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Abstract 

The systems of algebraic equations which arise from spectral 

discrE~tizations of elliptic equations are full and direct solutions of them 

are rarely feasible. Iterative methods are an attractive alternative because 

FouriE~r transform techniques enable the discrete matrix-vector products to be 

computed with nearly the same efficiency as is possible for corresponding but 

spars(~ finite difference discretizations. For realistic Dirichlet problems 

preconditioning is essential for acceptable convergence rates. A brief 

description of Chebyshev spectral approximations and spectral multigrid 

methods for elliptic problems is given. A survey of precondi tioners for 

Dirichlet problems based on second'-order finite difference methods is made. 

New preconditioning techniques based on higher order finite differences and on 

the spectral matrix itself are presented. The preconditioners are analyzed in 

terms of their spectra and numerical examples are presented. 

-----.~----~~------------~~ Research was supported by the National Aeronautics and Space 
Administration under NASA Contracts No. NASl-17070 and No. NASl-17130 while 
the first and third author were in residence at leASE, NASA Langley Research 
Center, Hampton, VA 23665. 
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1. InltroducUon 

Spectral methods involve representing the solution to a problem in terms 

of a truncatE!d series of smooth global functions which are known as trial 

functions. Specifically, these functions are eigenfunctions of a singular 

Sturm-I.iouvi1le problem (Gottlieb and Orszag (1977». This global character 

distin~~ishes spectral methods from finite difference and finite element 

methods. It :ts also responsible for their superior approximation properties, 

yielding accurate solutions with substantially fewer grid points than are 

required by finite difference methods. 

Test functions are used to minimize the residual that results from the 

substitution of the series expansion of the solution into the differential 

equation. The choice of test functions distinguishes between the spectral 

Galerklln and spectral collocation methods. In the Galerkin approach the test 

functions are the same as the trial functions whereas in the spectral 

collocation method the test functions are shifted Dirac delta functions. For 

many problems, especially nonlinear ones, the spectral collocation method is 

the easiest to implement, and the most efficient as well (Hussaini, Kopriva, 

Salas and Zang (1983». The present discussion is confined to the spectral 

collocation method, and all future references to the spectral method will mean 

the spl~ctral eollocation method. 

Thl~ matrices representing the discrete spectral collocation operator 

corresponding to elliptic problems (Zang, Wong, and Hussaini (1982» are 

usually full. Even in the constant coefficient linear case, direct inversion 

of these matrices is usually expensive. Iterative schemes are a practical 

necess:lty. The condition number of the spectral matrices is large, and 

therefore effective preconditioning is necessary. 
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In recent years research in the field of elliptic equations has focused on 

multigrid methods. Basically, the multigrid method is a numerical strategy to 

solve partial differential equations by switching between finer and coarser 

levels of discretization. The characteristic feature of the method is the 

combination of a smoothing step and a coarse grid correction (Brandt (1977), 

Hackbusch (1980». During the smoothing step the residuals are not 

necessarily decreased but smoothed. In the following correction step the 

discrete solution is improved by means of an auxiliary equation on a coarser 

grid. This results in an iterative method that is usually very fast and 

efficient. 

2. Formulation of the Problem 

We consider the self-adjoint elliptic equation 

(a(x,y,u) ;~)+;y (b(X,y,U) ;;)= f(x,y) (2.1) 

with Dirichlet boundary conditions in the domain [-1,1] x [-l,lJ. A proper 

representation of the solution to this Dirichlet problem employs Chebyshev 

polynomials. The details of implementing Chebyshev collocation methods for 

this type of problem have been given by Zang, Wong, and Hussaini (1982) and by 

Hussaini, Salas, and Zang (1983). This discretization of equation (2.1) may 

be written as 

(2.2) 

where V is 'the vector of unknowns at the collocation points, F is the 

vector of the values of the right-hand side at the collocation points and 



LSp is the vector-valued (generally nonlinear) operator representing a 

spectral discretization of the left-hand side. 

For non1inE~ar problems iterative schemes for (2.2) are a necessity. 

