Optimal Searches for Asteroids

L. G. Taff
Lincoln Laboratory, M.I.T., Lexington, MA 02173

Number of pages - 19
Number of Figures - 3
Number of Tables - 0
Running Head - Optimal Asteroid Searches

Proofs to Dr. L. G. Taff
Lincoln Laboratory, M.I.T.
Lexington, MA 02173
This paper discusses optimal searches for a fixed object and the rigorous analytical results of discrete search theory are presented. They show that the totally optimal, the uniformly optimal, the locally optimal, and the fastest searches are identical under not too restrictive assumptions. The mathematical formalism is illustrated by an Earth-approaching asteroid search and optimal searches for such objects are explicitly constructed. The approximation that Earth-approaching asteroids are fixed is equivalent to having a very high (\(\gtrsim 100\) square degrees/hour) search rate. Generalizations to other types of astronomical search are briefly mentioned.
1. CONTEXT

Searches for asteroids, especially Earth-approaching asteroids, are routinely carried out by an M.I.T. group *(Taff and Sorvari 1980, Taff 1980a, b, 1981, various Minor Planet Circulars), Shoemaker and Helin (1979), and others. Although techniques differ (video signal processing for us versus the traditional procedures utilizing photographic plates for other groups), limiting magnitudes differ, and search rates differ, all groups have constrained their searches. In particular we all tend to look near the opposition point, during the New Moon phase, and especially in the winter months. These limitations increase the brightness of the sought after minor planet and decrease that of the night sky background both by limiting scattered light and by minimizing background sources of light. The questions addressed in this paper are "Are these searches optimal? Is there an optimal search? In what sense is it optimal? How can it be executed?" The answers are "No. Yes. Several (and they lead to the same search plan). Simply".

The branch of mathematics that deals with search theory is operations research and I shall assume that the reader is not well-versed in such matters. Hence, a large part of this paper is, necessarily, an introduction to the theory of search. There exists an excellent reference on the subject by L. D. Stone (1975). In order to ease the transition for the reader from Stone's book to this paper I have followed his notation. Proofs and supplementary material can be found therein.

Below I have formulated what is known as the search with discrete effort for a fixed target. Asteroid searches are used as a model to illustrate the mathematical formalism. Relatively little simplification of the physics or astronomy is necessary to do this. Next the results of optimal search theory are stated and the optimal search problem is solved. Following this optimal searches for Earth-approaching asteroids are explicitly constructed and exhibited. Lastly, generalizations of optimal searches in this and in other astronomical contexts are briefly considered.

2. FORMULATION

One looks for asteroids on the celestial sphere. In the largest sense this forms the two dimensional search space of the problem. In practice we delineate a limited area of the celestial sphere (say above altitude 30°) that we shall actually search in. Denote this search space by J.

One searches using a telescope with a finite field of view. In practice we always examine an entire field, never a fraction of a field nor more than one field at a time. Hence the search space J consists of a discrete set of fields of view. Number these by the index \(j = 1, 2, \ldots \). In particular, since the celestial sphere encompasses \(4\pi \) steradians, \(\max (j) < \infty \).

Before the minor planet is found one assigns an a priori target distribution on the search space J, \(p: J \rightarrow [0,1] \) (the notation means that \(p \) is a function defined over the set \(J \) which maps elements of \(J \) into the domain zero to unity inclusive). The target distribution is the a priori probability of finding an asteroid in field of view \(j \in J \) before one starts the search. For main belt asteroids a reasonable model for \(p \) is \(p \) is uniform over all heliocentric ecliptic longitudes and over the heliocentric ecliptic
latitude range < 10° (or 5° or 20°). For Earth-approaching minor planets, both because of parallax effects and the inherent spread of Earth-approaching asteroids over orbital element space (particularly in inclination), a reasonable model for \(p \) is that \(p \) is uniform over the topocentric celestial sphere. In any case

\[
\sum_{j \in \mathcal{J}} p(j) \leq 1
\]

When one examines a field of view (whether a video frame or an exposed plate) for an asteroid one expends a certain amount of effort trying to detect the asteroid. In the photographic case one is looking for the streak that the moving minor planet has left. In the video mode one looks for two displaced dots from frames taken at different times (and after the stars have been electronically subtracted). One may look at the same field of view several times. The cost of performing \(k \) inspections in the \(j \)'th field of view is measured by a cost function \(c(j,k): \mathcal{J} \times \{0,1,2,\ldots\} \to [0,\infty] \).

