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1. CONSERVATIVE DISSIPATIVE DIFFERENCE SCHEMES 

1.1. Introduction: Why Conservative Dissipative Difference Schemes? 

In solving problems of gas dynamics it is often permitted to ignore the 

dissipative processes in the gas, that is, viscous friction and heat 

conduction. This simplification of the physical picture boils down, mathe­

matically, to a degeneration of the partial differential equations from 

second-order conservation laws, the Navier-Stokes equations, to first-order 

conservation laws, the equations of ideal compressible flow (ICF). Even in 

this approximation there remains a bewildering variety of complicated flow 

problems. 

Particularly notorious are the problems involving such a strong 

compression of the gas that, in spite of the a priori assumption, dissipation 

sooner or later dominates the flow, at last in certain regions known as 

shocks. In a shock the flow quantities undergo a significant change over a 

distance typical of the dissipative interaction, i.e. the molecular mean free 

path. 

It is, of course, impossible to infer the structure of a shock from the 

equations of rCF. The concept of IeF traditionally is saved and extended by 

representing a shock as a flow discontinuity. 

The motion of such an idealized shock may be derived from an integral 

version of the first-order conservation laws, expressing the particular 

conservation principle for a finitE~ volume of fluid and a finite lapse of 

time. Mathematically, this leads to the theory of weak solutions of nonlinar 

conservation equations. The algebraic equations relating the propagation speed 

of a discontinutiy to its amplitude are called the jump equations. 

Weak solutions are not unique. Shock discontinuties in which friction 

produc:es kinetic energy instead of dissipating it, and heat flows from lower 
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to higher temperatures, are as eligible as their physically realizable 

counterparts. Clearly a selection criterion must be invoked. We shall accept a 

weak solution of the first-order conservation equations only if it is the 

limit solution, for vanishingly small dissipation, of the second-order 

conservation equations. For gasdynamics this is equivalent to the following 

requirement: the entropy of the gas, measure of the accumulated effect of 

dissipation, must not decrease in a shock. This is called the entropy 

i neq uali ty. 

Thus, the advantage of lowering the order of the flow equations is partly 

offset by the need to introduce extra equations and an extra inequality. rn 

consequence, analytic treatment of rCF problems is impossible in all but a few 

cases. The numerical treatment, however, can be entirely successful. The key 

to success is the combination of conservation and artificial dissipation. 

The idea behind artificial dissipation is that, since in rCF the effect 

of dissipation is ignored, it may as well be ~~aggerated. By providing a 

difference scheme for rCF with sufficiently large dissipative terms it is 

possible to achieve that shocks, whenever these appear, posses a structure 

coarse enough to be resolved in the computational grid. 

The concept of conservation enters if we make the difference scheme 

consistent with the integral form, rather than the differential form, of the 

equations of rCF. The scheme is then said to be "conservative" or to have the 

"conservation form"; another often-heard description is "finite-volume 

scheme". It has been shown, in theory and in practice, that, in using a 

conservative scheme, the numerical stability of a solution containing an 

admissible shock automatically guarantees the correct motion of the shock. But 

in order to achieve numerical stability and to select the proper shocks, the 

scheme indeed has to be dissipative. 
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The first example of a conservative dissipative difference scheme was the 

first--order-accurate Lax-Friedrichs (LF) scheme, presented and analyzed by Lax 

(1954). It is the least accurate of its kind and has no practical value today. 

More influential was its second-order-accurate successor, the Lax-Wendroff 

(LW) scheme (I960) which still is widely used by aerodynamicists in the two­

step form derived by MacCormack (1969). 

The survivor among first-order schemes is Godunov's (1959) method based 

on up,dnd differencing. The decision which direction is upwind is made on the 

basis of the speeds of the finite'-amplftude waves by which discrete fluid 

volumes interact. With this strategy, the solution of Riemann's initial-value 

problem - the shock-tube or diaphragm problem - becomes a building block of 

the d:lfference scheme. At present we see a rapid expansion of the literature 

on "approximate Riemann solvers": Roe (1980), Osher (1980), darten and Lax 

(1981), Van Leer (1982), Colella (1982); these find their way in first-order 

as well as higher-order upwind schemes. A review of this subject was given by 

Harten, Lax and Van Leer (1983); I shall return to it later in the present 

lecture. 