Iterative methods appear to be preferable to direct methods even for constant 

coefficient linear problems since the matrices representing Lsp are full. 

No fast direct methods are known for these systems. Iterati ve methods are 

appealing because the standard implementation of spectral discret:l.zations 

employs Fast Fourier Transforms which reduces the cost of evaluating the left-

hand side of (2.2) to O( N log N) operations, even for nonlinear problems, 

where N is the total number of unknowns. Iterative methods also have a 

clear advantage over direct methods in terms of storage. 

Many iterative schemes can be described within the framework of defect 

correction. Let H be some approximation to the Jacobian JL of Lsp(V) and 

let Vn be the! latest approximation to V. The simplest iterative scheme is 

the preconditioned Richardson's method 

where w is a relaxation parameter. 
n 

In practice the preconditioning matrix 

(2.3) 

H is constructed to be an 

approximation to JL having the following properties: 

(i) H has a sparse matrix structure; 

(ii) H is easily invertible. 

One cho:l.ce for H considered here is an approximate LU decomposition of a 

finite difference approximation to (2.1), i.e., 

3 
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H = LU 

where Land U are lower and upper triangular matrices respectively. 

Although in this section we have considered the general nonlinear equation 

(2.1) we shall restrict ourselves to the linear case in the remainder of this 

paper. Treatment of the nonlinear case will be the subject of future work. 

3. An Heuristic Discussion of Spectral Multigrid 

Of course, far better schemes are available than the simple Richardson's 

method. Multigrid methods have demonstrated their ability to accelerate many 

types of relaxation schemes (see, e.g., the conference proceeedings edited by 

Hackbusch and Trottenberg (1982». Multigrid methods have recently been 

developed for spectral discretizations of the linear version of (2.1) by Zang, 

Wong, and Hussaini (1982, 1983). Streett, Zang, and Hussaini (1983) have 

shown that these techniques are extremely effective for the nonlinear 

potential flow problem of transonic aerodynamics. Preconditioning techniques 

playa crucial role in these spectral multigrid schemes. Our purpose here is 

to investigate additional choices for the preconditioning matrix. 

The fundamentals of spectral multigrid are perhaps easiest to grasp for 

the simple model problem 

(3.1) 

on [O,2~] with periodic boundary conditions. The Fourier approximation to 

the left-hand side of (3.1) at the collocation points 

N/2-1 A ipx· 
I p2 Up e J 

p=-N/2+l 

x. = 2~j/N 
J 

is 

(3.2) 



,. 
where up are the Fourier coefficients of u. The eigenfunctions of this 

approximation are 

21Tijp/N = e , 

with the corresponding eigenvalues 

where 

A(p) 2 p , 

j = O,I,···,N-l and p = -N/2+1,···,N/2-1. The index 

natural interpretation as the frequency of the eigenfunction. 

(3.3) 

(3.4) 

p has a 

Consider now the iterative process described by (2.3) with H taken to be 

the identity matrix, Le., without any preconditioning. The iteration matrix, 

C, of this scheme is given by 

C I - w L 
sp 

The iterative scheme is convergent if the eigenvalues, A, of L sp satisfy 

11 .- wI. I < 1. 

The best choic,e of w is that for which 

(1 - wI.) := - (1 - wI.) 
max min ' 

where A (= N2/4) and A i (= 1) are the largest and smallest eigenvalues max m n 

of Lsp respectively, for then the largest values of ~ = 1 - wI. are equal 

in magnitude and have opposite sign (see Fox (1964)). One need not worry 

about the p:= ° eigenfunction since it corresponds to the mean level of the 

5 
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solution, which is at one's disposal for this problem. The optimal relaxation 

parameter for this single-grid procedure is 

2 (3.5) wSG = A + A max min 

It produces the spectral radius 

A - A max min 
(3.6) l1SG = A + A 

max min 

2 Unfortunately, 11 SG :.::.. 1 - 8/N , which implies that iterations are 

required to achieve convergence. 

