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Abstract 

This paper deals with two classes of problems arising from acoustics and 

electromagnetics scattering in the low frequency situations. The first class 

of problem is solving Helmholtz equation with Dirichlet boundary conditions on 

an arbitrary two-dimensional body while the second one is an interior-exterior 

interface problem with Helmholtz equation in the exterior. Low frequency 

analysis show that there are two intermediate problems which solve the above 

problems accurate to O(k2 log k) where k is the frequency. These 

solutions greatly differ from the zero frequency approximations. For the 

Dirichlet problem numerical examples are shown to verify our theoretical 

estimates. 
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Introdu<:t:ion 

The "softo-obstacle" problem in acoustics involves Hnding a solution of 

the Helmholtz equation, fm + k
2 

u == 0, in the exterior $1+ of a bounded 

region $1 with u = f on a$1. In general, f itself will depend on k, 

A natural question to ask is whether it is true that if as 

k + 0 then the solution uk will tend to uO the solution of ~uO 0 in 

$1+, u = fO on a$1. The limit problem is much easier to solve numerically 

than that for uk. 

It is known that the answer to the above question is yes. For two 

dimensions, however, it is also known that the solution uk has a logarithmic 

branch point at k = O. This in turn leads to the fact that 

k 0 
u - u O(log k)-l) so that the convergence to uO is very slow. These 

ideas are discussed in [1], [2] and [7]. 

The purpose of this paper is to present a modified low frequeney 

approx:i.mation" We illustrate with the important special case of the Held 

produced by line sources in the exterior of a cylinder. We give an 

approximation which is accurate to 0(k2 log k) but which still involves 

solving only the limit case of Laplace's equation in $1+. 

Our method can also be applied to the two-dimensional eddy current 

problem discussed in [3]. Here one is again solving ~u + k
2 

u == 0 in $1+ 

but now one has ~u + ia
2 

u == 0 in Q+ and there are transition conditions 

across a$1. Solving the problem with ~u == 0 in $1+ again produces a 

solut:i.on accurate only to O( (log k) -1) . 

acCUrtlcy of O(k2 log k) while keeping ~u 

Our revised method again gives 

o in $1. 

Let us give a precise statement of the problems under considerations. n 

is a hounded region in :rn2 with smooth boundary rand Q + the exterior of 

~. In all our problems we will have given incident field Uk which is that 
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due to line sources at m Points x ••• x . 
-1' '-m' 

i m 
"4 L 

j=1 
a. H(I) (klx - x.l) 

J 0 --] 
(1.1) 

where H(l) 
0 is the Hankel function. For k > 0 all our fields, including 

(1.1), are to satisfy the Sommerfeld radiation condition. For any 

write f+,f_ for the limits from rl+ and rl . We write down the 

the scattered fields uk; that is the total fields in rl+ will be 

Exterior Dirichlet Problem: 

Find uk such that: 

o 

Problem (P ka): Interface Problem: 

k 
u 

Find uk such that: 

k 
u + <I?', + 

o o 

+ in rl 

on r. 

in rl, a > 0 

f we will 

problem for 

uk + Uk: 

(1. 2) 

(1.3) 

(1.4 ) 

(1. 5) 

We obtain the limit problems by formally setting k == 0 in (Pk ) and 

(Pka ) but some care is necessary in the behavior at infinity. To motivate 

this we consider uk more carefully. For the Hankel function we have, 



- ~ H(l)(kz) = ~ log z + B + 
4 0 2n 

00 

a (kz)2n log kz + b (kz)2n, 
n n 

(1. 6) I 
n=l 

s '" ~ (Y - ~ i + log ~2) 21T 2 
(1. 7) 

y is Euler's constant and we note that 1m B *" O. From (1.1) and (1.6), 

(1. 8) 

m 
a. log Ix - x.l; 

J J 
A - l~ 

j:::l 
a .. 

J 
(1. 9) 

When k:= ° we no longer have the radiation condition but rather we 

require that the total fields remain bounded at infinity. We recall that 

u O is supposE~d to represent the scattered field. We see from (1.9) that Uo 

becomes logar:tthmically infinite for large Ix I and to compensate we must 

allow uk to do likewise. This suggests that in the limit problem for both 

and ( p ) we should require that, 
ka 

is bounded as Ixl + 00. 

Problem (PO) (Po): Find u O satisfying (1.10) and, 

° on r. 