Clearly \(c(j,0) = 0 \ \forall \ j \in \mathcal{J} \) (no effort implies no cost). One could measure cost by the time spent examining a field of view plus the time spent in moving to the next field of view (this makes \(c \) non-local and is not desirable). Operationally we always spend the same time in each field of view (more or less). Also, because \([\text{area } (J)]^{1/2}/\text{slew speed} \ll \text{time spent examining a field of view}, the non-local element of \(c \) is both unimportant and varies little. We typically spend 45 seconds examining a field, the telescope slews at 4°/sec, and we rarely search more than 500 square degrees per night. Hence \([\text{area } (J)^{1/2}] \text{ slew speed} = 5.6 \text{ seconds. (For photographic searches it's a good approximation too because large plates we usually used; i.e., 6°x6°.)}

Thus I shall measure cost by time and, in the instance of the asteroid search, specialize to the case when the incremental cost of the \(k \)'th examination in field of view number \(j \), viz.
\[\gamma(j,k) = c(j,k) - c(j,k-1) \]

is a constant independent of both \(j \) (i.e., the telescope is fast or the plates are large and all fields of view are treated equally) and \(k \) (e.g., the same field of view is equally well inspected each time).

When one does examine a field of view of the search space looking for an asteroid then there is a conditional probability of detecting it on or before the \(k \)'th inspection of that field of view (given that it is there). This function, for field of view number \(j \) and examination \(k \), is denoted by \(b(j,k) : J \times \{0,1,2,\ldots\} \to [0,1] \). Naturally \(b(j,0) = 0 \ \forall j \in J \) (you can't find it if you don't look for it). From the detection function \(b \) one can construct the probability of failing to detect the asteroid on the first \(k-1 \) scrutinizations of field of view number \(j \) and then succeeding on the \(k \)'th one (given that the asteroid is in field of view number \(j \)); viz.

\[\beta(j,k) = b(j,k) - b(j,k-1) \]

There is a lot of physics and mathematics subsumed in the detection function. Clearly it depends on the asteroid's apparent magnitude, the background star density, the night sky background brightness, the resolution element size of the detector(s), the false alarm probability one is willing to accept, how tired one is, etc. Since the ecliptic is unchanging, atmospheric extinction can be computed, the Moon's position is known, etc. this is a computable function. Indeed we are developing software to realistically do so in a physically correct way. Operationally, for a fixed set of external parameters, our detection probability has the shape shown in Fig. 1 where \(m_L \) is our quoted limiting magnitude (e.g., where the probability of detection is 50%). The form shown in the diagram will be used to compute the optimal search plans given below.
Finally I need to define a **search plan**. A discrete search plan is a sequence $\xi = (\xi_1, \xi_2, \xi_3, \ldots)$ which tells the searcher to first look in cell ξ_1; if the asteroid is found there then terminate the search but if the minor planet isn't found then look next in field of view ξ_2, etc. A global way to describe this is by a function which specifies the allocation of effort devoted to each field of view j. To this end define $f: J \rightarrow [0, \infty)$; $f(j)$ is the number of examinations in field of view number j.

Above I referred to searches for a fixed target. Clearly the minor planets we are trying to find are moving. Earth-approaching asteroids can have geocentric angular speeds of a degree per day (or more). I've made the assumption that even these objects are fixed when compared to our search rate. The mathematical formulation of this approximation is $[\text{area } (J)/\text{search rate}] \cdot \text{asteroid angular speed} \ll \text{field of view}$. For our parameters $[\text{area } (J) = 500 \text{ square degrees, search rate} = 100 \text{ square degrees/hour, asteroid angular speed} = 1^\circ/\text{day, field of view} = 2^\circ]$ an asteroid could traverse only one twelfth of a field of view before the entire search is completed. Hence the real problem fits into the formalism reasonably well. For faster moving minor planets the optimal search plans developed below need to be corrected for the asteroid's motion.