It turns out that the history of conservative dissipative difference 

schemes is divided more or less by the decades. 

During the fifties, first-order-accurate methods were developed and 

tested. These methods are what now is called "robust" and, schematically 

speaking, had no other problems than their modest accuracy. Particularly 

annoyi.ng was the numerical diffusion of entropy. 

The sixties gave us the second--order-accurate schemes, meaning different 

kinds of trouble. Numerical oscillations and nonlinear instabilities near 

shock waves largely spoiled the pleasure of the reduction in artificial 

dissipation. 



4 

During the seventies the design problems of the sixties were gradually 

solved. For instance, the prevention of numerical oscillations is now well 

understood. As this knowledge has not been fully absorbed by the IeF 

community, I have made it the subject of the second lecture. 

The eighties have started with an increased interest in explicitly using 

the physics embedded in the IeF equations for improving the numerical methods. 

In particular, there is a strong emphasis on upwind differencing. Some modern 

ideas on how to compute one-dimensional flow are covered by the present 

lecture; how well these ideas carry over to multi-dimensional flow is 

investigated in the third lecture. 

1.3. A family of second-order finite-volume schemes 

I shall illustrate the recent developments in computing one-dimensional 

IeF on the basis of a family of second-order-accurate difference schemes. The 

initial-value representation and algorithm structure are the same as in Van 

Leer (1980); the notation is also the same, except for the present use of a 

superscript to indicate the time level. 

We start with schemes for the scalar linear convection equation 

0, a = constant, (1) 

assumin~ a piecewise linear initial-value distribution 

n 
q(x,t ) - xi - !h x < x < Xi+! , ( 2) 

as in Van Leer (1980), Fig. 4. The gradient is computed by averaging the 
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numerieal gradient values in the neighborhood of 

n 
IS. q 

1 

x. : 
1 

(3) 

For the moment, the weight K is assumed to be independent of q. The three 

possible values of K most frequently met are 

I( = sgn a - s, 0 and -s (4) 

leading to the LW scheme, Fromm's (1967) scheme and Moretti's (1979) 

A -scheme, respectively. 

The evolution in one time--step of the initial-value distribution 

discretized as above is now computed exactly, namely, by shifting the 

distribution over a distance ~t. Averaging over the finite volumes then 

n+1 
yields the updated values qi ' from which the gradient in each volume can 

again be determined. 

The LW scheme involves only the downwind value of the gradient of n 
q • 

Shifting the inital-value distributfon brings upwind information to xi' so 

that the LW scheme ultimately is independent of the sign of a. The LW scheme 

is a so-called central-difference 

f' d n+l • It is stable for 1n qjl 

II crl ~ 1, 

where 

IIJ 1= a/::' t//::,x 

n n n 
scheme and involves qi-l' qi' and qi+l to 

(5.1) 

(5.2) 

is the Courant-Friedrichs-Lewy (CFL) number, and produces a predominantly 

negative phase error (see Fromm (1967)). 

Fromm's scheme is upwind biased, involves qi-2s' qi-s' qi and qi+s' and 
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has a zero phase error at 0 = s/2 for all frequencies. Its stability domain is 

given by (5.1). 

The A-scheme, involving only the upwind value of the gradient of 

remains fully 

n+1 
compute qi 

one-sided; the values 

Its stability condition is 

and are used 

(6) 

n q , 

to 

but in practice we have to put up with (5.1), in order not to complicate the 

preservation of monotonicity. Under (5.1) the phase error of the A-scheme is 

predominantly positive (see Fromm (1967». 

1.4. From convection to IeF 

In order to convert the above difference schemes for a single linear 

convection equation into schemes for the hyperbolic system of the nonlinear 

conservation laws of IeF, we must regard equation (1) as one of the 

characteristic (diagonalized) equations, q as a characteristic state quantity 

and a as a characteristic speed; see Van Leer (1980). Since a now depends 

on q, so does K, and it suddenly appears impractical (although feasible) to 

use any other value than K = O. This leads to the following observation: 

In upwind-biased schemes the discretized initial-value distribution is 

independent of the direction in which the various physical signals propagate; 

see Van Leer (1977). 

