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On Orthogonal Expansions of the Space of 
Vector Function§ which are Square-Summable 

Over a Given Domain and the Vector 
Analysis Operators 

E. B. Bykhovskiy, N. V. Smirnov 

Introduction 

The present paper is devoted to a study of the Hilbert 

space L2 (Q) of vector functions: 

v (x) - (VII V 2, v3), 

specified in the region n of a three-dimensional Euclidean 

space x = (xl ,x2 ,x3 ). The scalar product in L2 (Q) is defined 

by the equation: 

3 

(u, v) = J ~ u"v"dx. 
Q "=1 

The paper discusses a breakdown of L2 (Q) into orthogonal 

subspaces, investigates the properties of the operators for 

projection onto these subs paces from the standpoint of pre­

serving the differential properties of the vectors being pro­

jected, and examines in detail the properties of the operators 

rot [curl] and dive 

The part that functional analysis and especially the 

theory of unlimited self-conjugate operators in Hilbert space 

have played in solving various problems of mathematical physics 

is well known. 

* Numbers in the margin indicate pagination in the foreign text. 
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In the majority of these problems the functional space 

L
2

(Q) plays the part of the fundamental Hilbert space. In view 

of this, problems of studying the various differential operators 

not in classes of continuously-differentiable functions, but 

rather so-called classes ~, i.e. classes of functions which 

can be quadratically added together with their derivatives up 

to a certain order 1, occupy the primary attention. In fact 

this attempt to use general ideas and theorems of functional 

analysis to solve problems involving vector functions has 

necessitated a study of vector fields not from the classical 

standpoint, but rather that of Hilbert space L2 (Q). The 

pioneering work in this direction is that of H. Weyl [4]. hith 

a view to solving boundary-value problems for the Laplace 

operator, he broke down the space L2 into three mutually 
o 0 

orthogonal subspaces G, U and J in the following manner. He 
o 

defined G as the closure in the norm of L2 of the gradients of 

all continuously-differentiable scalar functions finite in n 
o 

(equaling zero near boundary), J as the closure of rot of all 

finite smooth vectors, and U as the orthogonal complement 

of G~j 

o 0 

The orthogonality of G and J is immediately verified. 

Thus, it is clear from the very structure of these subspaces 
o 0 

that L2 is the orthogonal sum of G, J and U. One of the 

principal assertions of Weyl is that all vectors of U are 

gradients of harmonic functions. This is based on the lemma 

of har~onicity of the function in L2 (D) that is orthogonal to 

the Laplace operators of all finite functions. This lemma had 

been previously proved for the more general case of the 

polyharmonic operator of S. L. Sobolev [24]. 

On the other hand, it has long been known (cf. e.g. [10]) 

that any given ~th vector u(x) can be resolved into three 

orthogonal vectors ~l' ~2' ~3' the first of which is grad~(x) 

with ¢(x) equaling zero at the boundary, ~3 is a solenoidal 

2 

/6 



'. 
,:-

I~ 

" 
1-

,I 

vector with normal element equaling zero and rot equaling rot ~, 

while ~2 is grad of the harornnic function. Finding the vectors 

~k for a given ~ involves solving boundary-value problems for 

the Laplace operator. It was perfectly clear that this resolu­

tion of ~ corresponds to the Weyl resolution. But, as mentioned 

above, Weyl devised his resolution for the purpose of solving 

those boundary-value problems which are encountered in deter­

mination of ~k. However in the early 1950s other comparatively 

simple and general methods of o. A. Ladyzhenskaya (cf. [14], as 

well as [26]) for these problems had produced in a certain sense 

definitive results ·in spaces w~+2(~). In particular, it was 

proved that the Laplace operator establishes a one-to-one 

correspondence between the classes w~+2 and w~, where 0 signifies 

that the functions in w~+2 obey a certain of the conventional 

homogeneous boundary conditions. This naturally suggested the 

use of these findings for a more thorough investigation of the 

questions of orthogonal resolution of L2 • In particular it was 

important for various problems to establish whether projections 

of the vector ~ of W2 (D) will belong to W~(r.). As shown by 

o. A. Ladyzhenskaya for a finite domain and N. V. Smirnov for 

an unbounded domain, this is true if the boundary is regular. 

This has been proved by E. B. Bykhovskiy in [2] for the case 

of W~(~) and projection onto ~, as well as for projection onto 
o 

J = J + U, when the vector has a null tangential component at 

the boundary. 

Another group of issues arising from the use of the sub-
o 0 

spaces G, J and L is as follows: smooth vectors of these sub-

spaces have completely determined characteristic properties. 

For examplel , the plane vector of ~ is the vector ~, for which 

divu = 0 and the normal component u is equal to zero on the 
o n 

boundary. We obtain J by closure in the norm of L2 of the set 

of all these smooth vectors. The question is in what sense 

lFor simplicity we shall now discuss a domain with boundary 
homeomorphic to a sphere. 
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this relation of the divergence and normal component equaling 

zero on the contour will be preserved for limit vectors u of 
o 
J, generally not differentiable. One of the answers is that 

these vectors are orthogonal to all the gradient vectors or, 

which amounts to the same, they have a null "generalized 

divergence II and, in the "general sense", satisfy the boundary 

condition: 

unl.=O. 

But this answer is tautological. A different and more substan-
o 

tive answer was found: any given vector u of J has a single 

valued representation in the form rot~, where: 

w E W~(Q) 

(i.e. is quadratically-summable over n together with its first 

derivatives), di~v = 0 and: 

wnl.=O, 

while lI u 'IIL£2) is equivalent to Ilwll1r112) This result, 

established by o. A. Ladyzhenskaya, was afterwards amplified 

by E. B. Bykhovskiy. Thus, he proved that any given vector 

v of 

J(Q) =1 (Q) ,::- U(Q), 

has a single-valued representation in this form, while vectors 
o 

~ of J(n) have a single-valued representation in the form: 

rot v I v E Wi (~!), div v = 0 

and the tangential component v on S is equal to zero), the 

norms 

U L, and 
\1 II 

,v '1r~ 

4 
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,I being equivalent. Let us also note that these premises enabled 

E. B. Bykhovskiy to reduce boundary-value problems for the set 

of Maxwell equations to a solution of the Cauchy problem for an 

abstract equation of type: 

dX+iAx=! 
dt 

~vith self-conjugate operator A, thereby solving these boundary 

value problems. 

Let us finally discuss one more point which is clarified 

in the present paper, also arising (as the others above) in the 

study of problems of hydrodynamics of a viscous incompressible 

fluid. Let us presume that the domain n is multiple-connected. 

The Weyl resolution remains in force. However in the present 

case U contains gradients of multi-valued functions. It was 

necessary to explain the position of such gradients in L2 , for 

e.g. in hydrodynamic problems the operation of projection is 

used to find the pressure gradient of a function which, by 

definition of the problem, should be single-valued. It ~as 

found that if the set of all smooth solenoidal vectors with 

null normal component on the boundary (or, which amounts to 

the same, equaling zero near the boundary) is examined in L2 , 

it will take in all the gradients of multi-valued functicns, 

and therefore such gradients will be absent from its orthogonal 

complement. This justifies the procedure given in [8] and [13] 

=or solving stationary and nonstationary boundary-value 

?roble~s for a viscous incompressible fluid in multiply-connected 

domains. The fact that the gradients of multi-valued fu~ctions 

and the solenoidal vectors that are not curls will basically 

lie in the subspace U was found by Weyl. But he did not 

describe in detail the properties of such vectors. Such a 

description was important, both for producing our results and 

for the applications. The most complete results in respect of 

resolutions for multiply-connected domains were obtained by 

5 
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,j E. B. Bykhovskiy in [3]. They are explained in §l of Chapter 3. 

As is evident from the above, the studies of the resolu­

tion of L2 undertaken after Weyl were basically motivated by 

the desire to solve hydrodynamical problems of a viscous 

incompressible fluid and electrodynamical problems, using for 

this the main achievements of functional analysis. The works 

of S. L. Sobolev [22,23] and S. G. Kreyn [3] belong to this 

same pursuit. In the works of S. L. Sobolev, in connection 

with the problems which they address, a resolution of L2 is 

examined particularly in the case when r. is all of 3-dimensional 

space. The work of Kreyn studies various field operators in 
o 

the subspaces J and J in connection with an investigation of 

the linearized stationary Navier-Stokes equations. 

In §l of Chapter I we discuss all of three-dimensional 

space E3 • From the known formula (1) giving the resolution of 

a finite vector into rot and grad of the vector and scalar 

potentials we derive the orthogonal resolution of L2 (E 3 ) and 

the various properties of the operators for projection onto 

the subspaces. We examine the question of whether the vectors 

of J(E3 ) (the closure of rot of the vector potentials). In 

§2 of Chapter I we briefly expound the chief results of the 

paper of H. Weyl [4]. 

In Chapter II we examine a bounded region homeomorphic 

to a sphere. We introduce others convenient for future 

definition of the 

to those of Weyl. 
o 

vectors of J and 

subspaces of L2 and prove they are equivalent 

We discuss the question of representing the 

J=J ,.;;i U in the form rot and the 

properties of the projection operators. 

The same issues for a bounded multiply-connected domain 

are studied in §l of Chapter III. In §2 of this chapter are 

additional considerations which enable some of the findings to 

6 
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be extended to unbounded domains. 