Problem (P
Oa

):: Find uO satisfying (1.10) and, 

!:"uO ° in ['2+ !:"uO + ia 2 ° ° , u 

° ° (u 0) ° u ::: u+ + <P; - = (un )+ + '¥ n 

(1.10) 

in ['2 

on r. 

3 
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The following two results are proved in [5] and [3] respectively. 

Theorem 1.1. There exists a unique solution uk for problem 

(Pk ), (k ~ 0). 

Theorem 1.2. There exists a unique solution uk for problem 

(Pka ) , (k ~ 0). 

Our aim is to give approximate procedures for the solution of 

in which one has to solve only The crucial 

question then is how to choose ~(~,~) in (PO)' (POa ). 

The straightforward low frequency approximation involves putting 

(1.11) 

We will see that this yields uk - uO = O(log k)-l). Our procedure involves 

a more sophisticated choice of ~ or (~,~) which accounts for the term AS 

in (1.8). This involves a very careful analysis of solution processes for 

(PO) and (P Oa) which we carry out in the next section. In Section 3 we 

give our modified process for (Pk ) and in Section 4 for (Pka ). Section 5 

gives the results of some simple numerical experiments. 

2. INTEGRAL OPERATORS 

Our analysis involves use of singular integral equations theory. We 

represent solutions of by means of simple layer 

potentials. The properties of these are well known in the literature. 



L'~t 

We note 

where 

Go(2~'X) := 

9g[er](~) 

So [ey] (!) 

Mo[(J](~) 

that, 

t~[ (J] (~) 

f[cr] - f 
r 

i H(l) 
-"4 0 (ol~ - yl) 

1 
I~ - yl -log 21T 

= f cr (y)G 0 (~,y)dsr 
r 

= ~[a](~) 

= f a 
eYer) an- Go(~,y)dsy 

r x -

1 =-f[cr] 21T 

cr(y)ds • 
- Y 

log Ixl + o( fxr) 

if o * 0 

(2.1) 

if o = 0 • 

if x E ~/ -

if x E r (2.2) 
-

if x E r 

as Ixl + 00 (2.3) 

Formulas (1.6) and (1.7) give the following expansions to our integral 

operators 

9'k [cr](~) = ~[cr](~) + Br[cr] + k
2 

log ~[cr](~) (2.4) 

Sk [a ](~) 
2 (2.5) = So[cr](~) + f3f[G] + k log k Rk[cr](~) 

Mk [cr ](~) = MO [cr] (~) + k
2 

log k Nk[cr](~), (2.6) 

where 

5 
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if x E Q+ 

if x E r, 

and ~k is a regular kernel whose leading term is of the order 

O(I~ - ~12 log I~ - ~I). Similarly, Nk is an integral operator whose kernel 

is regular. 

We have the following properties concerning the integral operators Sk' 

Rk , Mk and Nk , Let r E Cs , s) Irl + 2 and then for any r E 1R we have 

the following: 

Properties (Hsiao and MacCamy, Hsiao and Wendland, Hariharan and Stephan) 

1. Sk Hr (r) + Hr+l (r) k ) 0 

2. ~ Hr(r) + Hr+s(r) k > 0 

3. Sk is bijective for k > 0 

4. Mk Hr (r) + Hr+(s-l r l-2) k ) 0 

5. Nk Hr (r) + Hr+(s-Irl) k > 0, 

6. If r E Coo, then for any r E 1R and for any (g,A) E Hr(r) x 1R, 

there exists unique r-l (o,c) E H (r) x 1R such that 

j So[o] + c = g 

~ rro] = A. 

The solution of (2.7) has the form 

(2.7) 
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(J = L [ g] + aAlj! for some a 

c=R,[g]+AA for some A 

and where 

As a consequence of Properties 1 and 6 we have the following theorem. 

THEOREM 2.1 Let r be COO Hnd rEm. 

(i) There exists a unique lR such that 

(2.8) 

(ii) r For any g E H (r), there exists unique such that 

(1m e *- 0). (2.9) 

Proof:: 

(i) Follows directly from Property 6. 

(ii) (Existence): Define 
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This has a unique solution by Propery 6. Let 

for some p. 

This will satisfy (2.9) provided 

or 

g - c1 - pcO + i3 + pi3 = g 

or 

p 
c - f3 1 
B - C ' o 

and B - Co * 0 since 1m B * O. 

(iii) (Uniqueness): Suppose SO[f] + B f[f] = O. 

CASE (i): f[f] = 0, then f 0 by Property 6. 