This slow convergence is the outcome of balancing the damping of the 

lowest frequency eigenfunction with that of the highest frequency one in the 

minimax problem described above. The multigrid approach takes advantage of 

the fact that the low frequency modes (Ipl < N/4) can be represented just as 

well on coarser grids. It settles for balancing the middle-frequency one 

(Ipl = N/4) with the highest frequency one ( I p I = N/2), and hence damps 

effectively only those modes which cannot be resolved on coarser grids. In 

(3.5) and (3.6), A i is replaced by A 0d = A(N/4). m n m1 
The optimal relaxation 

parameter in this context is 

2 (3.7) w
MG A + A 

. 
max mid 

The multigrid smoothing factor 

A - Amid max (3.8) l1MG = A + Amid max 



measures the damping rate of the high-frequency modes. Alternatively, we may 

write 

where KMG = A II. 0d is known as the multigrid condition number. In this 
max m1 

example ~MG = 0.60, independent of N. The price of this effective damping 

of the high-frequency errors is that the low-frequency errors are hardly 

damped at all. Table I compares the s:Lngle-grid and multigrid damping factors 

for N = 64. However, on a grid with N/2 collocation points, the modes for 

Ipl E [N/8, N/4] are now the high-frequency ones. They get damped on this 

grid. Still coarser grids can be used until relaxations are so cheap that one 

can afford to damp all the remaining modes, or even to solve the discrete 

equations exactly. For the case illustrated in Table I the high-frequency 

error rl~duction in the multigrid context is roughly 250 times as fast as the 

single-grid reduction for N = 64. 

Table I. Dampling Factors for N = 64 

7 

--
1 .9980 .9984 

2 .9922 .9938 

4 .9688 .9750 

8 .8751 .9000 

12 .7190 .7750 

16 .5005 .6000 

20 .2195 .3750 

24 .1239 .1000 

28 .5298 .2250 

32 .9980 .6000 



8 

Morchoisne (1979) and Orszag (1980) have proposed a preconditioning for 

spectral methods which amounts to using a low-order finite difference 

approximation for H. Let H(2), H(4) and Lsp denote second-order, fourth

order and spectral discretizations of the operator - d2jdx2 • The eigenvalues 

of these discretizations are given below: 

),(2) 2[1 - cos(kllx)] 
k (6X)2 

),(4) cos(2k6x) - 16 cos(k6X) + 15 = k 6(6X)2 

(00 ) 
),k = k2 • 

The effective eigenvalues of the preconditioned iterations based on 

(H(4»)-1 L 
sp are then given by 

2[1 - cos(k6x)] , 

cos(2k6X) - 16 cos(k6x) + 15 • 



Table II. Properties of Finite Difference Preconditioning 
for the Model Problem 

Finite Difference Order A min A mid A llSG llMG max 

:2 1.00 1. 23 2.47 0.424 0.336 

4 1.00 1.06 1.85 0.298 0.273 

6 1.00 1.02 1.63 0.240 0.231 

Similar results for even higher-order finite difference preconditionings 

are straightforward but tedious. The key properties of this class of 

precondi.tioning are given in Table II. It will be seen in subsequent sections 

that these results on the spread of the eigenvalues of the preconditioned 

systems agree well with those obtained computationally in two dimensions for 

Dirichle!t problems. 

Unli.ke the original system, which has a condition number scaling as 

the pre(!onditioned system has a condition number which is independent of N. 

The fourth-order finite difference operator offers around a 20% improvement in 

convergence rate over the second-order operator. This is partially offset by 

the add:l.tional cost of inverting the finite difference operator. The higher-

order preconditionings are of doubtful utility. 

