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ABSTRACT

By using the Beam and Warming implicit—factored .method of so)ution of the

,

Nayier—Stokes equations, velocities were calculated inside axisymmetric piston- ,;_

cylinder configurations during the intake and compression strokes. 	 Results are

i presented in graphicial form whidh show the formation, growth and break—up of i?

those vortices which form during the intake stroke by the jet issuing from the

valve.	 It is shown that at bore—to—stroke ratio of less than unity, the vortices j

may break—up during the intake stroke. 	 It is also shown that vortices which do

not break—up during the intake stroke coalesce during the compression stroke.
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I.	 INTRODUCTION

Fluid motion inside cylinders of reciprocating piston engines has been

studied both by experimental (1 — 12) and anal,;ticial (13 - 34) methods. These

investigations have revealed V . -At recirculating flows (vortices) form during the

intake stroke by the jet issuing from the intake valve. Under some conditions

these vorticies may persist throughout the compression stroke (32) and seriously

affect the ignition and flame propagation processes. Since these vortices can

play such an important role in the combustion pro(tess, their formation, growth,

and break—up during the intake stroke, and their subsequent behavior during the

compression stroke must be understood. However, most of the previous studies

focused only.on the problem of vortex motion during the intake stroke. In spite

of the importance of the problem, relatively little is known about the behavior

of vortices during the compression stroke. This investigation was addressed

therefore to the study of vortex motion during the compression stroke of those

vortices which form during the intake stroke. To accomplish this, velocities

were c<lItulated inside axisymmetric piston—cylinder configurations. The veloc-

ity fields, were presented in graphical forms which illustrate the formation,

growth, and break—up of the vortices.

II. DESCRIPTION OF THE PROBLEM

The following problem was analyzed,.. A hollow circular cylinder is closed on

one end by a flat piston and on the other end by a flat plate (Fig. 1). The

piston is connected to a crank shaft through a connecting rod. The piston is

driven by rotation of the crank shaft about the crank pin at an angular veloc-

ity it W, resulting in a piston velocity up.
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The flat plate has a centrally located annular opening (valve opening) in it

which opens instantaneously at the beginning of the intake stroke (crank angle

0) and closes irl.r,tantaneously at the end of the intake stroke

The temperatures at the cylinder wall Tw , valve Tv , cylinder head Th,

and piston T 	 are constants, but may have different values.

The fluid enters the piston-cylinder configuration described above through

the valve opening during the intake stroke. 	 The stagnat i on temperature T i and

stagnation pressure P i of the entering fluid are both taken to be constants.,`

At the valve opening (seat angle a), the entering fluid may have velocity com-

ponents in the radial 	 (V r ) and axial	 (Vz ) directions, but not in the tangen-

tial direction.	 The magnitude of the velocity at the valve opening depends upon

the instantaneous flow field inside the cylinder as we'll as the stagnation tem-

perature and pressure of the entering fluid.

The viscous and thermally conducting fluid which enters the cylinder is an 1,

ideal gas having constant thermodynamic and transport properties.

At the beginning of the intake stroke, the gas in the clearance volume (re-

sidual gas)	 is takep to be a
,
stagnant, ideal gas at stagnation temperature Ti

and stagnation pressure P c (Pc	Pi ).	 The residual gas has the same ther—

modynamic and transport properties as the intake charge.

III. METHOD OF SOLUTION

The basic equations governing the problem are the conservation equations of

mass, radial momentum., axial momentum, and energy (35). To render these equa-

tions more amenable to numerical methods of solution, body forces were neglected

and the bulk 4iscosity was taken to be zero.
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The governing equations, applicable to laminar flows, are summarized in Ta-

ble 1.	 Turbulence was taken into account by the method described subsequently.

Equations 1 — 13 (Table 1) constitute a closed system in the four basic depen-

dent variables: density (p), radial velocity (V r ),	 axial velocity (Vz ), and

energy (e).

The boundary and initial conditions corresponding to Eqs.	 1 — 13 are given

in Table 2.	 The no-slip condition requires the fluid velocity next to a solid

wall to be equal to the velocity of the solid wall	 (Eqs. 14 and 15).	 The gas

temperature next to solid walls equals the temperature of the walls.	 With all

walls maintained at constant temperatures, this boundary condition results in

Eqs.	 16 — 19.

The stagnation pressure and stagnation temperature of the gas at the valve

rt	
opening are constant with respect to time as reflected by Eqs. 20 and 21.	 The

radial and axial velocities at the valve opening are related, as indicated by
,F

Eq.	 22.
k^

The axial velocity at the valve opening is determined by applying the

conservation of mass equation at the valve opening (Eq. 23).

