
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

o DEPARTMENT OF COMPUTER SCIENCE
^^ SCHOOL OF SCIENCES AND HEALTH PROFESSIONS 	

o

OLD DOMINION UNIVERSITY	 _ ..
NO FOLK, VIRGINIA

6

1,w. ,A

O MONITORING°AND QUEUING FOR SIFT

rY By

W Larry Wilson, Principal. Investigator

LU
ry

.. Final Report
For the period January 1 to May 15, 	 1983

L-
Uj

^i

Prepared for the
National Aeronautics anq',(Space Administration

Z
Langley Research Center 'f
Hampton, Virginia

^. Under	 c,

Master Contract Agreement NAS1-17099
Task Authorization No. 11
Daniel Palumbo, Technical Monitor
Flight Control Systems Division

,J
a (MA-CR-173057)	 MONITORING AND QUEUING FOR 	 N83-34614

SIFT final Report,	 1 Jan.	 -	 15 May	 1983
(Old Dominion Univ. , Norfolk, Va.)	 20 p
HC d02/MF AOI	 CSCL 09B	 Unclas I

G3/61	 42016

September 1983

fla	
'^	 ^.

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF SCIENCES AND HEALTH PROFESSIONS
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

MONITORING AND QUEUING FOR SIFT

By

Larry Wilson, Principal Investigator

Final Report
For the period January 1 to May 15, 1983

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

Under
Master Contract Agreement NAS1-17099
Task Authorization No. 11
Daniel Palumbo, Technical Monitor
Flight Control System-, k Division

Submitted by the
Old Dominion University Research Foundation
P.O. Box 6369
Norfolk, Virginia 23508

4 A

wel;	 September 1983

PART I

INSTRUMENTATION SOFTWARE FOR

SIFT

w

5

I

i

x

INSTRUMENTATION FOR SIFT

CONTENTS

1. GENERAL DESCRIPTION

A. SUMMARY OF WINDOW COMPONENTS SENDER AND RELAY
B. IMPLEMENTATION OF SENDER
C. DYNAMIC MODIFICATION OF VARIABLES WHICH AP.E SENT
D. RELAY COMMENTS
E. OUTPUT DESCRIPTION

2. SENDER CODE

INITSENDER — PASCAL
SENDER — CODE IN ASSEMBLER — NO LOOP — APPROX 50us.

3. RELAY

RELAY DESCRIPTION
PASCAL CODE — APPROX 2ms

fF

u

SUMMARY OF WINDOW COMPONENTS - SENDER AND RELAY

The SIFT instrumentation will be called the "Window." This window has

been designed to collect internal data from SIFT while having minimal overhead.

Window consists of Sender and Relay components. Sender is to be run on

processors 0..5 and Relay will run on processor 6. Sender will gather values

(currently 12) during the subframe allocated to a task and broadcast these

values at the start of the next subframe. This timing was selected to

guarantee Relay 3.2ms to collect and transmit the data.

It is anticipated that Sender will require 50-80us during each subframe.

Also, a task, which tries to use the broadcast bus early in its execution and

which runs in a subframe with no vote, will have to delay until approximately

228us after Sender finishes.

The last value broadcast by Sender will always be taskid. After noting a

change in taskid from two working processors, Relay will delay for

synchronization and then gather the data from Sender into array WDATA. While

gathering the data, Relay will add processor numbers and selected task output

to it. Relay will then transmit the data from SIFT via the routine WDUMP.

Relay will maintain a current value of the SIFT variable used for

reconfiguration in order to distinguish working processors. Relay must recycle::

every 3.2ms and will produce data at a maximum rate of 84 words per 3.2ms.