The preconditionings are clearly most effective for the longer wavelength 

eigenfunctions, as reflected by how close Amid is to 1. In fact, for the 

fourth-order version, A 'd is already so close to 1 that the multigrid 
ml. 

convergence rate is only slightly faster than the single-grid rate. The 

advantage of multigrid for these preconditioned systems only shows up in two 

dimensions. tJnlike the one-dimensional case, the inversion of the two 

dimensional operator is nontrivial. It seems advisable in these situations to 

9 
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do only an approximate inversion of the finite difference operator, for 

example, by using an incomplete LU decomposition of H as the actual 

preconditioner. The outcome of this choice is that while A can be kept max 

well under control, exhibiting a very slow growth with N, A i plunges m n 

precipitously to zero. Fortunately A 'd ml remains virtually unchanged. Thus 

multigrid is attractive for these two-dimensional problems. 

We describe the multigrid process by considering the interplay between two 

grids. The fine grid problem can be written in the form 

The decision to switch to the coarse grid is made after the fine grid 

approximation Vf has been sufficiently smoothed by the relaxation process, 

1. e., after the high-frequency content of the error has been 

sufficiently reduced. The auxiliary equation on the coarse grid is 

where 

The restriction operator R interpolates a function from the fine grid to the 

coarse grid. The coarse grid and correction are denoted by LC and 

respectively. After an adequate approximation VC to the coarse grid problem 

has been obtained, the fine grid approximation is updated using 



The prolongatic,n operator P interpolates a function from the coarse grid to 

the finE! grid. 

The natur.sl prolongation operator in this application represents 

trigonometric interpolation. We describe this process below. 

On the coarse grid the discrete Fourier coefficients of the corrections 

Uj at the collocation points Xj are computed using 

N -1 
c -ipx. 

u 
p 

1 
N 

c 
I u. e J p -N /2 ••• N /2 - 1. 

e' 'c j=O J 

The fin€~ grid approximation is then updated using 

N /2 - 1 
+ c I 

p= -·N /2 
c 

u 
p 

ipi. 
e J 

where xj' j=O, 1,··· ,Nf - 1, are the fine grid collocation points. 

The restriction operator is constructed in a similar fashion. It turns 

out that except for a factor of 2, P and R are adjoint. In the Chebyshev 

case we force R to be the adjoint of P. 

4. A Survey of Second-order Finite Difference Preconditionings 

In this section we compare several types of preconditioning based on 

incomplete LV decomposition (see Meijerink and van del' Vorst (1981» of the 

matr:l.x which represents the standard five-point second-order finite difference 

approximation to the differential equation (2.1). Two such preconditionings 

were discussed in Zang, Wong, and Hussaini (1983). The first, denoted by 

HLV ' has L :l.dentical to the lower triangular portion of HFD , the finite 

difference matrix, and V chosen so that the two super diagonals of LV 

11 
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agree with those of HFD • The second preconditioning HRS has the diagonal 

elements of L altered from those of HFD so as to ensure that the row sums 

of and are identical. We introduce a third type of 

preconditioning based on the strongly implicit method of Stone (1968). 

The elements of Land U in all these instances can be easily computed 

by simple recursive formulae. The construction of the factors Land U are 

described in detail for Stone's method. 

A five-point approximation to (2.1) at the pth mesh point can be written 

as 

BUN + D u 1 + E u + F up+1 + H u +N = P p- P p- P P P P P 
(4.1 ) 

or, in matrix form, as 

Stone's idea was to modify the matrix HFD by a .... small ... matrix M so 

that: 
~ 

(i) the factorization of H = HFD + M into the product LU involves 

much less work than the standard LU decomposition of HFD : 

(ii) the elements of Land U are easily calculated; 

(iii) II Mil « IIHFDII. 