CASE (ii): f[f] * O. 

Let 

f 
f - f (f) , 

(2.10) 
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then 

f[f] = 1. 

Thus by (i), f = fO' f3 = cO. This is not possible since 1m B * O. 

NOTATION: For the solution of (2.9) we write 

Then WE~ have the following: 

Cl)rollary 2.1. 

i.s bijective. 

3. LOW FREQUENCY RESULTS FOR THE DIRICHLET PROBLEM 

In this section we consider problems (Pk ) and (PO). We prove the 

follovdng result. Let the total field (Le. incident plus scattered part) 

of (Pk ) and (PO) be uk and 1fJ then: 

For problem (Pk ), there exists an intermediate soluti.on 

v such that, (i) uk - v = 0(k2 log k); (ii) v - uD = O(~). 
i.og K 

Moreover v can be obtained by solving (PO) for appropriate ~. 
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According to the notations developed in the previous section we can 

represent the solutions of (Pk ) and (PO) as follows. 

For (Pk ): --
k ~[crkJ(~) (~ ~+) • (3.1) u (~) = E 

For (PO): 

+ 
(~ E ~ and c E JR) (3.2) 

Formula (3.1) will be the solution of Pk provided 

on r 

and (3.2) will be the solution of Po provided 

on r 

o 
r[cr J = A. 

By Property 3, (Ik ) has a unique solution and by Property 6, (10) has a unique 

solution. We expand the operator Sk and the incident field Uk in (1k ) 

according to (2.5) and (2.7) respectively. This yields 

(3.3) 

Define cr by 

(3.4) 



By Theorem 2.1 this has a unique solution and is given by 

T.T f k we set = 0 - 0 and subtract (3.4) from (3.3) to give 

By Theorem 2.2 this again has a unique solution by successive approximation 

with 

2 f == O(k log k). 

Hence, 

ok == 0 + O(k2 log k). 

Define v by 

+ (x E Q ). 

(3.5) 

(3.6) 

Since 0 is a uniquely defined function the function v is also uniquely 

determined for given Uo and B. Since 
-k k 
u = u + Uk we have, 

Hence 

-k u - v = O(k2 log k). (3.7) 

11 
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This proves the first part of Theorem 1.3. 

Now we consider (10)1 and (3.4). Subtracting the first from the second 

equation, we have: 

o Sora - a 1 + sr[a1 - AS - c 0, 

since A o r[a ], it follows that 

o 0 Sora - a ] + sr[a - a ] - c = o. 

Set 

o r[a - a ] = a 

and 

* c = S a-c. (3.8) 

Then 

By Theorem 2.1(i) 

(3.9) 

Now (3.8) and (3.9) yield 



(S - Co * 0, since 1m S * 0) 

(3.10) 

Note that a - 0 0 == o( IO~ k)' 

subtraet (3.2) from (3.6). 

Now taking into account that 
-0 0 
u = u + DO 

-0 ~[a - 0 0 ] + Sr[a] - AS - c v -. u 

c 
t9g[fol + S 

Sc + BA - SA - c == S - Co - Co 

-0 c 
[ ~[fo] + cO]· (3.11) v "- u = S - Co 

Thus 

-0 1 
v- u == O(IOg k)' 

Hence the proof of Theorem 1.3 is complete. 

REMARK 2.1: The intermediate solution v differ from the zero frequency 

solutIon exactly by the function given in the right hand side of (3.11) 

while v itself differ from uk only by O(k2 log k). Thus v is the 

solution we are looking for and is determined by simply solving (3.4). 

REMARK 2.2: From (3.6) the definition of v we see that it satisfies 

~v = 0 and v bounded at infinity. Thus in principle v satisfies (PO). 

However it has to be computed by solving the single integral equation (3.4). 

13 
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4. LOW FREQUENCY RESULTS FOR THE INTERFACE PROBLEM 

In this section we present similar results for problem (Pka ) and 

(P Oa)' As before it will be seen later that there exists an intermediate 

problem which solves (Pka ) to 

Ii t d Let -ku -- uk + Uk comp ca e • 

O(k2 log k). The analysis is a little more 

-0 0 
and u = u + UO' We shall prove: 

THEOREM 4.1: For problem (P
ka

) there exists an intermediate 

solution v such that 

(i) 
-k 2 
u - v = O(k log k) 

(ii) v - l.i? = O( lO~ k)' 

Moreover, v can be obtained by solving (POa ) for appropriate ~,~. 