The symmetry conditions at the center line result in Eq. 24. At-time t

equal to zero, the piston is at the TDC position (0 = 0) and the residual gas in

the clearance volume is a stagnant, ideal gas at stagnation pressure P c and

stagnation temperature T i . These initial conditions are specified by Eq. 25.

Recent evidence suggests that the type of turbulence model employed in the

analysis does not affect significantly the calculated flow pattern (36). For

this reason the increased mixing due to turbulence was simulated in a simple and

convenient manner by choosing appropriate values of the effective transport

!ikdroperties.
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It has been observed that the effective viscosity for turbulent flows inside

spark ignition engine cylinders is roughly 100 times higher than the viscosity

corresponding to lamis;ar flows (37). Therefore, the viscosity, u, was taken to

be 100 times the viscosity of air. The valve of the thermal conductivity, x,

was selected by taking the turbulent Prandtl number (P r = PC p/a) to be equal

to unity (38, 39).

Solutions to the governing equations and the corresponding initial and

boundary conditions formulated above must be obtained by numerical methods. In

this investigdtion, the implicit-factored, finite-difi' prence method of Beam and

Warming (40, 41) was used to obtain solutions. The details of the method are

not given here because o1 the very long description this would require. Readers

intere.iied in the solution procedure are referred to references 42 and 43 which

contain detailed descriptions of the method, including the formulation of the

fini.e-difference equations and numerical boundary conditions, and discussions

of the grid sizes, time steps, stability criteria, and computer time.

IV. RESULTS

Calculations were performed to explore the vortex patterns inside the cylin-

der during the intake and compression strokes. The emphasis of this investiga-

tion was on the behavior of vortices during the. compression stroke. However,

	

cif	 vortex formation during the intake stroke was also examined, since it is these
s

^i

	

i	 vortices which carry over into the compression stroke.

The ranges of the parameters for which numerical solutions were obtained are

summarized in Table 3. The values of the pa`, ,4ameters describiNg the geometry and

operating conditions were selected so as to correspond to those typically found

Y
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in spark-ignition engines. The thermodynamic and transport propertieswere

chosen so as to be physically reasonable ard to permit the use of convenient

grid sizes in the numerical solutions.

The axial and radial components of the gas velocities inside the cylinder

were calculated as functions of time and for all the conditions listed in Table

3. In the interest of brevity, only typical results are presented here which

illustrate the major features of the flow pattern. The resultant velocity vec-

tors were plotted providing a picture of the flow pattern. These graphical re-

sults sere deemed adequate fov the purpose of this study which was to observe

the flow pattern inside the cylinder.

Intake Stroke
l

During the intake stroke, ,wo toroidal vortices were formed by the vorticity

generated by the jet at the valve opening and by the adverse pressure gradients

produced by the jet impinging on the piston surface (Figs. 2 and 3). One of

these vortices was located.between the jet and the cylinder wall (cylinder-head

vortex). The other was located between the jet and the center line (valve vor-

tex). The formation and subsequent motion of these vortices were found to be

consistent with those observed in previous experimental (1 - 9) and numerical

(15 - 30) studies.

However, the present results showed one phenomenon that has not been re-

ported previous'y. At bore-to-stroke ratio of less than unity, the cylinder-

head vortex broke up into two smaller vortices (Fig. 2). The break-up was

caused by interaction of the valve and cylinder-head vortices. Ekchian and

Hoult (1) also noted vortex break-up in their tests with water injected into a

r

E	 i^
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circular cylinder. However, in Ekchian and Hoult's experiments, the vortex

break-up was due to flow instability and not to vortex interaction. In Ekchian

and Hoult's experiments the vortex broke up and then degenerated into a random

flow. In the present study the vortex did not degenerate into a random flow

because flow instability and three—dimensional flow (needed for the complete

vortex .break—up) were not included in the numerical solution.

Compression Stroke

During the intake stroke, the jet separated the cylinder—head and valve vor-

tices minimizing the interaction between them (Figs. 2 and 3). During the com-

pression stroke, the cylinder—head and valve vortices were no longer separated

by the jet, allowing the two vortices to interact. Because of the rotational

motion of the two vortices, they forced each other towards the piston. Since

the two vortices were of unequal strength, the weaker one was pushed closer to

the piston surface by the stronger one.

As the piston speed increased during the compression stroke (crank angle b

between 190 and 243 degrees), the two vortices began to coalesce (Fig. 4). The

time of this coalescing depended upon the strength of the vortex which was

nearer to the piston surface.