After this paper was sent to press we became aware of the 

work of K. Friedrichs "Differential Forms on Riemannian 

Manifolds" (Corom. Pure Appl. Math., VIII/2, November, 1955), 

which proves for the latter results that are similar to §2, 

Chapter II. Specifically, theorems 3.2 and 4.2, as well as 

the partial case of theorem 6.2 (n = 1), coincide with the 

findings of Friedrichs. Even so, they were obtained concur­

rently, independently, and using a different procedure. The 
o 

question of the representability of any given vector of J in 

the form of the curl of a solenoidal vector with null normal 

component on the boundary, as mentioned above, was decided by 

o. A. Ladyzhenskaya as far back as early 1954, reported at 

seminars, and afterwards used in works on hydrodynamics (cf., 

e.g., [9]), but unfortunately the result was not published in 

the explicit form. These investigations were continued by 

one of the authors, reporting on the findings at a meeting of 

the department at the end of 1955. In view of the work on 

their applications to the Maxwell equations, the paper [2], 

giving a significant amount of the findings of the present 

work, was sent to press in 1956. 

One of the important "differences between our procedure and 

that of Friedrichs consists in the method of deriving 

inequalities (16) and (22). Friedrichs extends the form onto 

the "duplicate" of the particular domain by an even or odd 

~ethod, depending on the type of boundary conditions. This 

approach is able to avoid a treatment of the boundary and 

reduces the question to an evaluation of the Dirichlet integral 

over the interior subregion. But our treatment is don~ 

directly in the closed domain. This method has the advantage 

that it allows a similar treatment of the case when one condi­

tion is specified at one portion of the boundary, another at 

the other (for the investigations of the limit integrals in 

7 
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lemmas 4.2 and 5.2 are local in nature), as well as an investi-

o 0 

gation of the properties of the projection operators on G, J 

and U for vectors of w~(n) when n > 1. Of interest is Weyl's 

and Friedrichs' formulation of whether the evaluation of the 

vector has an elementary proof in terms of the vector's curl 

in the norm of L2 (inequalities (17) and (23». We did this 

by merely using the elementary properties of the potential of 

the volume-masses and the known estimate of the Dirichlet 

integral of a harmonic function in terms of the Dirichlet 

integral along the boundary from its limit value. For a convex 

domain (in particular the polygon discussed by Friedrichs in 

the introduction of his article), the proof is even more simple. l /9 

Let us also note that when investigating the existence of 

derivatives above the first order in a closed domain (cf. [2], 

theorens 6.2 and 5.3 and the remark after theorem 4.2) the 

method of continuation used by Friedrichs seems to us inappli­

cable (at any rate in its .unchanged form), for the derivatives 

above the first order are not quadratically-summable for the 

continued forms. 

Chapter I. The Space L2~3) and the Weyl Resolution for any 
Given Domain n 

§l. The Space L2~3L 

Let L2 (E
3

)2 be a Hilbert space of real vector functions: 

u (x) = (11) (x), U 2 (x), U 3 (x)), 

quadratically-summable over all of 3-dimensional Euclidean space 

E3
3 , with scalar product: 

1 Cf. the remark to lemmas 4.2 and 5.2 

2Hereafter in this chapter we shall ordinarily omit the symbol E
3

. 

3All of the results are also valid for complex vectors. 

8 



" 
~ , (u, v) = r u (x) . v (x) dx. 1 

Ii, 

It is known that smooth finite vectors (i.e. vanishing 

outside a finite region, peculiar to each vector) are dense 

in L2 (E3 ) and each such vector can be represented as [10]: 

( 1 J' lot U (y) d 1 f dlv U (y) d 
U x)=-4- rot , Y-4_ grad , , y==rotA+gradp, (1) •. .t-y " .t-y 

£, F, 

where the signs rot and grad stand before a smooth vector and 

smooth function that diminish at infinity as ,;,2 with 
1 derivatives diminishing as 
~' 

Let us define two subspaces in the Hilbert space L2 . 

G(E 3 ) is the closure in L2 of the set of vectors of type ~radp(x), 

where p are smooth functions diminishing at infinity as ~ 

with first derivatives diminishing as ,;,0' J(E 3) is ~he 
closure in L2 of the set of vectors of type rot~, the order 

of diminution at infinity of A and its derivatives being ~he 

same as for p. 

The sets that are closed are orthogonal in L2 , for: 

f gradp. rotAdx= JpdivrotAdx=O, 
r, F J 

Thus the subspaces G and J are also orthogonal. 

Formula (1) gives the resolution of a finite u into compo­

nents in J and G. It generalizes at once to the case of any 

given uEL2• 

IThe dot signifies the scalar product in the sense of vec~or 
algebra. 

9 
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Theorem 1.1. 

a) L2 = G0 J. (2) 

b) If 

U E W~(£3)' 

where w~ is the space of S. L. Sobolev [21], its projections on /10 

G and J will also belong to W~(E3)' their norms in W~ no~ 
exceeding U 11; 

Proof. a) (2) immediately follows from (1) , for an~' given 

vector uEL2 is the limit of finite vectors u with res?ect to -n 
the norm of L2 • By virtue of the mutual orthogonality 0= the 

vectors ro~~ and gradp, corresponding to these u by fo~~ula -n -n 
(1), the former converge in L2 • Passing to the limit in (1), 

which was ~ritten for u , we obtain for u the resolution: -n 

U=UJ ::: Ue' rAe uJEJ; ueE G, 

which in fact proves the theorem. b) If u is a smooth f~nite 

vector, the inequality: 

II ull!tr~(E3) < I' U lin XE3) ( * ) 

and an analogous one for ~ follow from the fact that resolution 

(1) can be ~ritten for any given derivative D of the vec~or 

u: 
Du=DrotA+D gradp, 

while D rot A = rot DA E./; D p;radp = p;rad Dp E G. 

For an~ given vector 

U E W2 (£1) 

10 
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" , a confirmation of the theorem follows from the fact that, as is 

known, it can be approximated by smooth finite vectors u with -n n respect to the norm of W2 (E3 ). 

By virtue of inequality (*) for ~ and ~, the vectors u nJ 
and ~nG converge in W~(E3)' and therefore their limits - the 

vectors ~ and ~ - also belong to this space, the evaluation 

of 

liuJ111I~ 
'1 I' 

and II U G ,Ilr~ 

in terms of ~u~~ 
l 

being conserved. 

Theorem 2.1. The gradients of smooth finite functions p 

are dense in G, while the curls of smooth finite vectors A are 

dense in J. 

This statement becomes obvious if we consider that p and A, 

used to determine G and J, belong to W~(E3) and therefore can 

be approximated by finite p and A with respect to the norm of 
1 n ~ 

W
2

(E
3

) • 

Let us discuss the question of the representation of any 

given vector of J in the form of the curl of another vector. 

If such a representation is possible then e.g. for a vector of 

J that diminishes as 1;1 2 at infi~ity, the vector of which 

it is the curl should diminish as~, i.e. it does not 

belong to L2 (E 3). Consequently, an outlet from L2 (E 3 ) is 

necessary in this matter. The space Dl is introduced in this 

connection, being the closure of plane finite functions ~ in 

the norm of 
1 

1:'1 i;~ = = r ~ ('~Zk)~ dx (13]. 
F, .. =1 

~ve shall denote a similar space for vectors ~ as Ql. Let us 

11 
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explain several of the properties of the elements of Dl . For 

this purpose we shall demonstrate that, for any smooth finite 

function ~, the inequality is valid [12,13]: 

J 42.0tLdy<4IiYlli. Ix-yl2 
(3) 

E. 

We have: 

,I 

J" y2(y) d = J"2( ) ~ ~ Xk-Yk d =" 
I x - Y 12 Y r y __ OYk ' v _ •• '2 Y 

}, H. .1"=1 ., 
3 (1 )'fl '2 'f =-2 . .J.,!i ~k-Yk d ':<:2 t( d I 12 d J ~ .. ¥/c 1 x - YI2 y" (J 1 x - Y '2 Y) f :~> 'Ik Y , 

F.I.:=I J. F, k=l 

from which (3) also follows. 

It follows from (3) that functions in Dl are locally 

quadratic-summable, while their derivatives belong to L2 (E3 ). 

The same is also true of vectors in ~l. 

Theorem 3.1. Any vector ~ of J has a single-valued 

representation as: 

v = rot A, where A E DlI 

vlhi Ie: ,. !, 
HAil ='\' L, - -I 

Any vector 0= G has a single-valued representation as 

gradp, where: 

p E Dl and ;lpIID, =Ilgradp/ir., 

Proof. Let v at first be a smooth finite solenoidal 

vector. Then: 

12 

(4 ) 

/1: 
, 

I 
, 
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v =....!.. rot rot J' -~ dy 4;: 'x _y I , 

E, 

and it is sufficient to posit that: 

1 J' v Iy) A = 4- rot I' I dy. .• .I.-y 
E. 

The finite nature of v and formula (5) lead to the 

esti::1ates: 

iAI~ C(A). I riA I:::;: CIA) 
Ix12 ' ,O.l.k "",~, 

=ro~ which it follows that: 

AE W~(E3) 

anc ::1oreover: 

AE~l (4) 

(5) 

(6) 

follows directly from the·fact that, in view of the solenoidal 

c~a~acter of A anc the estimates (6), we have: 

3 

J (rotA)! dx= f ~' (~)2 d· 
F - aXle x. 

, E •• , !=1 

Now let ~ be any vector in J. We shall approximate it 

wit~ respect to norm of L2 by finite solenoidal vectors v -n 
lwtich is possible from theorem 2.1). In virtue of (4) I the 

~es~ective ~n converge in the norm of Ql to a certain: 

AED]. 

while v = rotA. Obviously (4) is conserved. The uniqueness 

of the representation v = rotA follows immediately from (4). 