3. OPTIMAL SEARCHES

Given the cost of searching field of view number j a total of k times, $c(j,k)$, the total cost of performing the search plan ξ with allocation f is

$$C[f] = \sum_{j \in J} c(j, f(j))$$

The total number of examinations over all fields of view is $\sum_{j \in J} f(j)$.
Similarly the total probability of minor planet detection with this allocation of effort is $P[f]$,

$$P[f] = \sum_{j \in J} p(j)b(j,f(j))$$

where $b(j,k)$ is the conditional probability of finding the asteroid in field of view number j after k examinations of that field of view given that it's in that field of view.

There are four types of searches one might define as optimal. One might be interested in maximizing the total probability of detection when constrained to a given number of inspections (say K). If the incremental cost function $\gamma(j,k) = c(j,k) - c(j,k-1)$ is a constant, then (after a suitable renormalization) one is demanding that $P[f]$ be a maximum for $C[f] < K$. Such a search is termed **totally optimal**. If one demanded optimality for all $K = 1, 2, 3, \ldots$ then the search is called **uniformly optimal**. A third type of search plan that one might consider is the search plan that maximizes the probability of detection with respect to the incremental cost and does so at every step of the search. Mathematically one finds the value of j which maximizes $p(j)b(j,k)/\gamma(j,k)$ at each k. These searches are called **locally optimal**. Lastly one might entertain a search plan that minimized the total expected cost (i.e., was the fastest) to find the target.

The essential assumptions necessary to cast the asteroid search into the simplest form of the mathematical superstructure that Stone (1975) outlines are

1. That the asteroid is stationary (i.e., search rate high compared to the asteroid's angular speed),
2. That the search space is discrete (i.e., a fixed field of view),
(3) That the allocation of effort is discrete (i.e., no favored fields of view), and

(4) That γ is bounded away from zero and $p(j)b(j,k)/y(j,k)$ is a decreasing function of j (i.e., no free examinations of a field of view and the larger the search space the more difficult to detect).

I do not believe that the physics or astronomy is strained by these strictures. In fact (5) $\gamma = \text{constant}$ is not unreasonable (i.e., the telescope moves smartly). The important point is that under these five limitations the totally optimal search plan, the uniformly optimal search plan, the locally optimal search plan, and the fastest searches are all identical. Not only that, it can be explicitly exhibited. See Stone's text for the rigorous mathematical statements of the relevant theorems and their proofs.

4. THE SEARCH PLAN

I need just a bit more mathematics before I can exhibit the solution to the optimal search problem. The search plan $\xi = (\xi_1, \xi_2, \xi_3, \ldots)$ is a sequence of values $\xi_i \in J$ for $i = 1, 2, 3, \ldots$. These specify that the i'th examination be in field of view ξ_i if the previous $i-1$ inspections failed to detect the asteroid in fields of view $\xi_1, \xi_2, \ldots, \xi_{i-1}$. Let the set of all such search plans be denoted by Ξ. Introduce the probability $P[n, \xi]$ (and the cost $C[n, \xi]$) of detecting the asteroid on or before the n'th examination while performing search plan $\xi \in \Xi$ (of the first n inspections). Finally, let $r(j,n,\xi)$ be the number of scrutinizations out of the first n that are
placed in \(j \)'th field of view while following search plan \(\xi \). A uniformly optimal search plan [for \(\gamma(j,k) = 1 \); this is an unimportant normalization] \(\xi^* \in \Xi \) is one such that

\[
P[n,\xi^*] = \max \{P[n,\xi] : \xi \in \Xi \}, \quad n = 1, 2, \ldots, K
\]

A locally optimal search plan \(\xi^* \) is one such that \(\xi_1 \) is determined by

[\(\gamma \neq 0 \) necessarily]

\[
\frac{p(\xi_1)\beta(\xi_1,1)}{\gamma(\xi_1,1)} = \max_{j \in J} \frac{p(j)\beta(j,1)}{\gamma(j,1)}
\]

and having determined the field of view for the first \(n-1 \) examinations \((\xi_1, \xi_2, \ldots, \xi_{n-1}) \) the field of view for the \(n \)'th one is determined from

\[
\frac{p(i)\beta(i,r(i,n-1,\xi) + 1)}{\gamma(i,r(i,n-1,\xi) + 1)} = \max_{j \in J} \frac{p(j)\beta(j,r(j,n-1,\xi) + 1)}{\gamma(j,r(j,n-1,\xi) + 1)}
\]

with \(\xi^*_n = i \). Now define \(k_n = r(\xi_n, n, \xi) \). The notation means that the \(n \)'th examination of the search plan \(\xi \) is placed in field of view \(\xi_n \) and that it is the \(k_n \)'th time that this field of view has been searched. The average cost to find the asteroid can be expressed in a variety of ways if the limit as \(n \rightarrow \infty \) of \(P[n,\xi] \) is unity;

\[
\mu(\xi) = \sum_{n=1}^{\infty} C[n,\xi] (P[n,\xi] - P[n-1,\xi])
\]

\[
= \sum_{n=1}^{\infty} \sum_{m=1}^{n} \gamma(\xi_m, k_n) p(\xi_n) \beta(\xi_n, k_n)
\]