3

4

IMPLEMENTATION OF SENDER

1. ADD GLOBAL,

CONST WNOS m 11;	 (*WINDOW WILL COLLECT DATA O..WNOS*)
MAXPROCESSOR=5; (*CHANGE FROM *)

VAR HOOKO,HOOKI,HOOK2,
HOOK3,HOOK4	 (*HOOKS*)

(* If we wish to monitor values which are not normally stored in SIFT,
then we will use hooks. If we do not use all of the hooks to monitor
local executive values, we may assign each of the remaining hooks to
carry the value of a different variable from each task.. These
assignments will be done in the PASCAL code of either the tasks or the
local executive. We are not restricted to just 5 hooks since we can
insert any number of hooks and change the addresses in pane (using AFTI)
to dynamically select the ones to output. We may also choose to output
the values of any of SIFT's global variables or constants by inserting
their address into pane (without hooks).

The overhead of Window will increase by 3-8us for each hook used.*)

2. INSERT PROCEDURES SENDER AND INITSENDER. CALL SENDER AFTER A CLOCK
INTERRUPT IN SCHEDULER AND CALL INITSENDER FROM INITIALIZE.

3. OVERHEAD TIME OF WINDOW PER SUBFRAME

A. PROCEDURE SENDER-	 30us
B. POSSIBLE BROADCAST DELAY-	 228us

WILL ONLY OCCUR FOR A TASK WHICH BROADCASTS IMMEDIATELY AND FOLLOWS A
TASK WHICH DOES NOT PRODUCE A VOTE.

C. EXTRA TIME FOR HOOKS USED.	 3-8us	
s

4. FREE BUFFERS 0..11 FROM OTHER USES. IN PARTICULAR CLOCKTASK,IC1, WORK AND
SYNCH WILL BE AFFECTED.

DYNAMIC MODIFICATION OF THE VARIABLES MONITORED

F

	 Sender is written to collect the values to be broadcast by using indirect

addressing with the addresses stored in the location Pane (*which behaves as a

Pascal array [0..11] of pointers*). By modifying the contents of pane via

AFTI, the user can change the variables monitored.

v^

t i 5

RELAX COMMENTS

1. Relay will probably not be implemented as written. Current thinking is to

use the AFTI read capability to remove the data from processor 6. Some of

the ideas in Relay may prove valuable in writing code for this process. If

the AFTI is not used, then Relay should be ready to go with minor changes

to adapt to a 1553a or a parallel bus to the Vax.

2. The code used ir, Relay may take too long to execute (approximately 2ms).

This time must combine with the transmission time to a total of less than

3.2ms. If necessary to shorten the time of Relay either cut back on the

use of arrays or go into the assembler code to reduce the execution time.

OUTPUT DESCRIPTION

The output per subframe per processor will be an array 0..14 of integers

containing the following data:

1.
2.
3.
4.
5.
6.

8.
9.
10.

e 11.
12.
13.
14.

PROCESSOR ID
WO
W1,
W2
W3
W4
ERRORS OF VP[01
ERRORS OF V P[11
ERRORS OF VP[21
ERRORS OF V P[31
ERRORS OF V P[41
ERRORS OF VP[51
TASKID
TASKOUTPUT

 zc-

6

i

	

	 The contents of 2..12 may be changed dynamically by modifying the

addresses in pane by using AFTI. The contents of 14 may be changed by

interrupting processor 6 after the procedure INIT relay has been run and

changing the addresses in the array TTOV by using the AFTI.

The output per subframe if all processors are working will be an array

0..5 of processor output. This will produce 84 words of output per subframe

and this will take the following fora:

DATA OF PROCESSOR 0
DATA OF PROCESSOR 1
DATA OF PROCESSOR 2
DATA OF PROCESSOR 3
DATA OF PROCESSOR 4
DATA OF PROCESSOR 5

*If processor 2 (for example) is not in the current configuration, then

its data will not be present. Thus the data produced by processors 3..5 will

all move up to fill the gap. Thus by looking at the data present we can

identify which processors were working and we can calculate the virtual

processor number of each real processor during this subframe.

The output per frame will be an array 0..26 (current schedule) of subframe

output. This will total approximately 2R words of data for every 100ms. If

storage becomes a problem, we could selectively block the output from some or

most of the tasks from passing through Window or we could have the selectively

ignore part of the data produced.