As a step to satisfying these criteria the factors Land U were chosen to 

have three non-zero diagonals, as shown in Fig. 1, corresponding to the 

diagonals B, D, and E, and E, F, and H respectively of HFD , 

The product LU has seven non-zero diagonals, the additional two being 

immediately interior to the Band H diagonals. The matrix M is taken to 

comprise these extra two diagonals. The elements of Land U can be 

computed from their relationships with the elements of HFD • 
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L u 

Figure 1 

Analogous with (4.1) the pth component of Mu 
~ 

can be written in the form 

C u + G u p p-N+l p p+N-1· (4.2) 

Stone decided to diminish the magnitude of this term by subtracting from it a 

closely equi v~llent expression obtained by Taylor series expansions. Using 

these expansions it is easily shown that 

up- N+1 - up + up+1 + up_N 

and (4.3) 

Stone then introduced a parameter a, 0 < a < 1, and defined the pth component 

of M}! to be 
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(4.4) 

~ 

Hence the pth equation of H~ = ~ is, by (4.1) and (4.4), 

(B - aC)u N + (D - aG)u 1 + {E + a(C + G )}u + (F - aC )u +1 p P p- P P p- P P P P P P P 

:::: q • 
p 

(4.5) 

~ 

The relationships between the elements of H:=: HFD + M and those of L 

and U are then given by 

e = E + a(b f N + d h 1) - (b h N + d f 1) p p p p- p p- p p- p p-
(4.6) 

f :=: (F - ab f N)/e p p p p- p 

h :=: (H - a d h l)/e , p p p p- p 

for 2 p :: 1,···, (N-1) • Any terms with non-positive subscripts that occur in 

(4.6) are replaced by zero. For any fixed value of a, 0 < a < 1, (4.6) 

defines an incomplete LU-decomposition of HFD • We denote this factorization 



The eigenvalues of the iteration matrices corresponding to these 

types of preconditioning have been computed numerically by the OR algorithm 

(see Wilkinson (1965)). The extreme c~igenvalues for HFD> HLU ' and HRS are 

given lln Zang:. Wong, and Hussaini (1983), and those for HFD , HST (1.0) and 

HST (O.9) in Table III. A few of the eigenvalues at the lower end of the 

spectrutm have small imaginary parts while the rest are completely real. 

Table III. Extreme Eigenvalues for Preconditioned Chebyshev Operator 

--I -1 -1 

N 
HFD L HST (1.0)L H

ST
(0.9)L 

A A min A A min A max max max 

4 .00 1. 76 1.01 1.64 0.99 1.65 

8 .00 2.13 0.78 2.04 0.80 2.07 

16 .00 2.31 0.62 2.28 0.55 2.33 

24 .00 2.36 0.58 2.95 0.36 2.41 

Table IV. Single-grid Condition Number 

N 
-1 HLU L -1 HRS L -1 HST (1.0)L -1 HST (0.9)L 

4 1.85 1. 72 1.63 1.67 

8 3.91 2.71 2.61 2.59 

16 11.62 4.07 3.67 4.24 

24 24.66 5.22 5.14 6.69 
'''"' '~'M."O" 

15 
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Table v. Multigrid Condition Number 

N ~~ L 
-1 HRS L 

-1 
HST (1.0)L -1 HST (0.9)L 

8 1. 79 2.07 1. 70 1.71 

16 2.12 2.92 2.09 2.08 

24 2.26 3.79 2.81 2.15 

In order to examine the effectiveness of these preconditionings from the 

multigrid point of view, we need to know the smallest high-frequency 

eigenvalue. The numerical results indicate that this is 1.22 for HLU and 

1.45 for HRS ' independent of N. For HST this value lies between 1.10 and 

1.21. Tables IV and V contain the single-grid and multigrid condition numbers 

respectively for and Here we see that 

HST(0.9) is more effective as a preconditioner for multigrid iterations. The 

multigrid condition number for HST(1.0) lies between those for HLU and 

In Table III we see that the maximum eigenvalue of grows 

more slowly than that of 
-1 

HST (1.0)Lsp with increasing N. For values of N 

greater than 24 the eigenvalue calculation using the QR algorithm becomes too 

expensive. Using the power method the maximum eigenvalue of 

for N = 32 was calculated and found to be 2.45. Thus the maximum eigenvalue 

of exhibits slow growth with N. This means that the multigrid 

condition number does not increase drastically with N. However, it is 

doubtful whether the choice of a in Stone's algorithm is problem independent 

and this may detract from the robustness of this preconditioning. 