Restricting ourselves to Fromm's scheme, we follow the recipe from [24] 

for advancing in time (the approach by Van Leer (1979) is different). We 

first update the distribution in each volume over a half step in time, 
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without regard to the neighboring volumes, with a central-difference scheme. 

For the characteristic quantities (other state quantities may be used) this 

boils down to 

(7.1) 

(7.2) 

with sufficient accuracy. 

Subseqm~ntly, time-centered values are obtained on the upwind side of 

each interface. For IeF, described by the system of conservation laws 

w + [few)] = 0, 
t x 

( 8) 

this means we must compute the complete states wL and wR on the left and right 

side of eaeh interface and solve the local Riemann problem, exactly or 

approximately, to find out what the upwind components are. In formula: 

n+t 
q(iH ):~ 

w( q (ift )+) 

(9.1) 

(9.2) 

(9.3) 

here ~(wL' wR) is the flux resulting at an interface after resolution of the 

initial discontinuity and F is the numerical flux vector used to approximately 

integrate the system (8) over one time step and one finite volume: 

t.t + (10) 
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Note that twice in this second-order scheme there is an exchange of 

information between neighboring volumes. 

n The first exchange, finite-differencing of qi at t , is purely numerical 

- initial-value interpolation - and involves no physics. We may at this stage 

use any complete set of state quantities; the choice of characteristic 

quantities is imperative only near boundaries and advisable near discontinui-

ties. 

The second exchange, solving the Riemann problem defined by w(i+!-) - and 

w(i+!-)+' is purely physical: interaction through waves. Simplifying the 

solution of the Riemann problem, while desirable for numerical reasons, is a 

matter of simplifying the physics of the wave interactions. 

1.5. Approximate Riemann solvers 

I shall discuss two distinct approximate solvers of Riemann's problem: 

the one by Roe (1980), based on linear waves, and the one by Van Leer (1982), 

based on material transport'. 

Roe solves the Riemann problem defined by the initial values 

w 
x < 0 

x > 0 

by solving it for a linearization of Eq. (10): 

w = 0 x 

(11) 

(12) 
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" 
wherE~ A (wV wR) is some average of 

A(w) :: df(w)/dw (13) 

over the interval (wL ' wR). 

Mathematically it is clear that 

(14) 

which is fine for weak waves. Roe demands that the solution also be exact if 

therE! is only one wave with a nonzero amplitude; this wave, however, maybe 

arbitrarily strong. This can be achieved only by chosing A such that 

" 
A(wL,wR)·(wR-wL) (15) 

the discretli! analogue of (13). If wR and wL can be connected by a single 

discontinuity with speed U, the jumps in wand f are connected by the jump 

equation 

(16) 

Upon comparison of (15) and (16) it follows that wR-wL is an eigenvector of A, 

andU the corresponding eigenvalue. 

Harten (1981) has shown for hyperbolic systems (8) admitting an entropy 

condition, that the mean value 

(17) 

not only satisfies (15) but also has a complete set of real eigenvectors and 

eigenvalues, making Eq. (12) hyperbolic under all circumstance. 
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Roe (1981) has indicated an algebraic procedure to construct matrices 

A(WL,WR) of the form A(w) where w is some average of wL and wR• His arguments 

bear heavily on the specific homogeniety properties of the conservation laws 

involved. 

"+ Once A has been found, it is split in its positive and negative parts A 

and positive and negative refer to the eigenvalues of the matrix. 

Correspondingly we may split ~f = f(wR) - f(wL) in 

(18.1) 

(~f) (18.2) 

the changes of the flux across the forward moving and backward moving waves, 

respectively. This is called flux-difference splitting. 

It is easy to see that the flux ~(wL,wR) needed in Eq. (9.3) equals 

(19.1) 

(19.2) 

see also ApI, Fig. 8. 