INITSENDER CODE

Procedure INITSENDER:
(*Set up the transfile to handle Sender broadcasts*)

Var B, Bend, TP:Integer:

BEGIN

B: a 0;

BEND; = B + WNOS;
While B < BEND DO

BEGIN
TP: = B + TPBASE;
Transf ile [2*TP - 1023):	 B*8;
B: =B+1

END;
TP: = 3 + TPBASE;
Transfile [2*TP - 1023): = Eofbit bor (Bend*8);

END;

7

SENDER CODE

H

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

EXTRN
EXTRN
EXTRN
EXTRN

ENTRY

HOOKO
HOOK
HOOK2
HOOK3
HOOK4

ERROR
TASKID
TRANSP
PIDEO

SENDE

PANE LINK HOOKO
LINK HOOK1
LINK HOOKL
LINK HOOK3
LINK HOOK4

LINK ERROR *Error is now indexed by V IRTNOS. 	 Be careful
LINK ERROR + 1 *Must coordinate with reconEig information to
LINK ERROR + 2 avoid errors in interpretation.
LINK ERROR + 3 }
LINK ERROR + 4
LINK ERROR + 5
LINK TASKID

*Comments - The addresses in PANE[Ij 0 <=I<ll may be modified dynamically.	 The
current design of relay requires the address of taskid to remain in PANE(11]

ATRAN LINK TRANSPTR
APIDE LINK FIDEOF
WhOC FIX	 30592 ADDRESS OF DATAFILE[TPBASE+16#7400]
APANE LINK PANE

x7tW_uas, dw uNi^Yt.ttiakl+M6e^a,1

SENDE PUSNM 0,3

TRA 3,15
LOAD O,WLOC
LOAD 1,AFANE

LOAD* 2 $ 0 A.	 LOAD ONE
STO	 2,0,0	 STORE ONE REPEAT 12 TIMES
LOAD* 2,1,1
STO	 2,1,0
LOAD* 2,2,1
STO	 2,2,0
LOAD* 2,3,1
STO	 2,3,0
LOAD* 2,4,1
STO	 2,4,0
LOAD* 2,5,1
STO	 2,5,0
LOAD* 2,6,1
STO	 2,6,0
LOAD* 2,7,1
STO	 2,7,0
LOAD* 2,8,1
STO	 218,0
LOAD* 2,9,1
STO	 2,9,0
LOAD* 2,10,1
STO	 2,10,0
LOAD* 2011,1
STO	 2,11, 0

9

WAIT LOAD*
SKEQ
LOAD
STO*
T RA
POPM

1,APIDE	 WAITBROADCAST
!,WAIT
1,WLOC
1,ATRAN	 BEGIN THE BROADCAST
15,3
0, 3

RPS	 0

Y

^V

10

k	 f

f
r.

i

^;	 r
r

g

r

f

RELAY DESCRIPTION

After initialization, the Program Relay repeats the following loop:

Reconfigure if necessary

Collect the data

Output the data (or be read)

Calculate configuration if necessary

RELAY - APPROX. TIMING

Wreconf - 16 + (24*6)	 160us

Wcollect - 8 + (2*Search) + delay	 1,596us

+ move where

search - 4 + (26*6) A 160us

delay - 100us

move — 4 + 6*(13 + 912*13) + 15 + 10)

1,168

Wdump

gexec	 62

Relay	 20

Total	 1,838 + ?

fib .. w.. ..^r

I

RELAX CODE

x

Program Relay;

Const MAXPROCESSOR = 5;
GET = 3;
WNOS - 11;
datnum = 84;
dloc = 16#7400;

clkloc = 161177FD;

TTOVLOC a 16#4000;

ERRER . 33;
gexecreconf = 34;

gexecmemory s 35;
expected = 36;

lock - 37;
ndr = 38;
XRESET = 39;
gcmdail a 11:3;
gcmdele = 104;
gcmdrud = 105;
gcmdthr = 106;
cd^1= = 107;