OF POOR QUALITY
\[
\sum_{m=1}^{\infty} \sum_{n=m}^{\infty} \gamma(\varepsilon_m, k_n) p(\varepsilon_n) \beta(\varepsilon_n, k_n)
\]

or

\[
\sum_{m=1}^{\infty} \gamma(\varepsilon_m, k_m) (1-P[m-1, \cdot, \cdot])
\]

since \(P[0,\cdot] = u\). If \(\gamma(j, k) = 1\) then this reduces to

\[
\mu(C) = \sum_{n=0}^{\infty} (1-P[n, \cdot, \cdot])
\]

Now I can exhibit the solution explicitly. Under the assumptions outlined above if \(q_j\) is the probability of detecting the asteroid after a single examination of field of view number \(j\) (given that it is in field of view number \(j\)) then, as each inspection is an independent event, the incremental conditional probability of detection \(\beta(j, k) = b(j, k) - b(j, k-1)\) is given by

\[
\beta(j, k) = q_j (1-q_j)^{k-1} \quad \text{for } j \in J, k = 1, 2, \ldots
\]

Normalize such that \(\gamma(j, k) = 1 \forall j \in J, k = 1, 2, \ldots\) and suppose that an allocation \(f(j)\) has total cost (i.e., number of inspections) \(K\),

\[
\sum_{j \in J} f(j) = K
\]

The total probability of detection for this allocation of effort will be

\[
P[f] = \sum_{j \in J} p(j)b(j, f(j)) = \sum_{j \in J} p(j)[1-(1-q_j)^{f(j)}]
\]

Consider the search plan defined by: one makes the \(n\)'th inspection in field of view number \(i \in J\) such that
\[
\rho(i, n, \xi) \max_{j \in J} \rho(j) q_j (1 - q_j) = j \in J q_j (1 - q_j)
\]

Then \(\varepsilon = \varepsilon^* \) and is optimal (in all senses). This result is due to Chew (1967). Since \(J \) is finite the existence of an \(i \) satisfying the above is guaranteed. If one exploits the uniformity of the target distribution \(\rho \) over the search space \(J \), then the result is even simpler,

\[
r(i, n, \xi) \max_{j \in J} q_j (1 - q_j) = j \in J q_j (1 - q_j)
\]

5. SEARCH PLAN CONSTRUCTION

I have already argued that the a priori target distribution \(\rho(j) \) can be approximated by a defective uniform distribution over the searches. In fact, \(\sum_{j \in J} \rho(j) = \text{area}(J)/4\pi \). I have also argued that the essential cost function is homogenous over \(J \) and independent of the number of looks, \(\gamma(j, k) = 1 \) (in appropriate units). The probability of detection of the minor planet in field of view number \(j \) (given that the asteroid is there) is \(q_j \). This depends principally on the apparent magnitude of the minor planet and the night sky background. Three effects tend to make asteroids fainter; atmospheric extinction, loss of brightness due to increasing phase angle, and increasing distance (heliocentric or geocentric).

The extinction is modeled as usual,

\[
\varepsilon = \varepsilon_Z \sec z
\]

where \(z \) is the topocentric zenith distance and \(\varepsilon_Z \) is the extinction per
unit air mass. I've used a value of 0.13 mag/air mass for ε_2. For the phase function in magnitudes I've used the Gehrels and Tedesco (1979) results,

$$B(1,0) = B(1, \theta) + 0.538 - 0.134 |\theta|^{0.714} - 7\varepsilon, \text{ for } |\theta| < 7^\circ$$

$$B(1,0) = B(1, \theta) - 8\varepsilon \text{ for } |\theta| \geq 7^\circ$$

where $B(1,0)$ is the absolute B magnitude and $B(1, \theta)$ is the apparent magnitude corrected for phase angle θ. The parameter of the linear part of the phase function in magnitudes $z = 0.039$ mag/deg. The search plans in Figs. 2 and 3 presume a geocentric distance of 0.5 A.U. at opposition.