A word of caution: the jump condition (16) does not imply the entropy 

condition: wL and wR may be exchanged. Likewise, if 

(20) 

the scheme incorporating A can not recognize inadmissible shocks and may not 

destroy these. Some asymmetry must therefore be introduced in the dependence 

of A on wL and wR; see Harten and Lax (1981). 
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An alternative to (18) is to split the flux itself: 

few) + -f (w) + f (w) (21) 

+ -f (w) and f (w) may be called the forward and the backward flux, respectively. 

In the review by Harten, Lax and Van Leer (1983) it is demonstrated that this 

kind of splitting follows from interpreting the conservation laws (8) as 

moments of the collisionless Boltzmann equation, using a numerically 

convenient particle-velocity distribution. 

Van Leer (1982) shows how to achieve a splitting like (21) for the flux 

in the Euler equations. Care must be taken to ensure that f+(w) and 

f-(w) are continuously differentiable functions of w, so that Eq. (8) can be 

consistently approximated. in the 

flux- difference splitting (18) just have to be continuous. In any case, 

second-order terms with split fluxes or split flux-differences must be 

avoidE~d; see Mulder and Van Leer (1983). 

1.6 Alternative ways of time-stepping 

If temporal accuracy is not needed, for instance, in marching toward a steady 

state, we retain from the scheme from Sec. 1.4 only the steps relating to the 

approximation of f x • Following JamE~son et al. (1981) we may advance in time 

with an m-stE~p Runge-Kutta algorithm: 

w(O)= n 
i ~"i 

(k.) n 
(k) 

6. F(k-l) /6. ex 
6.t k=l, •• ,m, W', .. Wi k! i x, l. 
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(m) n+l 
w. = W. 

1 1 
(22) 

Once a steady state is achieved it is independent of t::. t. The same steady 

state would be found with the two-step scheme from Sec. 1.4, in the limit 

of t::.t + O. 

Unfortunately, the stability condition associated with upwind-biased 

spatial-differencing operators is rather restrictive, due to the sizable 

negative real part of the eigenvalues of such operators. This is illustrated 

in Figure 1 (taken from work done in collaboration with E. Turkel (1982)), 

for the combination of Fromm's space-differencing and fourth-order four-step 

Ringe-Kutta time-stepping (a(k) = 1, k = 1,2,3,4). The stability conditon 

after four steps is a meagre 

(23.1) 

changing the coefficients a(3) and a(4) improves this up to 

I a ( ~ 1. 9 • (23.2) 

In contrast, the central-differencing operator of the LW scheme, which has 

purely imaginary eigenvalues, leads to a stability condition 

[01 ~ 2.8, (23.3) 

see Jameson et ale (1981). We conclude that upwind differencing is not 

efficient in combination with Runge-Kutta time-stepping. 

Another possibility is to use implicit time stepping, such as the 

"backward Euler" or "implicit Euler" method. In practice the implicit 

difference scheme must be linearized in time to make inversion possible. The 
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linear:ization is only feasible if the numerical flux-function F is differen-

tiable with n~spect to its arguments. This requirement favors the use of flux-

vector splitting; see Mulder and Van Leer (1983). 

2. THE RECOGNITION AND REPRESENTATION OF DISCONTINUITIES 

n 
The formula (3) for <5.q is based on the assumption that the gradient of 

1 

w varies smoothly between xi -l and xi + 1• If w or its first derivative is 

discontinuous in this interval, the value of 0 thus computed is meaningless 

and, when used, may give rise to numerical oscillations. The sight of a shock 

with numerical oscillations is well known and needs no illustration here. 

A local discontinuity in w or Wx may be recognized, in a sequence of 

mesh-refinements, by a local extremum of fli-'-J. w/fl. J.w that goes to infinity or 
--'2 1-2 

to a finite value .f 1. The only place in a smooth solution where this 

behaviour is also seen is at an extremum. 