To complE!te this section we look at one other type of incomplete LU-

decomposition which is due to Wesseling (1982a). In this decomposition the 

sparsity of the factors L and U differ from those in Fig. 1 by the 

addition of extra non-zero diagonals c and g which are located immediately 

interi.or to the band h diagonals respectively. The main diagonal of U 

is spE!cified to be unity. The elements of Land U are computed from those 

of HpD (see (4.1)) recursively as follows: 

b B 
p P 

c = -b f p p p-N 

(4.7) 

g = - d h Ie p p p-1 p 

h = H Ie 
p p p 

for 2 p = 1,···,(N-l) • Quantities that are not defined are replaced by zero. 

This preconditioning will be known as the seven--diagonal preconditioning and 

we denote it by HSD " The error matrix M contains two non-zero diagonals. 

It can be shown that the norm of the error matrix of the seven-diagonal 

preconditioning is smaller than those corresponding to HLU and HRS • 

17 
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In Table VI we give details of the seven-diagonal preconditioning for 

different values of N. Included in this table are the extreme eigenvalues of 

-1 
HSD Lsp and the single-grid and multigrid condition numbers. The smallest 

high frequency eigenvalue was found to be 1.23 independent of N. The results 

indicate that HSD is the most effective preconditioner considered to date. 

Table VI. Details of Seven-diagonal Preconditioning 

N A min A KSG KMG max 

4 1.00 1. 76 1.77 

8 0.85 2.16 2.54 1. 76 

16 0.46 2.38 5.22 1.93 

24 0.25 2.47 9.81 2.01 

5. Higher-order Finite Difference Preconditioning 

Here we consider the possibility of choosing the preconditioning matrix 

~ 

H to be a fourth-order finite difference representation of (2.1). For a 

general non-uniform grid a compact nine-point finite difference approximation 

cannot be constructed since the set of equations for the coefficients of the 

scheme is inconsistent. Instead an approximation was constructed based on 

fourth-order finite difference formulae for each of the second derivatives 

separately. The coefficients of the function values at the grid points are 

functions of the mesh lengths which define the non-uniform mesh and are given 

in the Appendix. At internal points the approximation to the second 

derivative reduces to the following in the case when the mesh is uniform: 



(5.1) 

The approximation at pOints one mesh length from the boundary is 

constructed using the same number of points as interior equations thus 

maintaining the same order of accuracy. However, in doing this the symmetry 

of the sparsity pattern of the coefficient matrix is destroyed. As before, it 

is an incomplete LU decomposition of this finite difference matrix that is 

used to precondition (2.3). An algorithm due to Wesseling (1982b) was used to 

perform this decomposition. The factors Land U have the same sparsity 

pattern as the lower and upper triangular portions of HFD respectively and 

the corresponding diagonal elements of Land U are equal. We let HW 

denote this preconditioning. 

Table VII. Extreme Eigenvalues for Preconditioned Chebyshev 

N 

8 

16 

24 

N 

8 

16 

24 

-1 
HFD L 

sp 

I- min l- I-max min 

1.00 1.59 0.51 

1.00 1. 79 0.19 

1.00 1.83 0.09 

Table VIII. Condition Numbers 

Single-grid 

3.43 

10.68 

23.67 

-1 L ~ sp 

I- max 

1. 75 

2.03 

2.13 

Multigrid 

1. 73 

2.01 

2.11 

19 
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Table VII contains the largest and smallest eigenvalues of and 

H-1 L 
-W sp Table VIII presents the single-grid and multigrid condition numbers 

for the matrix H-1 L --w sp We note that the multigrid condition numbers 

presented here compare favourably with those obtained using second-order 

finite difference preconditioning. The smallest high frequency eigenvalue was 

found to be 1. 01, independent of the value of N. A disadvantage of this 

preconditioning is that more work is needed to perform the decomposition. 