The statement of the theorem that concerns vectors of G 

=ol:~ws immediately from the definition of Dl and the denseness 

in G of gradients of finite vectors. 

13 



I/' 

II 

§2. The Orthogonal Resolution of \'leyl 

In this section we explain the chief findings of H. Weyl /12 

[4]. Let Q be any open set of 3-dimensional space, E3 and L
2

(Q)1 --­

a Hilbert space of 3-dimensional vectors quadratically-summable 

over n, with scalar product: 

(u, v)= J U ·vdx.-i< 1 

the vectors and functions that equal zero in the neighborhood 

of the boundary and infinity (if n is an unbounded set) we 

shall call finite. 

Let us examine in L2 the subspaces: 

o 
G - the closure in L2 of vectors grad~, where ~ is a finite 

function, 

o 
J - the closure in L2 of the vectors rot~, where v is a finite 

vector. 

o 0 

The orthogonality of G and J is obvious. 

o 
Let G be the orthogonal complement of J, J the orthogonal 

o 
complement of G, and U the intersection of G and J. 

The resolutions: 

G=G~?: U 
J = j s u; L2 = G CiJ j = J t!? G = G ffi U --'}. ( 7 ) 

follow directly from the definition of these subspaces. 

lwe afterwards omit the symbol ~. 

14 
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Theorem 4.1. If fEU, it is an infinitely-differentiable 

harmonic vector: 

~f=O, rotf=O II divf=O. 

In the proof we shall avail ourselves of the following 

lemma, obtained by S. L. Sobolev [241 and independently by 

H. Weyl [4]. 

If: 
J Tj~;dx=O, 

where ~ is any smooth finite function, then n is a harmonic 

function. 

Le t fEU, i. e . 

J f . rot vdx = 0: J f . grad :;:dx = 0 ( 8) 

for any smooth finite v and ¢. 

Let us assume that: 

v=rotw and :r=divw, 

where w is finite. Then, using the identity: 

~w = grad div w - rot rot w, 

we obtain: 

J f~wdx=O, 

whence we conclude that the components of f are harmonic func­

tions. 

We have: 

div:;:f = f grad 'f -t- y div f, } 
divf>-.v=v· rotf-f· rotv. 

(9) 

15 
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substituting igrad¢ from (9) into (8) and integrating 

~.;ith respect to rt, we have (using the fact that Jdivrfdx=O ): 
£ 

f ?divfdx=O 
2 

and, since ¢ is arbitrary, divf = O. Similarly, we establish /13 

that rotf = O. It follows from this that f = gradh, where h(x) 

is a function harmonic in rt, which may be multi-valued. Q.E.D. 

A considerable part of Weyl's work is devoted to a treat­

ment of multiply-connected regions. He obtains an estimate 

for the unidimensional periods of potential vectors and 

2-dimensional periods of solenoidal vectors in terms of t~e 

norms of these vectors in L2 . As a consequence it is fou~d 

that the periods of these vectors are equal in magnitude to 

the periods of their projections onto harmonic subspace. 

As mentioned in the introduction, a detailed knowledge of 

the structure of subspace U on the basis of the well-know~ 

properties of boundary-value problems was important for us. 

Therefore we shall forego an explanation of this part of \~eyl's 

paper. 

Chapter II. A Bounded Domain with Boundary Homeomorphic 
to a Sphere 

§l. Definition of the Subspaces of Weyl by Means of 
Boundary-Value Problems 

Let rt be a bounded domain in the space E3 with boundary S 

homeomorphic to a sphere and rather smooth. l 

We introduce a series of subspaces, retaining the desig-

l\~e shall explain the requisite smoothness S in various 
crete instances. 
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nations of Chapter I, for afterwards we shall establish that 

they coincide with the subspaces of ~~yl therein employed. 

Let: 

o 
G - the closure in L2 ([) of the lineal G of gradients of 

smooth functions $ that vanish on S. 
o ? 

J - the closure in L2(~) of the lineal ] of smooth vectors v 

for which: 

div v = 0, tin Is = ° 
(v is the normal component of v). 

n 

J - the closure in L2(~) of the lineal J of smooth vectors v 

for which divv = O. 

G - the closure in L2(~) of the gradients of all functions that 

are smooth in Q 

u - the closure in L2 (:..) of the lineal a of gradients of 

harmonic functions h(x) that are continuously differentiable 
. (') ln ... 

'?" ...:.... ? 

It is easy to see that the lineals G, U and J are 

orthogonal in pairs and that G is orthogonal to ]" while 

~ is orthogonal to J. 

Theorem 1.2. Any smooth vector ~ using the Newton poten­

tial and the solution of boundary-value problems for the 

Laplace operator can be represented as the sum: 

U=UJ +U2+U3, (10) 

where: ':t _ __ ~ _ 

u1EG; u!+u3 EJ; u!EU: u3 E], u)+u!EG. 

Consequently, 

17 
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2
=G":' U::..j=G ::-'j=G-::: ** .... "-J.... ..... ,_. 1 

Proof. It is sufficient to set ~l = grad¢, where ¢ is 

the solution of the problem: 

~'t = di,,: U; 9/., 0, 

for then: 

u. EQ, while u-u. EJ 

in view of: 
div(u-u.) =div u- div grad9=div u - ~:r=0. 

To obtain ~3 let us examine the problem: 

r~t U3 = rot u, ) 
d1VU3=0, 

u3n !. =0. 

In fact, by virtue of the second and third conditio~ of 

this problem, its solution is: 

u 1 E /. 

And as for the difference ~-~3' it is orthogonal to J. 
Actually, since: 

rot (u - u3) = 0, then u - u, = grad 1', 

and if v is any vector of J, then: 

f (u - U3) • vdx = J grad 9 . vdx= J 9 div vdx -+- f 'i'vndS= O. 
g 2 2 ~ 

(11) 

(12) 

lIf the introduced subspaces are established to coincide ~ith 
those of Weyl (Theorem 5.2), these resolutions coincide ~~th 
those of (7). 

18 

I 

/l~ 



" 

" 

~ 

In solving problem (12) it would be sufficient to refer 

e.g. to [2] or to the lemma 2.2 given below. But for the 

ultimate estimates (e.g. for theorem 6.2) it is more convenient 

to solve it somewhat differently. If we do not heed the con­

dition: 

U3nl~=O, 

the sought vector ~~ can be obtained as follows: let us 

extend ~ beyond n, preserving the smoothness, so that outside 

a certain fixed region 

that: 

Actually, if: 

Q'!:J Q , u = 0 holds. We can assume 

1 (r rot u (y) d 
uj=rot 4- I I y. . ,. X-'1 

2, 

1 J rot u (y) dy, 
v= 4;: IX-YI 

2, 

then: 

rot U~ = rot rot v = grad div v - ..\v = rot u, 

for: 

d' J d\vy rot u (y) d 0 
iVrV= Ix-yl y=. 

!:, 

In order for the sought vector u 3 to satisfy the condi-

tion: 

U3.ls =0, 

it is sufficient to set: 

U,= u;+ grad Y. 

\'lhere V is the solution of the Neuman problem in ~: 

,)' I "\'.)=0· . ..:: =_u i I. 
I ',In I~ In I'· 

19 
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Thus, ~3 is found. 

As for the vector: 

U 2=U-U1 -U1, 

the fact that it belongs to U follows from: 

rot U 2 = rot (u - ~3) - rot U 1 =0, 

while: 

div U 2 = div (u - !II) - div U 3 = 0, 

so that ~2 = gradh, where h is a harmonic function, smooth in 

IT. 

Since u I +u2 =grad(';;+h), it follows that U I +u2 EG, 

The orthogonal resolutions (11) follow immediately from 

the definition of all the ,introduced subspaces and the proven 

representation of smooth vectors. 

A useful consequence for the solution of physical problems l 

and studying the operator rot emerges from this theorem. 

Theorem 2.2. Smooth solenoidal vectors with null tangen­

tial component on the boundary are dense in J. 

In fact, if we regard ~ in (10) as finite, then ~-~l' 

which is its projection onto J, has: 

(u - Ul)~ Is = U~ Is - (grad T)~ Is = 0 

(the index T designates the tangential component). 

lE.g., the initial boundary-value problem for the set of Maxwell 
equations with an ideally conducting boundary. 
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Since finite u are dense in L2 , their projections are 

dense in J, Q.E.D. 

o 
§2. Representation of Vectors of Subspaces J and J in 
the Form of Curls 

I. Representation of Smooth Vectors of J and j in the Form of Curls 

Lemma 1. 2 • Let u E j, , i. e . divu=O, u"/s=O. 

Then: 

u = rot v, ( 13 ) 

\vhere: 
divv=O; t'~!s=O. 

This is an unique representation. 

The uniqueness of the vector ~ emerges from the fact that, 

if rotv = 0 and divv = 0, then ~ = gradh, where h is a ha~monic 

function. From the condition: 

v~ /, = (gradh)t / ... =-0 

there follows the constancy of h on S and, consequently, in n 
as well, i.e. v equals zero. We shall now prove the existence 

of representation (13). We construct: 

1 \' u (y I d 
VI = 47': rot. I. _ .. , Y; 

>: 

we have div~I = O. Let us determine rot~I: 

rot VI = ~ grad div J' ~ 4., IX-II 
\I " 

dy - 4~ ..\ J I ~ (Y),., dy, 

but 

d" 'J' u(y) d -I' dlVUIYI d 
1\ "X-YI y- ~- .11-

~ r;, 

\I 

I II., dS - 0 T-;-=-YT ~ - . 
~ 

21 
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. and therefore rot VI = U. 

Let l be any closed contour on 8 that includes a piece of 

the surface 8 1 • 

Then: 

J vI~dl = J VI' dl = J (rot VI),. dS= J u,.dS= O. 
I I 8' ,. 

Consequently VI_I, is the gradient of a certain fu~ction 

0, which is determined on S. 

It is now sufficient to assume that: 

v = VI -I- vll ' where VII = grad ~, 

while ¢ is the solution of the problem 6¢ = 0 in nand ,=-~io· 

Lemma 2.2. 1 Let wE], ,i.e. w is smooth and divw = o. 
'Then w = rotu, where u E /. This is an unique represer.tation. 

and 

and: 

The uniqueness follows from the fact that, if rotu = 0 

uE/, , then u = gradh, where h is a harmonic function 

!.!!..\ = 0, an s 

i.e. h is constant in nand u = O. 

Let us denote by 0. 1 any region that contains the region Q, 

and by Sl its boundary, which we may regard as smooth. ~et ~ be 

the solution of the Neuman problem 'in the region nl-n: 

..l • .!J = o· -±'. = -w,. 1-; -;;- = O. iJ I I a·~ \ 
r 'an ., ~ vn ". 

lCf. the book of K. Yeo Kochin [10]. 
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The vector: 

k= r w(y) d -I- f grad'}(y) d 
.Ix-yl y Il-yl Y 
c 2,-2 

is solenoidal in Q. In fact: 

div [J w(y) d -I- J grad~(y) d ] =f dlvw (y) d -
Ix-YI y Ix-yl y Ix-yl y 

C 11,-11 \I 

-I' ra" dS -I- J' div grad,:' (y) d - f gradn~ (y) dS = 
.Ix-yl JI Ix-y, Y . jX-yl II 
s 2,-~ s+s. 

r}!J 

S Wn+ On dS =0. 
, !I =- Ir-111 

S 

Let us examine in r. the solenoidal vector: 

1 
u J = 4:-: rotk. 

It is easy to see that rot~I = ~. 
solenoidal nature of ~, we have: 

In fact, exploiting the 

rotu =-~~k=-~uf w(y) d -~~ f grad'ily) d =w. 
J 4:-: 4-: I x - y ! Y 4:-: I x - y I Y 

\I !i\-2 

It is now sufficient to set: 

U = uJ -I- u
JP 

where ull = grad T. 

uo 
while:; is the solution of the problem 6¢ = 0 in IG; o~ 1,·-=-IIJnl~· 

II. Estimates of Smooth Solenoidal Vectors with Various 
Boundary Conditions and of Their Derivatives in Terms of 
Their rot 

Lemma 3.2. For any continuously-differentiable solenoidal 

vector w in ~ the identity is valid: 
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J 

f f " ('JW')~ d J' { 1 I (rot W)2 dx = 2. Utk X + wXrot w· D -"2 grad w2 • DJ dS, 
Q Q '. k=1 .s 

(14) 

Here w, are the components of w, n is the unit vector of 
~ -

the external normal to s. 

For the proof, we shall convert the surface integral on 

the right into a volume integral. 

We have: 

'f 1 - \ -r ,~ ,Vi' rot Vi' D -"2 grad Vi~' D J dS= J, tdjv ~Vi " rot Vi)-

1 d d ~I d -- ~ IV gra W J x, 

Using the formula for div of a vector product we have: 

djv(wXrotw)=(rotw)2...-w, rotrot w=(rotw)2+ w ·.1w . , 

(we have made use of the fact that, in view of divw = 0, 

rot rot w = -uw). 

Further: 
J 

1 d d ~ 1 2) " (Ow,)2 2" jvgra W-=2".1(w = .2.J dXk +w,uw. 
t, k=1 

substituting all of this into the right side of (15) we 

in fact obtain (14). 

Lemma 4.2. 1 For smooth vectors v in IT, which have 

divv = 0, v,ls=O, the inequality applies: 

(15) 

lHereafter by C we shall designate various constants depe~ding 
solely on 0.. We shall omit the syITbols ~ in the designations 

1 
t.; 2 (m and L2 (r2) • 
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~ :;vlln ~(!l) < ell rot vlll,(~) (16) 

(5 is presumed to be twice continuously-differentiable) • 

First of all we establish that: 

Jv2dx<er(rotv)2dx. (17) 
2 9 

Let us assume that rotv = u. 

It is easy to see that then u satisfies the conditions of 

lemma 1.2, and consequently v = ~I + vII' where ~I and ~II are 

as in lemma 1.2. It is obvious that: 

I vll< eJ I !.~(~~II) dy, 
12 

\vhence by virtue of the properties of potential-type integrals 

(cf. [21]): 

Jvidx <CJu2dx II Jv;,ds<eJu2dx. (18) 
12 !l S 12 

For harmonic functions ~ the inequality is valid: 

f (grad T)2 dx < C.i (grad 9);dS, 
12 s 

whence there follows: 

i v~Jdx < e.i v~~dS< e J u~dx. (19) 
~ s 2 

An even stronger inequality, containing in addition on 

the left: 

~. (~:r dS, 

" 

emerges for a singly-connected region from the works of Vishik 
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[5] and [6]. For a multiply-connected region this is proved by 

Eydus in [25]. We point out that: 

J 'f2dS, 
s 

is also present on the right in [25], although it can be 

evaluated in elementary manner in terms of: 

J (grad 9)~dS. 1 
s 

It is very probable that the weaker inequality which we require 

had also turned up in the past. From (18) and (19) there 

follows (17). 

Let us now evaluate the deri vati ves of v. We shall apply /1: 

the identity (14) to ~ and show that, thanks to the condition 

v~1 s=O the integral over S does not in fact contain deri-

vatives of v. 

We introduce the definitions: 

(;1' ;~, ~:) - local coordinates at the point 0 on S. 

(" ~ 
;1' "'2, ;J) - local coordinates at point 0 (the axes ~3 and ~3 

are normal to S) • 

1 f' d' vk - components 0 v 1n coor 1nates (~l' ~2' ~ 3) • 

vk - components of v in coordinates (' E ;:) 
;1' '2, ';3 • 

Let ~3 = F(~1'~2) be the equation of S in the neighborhood 

of O. 

We have: 

lusing the fact that S is a surface without edge. The methods 
of the cited works are entirely elementary. 
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1 d 2 _ 1 /) (\2 12 12) _ 
V X rot v· n -1-"2 gra v .11-"2;j~ VI -1- V 2 -I- V J -

1 a ~ (h.; (at.} uv~) 
I~_ \ _ 1 __ 

=2" dE3 v J - V3 cJ~3 - - v J aE2 -t- d;I • 

but: 

-Fe, 
i-V 2 1 

V 2 - 3 '/F~ -t-FE -t-
V Eo , 

from which: 

a~~ \. ,_ = (-v1FE,~J,=E,=0 
0;2 .,=.,-0 

and similarly: 

a~~ \ . _, -0 = (-v~FE,E,)<,=E,=O. 
£1;1 ~1-"2-

Thus, (14) for v becomes: 

3 

J(rotv)2dx= J ~ (::;Ydx- Jv2(F~':I-I-Fe,;,)dS. (20) 
\I 21. k=I S 

Let us evaluate the surface integral. Let ak(x) be func­

tions continuously-differentiable in n, which satisfy the 

condition: 

1 Then : 

akls=nk (k=l, 2, 3). 

IThis method of evaluating limit integrals in terms of integrals 
over an area has been borrowed from o. A. Ladyzhenskaya, who 
used it to evaluate the derivatives of a function in terms of 
the degrees of its elliptical operator. 
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Jv2 (Fn +F,,) dS<, AlJV?",' a~nkdS=M )Jd~ (akv2)dx= 
"I'" "'2'"'2 ....... ~ XJc 

S S k=l k=lg 

3 [ 3 

=M ~I(::: V
2
+ak :::)dx<,MIM 0 [;.~l e;~r dX-l-

-1-(1 -I- D[v2dx], 

where: 

M = max I F~I:l + FEl.l, All = max { I ak (x) I, I ;:: I } , 
.z:E!:! 

o is an arbitrary positive number. 

In view of this evaluation, we obtain from (21) the 

inequality: 

3 

J ~ (~~J d\: <,I (rotvrdx-I-
g., k=l 

-t- MM, [ a ! .. ~, (;:;r <Ix -t- (1 -t-}) I v'<lx 1· 

Taking 0 sufficiently small and evaluating the second 

term in brackets by inequality (17), we in fact obtain the 

requisite inequality (16). 

Remark. The full proof of this lemma could have been 

based directly on the expression for v in terms of rot~, 

given in lemma 1.2. 

Lemma 5.2. For smooth vectors ~ in n, which have 

divu = 0, ~ls=O, there obtains the inequality: 

II U l:lrl < C II rot u ~ L • 
2 ' 
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Let us first prove the inequality: 

f u2dx <, c r (rot ur dxo . . 
!2 !2 

(23) 

Making use of lemma 1.2, we can represent u in the form: 

u=rotv, (divv=O, v,ls=O)o 

Then rotu = -~v and inequality (23) is equivalent to the 

following: 

f (rotv)2 dx <, C r (~V)2 dx 0 . . (24) 
!2 !2 

Let us prove it. We have: 

J (rot v)2dx =-J v 0 6.vdx, (25) 
!2 II 

from which: 

1 (rot V)2 dx < ( I v2dx ) 'I. ( I (6.V)2 dx ) I:. 0 

Paying attention to (17) we have: 

I (rot V)2 dx <, C ( I (rot vp dX) I', ( I (j.v)~ dx )" , 

whence we in fact have (24) and, along with it, (23) as well. 

Let us move on to evaluate the derivatives of u. 

Similar to lemma 4.2, we shall show that in (14), as 

applied to u, the integral over S does not contain derivatives 

of u. Let ~i,u~,u~ be components of u in coordinates (;1';2,s3)' 

introduced in lemma 4.2; for convenience the tangential 

coordinate ~l is chosen to coincide by direction with ~_, so 
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'Chat: 
u~lo=O. 

Let l be the section of S intersecting the plane ~lO~3' while 

the point 0 lies on t. 

We have: 

(
QUI aul ) (au~ au~) (au~ au~ ') _ I ~ __ I _ I ___ =ul _. __ • 

U X rot u . u - u l a;1 d;J u2 ae3 a;~ I dOl dt;3' 

Consequently: 

But: 

from which: 

1 q au~ 
2" grad u·· n=u} de3. 

1 au~ 
u X rot u . n +"2 grad u2

• n = u~ ael • 

u J = ul cos (;1 ;3) + U2 cos (~2' ;1) + U3 cos (~3' ~3)' 

au~1 _ 
dEl 0-

1 () (~. ) u1 3F' cos ~I' :;3· 
('~1 

Thus, identity (14) for u becomes: 

3 

J(rotu)2dx=f .2 (:.~:rdX-Ju2 d~lCOS(;lI ~3)dS. (26) 
:;: Q t, k=1 S 

The further considerations are entirely analogous to 

lemma (4.2). 

Remark. It is curious that the surface integrals in 

~dentities (20) and (26) contain terms with sign determined 

by the direction of convexity of the surface S. If S is con-

30 
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vex, they are nonpositive, and then from (20) and (26) it 

follows that: 

3 

J ",' (at.,)2 dx < J (rot V)2 dx 
_ dXk 

2 i. k=l 2 

as well as an identical inequality for u. 

This enables perfectly elementary evaluations (17) and 

(23) for convex regions, as 

~ v?dx 
2 

can be evaluated in terms of the Dirichlet integral, similar 

to the case of scalar functions [12]. 

III. Theorems Concerning Representation of Vectors of J and J 
in the Form of Curls 

o 
Theorem 3.2 follows immediately from the definition of J 

and lemmas 1.2 and 4.2. 

Theorem 3.2. Any vector 

u = rot~, where: 

uEi can be represented as 

vE W~{Q); divv=O; Vtl~=O, 

while: 

il v ;' 1\ 1 ~ C ,I u II L • 
2 • 

In a similar fashion, theorem 4.2 follows from the defini­

tion of J and lerrmas 2.2 and 5.2. 

Theorem 4.2. Any vector 

w = rot~, where: 

wEi can be represented as 

uE WI(O). divtt-O' u I -0 2 - , - , n ~-- , 
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" while: 
II U 111\"1 ~ G II w II L,. 

2 

Remark. By using the expressions for solenoidal vectors 

v and ~, which have: 

V,18=0, lin 18=0 

in terms of their rot (lemmas 1.2 and 2.2), it could be proved 

(cf. [3]) that, if rot~ or rot~ is in ~(n), then v and u are 

in w~+l(n) and the inequality obtains: 

\' v \1';+1 ~ Gil rot-Vr1\~ 

with a similar one for ~ (the boundary of S is presumed to be /21' 

n + 2 times continuously-differentiable). Since we shall not 

use this fact either in the present or subsequent works, we do 

not present its proof. 

o 0 

§3. Equivalents of the Subspaces G, J, J, U, G to the 
Subspaces of Weyl in Chapter I 

o 0 

Theorem 5.2. Subspaces G, J, J, U, G, introduced in §l of 

this chapter, concur with the identically-designated subspaces 

of Chapter I. 

In this theorem we shall furnish the symbol A in denoting 

all the subspaces introduced at the outset of the present 

chapter, to distinguish them from the subspaces of Chapter I. 
o 01 

The concurment of G and G follows directly from the fact that, 

as is known, the closure of vectors of type grad~, where: 

91s~0, 

1 . A • [ EV1dently the symbol has been om1tted Tr]. , 
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coincides with the set of gradients of functions in the closure 

of ~ with respect to the norm of W~(~), while the latter, as is 

well known [21], can be obtained from ~ which vanish in the 

boundary zones. 

We shall show that j=J. 

o 
It follows directly from the definition of J and j that: 

lej, 

for the curls of finite vectors are contained in the lineal J, 
• the closure of which produces J.. Therefore it is sufficient 

to show that any vector u of J can be approximated with respect 

to the norm of L2(~) by vectors of the type rot~(n), where 

v(n) are finite, with any desired accuracy. 

Using lemma 1.2, we shall represent u as rot~, where 

v is a smooth vector having v~ I 5'=0. 

Let s (x) be a cut function that is continuous and con­
n 

tinuously differentiable, equaling 0 in a zone [s of width sn 

about S, equaling 1 outside the zone ~2 of width 2s , and s n 
satisfying the inequalities: 

c.; 
l~ntx)l~l; Igrad~n(x)I<:-· .t" 

!>loreover, we may regard c: (x) as constant on surfaces 
n 

:;)arallel to S. 

We shall show that s(x)v can be used as v(n). We have: 

J (rot v - rot :IIV)2 dx = f (rot V)2 dx -t- \ (rot v - rot :nv)2 dx = 
~ 2, C'1,-2! 

= r (rot V)2 dx -t- (rot v - Cn rot v - grad :n /: v)~ dx < 
,. -, , n -2.,--1 

<.f (rot V)2 dx -t- C f I (rot v)! clx -t- 2 r I grad :. " v 12 dx. 
·1 " , "-,--! 

I' I' 
~ . .t-. ~ 
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Let n ~ 00 and En ~ O. The first two terms on the right 

tend to zero. Let us examine the third. Using the condition 

of constancy of ~n(x) on surfaces parallel to S, and considering 

the condition: 

v,\s=O, 

we have: 

1 grad \.n X V \2 = \ grad ~n \2\ v~ \2 < K \ grad \.n 12 ~~ < KC, 

where the constant K is determined by the properties of Sand 

r \ av, \) rna x { 1 v \ , Ux,> 
It: \< t k 

Therefore the third term also tends to zero, so that: 

.. L,(~) 
rot "nV --4- rot v 

o 
and the coincidence of J and j is proved. 

The concurment of all the other subspaces now becomes 

obvious by conparing resolutions (7) and (11): J and J 
coincide as complements to & = &; G and G as complements to 

~ = J,l while U and U as complements to: 

G e J = (; (il J. 

§4. The Properties of Projectors into the Weyl Subspaces 

Theorem 6.2. If the vector: 

u E \V'~ (9), 

1 
~Cnfortunately parts of tpe symbols may have been obliterated in 
the original copy, and this paragraph should be checked against 
the original [Tr]. 
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o 0 

then its projections into subspaces G, J, U, J, G also belong 

to w~(n), and for each such projection Pu the inequality is 

valid: 

II Pu 1111"" < Cllu:lw;. 
'! 

The boundary of the region in this case is presumed to be suf­

ficiently smooth. l 

The theorem will be proven if the requisite inequality is 

established for smooth ~, for then any vector: 

u f W~ (~2) 

can be approximated by smooth vectors with respect to the norm 

of this space, followed by a passage to the limit in the 

inequality. It is sufficient to restrict our treatment to 
o 0 

projectors onto G and J, for it follows from resolutions (11) 

that: 

PJ=/-P(,; PG=/-PJ; P~=/-P('-PJ' 

where I is the identity transformation. 

For the proof let us recall the connection between opera­

tions PG and PJ and the solution of boundary-value problems 

(theorem 1.2). If a smooth vector u is given, then: 

P~U = grad y, 

where 0 is the solution of the problem: 

u:r=div u, 

C? I ~=O, 

lAn analysis of the findings of the cited works shows that it 
is sufficient for the bqundary to be n + 1 times continuously 
differentiable. 
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I while: 

1 1 J rot u 
PJU = u~ -f-- grad 'l, where U I = rot 4.: I x _ Y I dy 

.. , 

(~ is continued beyond n so that the continuation is finite); 

~ is the solution of the problem: 

do/ I 1 I :l',j-O - = -U3 s . • - , dn s ." 

Thus, the proof of the theorem reduces to evaluations 

involving boundary-value problems and the Newtonian potential. 

It is in fact sufficient to prove that: 

Il u11111" < Cllu!! II'" 
l 2 

(27) 

II grad 91111":( C II div U 111\",,-1, 
~ 2 

(28) 

II grad y II If " < C!I u 1111'''. 
2 2 

(29) 

a) The finite prolongation of u beyond n can be arranged 

so as to satisfy the inequality: 

11 U 1111 ;(E,) < C '; u 1111 ;(<;) ( 3 0 a) 

\~ith constant C independent of the function being prolonged. /23 

Such a property is possessed, e.g., by a prolongation 

using the construction of Hesten's, employed in the work of 

v. M. Babich [1].1 

If we compare the form of ~; with formula (1) of Chapter I, 

I 

IFulfillment of this inequality in [1] is not specially men­
tioned, but an analysis of the construction enables its 
establishment (such an analysis had to be made in [31 by one 
of the authors). 

36 



~ 

" 

," 

it is evident that ~~ is the projection of the finite pro­

longation of ~ onto J(E
3
). Since the finite prolongation of 

n u belongs to W2 (E 3 ), then by theorem 1.1 and 

u~ E W;(E3)' 

Khile: 

\' 1'1 ::;:::11 I IUJill~(l.)~1 U'llI;(E,). 

\·;e have: 

1\ u~l: lr~(!;]) <Ii ul: lr;(£,) <II U IllI";(E3) < Gil U 1111;(><)' 

Here inequality (30a) was used at the end. 

b) An evaluation of type (28) had also been used for a 

~~re general elliptical equation in a number of works. 

If the function ¢ satisfied, besides the condition: 

'1 i,=O 

also conditions: 

~-?I,=O, ~2:r;S=O 

a:1d so on up to a certain order determined by the number "nul, 

~t would be sufficient to refer to Chapter II of the book by 

c. A. Ladyzhenskaya [14]. These missing boundary conditions 

can be obtained in the same way as described in her article [15]. 

c) Estimate (29) is proved in similar fashion to (25) if 

~e consider estimate (27). For u~.ic we construct the ~unc-

tion: 

~ E U7~+1 (Q), 

i 
- Up to order JT1,: , =0. 
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0( satisfying the inequality: 

II ~\\lr"+l < c IU1!1ll'"' 2 I 2 

and such that y-~ satisfies conditions: 

o(,¥-,i) I - o.l(~-,~) I -0 - O· -on s-' (}n S 

and so forth. The possibility of this construction follows from 

[19] and [20]. Then, for an estimate of 7-~ we may again 

refer to [14], and for ~ we obtain the estimate: 

II Y 1111 "+1 < C II u~ II Ii " 
2 l 

and moreover: 

I: grad y lin ~(Q) < C i;u 111"';(2)' 

Taking heed of (27) we in fact obtain (29). 

Chapter III. Multiply-Connected and Unbounded Regions 

§l. A Bounded Multiply-Connected Region 

There are two characteristics of a multiply-connected 

region Q that are important hereafter (cf. figure). 

1. The existence in it of closed contours t which cannot 

be deformed into a point still inside ~. 

2. The existence of closed surfaces E with a similar 

property. 

To be specific we shall consider an ,elementary region that 

is multiply-connected in both respects, namely a region bounded 

by two surfaces: Sl' a homeomorphic toroidal surface, and S2' 
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a homeomorphic spherical surface placed inside the torus. We /24 

shall denote the entire surface 8 1 + 8 2 by S. This region 

evidently possesses one contour of type i and one surface of 

type E. We shall introduce some definitions. 

Let i' be one of two ,closed contours on 8 1 that cannot be 

reduced to a point by continuous deformation on 51' over which 

there may extend a surface lying entirely within [. We shall 

denote this surface by S'. 

If the circulation of a certain vector u along a contour 

of type { does not depend on the choice of t, which obtains 

when ~ = gradf, while f is a multi-valued function that varies 

by a constant in making the circuit of i, this circulation is 

known as the univariate period of u and denoted by: 

C[u]=J u·d\. 

If u = grad f, we shall also write: 

Cl [ul= CI [j]. 

Let = be a closed surface within ~, containing 8
2 

inside itself. 
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If the flux of the vector u does not depend on the choice of 

L, which obtains when div~ = 0, this flux is known as the 

bivariate period of u and denoted by: 

C![u] =juHdS. 
1: 

If, further, u = gradf, we shall write: 

C2 [f]=C2[gradf] 

such that: 

C2[f]=f~d~. 
()n 

1: 

Let us identify in n two standard harmonic functions, 

each of which generates a unidimensional subspace in the 

orthogonal resolution of L2 • 

Lemma 1.3. Let hI be a function harmonic in n, satisfying 

boundary conditions: 

hi \ I = OJ hi k = const =1= o. 

Then: C2[hl ]=I=O. 

Regarding S as sufficiently smooth, we may also affirm the 

smoothness of hI up to S inclusive. We have: 

r ( ~d r \. ah \' ill! grad hl)- x = - h1)'hldx -t- hi ---1 dS= const -a' dS. 
J • • Un • U 

s;! 2 'l+S, S2 

Since hI departs from a constant in n: 

J:':' dS= J (gradhl)ndS=I=0 
s, "'1 

and by virtue of the solenoidal character of gradhl : 

J (grad hi). d~ = J (grad hi). dS =1= O. 
~. 
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Lemma 2.3. In Q there exists a multiple-valued harmonic 

function h2 with the following properties: 

1) Cl[h!1=f=O; 

2) iJh! I =0· 
an s ' 

3) i ~:ldS' =f= O. 
s· 

In order to satisfy requirement 1 it is enough to take the /25 

scalar potential hi of the magnetic field intensity of a steady 

current traveling along a conductor y that is passed through a 

"hole" in the region bounded by the surface Sl (cf., e.g., [10]). 

It is determined from the Biot-Savart formula: 

grad h; (x) = i (x - y) X dry 
. \x- yI 3 • 

I!I 

We note that, although hi is a multi-valued function, 

gradhi is obviously a single-valued vector, for hi changes 

by a constant in making the circuit of t. 

In order to satisfy condition 2, as well as condition 1, 

,·;e must add to hi the solution (single-valued) of the problem: 

.lh z = 0 

in Q: 

,irh c'; .< = -(grad II,) I * - " s· 

Then it is easy to show that condition 3 is a consequence 

of conditions 1 and 2. 

In fact, let S' produce a sectioning of region Q, con-

, 
-Apparently the condition of solvability of this problem is 
::ulfilled. 
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~ verting it into region ~I, lacking contours of type i, and 

the function h2 into a single-valued function. 

As a result of integration by parts in region ~I we have: 

r grad2 hzdx = - J hzuhzdx -f- J hz a:: dS -I- J (hi - h-;:) a:n! dS', 
2 2' 8.+'1 S' 

where h~ and hi are values of h2 at different sides of SI. 

Since: 

~h2=0; aah:/s=O and hi -h;=C
1

[h2], 

~ve have: 

J (grad hS! dx = Cl [h 2] J ad:~ dS'. 
2 P 

Here the left side does not vanish, for h2 is not constant, 

in view of condition 1. Consequently: 

\ 
iJftl dS' =F o. an 

~. 

Q.E.D. 

Remark. MUltiplying h 2 (x) by a constant other than zero 

does not alter its properties as given in the lemma. We shall 

consider that h 2 (x) is normalized so that: 

CI (II!.] = 1. 

Let us identify in L2 the lineals of mutually-orthogonal 

smooth vectors: G vectors of type grad~: 

91.=0, 

J, smooth solenoidal vectors (the orthogonality of which is 

easily checked). We can identify in J o~thogonal lineals 61 
or vectors of type ~gradhl' where a is a constant, and hl is 
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the function appearing in lemma 1.3. jl are solenoidal vectors 

w for which: /26 
C2[W]=O. -

We shall demonstrate the orthogonality of these lineals. 

Since: 

C2 [w]= J wnd~, 
1: 

\ve also have: 
J wildS = 0 

8, 

in view of the solenoidal nature of w between E and S2. 

Consequently: 

f grad hI . wdx = f hI di v wdx -f- J l:. LJ.,.dS -f-
Q Q ~ 

-+- r hlw.dS=hl I fw.dS=O. 
• 8. 

,52 S2 

In jl we can identify orthogonal lineals: 51 or vectors 

of the type gradh, where h are single-val~ed harmonic functions 

that are smooth in ~ and have: 

C2fh 1 = o. 

I' are smooth solenoidal vectors u for w~:ch: 

1l"I,= o. 

Their orthogonality is easily verified. 

In i ' we can identify the orthogonal lineals: U2 or 

vectors of type 5gradh2, where B is a cons~ant, and h2 is the 

function in lemma 2.3. j. are s~ooth sole~oidal vectors u 

for which: 
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,., U n I3 =O and J undS'=O. 
S' 

The orthogonality of these lineals emerges from the 

following. Let, as in lemma 2.3, 5' produce a sectioning of 

the region n. Using the definitions of len~a 2.3 we have: 

J grad h2 . udx = J grad h2 • udx = J h2 div udx-l-
!;I 12' !;I' 

-+-J h2undS;- f (hi - h;:) undS. 
~~ Sf 

The first two terms on the right vanish thanks to the' 

properties of ~, while the third is: 

CI [h21 \ undS 
S' 

a~d, consequently, is also equal to zero. 

We shall denote the closures in L2 of the above-introduced 

:ineals by the identical symbols without the tilde. 

Theorem 1.3. The following orthogonal resolutions obtain: 

'.·;hich also implies: 

j't-U -, j" - 20 , 

j'=U'rBl', 
j=UI 9}', 

L 2 =G f!:J j, 

L2 = G @ UI E£; U' e U2 EB j. 

(30b) 

(31) 

(32) 

(33) 

(34) 

It is sufficient to prove that the analogous resolutions /27 
.. }-

cbtain for the vectors of j', T and so forth, and then to 

close them in L2" 
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1. Let us prove resolution (30b), for which it is 

sufficient to show that uEI' can be represented as: 

U=Uf,-t-UJ' 

It is sufficient to assume: 

r ll"dS' 
v 

Ur = ~---· J (grad h!)n dS' grad h2• 

Then: 

U-U- E1W" 
L, ' 

for: 

J (u - u[,}n dS = \ undS -
S undS' 
v 

S (~rad h
l

)71 dS' J (grad h2) dS = 0 ~, S' n • ." s' 

2. Let U Ej' We shall prove that: 

U=U,-,-t-UJ-. 

At first, exactly as in theorem 1.2 of Chapter II, we 

solve the problem: 

rot v = rot u, 

div v =0, 

vn Is=O. 

For this it is sufficient, as in that place, to construct 

at first tte vector ~' in the following manner, satisfying the 

conditions of this problem except for the last: u is 

continued beyond [ while preserving smoothness and vanishing 

outside the region ~I, somewhat wider than ~, and then assume 

that: 

,-.lJ rotu(y) dg. 
v - 4~ 1.\ -y I 

!..' 
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Then: 
v = v' -+- grad t, ," 

where IjJ is the solution of the Heuman problem: 

J~ I ' 6.~=O B Q; Tn s=-vnls. 

Then, since: 

rot(u-v)=O and div(\1-v)=O, 

we obtain: 

\1- v==- p;rad h', 

where h' is a harmonic function for which, in general, CI [h'] -;'- 0. 

Let us assume that: 

h'=h-+-CI [h' ]h 2• 

Then h is a single-valued harmonic function. 

Thus: 

u=grad h -+- CI[h']grad h2-+- v. (35) 

The vector: 

v"== CI rlz'l grad h2 +v El', 

which Deans that: 

C1 [v"]=O, 

2 ~ 
and since C [~] = 0 as well (for uEl' ), it is also true 

that: 

C![gradh]=O, i.e. gradhED. 

Thus, (35) is in fact the resolution (31) to be proved in ~his 
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section, in which: 

UL·=gradh, uJ.=v". 

3. Let U E j We shall prove that: 

U = ui, -t- uJ " (36) 

Let us consider the vector: 

U - C~[ul grad h1• 

It is solenoidal and its bidimensional cycle is equal to zero, 

i.e. it belongs to j'. Consequently (36) holds, while: 

Uc, =C~lu)gradhl' 

4. Let u be any smooth vector. We shall prove that: 

U = Uc -I- u J • 

Since ~ should have the form grad¢: 

:pL,.=O 

and we should have: 

div uJ=div(u - uc)=O, 

then to determine ¢ we arrive at the problem: 

u::>=o, ::>1,=0, 

by solving which we obtain: 

uc=grad? 

~ is determined as ~-grad¢. Q.E.D. 

Remark. In view of the unidimensional nature of lineals 

Ul and C2 it is obvious that: 

UI _ OJ and U~= O~. 
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For smooth vectors belonging to the introduced lineals 

there hold analogues of lemmas 1.2, 2.2 and 3.2 of Chapter II. 

Lemma 3.2 is literally valid as well for a multiply-connected 

region, as the topological features of the boundary did not 

figure in its proof. 

Lemma 3.3. In order for a smooth vector u to be capable 

of representation as ~ = rot~, where v satisfies condition: 

v_/s=O, 

it is necessary and sufficient that it belong to the lineal· 1. 
and if this is so we can select v from J'. 

Necessary condition. If: 

v:\s=O, 

then v is a solenoidal vector and: 

(rot v)n Is = o. 

It remains to show that: 

f (rot v)ndS' =0. 
S' 

By the formula of Stokes: 

f(rotv)ndS'=iv.d1= fv,.dl=O. . . 
S· I I I' 

(t' is a contour on Sl that embraces S'). 

Sufficient condition. Let u E J In exactly the same 

way as lemma 1.2, we construct vector ~l' for which: 

div VI = 0 and rot VI -= U. 

We now construct ~II' for which: 
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divvlI=O, rotvlI=-O; 't'1I-ls=-V1t !". 

For this, it is sufficient to find a harmonic function ¢, even 

with: 

C'l:tl=f= 0, 

such that: 

(grad 't)t Is = -v" Is, 

and to set ~II = grad¢. If fl is such a closed contour on Sl 

or 52 that can be drawn up into a point while remaining on S, 

then the same as in lemma 1.2: 

.I v"dl=O. 

" 

Thus the values of ~_ on S2 may be regarded as the 

gradient of a certain function ¢02 given on 52' On Sl we can 

identify two types of closed contours that do not roll up into 

a point. One of these is tl, the other f2 (figure). 

~ v,_ • dl = ~f v,dl = J (rot vJ)ndS = J undS = o. 
I' I'~' b' 

In regard to: 

J v"dl, 
I, 

in general it is different from zero. 

Thus, ~Il is the gradient of the function ¢Ol given on Sl' 

¢Ol changing by a constant in making the circuit of f 2 : 

c· [?Ol] =1= O. 

The function: 

?f11 - C' ['fud h2 

is single-valued on 510 
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Let us solve in n the problem: 

~:r'=0, 

cp' Is, = 901 - CI L YOI] hz, 

9' Is, = 902 - CI ['f01 ] h2 

(the function h2 Is,. and consequently 9' Is, is determined with 

accuracy down to a constant term, which we shall regard as 

fixed). This is the ordinary Dirichlet problem with single-valued 

boundary conditions. 

Let us now assume: 

9 = 'P' -t- CI ('f'ol] h2• 

It is obvious that: 

.:)1 -0 • cl -c 
I 5', - 101' • 8, - 102, 

so that: 

(grad r)< I,~= -v,< I~. 

~hus, the vector ~I + ~II is constructed, such that: 

di V (v, -t- vll) = 0; rot (v,-t- vll) = U; (v,-t- vll), \, = O. 

If we now assume that: 

vlll = --C! [v,-t- vll] grad hI' 

::hen: 

v = v, -t- vll-t-

satisfies all the required conditions. 

-,~ 
'-'-

Lemma 4.3. In order for a smooth vector w to be capable 

representation as w = rot~, it is necessary and sufficient 

":hat: 
W f: )'. 
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,-
and if this is so, then u can be chosen from J. 

Necessary condition. If w = rot~, then divw = 0 and, by 

the Stokes formula: 

C2 [wJ= .r w"d'S=O. 
1: 

Sufficient condition. Let wEj' The vector ~I is 

constructed as in lemma 2.2, only instead of a single Neuman 

problem we must solve two: one for the region lying within 

52' another for the region between 51 and a certain attached 

outer boundary on which a homogeneous condition is imposed. 

The solvability of these problems is owing to the fact that, 

by consequence of divw = 0 and: 

we have: 

J und'S=O, 
l: 

f undS=O and f undS=O. 
S. 82 

The vector UrI is constructed as in lemma 2.2 by solving 

the Neuman problem in ::i. 

For ~r + ~II we have: 

Finally, we construct: 

div (u,-t- nil) = 0, 

rot (ul + u lI)= W, 

(u, + UII)" !,= O. 

U _ J (ul + uu)" dS' 

'11--
}, (gl ad Ii!)" dS' grad h2 • 

/3C 
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The vector: 

U = u\ -t- Uu -t- Um 

satisfies all the required conditions. 

Lemma 5.3. For vectors v such that divv = 0: 

v~ IS=0;C2[V] = 0, 

the inequality is valid: 

II v \ 1 ~ C II rot v IlL' 
~ 1 

If we show that: 

~ v ~ f. ~ C Ii rot V!'I., (37) 

then by using lemma 3.2 we can obtain the required inequality 

in exactly the same way as lemma 4.2. 

Let: 

rot v = U and v = VI -I- vu-t- v lII ' 

,~here ~I' ~II' ~III are such as in lemma 3.3. The same as in 

lemma 4.2, it follows from the formula expressing vI in terms 

of u that: 

rvidx~ C .I ll~dx; r vt·dS~C J u 2
dx. 

\2 ~ ~ \I 
(38) 

We shall show that: 

J v;\dx = f (grad 't)~ dx ~ C J u~dx. (39) 
~ ~ \I 

For c' ,ole have: 

I (grad ,/)' dx < C ~. (grad 9'): dS. 
~ s 
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'. It follows from the boundary conditions for ~' that: 

(grad i'), = v l _ - CI [1'01] (grad h
2

)" 

so that: 

j (grad :r')2dx<:C {J v~_dS+ J (gradhz);dS· {C1[901]}2}. 
(40) 

We shall show that: 

{C1 
[ 901]\2 = ( f VI· dl)! <: C J u~dx. 

I, 2 
( 41) 

This inequality follows from inequality: 

I V 1<- C r ,I u Iy) '" dy 
I ,} 11:"- Y I-

(cf. lemma 3. 3) • 

At the left of (41) is a contour integral in 3-dimensional 

space, so that the properties of potential-type integrals cannot 

be directly exploited. However this integral does not depend on /3 

the choice of contour t2 on 51 and therefore can be converted to 

an integral over a two-dimensional manifold. And indeed, if we 

consider on 81 the band cr, interwoven from contours t2 such 

that one contour passes through each of its points, then: 

(J VI· dl r < C J v1dS< C J u2
dx. 

Thus, inequality (41) is established. In view of this 

and (38), we obtain by including: 

j (grad hzY: dS 

in constant C: 

J(grad:()'dx<C J u!dx. 
\I 2 
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Considering that: 

and including: 

Vu = grad 'fi' + Cl [?Ol] grad "2' 

J (grad h2)~ dx 
2 

in the constant C, it is also easy to obtain (39). 

Thus it is demonstrated that: 

I vJ+VII I:7. <CI ult 

In regard to the vector ~III' it is the projection of 

~I + ~II onto UI , and therefore: 

, ,I'./' II \' I:vml:i, ~ v1+ vJI i.,. 

Thus for: 

V=VJ + vJI + VIII 

We also have inequality (37) and, consequently, the inequality 

that figures in the lemma. 

Remark. The condition C2[~] = 0 is important. For 

example, the lemma is not true for hI. 

If we dispense with this condition, only the inequality 

is valid: 

i: v , ,\ ~ < C / ;; rot v I:L, + ,j v, L,). 

Lemma 6.3. For vectors uEJ 
the conditions: 

, i.e. those that satisfy 

di\ U = 0; un:, = 0; \ ll"dS' = 0, 
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the inequality is valid: 

:iulllr~ ~ Clirotul!L, 

The proof is exactly the same as for a singly-connected 

region. 

Remark. The condition: 

J undS=O 
S' 

is important: the lemma is untrue for gradh2 . 

But without this condition the inequality remains valid: 

IIu:!wl < C (IlrotullL, +IIuIU. 

Similar to Chapter II, theorem 2.3 applies. 

Theorem 2.3. Smooth solenoidal vectors v with: 

VCV_I~ =0 and Cl[vl=O. 

are dense in J'. 

If we lift the latter condition, the vectors ~ are dense 

~n J. Analogues of theorems 3.2 and 4.2 of Chapter II follow 

:rom the above-given lemmas. 

Theorem 3. 3 . Any vector u E I 
,. = rot~, where: 

can be represented as 

vE W~(!!); divv=O; v~ls=O; CL[V]=O, 

-.·:;'ile: 

II V 1111 ~ < C ii u t. 

/3 
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In other words, the oFerator rot establishes a one-to-one 

correspondence between the lineal of vectors v with the indi-
o 

cated properties, dense in J', and all of J. 

Theorem 4.3. Any vector wE! can be represented as 

w = rot~, where: 

u E WI (Q). div u = o· u I = O· J u dS = 0 2' , n S 'n , 
S' 

\·;hile: 

Ilullwl ~ G//W//L • 
..! " 

In other words, the operator rot establishes a one-to-one 

correspondence between the lineal of these vectors u, dense 
o -

i~ J, and all of J'. 

Remark. Inequalities similar to those given in the 

remark following theorem ~.2 can also be proven for a 

~ultiply-connected region. 

Theorem 5.3. For the operators of projection onto all 

the subspaces figuring in theorem 1.3, statements similar to 

those formulated in theorem 6.2 are valid. 

As in the case of a singly-connected region it is suffi­

cient to establish the inequality: 

Pullll,n ~ C1Iu;llI n , 
'2 2 

(42) 

~here P are projectors onto the particular subspaces and u are 

sufficiently smooth vectors. 

To establish the necessary estimate we shall employ the 

constructions of operators P for smooth ~ given in theorem 1.3. 
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1. The operators P
J 

and PG. In this case (42) is obtained 

in exactly the saNe way as for a singly-connected region. 

2. The operators Pu and PJ1 • Since, by virtue of 

resolutions (31)-(34): 1 

PL,U=P1'pJU and PJ,u=PJPJu=(I-PL,)PJu 

and, as follows from the proof of theorem 1.3, for a smooth 

u:PJuE J, 

it is sufficient to prove inequality (42) for Pu 1 
and a vector 

of J. 

But in this case (cf. item 3 of theorem 1.3): 

PJ,U = C2 [u] grad hu 

so that: 

:p ul'l~ ~Iigradh 11'2 IC![u]'2=I'lgradh liZ (fu dE)2<C\\nlr " (, 111 n -...::::: I 1 II n 1 J I 1 III n n 1110 1 (121 
2 2 l ~ 2 

(the latter estimate comes from the nesting theorem of S. L. 

Sobolev), and this is even more forceful than required. 

3. Similar to item 2 it is sufficient to examine the 

case when u E J' and there is only one operator Pj •• 

We shall use the construction of this operator in item 2 

of theorem 1.3. The estimate: 

\\V:'lI n< C\\UI!\In 
2 ~ (43) 

is done the same as for a singly-connected region. 

The required inequality will be proved if we establish the 

estimate: 
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C1 [h']gradh2 ,2 n ~ CIIU1:lln 
liS 2 

or, including the standard vector gradh 2 in constant C: 

{ CI [h'] )2 < ell u II:rn• 
2 

cl[h'] is the integral of gradh' over a unidimensional 

manifold i, but does not depend on i, and therefore is evaluated 

(similar to the fashion of lemma 5.3) in terms of an integral 

over the two-dimensional manifold a, while the latter by the 

nesting theorem of S. L. Sobolev is evaluated in terms of :lgradh'II\\_l 
2 

{CI[h']P<C J (grad h')2dS< Cllgrad h'll~rl. 
, 2 

Since: 

grad h'=u -v, 

and estimate (43) is obtained for ~, we finally have: 

I CI(h']}2 <:: C' ull! 
I .......: II I l' 

liZ 

and this is even more forceful than required. 

4. The operators Pu and PJ. Similar to the preceding, 
.. ff·· 2 h h 1t 1S su 1C1ent to exam1ne t e case wen: 

uE I' 
and the operator P~. Using the expression for Pu ~ from 

item 1 of theorem 1.3 we have ~PL~~n = (constant 2 
2 ~ 

incl. h l ) x 

(.J u"dSY ~ Cllul:~r~' 

and this is even Dore forceful than required. 
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In conclusion we formulate the result with respect to 

a region of general form. This is found quite analogous to 

the case of the above-considered region. 

Let n be a region with "n" contours of type: 

1: 11' 12, "', I" 

the boundary of which consists of m surfaces Sl' S2' ••. , Sm. 

Then, for this, all the statements of the present section are 

valid, however in this case Ul is a finite-dimensional subspace 

of harmonic vectors of type: 

(II grad hi -t- :l! grad h2 -I- ", -t-:l", grad Iz" .. 

where hk are harmonic functions smooth in IT, satisfying 

boundary conditions: 

h. i., =0." 

C2 is a finite-dimensional subspace of harmonic vectors of 

type: 

~lgradNI)-t-~!gradh(!)-t- '" -t-~ngradhl"). 

\\here h(k) are multi-valued harmonic functions that satisfy 

conditions: 

rJh(ll! =0, 
C1

., [N'l) = o,.~, Tn I~I+'" +Sm 

Here: 
CI • '[11(11] 

is a cvclical constant of h(k) in making the circuit of t .. 
~ ~ 

But in the definitions of j' and J it is necessary to 

consider surfaces of the type Z and S', through which the 

vector fluxes should vanish, as being of all kinds for the 

qiven region n. It should be noted that the dimensions of 

~l and C2 in general are smaller than "m" and Un" (e.g. for 
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;. the region in the figure), for not all the gradh
k 

and 

gradh(k) are linearly-independent. 

§2. An Unbounded Region 

For simplicity let us examine a region n lying outside 

the bounded surface 5, homeomorphic to a sphere. 

Several of the changes in the proofs of the theorems, 

associated with the fact that n has as boundary a sphere of 

infinitely large radius, are already clear in this case. 

As concerns the case of a more complicated unbounded 

region, if all the boundaries (except the infinitely large 

sphere) are finite and there is a finite number of them, then 

~he region introduces nothing substantially new and merely 

requires a simple addition of considerations from Chapter III. 

o 0 

Subspaces G, J, etc. can be introduced exactly the same 

as §l of Chapter IIi but the only requirement is that the 

vectors contained in the lineals G, J etc. diminish at 
1 . f' . 1 :.n lnl ty as I x \2' while their first derivatives as ~. 

Theorem 1.2 concerning the resolution retains its force 

and is similarly proved. All that should be done from the 

':ery start is to take ~ as finite at infinity, and impose an 

additional condition of diminution of the function at infinity 

as '!i o in boundary-value problems for the operator ~l. 

It is immediately apparent that the vectors ~l' u 2 , ~3 

~urn out to be diminishing at infinity, as required in the 

definitions of the subspaces. 

-i\Ti th respect to these for an unbounded region cf., e. g., [7]. 
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The theorem of the properties of projectors into the sub­

spaces will also apply. 

Theorem 6.3. If a vector uEl17;, , its projections into 
0 0 n subspaces G, J, G, JU also belong to W2 ' and for each such 

projection Pu the inequality is valid: 

I'PU\\lIn < Gli ull" r. 
2 l 

We shall point out the main avenue of proving this theorem. 

Estimate (27) is obtained as for a bounded region. In obtaining 

estimate (28) we should further consider that ¢ (using a cut 

function) can be made finite at infinity, while ~ is such that: 

1 
D

n
91::o -lxl~+1 ' 

Then in the evaluation of grad(~-¢) we may again refer to the 

estimates of o. A. Ladyzh~nskaya [14], which remain valid in 

view of the nature of decrease in ¢-¢ at infinity. 

Let us now turn to the proof of estimate (29). As before, 

\ve may regard $ as finite, while ~ is such that: 

1 D"y' I - -;;:+T , co I x I 

then from [14] we can obtain the estimate: 

" 
J. ",' [D~ ('t - ?)P dx < G CI u~ ;I~I n +11 grad ('t-'})!:J). (44) 

- 2 1/ ,~=l 

For ~, as in Chapter II, the estimate is valid: 

II grad ~ i!i, < ell u ~ II~, n' 
2 

We shall prove that: 

!Igrad '~lli. < GIIU,',I(" 
l 

(45) 
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Then, inserting this inequality into (44) and taking heed 

/' of (27), we obtain (29). 

u is the solution of the problem: 

~~=O, 

_'1' --ul a"'1 un ~- 3n Is, 
1 

9100 ~i7I' 

As is known, this can be represented as the potential of 

a simple layer: 

dI = J" Idyl dS 
I \x-yl lI' 

s 

where ~(y) is the solution of the integral equation: 

I _ 2- () J po (z) cos (ny. z - Y) dS 
1I3n - - .. p. Y -t- I z _ y I z· 

" 

~s is known, in this case we are not on the spectrum and there­

=ore: 

~p·lIL.(S) < e:lu~n[IL.(S)' 
~';e have: 

I ) 'I, { }'" J (grad't)2dx= J yuJndS~, J (uJnY!dSjt J y2dS ~ 
~ s ls ~ 

~ e {J (IlJn)2 dS}'" {J P.2dS}'" < e J (u~n)2dS< eil u111~1'~' 

:hus, theorem 6.3 is entirely proved. 
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