It: has been demonstrated by Van Leer (1972, 1974, 1977) that meaningful 

values of <5 are obtained under the extra constraint of monotonicity. For a 

linear convection equation it says that the updated discrete distribution must 

be monotone if the discrete initial--value distribution is monotone; this of 

course" is true for the exact solution. Satisfying this condition turns out to 

simply be a matter of monotonicly interpolating the initial values inside 

volumes. 

n n n 
To fix our thoughts, let qi-l ' qi ' qi+l and 0 , a , 1; We shall use the 

abbreviations fl :: fl. lqn, fl+ fl.+lqn o.qn _ o. It is easily seen that, for 
1-'2 1"2 1 

the pn~servation of monotonicity at tn+l, we must limit 0 as follows: 
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_2_1'. 
I-a + 
~I'. 
a 
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(no overshoot in xi +1 for a ~ 0) 

(no overshoot in xi for a 1) 
(34) 

Note that, regardless of the value of a, 0 mus t vanish if 1'.+ or I'. _ vanishes. 

Taking the minimum of condition (34) over all values of 0, we arrive at 

(35) 

With 0 within these bounds, the initial va+ues (2) inside volume i will not go 

beyond the neighboring zone averages; see Van Leer (1980). 

For the three schemes of Sec. 1.3, (35) means that no limiting is 

necessary if 

(LW) 

(Fromm) 

( A) 

Using 

o " I'. It:. "2, + -

t .. I'. II'. .. 00 + -

(36.1) 

(36.2) 

(36.3) 

(37) 

as a "smoothness monitor" (the logarithmic second derivative is a measure of 

curvatu~e), we can write (36) as 

(LW) 

(Fromm) 

1 -1 .. S .. -
1 3 

(38.1) 

(38.2) 
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( A) (38.3) 

For the Fromm scheme, the permitted range (36.2) or (38.2) remains the 

same ~"hen thE! sign of (J is flipped; this is not true for the ranges associated 

with the other schemes. Hence, the initial-value dicretization for Fromm's 

scheme remains independent of the physics. 

2.2. 1imiters, switches and artificial dissipation 

Eq. (35) can be satisfied by limiting 0: 

(39) 

but a smoother dependence on f::,+/f::,._ is preferable. Harmful effects of clippi.ng 

caused by suddenly acting limiters like (39) are described by Van Leer (1977), 

Woodward and Colella (1982) and Van Albada et a!. (1982). 

In the latter paper a smooth limiter for Fromm's scheme was described: 

°lim 

2 

2 2 2 2 
(f::,+ + £ )f::, + (f::, + £ 

-. 2 2 2 
f::,+ + f::,_ + 2£ 

2 
2f::,+f::,_ + 2£ f::,+ + f::,_ 

2 2 2 . 
b.+ + f::, + 28 

2 
(f::, + - f::,_) 

= {I - --..r2--';"'-"2~-""'2 
f::,+ + f::,_ + 2£ 

2 

} . 

)f::,+ 
(40.1) 

(40.2) 

(40.3) 

here EO is a small threshold that also prevents zerodivide. The treshold can 

be chosen sueh that the limiting effect disappears in the neighborhood of a 

smooth extremum, that is, when f::,+ and f::, have values 
2 

"" (f::, x) • 
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2 3 
Clearly, e - (~x) will do. 

Eq. (40.1) shows that 0lim is a weighted average of ~ + and ~ ,biased 

toward the smaller of the two. In the limit of ~ /~ = 00 or 0 , the average 
+ -

equals the smaller value. Eqs. (40.2) and (40.3) show that 0lim equals its 

unlimited value (3) multiplied by a switch factor; this factor falls about 

2 (In w ) } 
x x (40.4) 

short of unity in a smooth solution. The appearance of the logarithmic second 

derivative is no surprise. 

A tighter fit to (39) is 

(2~ 2 + e2)~ + (2~ 2 + e2)~ 
+ - + °1 , 1m ~~ + 21~+~-I + ~2 + 2e

2 

which tends toward twice the 

of ~ /~ = + -
00 or O. 