6. Spectral Preconditioning 

The final type of preconditioning we investigate is that based on the 

spectral matrix, Lsp' itself. As stated earlier the spectral matrix is full 

and hence costly to invert. Let HS be the matrix containing five diagonals 

of Lsp' the positions of which correspond to the non-zero diagonals of the 

finite difference matrix based on the five point formula. Let the matrix H9 , 

illustrated in Fig. 2, be the corresponding matrix with nine non-zero 

diagonals. 

Experimentally, we found that several eigenvalues of H-1 L 
S sp were 

negative, thus showing that this matrix is not positive definite. The 

eigenvalues of H-1 L 
9 sp were also computed and found to be positive. 

Therefore, HS was discarded as a potential preconditioner and the usefulness 

of H9 examined further. 

An approximate LU-~ecomposition of H9 is used to precondition (2.2), 

I.e., H is taken to be the product of a lower triangular matrix L and an 

upper triangular matrix U. We perform this decomposition according to the 

criterion described in Section S for constructing HLU ' i.e., the factors L 

and U are chosen so that L is identical to the lower triangular portion 
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of H9 and U is such that the four super diagonals of LU agree with those 

of H9' The sparsity pattern of the factors Land U is shown in Fig. 3. 

We denote this preconditioning by Hsp' 

The elements of the matrices Land U can be computed recursively as 

follows: 

a = A 
p p 

b B - a k p p P p-2N 

C :::: C 
p P 

d = D - c f p-1 p p p 

e = E - d f - c g - b k - a 9- (6.1) p p p p-1 p p-2 P p-N P p-2N 

f (F - d gp_1)/ep p p p 

gp G Ie p p 

k = (K - b 9- N) Ie p p p p- P 

9- p 
::: L Ie 

p p' 

for 2 p = 1,···,(N-1) • Any terms with non-positive subscripts occurring in 

(6.1) are replaced by zero. 

Table IX contains the largest and smallest eigenvalues of H-1 Land 
9 sp 

-1 H 
sp 

L sp Table X presents the single-grid and multigrid condition 

numbE!rs for the matrix H-1 L 
sp sp The smallest high frequency eigenvalue was 

found to be 0.90, independent of the value of N. For N = 32 we were able 

to calculatE! that the maximum eigenvalue of H- 1 L 1 52 was • • sp sp We conclude 

from these results that Hsp is likely to be an effective preconditioner in 
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multigrid applications since the observed behaviour of the condition number 

compares favourably with that of the other preconditioners considered in this 

paper. 

H = 9 

Figure 2 

u 

Figure .3 
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Table! IX. Extreme Eigenvalues for the Preconditioned Chebyshev Operator 
. 

-1 -1 
L H9 L H 

N sp sp sp 

A A A A min max min max 

8 0.63 1.19 0.39 1.31 

16 0.23 1.33 0.12 1.47 

24 0.11 1.37 0.05 1.51 

Table x. Condition NUmbers 

N Single-grid Multigrid 

8 3.40 1.44 

16 12.53 1.63 

24 27.87 1.69 

7. Numerical Results 

HE!re we investigate the performance of various preconditioning ideas 

developed in this paper within the SMG method. 

relaxation s~Yeep of SMG is O( N log N) where 

The operation count for a 

N = (N-1)2 compared with 

O( N ) for finite difference methods. Thus we make our comparisons in terms 

of machine Hme instead of the work units of Brandt (1977). 

The measure used is the equivalent smoothing rate, defined by ]J • 
e 

This 

was introduced in earlier work on SMG by Zang, Wong, and Hussaini (1983) and 

is defined as follows. In some preliminary calculations, the average time 

TO required for a single fine-grid relaxation is determined. For an actual 

multigrid calculation let 1'1 and 1'2 be the residuals after the first and 
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last fine-grid relaxations respectively, and let T be the total CPU time. 

Then we define ~e by 

There are many variants of the multigrid method. In the one used here we 

first solve the problem on the coarsest grid, that solution is then 

interpolated to the next finer level to serve as the initial approximation for 

a multigrid iteration involving these two levels, etc. The sizes of the grids 

on the coarsest and finest levels are 4 x 4 and 32 x 32 respectively. 

