top-down approach to system design is not novel,

the particular form this has taken in the FEM-2 design is novel, in the

context of parallel computer design. Two aspects are of note:

a. FEM-2 is considered to be composed of layers of virtual machine. Each

layer defines the view of the system available to one class of users. Four

layers of virtual machine are currently conceived: (1) The applications user's

machine (e.g., as defined by the interactive command language), (2) the

applications programmer/numerical analyst's machine (e.g., as defined by the

2

applications language), (3) the systems programmer's machine (e.g., as defined

by the operating system structure), and (4) the hardware itself (which if

microprogrammed may include another layer of virtual machine).

b. Each layer of virtual machine is formally specified during the design

process, using the methods of H-graph semantics [6] to construct a formal

model of each layer. The advantages of this formal specification are

explained below.

A virtual machine is composed of (1) various types of data objects, (2)

various operations on those data objects, (3) various sequence control

mechanisms for specifying the order of the operations, (4) various data

control mechanisms for controlling access to data objects by the operations,

and (5) storage management mechanisms for determining the placement and

movement of data and code during program execution.

The FEM-2 Virtual Machines

Although complete virtual machine descriptions cannot be given here, a

brief sketch will indicate the general type of results from this design

approach. Considering each of the four levels of virtual machine, some

typical data objects, operations, control mechanisms, and storage management

methods are listed below.

Application User's Virtual Machine

The FEM-2 user would typically be a structural engineer using the system

as an interactive workstation that allows one to store the description of a

structural model, to invoke applications packages to analyze the model, and to

display the results. The following is a partial list of the virtual machine

components at this level.

Data objects:

Structure/substructure model

Grid description

Node/element description

Load set

Displacements of nodes

Stresses on elements

Operations:

Define structure model

Generate grid

Define elements

Solve structure model/load set for displacements

Calculate stresses

Data base operations (store model in DB/retrieve)

Sequence control:

Direct interpretation of user commands

Data control:

Workspace (user local data)

Data base (long-term storage; shared data)

Storage management:

Dynamic storage allocation for models, results, workspaces, etc.

Data movement between data base and workspace

Numerical Analyst's Virtual Machine

The numerical analyst is a research user who views the machine in terms

of a high-level language that allows him to specify directly the data

structures, operations and their sequences, and the parallelism in the linear

3

4

algebra necessary to implement efficiently a structural engineer's

application. We assume as a base a sequential language such as Fortran,

Pascal, or Ada, and only mention some of the new constructs needed for

effective control of the para11el processing and data distribution in the

parallel system.

Data objects:

Windows on arrays (e.g., row, column, block descriptors, for remote access to

non-local data) see [6] for more details

Operations:

Tasks (programmer-defined parallel procedures)

Window operations: create window, access/assign data visible in a window

Broadcast data to a set of tasks

Linear algebra operations: inner product, vector operations, etc.

Sequence control:

Forail loops -- do all iterations in parallel if possible

Pardo ••• end -- do all statements in parallel

Task control: initiate a task, pause, resume a paused task, terminate

Remote procedure ca11 - location determined by location of data visible in a

window

Data control:

All data owned by a single task

Data accessible non-locally only via windows

Windows may be transmitted as parameters, further partitioned, stored as

values of variables, etc.

Tasks may communicate through windows

Storage management:

Dynamic creation of data objects by a task

Data lifetime - lifetime of owner task

Dynamic creation of multiple task replications

Local data of a task retained over pause/resume

System Programmer's Virtual Machine

By specifying the run-time representation of tasks, their scheduling, the

communication between them, and the storage representation of the data, the

system programmer's virtual machine is used to implement the numerical

analyst's virtual machine.

machine components.

Data objects:

Code blocks/constants blocks

The following is a partial list of the virtual

Task/procedure activation records (local data)

Window descriptors

Storage representations for scalars, arrays, etc.

Messages from tasks:

initiate K replications of a task of type T

pause and notify parent task

resume a child task

terminate and notify parent

remote procedure call

remote procedure return

load code/constants

5

6

Operations:

Usual sequential operations: arithmetic, procedure call, etc.

Library routines for linear algebra operations

Format and send message (one of the 7 types above)

Decode and execute message (e.g., an initiate task message may require the

following steps: find code for task, allocate an activation record, copy

parameters from the message queue into activation record, enter task in ready

queue)

Sequence control:

Usual sequential language control structures

Data control:

Usual sequential language structures

Storage management:

General heap with variable size blocks

Hardware architecture

The requirements imposed by the upper levels of virtual machine suggest

that the architecture should be chosen to effectively support:

Large scale dynamic task initiation

Remote access to local data (through windows)

Large messages (between tasks, and from a task to the operating system)

Irregular communication patterns

Large storage requirements; dynamic allocation

Fast linear algebra operations (to extract the low-level parallelism

available in these operations)

In addition, several additional requirements are imposed independently:

Use off-the-shelf hardware/software if possible

Provide a way to extend the system to larger configurations easily

Provide reconfigurability to isolate faulty hardware components

Provide multi-user access

From these requirements, an architecture is evolving that is configured

as clusters of processing elements organized around a shared memory. Sets of

clusters communicate through a common communication network. Within each

cluster, one PE runs the operating system kernel, which fields incoming

messages and assigns available PE's to process them. Messages arriving in the

input queue of any cluster can be processed by any available PE. Since this

architecture will be described at length in other papers, no detailed design

is given here.