At crank an^les 0, between 230 and 240 degrees, the two vortices coalesced

into a single toroidal vortex (Fig. 4). The coalescing of the cylinder-head and

valve vortices has not been described by previous investigators. The disappear-

ance of one vortex was found by Ashurst (18) and by Diwaker, et Al (19) in nu-

merical simulations of similar piston—cylinder problems.

1
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Towards the end of the compression stroke (crank angle	 > 320 degrees) a

new recirculating flow (corner vortex) formed in tha corner of the cylinder—head
air
S

and cylinder wall (Fig. 4). 	 The formation of the corner vortex has also been

reported by Chong, et al (14) and Gosman, et al (29).

{ Finally,	 it is noted that in an actual cylinder, a vortex also forms near

the cylinder wall due to the piston scraping off the boundary layer next to the

cylinder wall during the compression stroke (10 — 12, 31, 32, 44 and 45).	 This

j vortex was not included in this study, since the interest here was only in those

^m
vortices which form during the intake stroke.
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LIST OF FIGURES

Figure

1	 Geometry used in the present study.

2	 Flow patterns during the intake stroke as a function of crank angle
from TDC: rp/rc = 0.78, A = 400 rpm, Pi/Pc - 1 and a = 0*
(Table 3).

3	 Flow patterns during the intake stroke as a function of crank angle
from TDC: rp/rc = 1.67,.2 = 400 rpm, Pi/Pc = 1 and a-= 00
(Table 3).

4	 Flow patterns during the compression stroke as a function of crank
angle from TDC: rp/rc = 1.67 0 JI 400 rpm, Pi/Pc	 1, and a =

0'* (Table 3).
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TABLE 1.	 GOVERNING EQUATIONS*

Equation Eq. No.

*^^rPKt ^P''s r0 1

jPPw *piFrP'^''E+	 P e^ ^ ~ +F	 r	 +	 to 3
f/•^fiP^Y^ t	 ^^tfP) 3̂  • Fr(^rryrtys^t(rvr+n+t^^^^''iFr r..	 4

t	 a^ ?t
5	

I

6	 it

;' n 2A	 -iflo-7)

i
+ F^ 8

V'V• 71•	 rV,+
9

7-
10

g,,. -71^
11	

^ E	 :

12	 t

13

* Cp = constant pressure specific heat, e = energy per unit volume, h =
specific enthalpy, h e = standard enthalpy of formation per unit mass at
temperature Ti, M = molecular weight, P = static pressti e, 2j 

u heat
flux in the j-direction, R = universal gas constant, V _ J-component of
the velocity, a = thermal conductivity, u = viscosity, o = density,rr =
shear stress.
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TABLE 2. BOUNDARY AND INITIAL CONDITIONS
e

Equation	 Eq. No.

yr=o, K.Lr	 piston surface	 14

Vewvo = o	 cylinder head, cylinder wall, and valve	 15

7•T„	 valve	 16

T%' T
	 cylinder head	 17

T- Tw 	 cylinder wall	 18

	

g l	 rri7p	 piston surface	 19

Pw1;(^'^ rraC^r /CCr—R/N) 	 valve opening	 20

	

7•T• `yi e— V=	 vavve openingF	 21

1^is 04Am of	 valve opening	 22	 s
d	 r yr+ d Iva = o+	 f a^P	 valve opening	 23

4'V". ,e jr = d	 center line 	 24	 r

	

r4	 P=P/(RTc/M),Vj,•V*-o	 everywhere inside the piston—cylinder	 25
e=re Mr? —Rvit+(ti-crT )J 	 configuration at time t 0
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TABLE 3. SUMMARY OF PARAMETERS USED IN THE NUMERICAL CALCULATIONS*

	

rp/rc	 (rpm)	 Pi/Pc	 a(degrees)

	

0.78	 400	 1	 0

	

1.67	 400	 1	 0

	

1.67	 400	 1.036	 0

	

1.67	 400	 1	 45

	

1.67	 400	 1	 0

	

*	 The following parameters were the same for all cas s tudied: u = 3.2 x
1g-32kgjm-s, a - 3.224 kg-m/s2 - *K, h o = 42,252m^/s4 , Cp 1' = 1,006.6
m /s	 K, M _ 28:96 kg/kg-mole, R 8314.3 kg 

m2 
/ kg-mole K-s, rp =

0.05 m, ry = 0.01875 m, rd = 0.03438 m, a(t=O) = 0.01 m, lc = 0.2m, Ti
= Tv = Th = Tw = Tp = 340 K, and P = 101325 kg/m-s2 . Results are
shown only for the first two cases ^ sted in this table.
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