We begin with simple layer representations for solution. For (Pka ) we 

seek 

x E rl+ 
k 

u (~) = (4.1 ) 

x E rl 

and for (POa ) we seek 

o 
u (x) (4.2) 

x E rl 

The boundary conditions that uk and uO satisfy yield 



S [~ 0] = So[ljio] + uo + c 
lia 

_ ~ ~O [~O] =~IjiO+M [1ji0] 
auo 

(110) +M +-2 
lia 2 ° an 

qljio] = A. 

Existence of unique solutions of (Ilk) and (lIO) is given by Harihara.n 

and MacCamy [3] and is also found in [4] for (1I0 )' We need the following 

theorem relating to the general situation of (110): 

TUEOREM ~,.2 (Hariharan and MacCamy). For r(~ 1) E :m. and for any 

r r-1 
(g,h,a) E H (f) x H (f) x :m. there exists a unique solution 

(~O,IjiO:,c) E Hr-\r) x Hr - 1(r) x ¢ such that 

15 
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COROLLARY 4.1 In particular we have for r(:;;'l) E 1R there exists 

(4.3) 

We also need the following results to establish our low frequency results. 

THEOREM 4.3 For any (g,h) Hr(r) x Hr - 1 (r) there exists unique 

s [4> J 
lia 

(4.4) 

-i 4> + M [ 4> J= i 1); + MO [1); J + h 
lia 

(1m S * 0). 

Proof: Existence 

(4.5) 
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This has a unique solution by 

Theorem 4.2. Let 

When this substituted in (4.4) together with the use of (4.3) and (4.5) we 

find that p is determined by 

(4.6) 

Note that Co is a complex constant but independent of k (or S). Thus 

Co would possibly equal to one value of k which we rule out. 

UniquEmess 

Consider 

(4.7) 

CASE (i): r[1ji] = O. 

This is the homogeneous case of Theorem 4.2 and we find (~,Iji) _ (0,0). 

CASE (it): r(lji) * O. 

Set 

" - Iji 
Iji - r[1ji] 

then 
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Therefore 

8 [cj>] = 80 [I/!] + B 
lia 

(4.8) 
1 1\ 

[ cj> ] 
11\1\ 

--cj>+M = "2 I/! + MO[I/!]· 
2 ITa 

Thus Corollary 4.1 

B = cO' I/! = I/! 0 and cj> = cj>0' 

B = Co could not happen since Co is independent of k. Hence the theorem. 

Let us write this soluton as 

J;(g,h). 

COROLLARY 4.3 

(i) ~: Hr(r) x Hr - 1(r) + Hr - 1(r) x Hr - 1(r). 

(ii) ~ is bijective. 

(4.9) 

With these results we can now show the low frequency estimates. We 

return to integral equations (Ilk)' Using the expansion given in Section 2 we 

have 

(4.10) 



Define (~,~) by 

auo +- . an 

This hias a unique solution by Theorem 4.3 and the solution is 

(4.11) 

(4.12) 

Define (f,g) = (~k - ~, ~k - ~). Subtracting (4.11) from (4.10) we have, 

This system has a unique solution by Theorem 4.3 and given by 

This has solutions with successive approximations 

(f,g) 2 
O(k log k). 

Therefore 

k 2 
~ = ~ + O(k log k). 

19 
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Now define v by 

+ x E ~ 

x E ~ 

Also we write the expansion of (4.1) plus the incident field Uk 

-k 
u (x) 

Thus 

uk(x) - v(x) = O(k2 log k). 

This proves the first part of Theorem 4.1. 

(4.13) 

i.e., 

.+ x E [1 

x E ~ 

(4.14) 

(4.15) 

Now we consider system (4.11) and (110)' Subtracting the second from the 

first we have 

° ° = SO[1); - 1); ] + sr [1); - 1); ] - c 

1 ° ° 1 ° ° "2 [1); - 1); ] + M [¢ - ¢ ] ="2 1); - 1); + MO [1); - 1); ]. 
lia 

Let r[1); - 1);0] = a. Thus by Corollary 4.2 we have 



yielding 

c a 

Thus 

,h = ,1,0 + C ~ 
'V 'V S - C 'VO' o 

o 0 1 ) yielding (cp,\)!) - (cp ,\)! ) = O(log k • 

Now we subtract (4.2) plus the incident field Uo from (4.13) to give 

which E~stablishes that 

Hence the proof of Theorem 4.1. 