Eqs. (40) and (41) alIso 

smaller 

limit 

( 41) 

of ~ _ and ~ + ' in the limit 

the value of ° if the signs 

of ~+ and ~ are different, that is, if the initial-value sequence is not 

monotone. The numerical experiments of Mulder and Van Leer (1983) suggest that 

(40) gives a cleaner representation of the solution near a steady shock than 

(41) • 

The effect of the switch factor in (40) on the scheme can be interpreted 

in seveFal ways. According to (40.2) the switch turns off the nominal gradient 

in a zone; since it is the gradient that leads to second-order accuracy, the 

switch can be said to turn off the second-order term of the scheme. Symbolicly 

(ignoring the conservation form): 
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(42.1) 

here L2 and L1 are the second-order operator and embedded first-order 

operator. Since L 1-L2 is predominantly a dissipative term, 52 must be an 

artificial-dissipation coefficient. 

Writing (42.1) as 

(L2) lim (42.2) 

reveals that (L 2)lim symbolizes a so-called hybrid scheme, see Harten (1978). 

Writing (42.1) as 

(42.3) 

reminds us of the Flux-Corrected Transport (FCT) methods of Boris and Book 

(1973), where a first-order result is improved by adding a limited second­

order term. These, however, are the methods mentioned earlier that show the 

disastrous clipping effect. 

2.3 Nonlinear case 

The analysis in 2.1 shows that for a linear convection equation the 

monotonicity of the numerical solution can be preserved by monotone 

interpolation of the solution inside each volume. This recipe works 

surprisingly well for nonlinear convection and seldom needs adjustments; see, 

however, Woodward and Colella (1982), Colella and Woodward (1982). For s:l.ng1e 

nonlinear conservation laws it can be made exact; see Harten (1982). 
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What do shock profiles, computed with monotonicity preserving schemes, 

look like? To answer this question an example of shock propagation by three 

upwind-biased schemes based on monotone initial-value interpolation is given 

in Figure 2, taken from Woodward (1980). 

2.4 Related subjects 

So far we have only discussed the role of the initial-value 

representation in preserving monotonicity. Obviously the choice of the time­

stepping algorithm will influence the numerical results. The sharpness of 

steady shocks, for instance, depends on the Riemann solver used, although the 

differences among second-order schemes are much less important than among 

first-order schemes; see e.g. Van Leer (1981) •. (This subject will be reviewed 

in a forthcoming paper by Enquist, Osher, Roe, and Van Leer (1983». 

Discontinuities that have spread too much, in particular contact 

discontinuities, may be steepened by applying Harten's (1977) artificial 

compression method (ACM). 

It is possible to use a smoothness monitor for other purposes than to 

limit gradient values. Some applications are: to indicate ,where the grid 

should be refined or moved, and where shock-fitting or shock-recovery should 

be carried out; for the latter subject see Morton (1982). 

3. MULTI-DIMENSIONAL METHODS 

3.1 Multi-dimensional convection 

In order to illustrate how the one-dimensional schemes of Section 2 can 
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be applied in multi-dimensional problems, I shall discuss two first-order 

sche~mes for convection in two dimensions. 

Godunov's one-dimensional scheme is what we get if, in the schemes 

studied pr,evious1y, oq is always set equal to zero. In other words, the 

initial values in each volume are chosen to be uniform, which accounts for the 

loss of the second-order accuracy. The Lax-Friedrichs scheme also uses uniform 

initial values in each volume but the grid is staggered in time. I shall start 

with the latter. 

The convection equation to be approximated is 

0, a > 0, b > O. (43) 

For convenlence the points (xi' Yj)' (xi-I' Yj)' (xi' Yj-l) and (xi-I' Yj-l)' 

and the volumes centered at these points are indicated by A, B, C and D, 

respectively; the center (xi-t' Y j-t) of the staggered volume is indicated by 

M. This is shown in Figure 3a. 

Af ter moving the piecewise-uniform distribution with a velocity (a, b) 

over a time interval La we find~ by weighting q according to area (see Figure 

3b): 

o ,0 ~ t . 
x Y 

For comparison with Eq. (10) we ~lY rewrite this as 

(44.1) 
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- a [{( t-t a )q n
A 

+ O+t a ) qn
B

}-{( t-t a )q ne + (t+ta )qD
n

}] 
y x x x x 

n+! 
q W ) ( n+t n+!) 

ay q N - q S • (44.2) 

n+! Here q E is the time-average of the space average of q on the East side (Ae) 

of volume M; the other averages are defined similarly. This formula differ$ 

from the version given orignally by Lax (1954), where the fluxes through the 

sides of volume M are not centered in time. This removes the cross-difference 

n n n n 
term Ox ay(q A - qB - qe + qD) from the scheme and reduces the scheme's 

stability domain. 