Internal checks based on the anticipated smoothing rates were used in 

governing decisions to swi tch levels. Non-stationary Richardson iteration 

employing three distinct parameters was used for relaxation. We used the 

correction scheme of Brandt (1977) with random numbers for the initial guess. 

On lower levels the right-hand sides were obtained by applying the appropriate 

restriction operator to the finest level right-hand side. 

The test problems are specified by 

a(x,y) = b(x,y) = 1 + E exp(cos(STI(x+Y))), 

u(x,y) sin(crTIx + TI/4) sin(crTIY + TI/4). 

The parameters of the test problem are given in Table XI. Problem 1 has 

constant coefficients and is also well-resolved by the Chebyshev collocation 

method. On the other hand, for Problem 3 the coefficients of the equation 

oscillate so rapidly that the finest grid cannot resolve them. The converged 

solution of the finest collocation equations has an error of order 1. This is 
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a test of whether the Chebyshev SMG method is robust enough to converge on 

such a problem. Table XII contains the values of the equivalent smoothing 

rates for various preconditioners. 

Table XI. Parameters of the Test Problems 

Problem E: (J S 

1 0.00 1 1 

2 0.20 2 2 

3 1.00 5 10 

Table XII. Equivalent Smoothing Rates 

Problem HLU HST(0.9) HSD Hsp 

1 0.26 0.16 0.12 0.24 

2 0.60 0.65 0.47 0.54 

3 0.76 0.84 0.76 0.82 

Th,~ results show the seven-diagonal finite difference preconditioning and 

the spl:!ctral preconditioning are comparable in terms of efficiency and give an 

lmprovl:!ment over the other preconditioners except on Problem 3 where the 

performance of all the preconditioners is about the same. However, since in 

our computations to date the spectral matrix is never stored, the elements 

of are more expensive to compute than 

performance of Stone's preconditioning with a = 0.9 

Notice the superb 

on the constant 

coefficient problem. This performance is not maintained on the more difficult 

problems which demonstrates that the choice of the parameter a is problem 

dependent. The seven-diagonal preconditioning also performs extremely well on 



26 

the constant coefficient problem. We did not experiment with the fourth-order 

finite difference preconditioning since to compute the approximation in the 

non-constant coefficient case was thought to be too laborious. 

8 • Conclusions 

In this paper we have developed efficient iterative techniques for solving 

the algebraic equations which arise from the discretization of a self-adjoint 

elliptic equation using the spectral collocation method. An advantage of 

using spectral methods is that they possess superior approximation properties 

compared with finite difference and finite element methods. In practice, this 

means one can obtain the same accuracy with fewer mesh points than are needed 

for finite difference or finite element methods. Acceleration of the basic 

iterative scheme has been enhanced by employing the multigrid method. The 

need for preconditioning has been demonstrated and efficient preconditioners 

for multigrid iterations presented. 



Appendix 

Higher-order Finite Differences on Non-uniform Grids 

Suppose that we require an approximation to the second derivative of u 

at point C in Fig. 4. We assume that the approximation has the form 

(A.l ) 

where the coefficients a, b, c, d and e are to be determined. 

p q r s 

A B c D E 

Figure 4 

Thl~ right'-hand side of (A.1) is expanded in a Taylor's series about the 

point C. The coefficient of the second derivative is set to unity while 

those of u and the first, third, and fourth derivatives are set to zero. 

This :results in a system of five linear equations for the coefficients 

appearing in (A.1). The accuracy of the approximation is 0(h3) where h is 

a typical mesh length. 

If we define G = P + q and H r + s, then the coefficients are given 

by 

27 
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a = -2q(H + r) + 2Hr 
[Gp(G + H)(r + G)] , 

b = 2G(H + r) - 2Hr 
[pq(q + r)(H + q)] , 

d 

e = 

2H(G + q) - 2Gq 
[rs(q + r)(G + r)] , 

-2r(G + q) + 2Gq 
[Hs(H + q)(H + G)] , 

c = -a - b - d - e. 
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