108;
;;eizmo = 109;
P;l.atmo = 110;
greconf 111;
olast = 111;
osynch = 112;
(*internal values*)
phin = 113;
pain = 114;
rn = 115;
qx = 116;
qy = 117;
qz = 118;
timer = 119;
Maxdata = 1015;
dbsize = 128;
Maxtime 16	 # 47;

(*Processor 6 only*)

(*Global executive task is #3*)

(*Max data output per subframe*)

(*Taskid to variable location*)
(*'Mandatory SIFT buffers*)_

(*Probably should include all Buffers*)

(*must correspond to last of 0 series*)

Type Procint : array [O..Maxprocessorl of integer;
Procbool: array [O..Maxprocessorl of boolean;
dfindex : 0.. Maxdata;

Var	 clock at clkloc: integer;
first,	 (*alphabetic I hope*)
ibase,
lastconfig,

12

next,
NW,
Reconfig,
Taskid: integer
datafile at dfloc: array [dfindex] of integer;
dbad: Procint;
oldtask: Procint;
TTOV at TTOVLOC: array [0..11] of integer; (*Taskid to variable index*)
Wdata: airy [0..datnum] of integer;
working: Procbool;
Vtor: Procint;
V todf • Prociat;

Procedure Initializerelay;
(* In Initialize
1. We assume all processors are working. If this is not true at the start,

we will collect some garbage output until a reconfiguration occurs in

SIFT.

2. Unless Relay is initialized and waiting before SIFT finishes

initialization, the early data may be garbled because of a race

condition. This will clear up after IC3 first runs in SIFT, since it

will allow Relay time to catch up. *)

VAR i, ad: Integer;

BEGIN	 ad: = 0;
For i: = 0 to maxprocessor do
BEGIN

oldtask [i]: = datafile [ad + WNOS];
dbad [i]: = ad;
ad: = ad + dbsize

end;
Reconfig:= 0; (*all working*)
1Aastconfig:= 1; (*trigger a reconfiguration*)
(*Initialize the index to select an output from each task*)

(*Taskid to variable lo,,^.ation*)
TTOV[0]:= 11; (*repeat Taskid why not?*)
TTOV[1]:= 11;
TTOV (21 : = ERRER;
TTOV [3] := Gexec;
TTOV (4) ; = 11;
TTOV [S] := 11;

F

13

TTOV (61 := Expected;
TTOV[7]:- 11;
TTOV [8] :- 11;
TTOV[9]:= QX;
TTOV(10]:= QLATMO;
TTOV[11]:- QPITM;
TTOV(12]:- CMDRU

END;

Procedure WReconfigure;
VAR s,i: Integer;
Begin	 s: = Reconfig;

Lastconfig:- s; Mecs not do this again soon*)
NW:- -1;
1:- 0;
Repeat

If odd(s)
then, working [i]:- false;
ELSE

Begin
Working [i]: = true;
NUJ: = NW + 1;
(*Vtor	 [NWj:- i *)
(*Vtodf	 [NW]: = dba.d[i)*)

END;
s: = s cUv 2;
is= i + i

Until i > Maxprocessor
END;

LZ	 Procedure WCollect; (*wcollect calls Search twice and moveit
once*)

VAR wclock: Integer;

Procedure Search
VAR i: Integer;
(*find a processor not equal to first who has changed his taskid. 	 Search is

called twice by Wcollect*)
Begin	 (*could be coded with Vtor and Vtodf*)

1: = -1
Next: = -1;
Repeat

is - i + 1110D 6;
if working [i] then
if i 0 first then
if oldtask [i] 0 datafile ',dbad[i] + WNOS]

then Next: = i
Until Next: = i

END;	 (*Search*)

j	 -,

14

Procedure Moveit;
VAR i,j,offset,newoff: Integer;
Begin (*Moveit*)
offset:- -1;
For i:- 0 to Maxsender DO

if working [i] then
Begin

offset:= offset + 1;
Wdata [offset]:- i; (*Store processor number*)
1:- 0
ibase:= dbad [i];
Repeat	 (*fetch and store broadcast values from window*)