Scheme (44) can be written as the product of two one-dimensional LF 

schemes: 

[t(l+T -1) _ a (l-T -l))[t(l+T -1) 
y y y x 

-1 n 
a(1-T )]qi' 

x x J 

LLF(At) LF n 
- u L (b t) qi . 

Y x J 
( 45) 

where Tx and Ty denote a forward translation by one volume in the x- and y­

direction. Hence, the method of fractional time-steps or time-splitting is 

exact for the linear LF scheme. 

or 

Godunov's scheme, illustrated in Figure 4, can be written as 

n+1 
q A 

n n n n 
(1- a ) 0- a ) qA + a (1- a ) q B + a (1- a ) q e + a a qD x y x y y x xy 



n+t) 
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n+t) 
q s ' (46.2) 

whE!re E, W, Nand S now refer to the sides of volume A. Again the proper 

cross-difference term is included and exact factorization is possible: 

{ -I } { -1 } n (1-0 (I-T ) 1-0 (I-T ) qi. 
Y Y x x J 

(46) 

3.2 From convection to IeF 

The LF scheme can be exactly implemented for a nonlinear system of 

conservation laws 

o " (47) 

The flux aq~ through the East side of M is changed into F~, with 

F
n+t 1 t n+ 1 A n 
E = /).t/).y f f f(wAC(t,y)) dy dt , 

t
n c 

(48) 

n 
where wAC (t,y) is the time-dependent solution of the one-dimensional Riemann 

problem on the line CA with initial values at tn. The other fluxes are 

obtained similarly. 

An lllseful approximation of (48) results if we first average w: 
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1 1 n+1 .A 
n-H It f1"1 n ( ) 

WE 2 = ~t~y t n C WAC t,y dy dt 

(49) 

and then adopt 

(50) 

which differs 0((~x)2) from (48). Note that, owing to conservation, the 

n+t computation of the average wE does not require knowledge of the detailed 

Riemann solution. 

Eq. (49) is, of course, the one-dimensio~al LF scheme for flow along the 

line CA. This inspires the following implementation of the LF scheme for Eq. 

(47). 

""Il.+t 
wi' 1 J-"2 

~ w. l' 1-"2 J 

LLF(~) n 
w .. 

Y 2 1J 

LLF(~t) n 
W .. 

X 2 1J 

~t (fU+t 
~x ij-t 

(51.1) 

(51. 2) 

(51.3) 

This version is symmetric in x and y, just as the time-splitting suggested by 

Strang (1968) for two-dimensional operators: 

t {L (~t)L (~t) + L (~t)L (~t)} , 
x Y Y x 

(52.1) 
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It must be said, however, that computational fluid dynamists almost 

exclusively use pure product operators like (45). To reduce the asymmetry 

betwen x and y, the sequence LyLx is alternated with LyLx: 

L (At)L (At)L (At)L (At) • 
x y y x 

(52.2) 

The exact formulation of Godu!lov's scheme for Eq. (47) requires knowledge 

of the solution of Riemann's problem in two dimensions, with initial values 

uniform in each quadrant. Th:ls solution is only known for a single 

conservation law and was obtained by Wagner (1980). In the same way as (51) is 

derived from (44b), we may derive from (46.2) an approximation to Godunov's 

scheme based entirely on the solution of one-dimensional Riemann problems: 

"1:1+t LG At n 
wi' (Z)wij J y 

~t LG At n 
w
ij x (Z)wi ; 

n+1 n At (in+ t 
wi . w .. t.x J 1J i+1 j 

Here 

.... ("'n+! 
- 'if W •• 

1J 

:fD+: .) 
i-2] 