For asteroids very much brighter than our limiting magnitude ($m - m_L < -1^m$) the probability of detection is essentially unity. For asteroids very much fainter than our limiting magnitude ($m - m_L > 1^m$) the probability of detection is essentially zero; see Fig. 1. Hence, the most interesting range from the point of view of planning a search is the regime $|m - m_L| < 1/2^m$. The search plans shown in Fig. 2 are for midnight on a winter solstice night and $B(1,0) = mL - 1^m$ (Fig. 2a), or $m_L - 1/2^m$ (Fig. 2b). The search space J was chosen to be the $20^\circ \times 2^h$ (declination x right ascension) area on the celestial sphere centered at opposition. Note that this prejudices the search plan towards the intuitively obvious region of the celestial sphere. (The latitude of our observatory is $33^\circ 49'$.) Each field of view of the search space is a square, two degrees per side and there are 150 fields of view in the search space. We look first in the field of view with the highest probability of detection and choose subsequent fields of view based on Eq. (1). A simple, repetitive enumeration through Eq. (1) determines the field of view order. Figure 3 shows the $m_L - 1/2^m$ case at midnight on a
summer solstice night. All of these illustrations were arbitrarily terminated as soon as each field of view of the search space had been examined (for clarity in presenting the plans diagrammatically).

A logical question to ask at this point is "How inefficient is the unplanned search relative to the optimal search?" For our searches we would've started at opposition and then spiralled outward until each field of view had been examined once. When the asteroid is relatively bright (Figs. 2) this is roughly the same as the optimal search plan. The search plan exhibited in Fig. 2a has a cumulative probability of detection of 92.4%. For the search plan shown in Fig. 2b the cumulative probability of detection is lower, 85.3%, and the usual search plan is 5.5% less efficient still. The comparison of the two search plans for the case of Fig. 3 is more complicated because we would've never repeated an examination of a field of view. With comparable effort to the optimal search plan, but randomly distributed over the search space, the optimal plan starts out more efficient and then becomes comparable to the repeated uniform in areal coverage one. This is typical of extended optimal search plans for medium bright objects. When one is trying to fully reach one's limits optimal search plans invest tremendous allocations of effort repeatedly near opposition (since each examination of a field of view is an independent event and the sought for asteroid is at the limits of detection). The plans tend to be factors of 2-4 times as efficient of the uniform ones.
6. GENERALIZATIONS

It is clear that any search for a fixed object, from variable stars to geosynchronous artificial satellites, can be cast into this formalism. It should be just as clear that this paper contains all of the essential mathematics for single searches of this type. Searches for moving objects and multiple observatory searches for the same moving objects can also be solved by similar methods. They are however much more difficult to formulate and specify especially since their theoretical structure is incomplete. A more relevant problem is the multiple night search (by the same observatory) for a fixed object. One can plan such searches by an iterative algorithm that takes into account the (presumed) failure of the search. The posterior target distribution, given failure to detect, is updated by Bayes's formula and the conditional detection probability is appropriately modified too. In this fashion a whole week's worth of searching can be optimized. These techniques are applicable to all types of searches (x-ray bursters to comets), and can handle false targets, approximations to optimal plans by incremental means, etc.
ACKNOWLEDGMENTS

This work has been sponsored in part by N.A.S.A. (under grant NAGW-232) and the Department of the Air Force (under contract F 19628-80-C-0002). Patrice Randall implemented the computer code and Lynne Perry typed the manuscript.
REFERENCES

Figure Captions

Figure 1. Probability of detection as a function of "distance" from limiting magnitude \(m_L \). The functional form is constant/\(1 + \exp [5(m-m_L)] \).

Figure 2. Search plans for (Fig. 2a) a bright and fainter (by \(0.5 \); Fig. 2b) asteroid at midnight on a winter solstice night. The number(s) in the boxes are which examinations of the optimal search plan this field of view of the search space was examined.

Figure 3. Same format as Fig. 2 except at midnight on a summer solstice night for \(m = m_L - 1/2^m \).
Original Photo IS
OF POOR QUALITY

\[\Delta M = M - M_L \]