Formal Specification of Virtual Machines

By formally specifying the data objects, operations on those data

objects, control mechanisms, and storage management techniques of each virtual

machine level, a detailed software/hardware design can be obtained that

specifies the function of each level as well as its implementation on the next

lower lever. Our research uses the methods of H-graph semantics [7] for

making this formal specification. H-graph semantics is a mathematical

modeling method for software/hardware systems that can be used to construct a

precise mathematical model of each virtual machine level. The data objects

are modeled as hierarchies of directed graphs (H-graphs) in which the nodes

represent abstract storage locations and the arcs represent access paths.

Da ta types are modeled using formal "H-graph grammars," a type of BNF grammar

7

8

in which the "language" defined is a set of H-graphs representing a class of

data objects. Operations (procedures) on the data objects are modeled as "H

graph transforms," which are functions defining transformations on the H-graph

models of data objects. H-graph transforms may invoke each other in the usual

manner of subprogram calling hierarchies to determine the overall flow of

control in a model of a virtual machine.

In the FEM-2 design process, each layer of virtual machine is designed

first, starting with the top layer and considering each layer as defining the

requirements that must be satisfied by the design at the level below. Several

iterations through the four levels are made, adjusting the design to find an

appropriate mix of hardware and software at each level. As the design begins

to "firm up", the individual virtual machines are defined formally. The

precise formal definitions are then used as the basis for simulations of the

various virtual machine levels. Simulations to measure the storage,

processing, and communication patterns in typical FEM-2 applications and to

determine the ease of programming the machine at the various levels are of

particular importance. The ultimate result is to be a detailed design of the

hardware and software, completely specified at each level in terms of its

function and its implementation on the next lower level of virtual machine.

Conclusion

A major advantage of the top-down, layers of virtual machine, design

approach is that it forces a design of the entire system structure, including

I/O (virtual) devices, global control strategies, interfaces with the outside

environment, etc. at an early design stage. It also allows the potential

parallelism at various levels to be considered in detail: parallelism in user

requests for simultaneous solution of several independent problems,

parallelism in the substructure analysis of a larger structure, parallelism in

the finer structure of solution of a particular system of simultaneous

equations, etc. A third advantage is that the entire design process may be

iterated, adjusting the design of each virtual machine level, until the proper

match of hardware and software organizations is found.

Current Status

The FEM-2 design effort has been underway since December 1982. At

present the first iteration of the design of the four layers of virtual

machine is nearing completion. Several scenarios of use of the numerical

analyst's virtual machine have been carried out in detail, using a detailed

design of a typical algorithm to get quantitative estimates of processing

requirements, storage requirements, and communication requirements for a

typical large-scale application. One such analysis is reported in [8]. H-

graph semantics definitions of the various levels are being constructed.

9

10

[1]

[2]

References

H. Jordan, "A Special Purpose Architecture for Finite Element

Analysis," Proc. 1978 IEEE ConL on Parallel Proc.

O. Storaasli, et a1. "The Fi nite Element Machine: An Experiment in

Parallel Processing," Research in Struct. & Solid Mechanics, NASA Conf.

Pub. 2245, Wash. D.C., 201-217, October 1982.

[3] L. Snyder, "Introduction to the Configurable, Highly Parallel

Computer," IEEE Computer, Jan. 1982.

[4] M. Sejnowski, at a1. "An Overview of the Texas Reconfigurable Array

Computer", AFIPS Proc. 1980 NCC, 631-641-

[5] K. Batcher, "Design of a Massively Parallel Processor," IEEE Trans. on

Comps., Sept. 1980,836-840.

[6] P. Mehrotra, "Distributed Processing of Large Arrays," Ph.D. Thesis,

University of Virginia, 1982.

[7] T. Pratt, "Formal Specification of Software Using H-graph Semantics,"

Rept. 83-2, Appl. Math & Compo Sci., U. of Va., Jan. 1983.

[8] L. Adams and R. Voigt, "A Methodology for Exploiting Parallelism in the

Finite Element Process," Proc. NATO Advanced Research Workshop on High

Speed Computation, Julich, West Germany, June 1983, Springer-Verlag.

I 2. Government Accession No. 1. Report No.
NASA CR-172197

4. Title and Subtitle

The FEM-2 Design Method

7. Author(s~errence W. Pratt, Loyce M. Adams, Piyush Mehrotra,
John Van Rosendale, Robert G. Voigt, Merrell Patrick

3. Recipient's Catalog No.

5. Report Date
August 1983

6. Performing Organization Code

8. Performing Organization Report No.
83-41

r-------------------------------~ 10. Work Unit No.
9. Performing Organization Name and Address

Institute for Computer Applications in Science
and Engineering

Mail Stop l32C, NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

11. Contract or Grant No.

NASl-17070, NAS1-17130

13. Type of Report and Period Covered

Contractor report
14. Sponsoring Agency Code

15. Supplementary Notes Additional support: NSF Grant MCS78-00763.
Langley Technical Monitor: Robert H. Tolson
Final Report

16. Abstract
The FEM-2 parallel computer is being designed using methods differing from those

ordinarily employed in parallel computer design. The major distinguishing aspects are:
(1) a top-down rather than bottom-up design process, (2) the design considers the entirE
system structure in terms of layers of virtual machines, and (3) each layer of virtual
machine is defined formally during the design process. The result is a complete
hardware/software system design. The basic design method is discussed and the
advantages of the method are considered. A status report on the FEM-2 design in
included.

17. Key Words (Suggested by Author(s))

parallel computing
virtual machine
programming languages

19. Security Oassif. (of this report)

Unclassified

18. Distribution Statement
61 Computer Programming and Software

62 Computer Systems

Unclassified-Unlimited

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

12

22. Price

A02

N-305 For sale by the National Technical Information Service. Springfield. Virginia 22161

End of Document