offset:= offset + 1;
Wdata [offset]:- datafile [ibase + 31
J:_ j + 1

Until j = WNOS + 1;
taskid: = Wdata [offset];
oldtask [i]:- fiaskid;
offset: = offset + 1;
Wdata [offset]:- datafile [TTOV[taskid] + ibase}

end (*if working,*)
End; (*Move*)
Begin (*WCollect*)

first:- -1;
Search;	 (*find first change to taskid*)
first:= Next;
Search;	 (*find second changes in taskid*)
wclock:- clock;	 (*delay for clockskew*)
while clock - wclock < Maxtime do;
Moveit

END;

Procedure WDump;
Make connection to send
[14*(NW + 1) words],from the start of wdata
to Vax Via:

1)Sox box - 2.8ms - can be reduced
2)1553a bus - 1.6ms
3)paralle1 bus a. .84ms no handshake

b. .28ms with handshake

* all times are approximations

Procedure Wgexec;
VAR. i, j: Integer;

r: array [0..2] of integer;
Begin

i: = 0;
J:- 0;
Repeat

	

	 (*See if three or more processors ran Rect in SIFT*)
(*we choose to not reconfigure for two processors*)

If old task [i] = get then
If working [i] then

Begin
r[j]: = datafile [dbadd[i] + Gexec];

jc= j + 1
END;

is=i+1
Until (i > Maxprocessor) or (i > 2);
If j > 2 then
if r[1] = r[2] then reconfig: = r[1]

ELSE reconfig: = r[0]

t	 END;	 (*default of vote, we do not have to be fault tolerant*)

Begin (*Relay*)
Initializerelay;
While true do Begin

if Lastconfig 0 Reconfig then WR.econfig;
Wcollect;
Wdump;
Wgexec;

END (*while true*)
END (*Relay*)

iS

PART II

INTERNAL COMMUNICATION
IN SIFT

3

Y

91

INTERNAL COMMUNICATION IN SIFT

The interprocessor communications are constrained by time and by the size

of memory available for broadcasting. A worst case broadcast time requires

approximately 19us per word. When the data collection component of the

instrumentation package is installed, it will consume a portion of the

broadcast area as well as increasing the probability of a delay due to the

serial nature in which broadcast requests are honored. This delay will always

be less than 228 us (19 x 12 = 228) and it is anticipated that any critical

delays can be partially remedied by delaying the requests for broadcasts in the

troubled tasks.

The current broadcast protocol restricts the variables to 120 datafile

locations (*1024 : 8 minus some dedicated locations*). This could be increased

to about 170 by gearing the system to 6 processors rather than 8. This is not

a permanent solution unless 6 is determined to be an optimal number of

processors in the system. We could also increase the number of variables

transmitted by the system by multiplexing the datafile area. This will slow

the system down and/or have the negative effect of making the name of a memory

location time dependent. We prefer to speed up SIFT and to keep the design as

simple as possible. The descendents of SIFT will be equipped with much layer

datafiles, thus multiplexing is not likely to be necessary.

f

1:8

The other problem associated with internal communications is the delay

gilled waitbroadcast. If the bus is busy when requested, a processor may have

a busy wait (wastes: time) until the bus becomes available. The implementation

of a broadcast queue: could alleviate these time wastes. This could either be

done using the datafile receive area for the eighth processor or in the current

broadcast area. This feature could have some value to future SIFT-like

machines and could be implemented and tested against baseline SIFT at this

time. This would require 4-6 manweeks.

The future uses of SIFT will probably include nonpriority tasks with

replicates running in scattered subframes. This will create the problem of

consistency of input for nonpriority tasks. Each such task will require

multiple buffering of certain postvote buffer values used for input. These

input values can be updated only between the completion of the task's last

replicate and the start of the first replicate on the next iteration.

I recommend the broadcast queue as a potential improvement to baseline

SIFT which can be implemented and tested at this time. The multiple buffering 	 t

should wait for new developments in scheduling. Multiplexing is not as

desirable at this time.

^rt

i

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf

