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SEMIOIRECT COMPUTATIONS FOR TRANSONIC FLOW

Julie M. Swisshelm and John J. Adamczyk

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A semidirect method, driven by a Poisson solver, has been developed for
inviscid transonic Mw computations. It is an extension of a recently intro-
duced algorithm for solving subsonic rotational flows. Shocks are captured by
implementing a form of artificial compressibility. Nonisentropic cases are
computed using a shock tracking procedure coupled with the Rankine-Hugoniot
relationships. Results are presented for both subsonic and transonic flows.
For the test geometry, an unstaggered cascade of 20 percent thick circular arc
airfoils at zero angle of attack, shocks are crisply resolved in supercritical
situations and the algorithm converges rapidly. In addition, the convergence

V,9
	 rate appears to be nearly independent of the entropy and vorticity production

at the shock.

INTRODUCTION

Semidirect algorithms are constructed by incorporating a direct solver in-
to an iterative procedure. For transonic flows, one of the first publications
on this topic is Lomax and Martin( l ). There, the governing equation was the
small disturbance transonic flow equation. Jameson( 2 ) developed a semidirect
solver for the potential flow equation. It was based on a direct solver for a
Poisson equation. For subcritical flows this algorithm exhibited good conver-
gence; however, when the flow became supercritical convergence of the scheme
could not be achieved without the injection of line relaxation.

More recently, a general methodology for constructing such schemes for the
equations of fluid motion was advanced try Martin( 3 ). The applications in his
paper, however, were restricted to incompressible and subsonic two-dimensional
potential flows. Chang and Adamczyk( 4 ) have succeeded in extending the scheme
suggested by Martin for solving two-dimensional potential flows to three-
dimensional inviscid subsonic rotational flows.

In the present paper, Chang and Adamczyk's method is extended to the com-
putation of supercritical flows. The satisfaction of both the continuity equa-
tion and the vorticity-velocity kinematic relation is achieved by recursively
applying a direct solver to two Poisson equations in computational space. For
isentropic flows, shocks are captured by implementing the artificial compressi-
bility technique presented by Hafez, South, and Murman( 5 ). The algorithm is
also capable of treating flows with nonisentropic shocks by adding a shock-

;	 tracking operator coupled with the Rankine-Hugoniot relations.

Numerical experiments conducted during the development of the present al-
gorithm showed that the asymptotic convergence history was governed by a real
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eigenvalue. This, implied that the algorithm could be accelerated by a power
method as suggested by the work of Hafez and Cheng(6).

Convergence histories are presented for the unaccelerated and accelerated
form of the algorithm. These results include inviscid subcritical and supQ r-

-critical potential and nonpotential flows. In addition the Mach number ;ri-

butions associated with a cascade of unstaggered 20 percent thick circa _. arc
airfoils operating at subcritical art ,' supercritical conditions are presented.

ALGORITHM FORMULATION

Steady Potential Flow

In steady potential flow calculations, flows are assumed to be isentropic
and isoenergetic, implying irrotationality. This assumption has proven usefis'I
in approximating many real flow situations.

The differential equations governing potential flow are:

	

I - (A . - 0	 (1)

;ax3 =0 	 (2)

where p is the density and ^ is the velocity vector. Equation (1) repre-
sents the continuity equation and equation ( 2) the irrotationality condition.
A thermodynamic relationship which expresses density in terms of velocity is:

1

Y-1

	

P = RT o 1 - 2 C p2T	
(3)

o

where Po, To, R, Cp, Y and U2 are total pressure, total temperature, the
ideal gas constant, the specific heat capacity at constant pressure, the ratio
of specific heat capacities, and the speed squared, respectively.

The solution rocedure for subcritical flows is defined by the following
set of equations( 4^, writt6R in tensor form:

a 2(P(n)
	

8Fk(n
-1)

ax  ax 	 ax 

Fic = F k(n-1) + a(o(n)	 (5)
ax 
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2
0

( n)
a 	 U(n- 1)	

(7)
axkaxkaxk 

(Uk - k

	

U ( n ) _ U(n -1) + a,P)	
(8)

	

k	 k	 axk

1

kl (n) (n) Y-1

	p(n) 
Po 

1 - 
g Uk U^	

(9)RTo	2 CpTo

	

Fk(n) - yr- gklp(n)U(n)	 (10)V-
 k

where FkV Uk, gkl , gkl, g and xk are the contravariant mass flux vectord_--ti.., the ,.,..Variant. velocity mcomponent, the contravariant metric tensor, the

	

UCIIJ 1 by, WIC a.vra^ ^an^ velocity...J	 ..,.^ ..... ^

covariant metric tensor, the determinant of the covariant metric tensor, and
the computational coordinates, respectively. The use of repeated indices
denotes the standard summation convention of tensor analysis. For three-
dimensional flows the free index k takes on the value of 1, 2, and 3, while
for two-dimensional flows its values are restricted to 1 and 2. The variables
w and a are interpreted as scalar correction quantities. Equations (4),
(5), and (6) satisfy the continuity equation (1), generating the vector Fk
which is divergence free. Likewise, equations (7) and (8) generate a vector
Uk which satisfies the irrotationality condition (eq. 2). This algorithm
can be thought of as a two-step recursive scheme in which the first step gener-
ates a solution to the continuity equation while leaving the irrotationality
condition unsatisfied. The, second step corrects the intermediate velocity field
so as to satisfy the irrotationality condition. Upon convergence, the inter-

mediate vector Uk approaches Ukn). 'fhe implementation of the above algo-
rithm requires the solution of two Poisson equations (i.e., eqs. (4) and (7))
in computational space for each iteration cycle. These equations are readily
solved by direct solvers or fast Poisson solvers.

The iteration procedure is initialized by assuming a uniform covariant
velocity field and constant density, which is sufficient to determine the quan-
tity Fk(n-1). Applying a direct solver to equation (4), the scalar T is
computed for the entire flowfield. Intermediate values of the mass flux vec-

tor, Fk , and the velocity vector, U k , are calculated by equations (5) and (6).

The direct solver is then invoked a second time to find the cr field which

satisfies equation (7). The corrected velocity vector U( n ) is then determined

P
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from equation (8). At this point the density is updated using equation (9) and

the current velocity. The mass flux vector Fk(n) is recomputed according to
equation (10) and returned to equation (4), which initiates the next cycle of
the iteration scheme.

Global conservation of mass is maintained by staggering the variables on
the computational mesh. As shown in figure 1, the quantities (P and ar are
placed at the (i,3) th mesh points, while all other variables (such as P, Uk,
and s) are calculated at the center of each mesh cell side. For equations (5)
and (8), in which Fk and Uk are computed using the correction variables ^P
and a, the differencing scheme is :

Al	 = B i+1 ,.i	 B i ,j

i+ 1.1i 	 Ax1

Al	 = 2 \
Bi+1 .j + Bi +1 +1) - 2 (1j+1	 + B i-1 i±l/

i ,J+ 2	 Ax1

i+2,^	 AX 

A2	- Bi,j+1 + 
B 

i,J+
2 	

AX 

where Ak and B represent Fk and (p for equation (5) and, similarly, Uk
and o for equation (8).

In transonic flow computations, artificial compressibility is employed as
a shock-capturing procedure. Density is modified by an upwinded differencing
procedure, according to the equation:

Pi .i 
= Pi

► i + C"'' i .i ^Pi_i J - Pi 
J)	 (15)

where

ui 	 = max 1 -	
21	

,0

M i .^

and where a is a constant of order 1. The variable M i ► ^ is the Mach number

at the (i j) th mesh point. The quantity p i,j replaces the density in the

1	 calculation of the flux and the velocit y vector. It should be noted that in

(11)

(12)

(13)

(14)
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adapting This form of artificial compressibility we have assumed that the
streamwise grid lines (x 2 - constant) nearly coincide with the streamlines. A
similar procedure is applied to the speed squared, q 2 , to damp a Mach number
overshoot that occurs immediately upstream of the shock:

i2
	

m q i 	
+ a^Ni ^ Cq i-1 ,j - q i,,)}	 (16)

where

q2 = 9k1UkUl

The coefficients v and a l are the same as defined previously, q 2 is the

speed squared, and q 2 replaces q 2 in equation (9) for the density calcula-
tion,

The measures of convergence, or the "residuals" of the computation, are

taken to be the magnitudes of the quantities v 	 (,old) and p . (U _ P-1)).

Both of these are driven to zero by the iteration procedure. Upon convergence
the vector F k will be divergence free and Uk irrotational as prescribed
by the governin g equations.

Nonisentropic Flow

The potential flow formulation is extended to permit the computation of
two-dimensional isoenergetic flows with nonisentropic shocks. This is accom-
plished by introducing a shock-tracking operator coupled with the Rankine-
Hugoniot relationships and the entropy transport equation.

The governing equations for inviscid, isoenergetic flows with nonisen-
tropic shocks are:

• (A) = 0	 (17)

w=axU

^•^S 0

4	 and the thermodynamic relationship

1
'y-1

Po	
2P= RT 1 -2CTeta	 o	 p o

5

(18)

(19)

(20)

Y
^i µ



Vn

ORIGINAL PAGC' 10'
OF POOR QUALITY

The nonisentropic iteration scheme is basically the same as that for isentropic
flow,,, with some modifications to be mentioned below. Density, as defined by
equation (15), is reevaluated for the nonisentropic case according to the
expression:

P	 P 
e-(S-So)/Cv	

(21)

where Cv is the specific heat capacity at constant volume, and (S-So), the
entropy rise across the shock, is obtained from the Rankine-Hugoniot relation-
ship:

	

S-So=Y-YR1 In L2 p1 -R In p?	 (22)
1	 2	 1

which, when written solely in terms of Mn, the Mach number normal to the
shock, becomes

S - S 	1/(Y-^ )	 (Y + 1)M2
R

0
=1n	 1 + Y2,	 (M2-1)2(23)
 (Y - 1)M

n
 + 2

L	 .J

The switching operator Ni , j defined earlier is used to track the shock
location and its geometry. If we consider the flow to have a uniforsd entropy
distribution across the inlet, the shock provides the only mechanism by which
entropy can be introduced into the field. So introduced, the entropy (accord-
ing to eq. (19)) will remain constant along streamlines downstream of the
shock. Since we have assumed the grid line x 2 = constant nearly approxi-
mates a streamline, the entropy will be held constant along each streamwise
grid line downstream of the shock. Once the entropy field is established, the
density is reevaluated according to equation (21). The vorticity field gener-
ated by the shock may be computed from the following equation(?):

S
w = d R

p -	 der

where c), p, and x 2 are the vorticity, the pressure ( which is related to den-
sity and entropy by the ideal gas equation of state), and the transverse compu-
tational coordinate, respectively. The vorticity field is used to construct a

covariant vector whose only component is A. (̂ n) (i.e., A
(

2
n) = 0) according to

	

A( n) 
= f 

w dy dx2	(25)

( 24)

r
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One should note that the curl of the constructed covariant vector is equal

to w. By adding the quantity (A(n) - A
(n-1)1 

to U(n) at the end of each

iteration cycle the resulting velocity field upon convergence will satisfy
equation (18).

For subsonic flows the stability bounds of the current algorithm were de-
fined by Chang and Adamc . zyk( 4). Based on this analysis and a series of com-
putational experiments it appeared that the asymptotic convergence rate of the
current algorithm is determined by a real eigenvalue. This implies that the
algorithm can be accelerated by a simple application of the power method as

outlined by Nafez and Cheng ( 6). To analyze this acceleration procedure let
denote the dominant eigenvalue, and assume that the asymptotic convergence his-
tory of the current algorithm is governed by the equation:

^k+1 
s 

%ck
	

(26)

where ck is the error vector at the end of the k th iteration cycle. For
the present analysis ck is defined as:

ck = 6k - B	 X27)

where Bk represents the value of the unknown vector B at thr e^^d of the
kth iteration cycle. The value of % may be estimated from the equation:

X = EIB
k+1 

- Bk I / EIBk - Bk-1(	 (2B)

where E denotes the summation over all components of B. With % known the
limit of Bk is estimated by means of the equation:

k+1 	 k

B r Bk + B 1 - ^B

	
(29)

Numerical results will show that this simple acceleration procedure is
most effective in accelerating the current iteration procedure.

RESULTS

The algorithm has been tested for both subsonic and transonic flows

through a two -dimensional straight channel with a 10 percent thick circular arc
airfoil mounted on one wall. This simulates a cascade of 20 percent thick un-

staggered circular arc airfoils at zero angle of attack. The computational
grid, shown in figure 2, with 60 mesh intervals in the lengthwise direction and
16 intervals in the transverse direction, is orthogonal at the boundaries, as
required by the present treatment of boundary conditions in the Poisson solver.
The Poisson solver used in this study was constructed using block tridiagonal

inversion. The boundary conditions required tiNe specification of the mass flow
at the inlet and the flow angle at the exit. Along the walls of the channel

flow tangency was required.

k

I
I

r



Potential Flew Results

The results for the isentropic flow computations are shown in figures 3
and 4. For the subcritical case with an inlet Mach number of 0.5, the isomach
distribution in the channel and the Mach number along the upper and lower walls
are shown in figures 3(a) and (b), respectively. B ,Ah figures illustrate the
symmetry of the computed flowfield about midchord of the airfoil.

The convergence measures, defined earlier as the divergences of the vec-

tors (A) and U - j(n-l) at each grid point, are shown in figure 3(c), which

shows the average value of v • i'pU) at each iteration for the unaccelerated
and apcelerated versions of the algorithm. The convergence history of

V • ( U - j(n-l)) exhibits similar behavior, meaning that the algorithm conver-
ges to the correct limit. The residual of the accelerated computation has Lien
reduced ten orders of magnitude in about 50 iterations.

For the supercritical isentropic flow case, an inlet Mach number of 0.675
causes the formation of a shock in the c',annel at about 75 percent of the air-
foil chord as illustrated by the isomach contour distribution of figure 4(a).
The shock is resolved between two consecutive grid points, as one can see fro ►n
the plot of surface Mach number in figure 4(b). The unaccelerated and accel-

11W	
erated convergence histories of the divergence of the mass flux vector are

plotted in figure 4(c). The accelerated version is reduced ten orders of mag-
nitude in 90 iterations.

Nonisentropic Flow Results

For the nonisentropic computations, a uniform entropy distribution across
the inlet is assumed. Hence subcritical computational results are identical to
those of the isentropic case displayed earlier. In supercritical flows the
shock is tracked by monitoring the switching operator for large variations. By
assuming the shock orientation to be normal to the streamwise gridlines, the
resulting entropy rise across the shock is calculated. The flowfield result-
ing from an inlet Mach number of 0.675 is illustrated by the isomach contours
in figure 5(a). The corresponding distribution of Mach number along the walls
is plotted in figure 5(b). One can see from these figures that the inclusion
of entropy and vorticity in the iterative scheme alters the shock strength
slightly from that of potential flow, which in turn affects the flow down-
stream. The convergence histories of accelerated and unaccelerated computa-
tions, shown in figure 5(c), show that the residual is reduced ten orders of
magnitude in 110 iterations. The nonisentropic flow convergence rate is
slightly slower than that for potential flow.

CONCLUSIONS

A semidirect method for applications to transonic flows with shocks has
been presented.

The ability of the algorithm to resolve flows modelled by the potential
equation and the Euler equati3ns for flows with constant total enthalpy is
demonstrated for subcritical as well as shocked supercritical flows.

8
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The applicability of the scheme to these cases has been sustantiated by
the rFiyuiatiunal results presented in this paper. Shocks are resolved sharply
and the resulting flowfields compare favorably to those obtained by others for

the same problem.

For the standard, or unaccelerated, version of the algorithm, converged
solutions were attained in 130 to 210 iterations. By accelerating the solver
using a procedure which annihilate, the dominant eigenvalue, the number of
cycles is reduced to between 50 and 170 for the same convergence criteria.
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