~+! 
Gij+t 

t.t 
t.y 

:::n+t 
(Gii+!. _ 2 

(53.1) 

(53.2) 

~~~t 1) 
1J-"2 

(53.3) 

(53.4) 

with the Riemann flux tl'1(w
L

,w
R

) defined previously. Thus, the one-dimensional 

Riemann solver is used twice in ea.ch space dimension. 

ExpreBsing (53) in terms of L~D only leads to 
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L~O(f1t) = I + (L
G

(f1t) - I) LG(f1t) 
x y 2 

+ (L G (f1 t) - 1) LG(~) (54.1) 
y x 2 

Since 
G 

LIO(T) is linear in T, this may also be written as 

G 
(L

G
(f1t) - I) t(L

G
(f1t) + I) L

20
(M) I + x y 

(L
G

(f1t) - I) HLG
(f1t) + I) . (54.2) 

y x 

Using the homogeneity property of the Euler equations and, therefore, of the 

Riemann solution, we may further work this out: 

G HL~ (f1 t) (LG(M) + 1) - L G (f1 t). L
20

(f1t) 
y x 

+ L
G

(f1t) (L G (f1 t) + I) - L G (f1 t) ] , (54.3) 
y x y 

This would reduce to Strang's splitting (52.1) if L~D would have the 

distributive property. This, of course, is only true in the linear case. 

3.3. Second-order schemes 

The examples of the previous section teach us that it is possible to 

mimic two-dimensional wave-interactions by combinations of one-dimensional 

wave interactions. These schemes contain terms" (f1t)2, but only have first-

order accuracy. It is possible to apply the ideas of Section 3.1 and 3.2 to 

the second-order schemes of Section 2. This clearly involves more algebra and 

will not be carried out here. One of the reasons is that none of these two-

dimensional schemes has yet been programmed. It remains to be shown in 
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practice if the more subtle ways of splitting like (53) are indeed preferable 

to a pure product operator like (52.2). 

3.4. Related subjects 

In two dimensions the grid plays an even more important role than in one 

dimension. Various ingredients of the schemes discussed in these lectures may 

be used more than once, in order to make decisions about refining the grid, 

moving the grid or just rotating the frame in which the solution of a one-

dimensional Riemann problem is considered. 

For the latter decision we may use the direction of the gradient of the 

solution - readily available from 0 wand 0 w in a second-order scheme - or x y 

the projection angle at which the initial values in a Riemann problem could be 

best connected ("best" in some least-squares sense) by a single running wave. 

The latter idea is due to Harten (private communication). 

Moving a grid interface at the speed of the best-fitting single wave was 

reallzed in one dimension by Harten and Hyman (1982); two-dimensional results 

will soon follow. It appears that the improvement due to the grid movement is 

dramatic for a first-order scheme and not nearly so much for second-order 

schemes. 

A two-dimensional extension of Roe"s matrix theory is being considered 

(Baines, M. J., (1982), University of Reading, United Kingdom, private 

communicati()n). 
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(b) 

5 

5 5 

F:lg. 1. Stability domain of four-step Runge-Kutta methods in the complex 

plane. 

(1) (2) (3) ef) 
a) With ex = ex = ex = ex = 1. The inner contour is the locus of the 

Fourier transform of the second-order upwind spatial-differencing operator, 

forcr=1.3. 

b) With 
( 1) 

(X .86, .44; 0 = 1.9. 
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Fig. 2. Propagation of a one-dimensional 

shock, as represented by first-order (a), 

second-order (b) and third-order (c) up-

wind methods. Note that the overall dis-

tribution is always monotone. Reproduced 

from Woodward (1980). 
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F:lg. 3. Two-dimensional convection by the Lax-Friedrichs scheme. (a) Staggered 

grid of finite volumes. (b) Contours of the convected distribution after one 

time step (broken lines). The updated average value in zone M is an area-

wc~ighted average of the values in A, B, C and D; the areas are shaded 

d:lstinctively. 
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Fig. 4. Two-dimensional convection by Godunov's scheme. Same as Fig. 3, except 

updating is done in zone A. 
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