0(_1 __ ) . 
log k 

+ x E ~ 

x E ~ 

(4.16) 

21 
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REMARK 4 • 13 : Analogous to the exterior problem we see that v defined in 

(4.13) satisfies (POa ) in principle. However actual solution has to be 

computed by solving the system (4.11). 

5. CONCLUSIONS 

In both problems we have shown that there exists an approximate 

solution v which solves the original problem within O(k2 log k). This 

solution as we have shown in (3.4) and (4.16) differ from the solution of the 

zero frequency cases by the functions given in the right hand sides of these 

equations. These functions can be large depending on the frequency. Thus the 

best approximations for these problems are the functions v. 

In order to obtain v in the Dirichlet case one should solve the 

singular integral equation (3.4) to obtain 0 and use (3.6) to obtain 

solution in the exterior. Similarly to obtain v in the interface problem we 

solve the system (4.11) to obtain the densities (<p,o/) and use (4.13) to 

construct solution at a desired point. We emphasize that our numerical 

process need be applied only once for the problem (PO) or (P Oa)' This 

process is much simpler than the corresponding one for (P
k

) or (P
ka

) given 

in [3] • 

We performed some numerical experiments to verify this theory. To this 

end we performed computations for an exterior problem. The numerical method 

is the same as the one in [5] and we refer the reader to that paper. The 

method is general enough to compute all geometries which are polar 

representable. If r = R(S) is the function which characterize the geometry 

then point on the boundary r is given by (x,y) = (R(S) cos s, R(S) sin S). 

We performed calculations for a body R(S) = 3 + 2 cos S, (see Figure 1), with 
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a singlE~ SOUrCE! on the x axis namely at (7,0). 

The solutions for different frequencies at points equi-distant 

o =: (i-··1)::-, (i == 1,·'·,5) are computed at a radius 6 which is between the i 'f 

scatterer and the source. The results are presented in Table 1. In the Table 

H eE denotes the solution of (Helmholtz equation) and A·E denotes the 

solution of v (approximate equation) and LeE denotes the solution of Laplace 

equation. Re and 1m denote the real and imaginary part. The solutions 

clearly indicate that the dHference between uk and v is 0(k2 log k) and 

they becomes almost identical for a frequency of .01. However, the 

difference between the solution of Laplace equation is substantial relative to 

the magnitudes of the solution. These results confirm our low frequency 

results and validate the fact that v provides a reasonably accurate result. 

3 -_.y--. 
~ 

/' 

scatterer (7,0) 

---5,-"'--------+--

r = 3 + 2 cose 

Figure 1 
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Table I 

k == .50 

e. in 
Re HeE Re A·E L·E 1m HoE 1m A·E 1m L·E 

1 =4 

1 -.2017 -.2055 -.2026 -.1235 -.0114 0.0000 

2 +.0327 -.0496 -.0454 -.0310 -.0169 0.0000 

3 -.0024 -.0496 -.0315 -.0134 -.0274 0.0000 

4 -.0026 -.0387 -.0299 -.0031 -.0356 0.0000 

5 +.0028 -.0393 -.0298 -.0011 -.0385 0.0000 

k == .10 

1 -.2011 -.1967 -.2026 -.0141 -.0076 .0000 

2 -.0347 -.0367 -.0454 -.0162 -.0112 .0000 

3 -.0071 -.0174 -.0315 -.0145 -.0182 .0000 

4 +.0031 -.0116 -.0299 -.009l -.0236 .0000 

5 +.0056 -.0100 -.0298 -.0065 -.0255 .0000 

k = .05 

1 -.1985 -.1967 -.2026 -.0066 -.0049 .0000 

2 -.0367 -.0366 -. Ol~54 -.0086 -.0072 .0000 

3 -.0141 -.0172 -.0315 -.0107 -.0117 .0000 

4 -.0054 -.0113 -.0299 -.0109 -.0152 .0000 

5 -.0027 -.0097 -.0298 -.0106 -.0165 .0000 

k = .01 

1 -.1983 -.1981 -.2026 -.0021 -.0020 .0000 

2 -.0388 -.0387 -.0454 -.0030 -.0030 .0000 

3 -.0205 -.0207 -.0315 -.0048 -.0040 .0000 

4 -.0154 -.0158 -.0299 -.0061 -.0063 .0000 

5 -.0140 -.0146 -.0298 -.0065 -.0068 .0000 
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