General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
VORTEX MOTION IN AXISYMMETRIC PISTON-CYLINDER CONFIGURATIONS

T.I.P. Shih, G.E. Smith and G.S. Springer

/September 1982/

(NASA-TM-85404) VORTEX MOTION IN AXISYMMETRIC PISTON-CYLINDER CONFIGURATIONS
(NASA) 22 P HC A02/MF A01
CSCL 20D

Unclas
G3/34
44013

212 MEB
Department of Mechanical Engineering
University of Florida
Gainesville, FL 32611
VORTEX MOTION IN AXISYMMETRIC PISTON-CYLINDER CONFIGURATIONS

by

Tom I-P. Shih*, Gene E. Smith+, and George S. Springer#
The University of Michigan
An Arbor, Michigan

ABSTRACT

By using the Beam and Warming implicit–factored method of solution of the Navier-Stokes equations, velocities were calculated inside axisymmetric piston-cylinder configurations during the intake and compression strokes. Results are presented in graphicial form which show the formation, growth and break-up of those vortices which form during the intake stroke by the jet issuing from the valve. It is shown that at bore-to-stroke ratio of less than unity, the vortices may break-up during the intake stroke. It is also shown that vortices which do not break-up during the intake stroke coalesce during the compression stroke.

*Graduate Student, Department of Mechanical Engineering and Applied Mechanics; presently, Aerospace Engineer, NASA–Lewis Research Center, Cleveland, Ohio; Member AIAA

+Professor, Department of Mechanical Engineering and Applied Mechanics

#Professor, Department of Mechanical Engineering and Applied Mechanics, Assoc. Fellow AIAA
I. INTRODUCTION

Fluid motion inside cylinders of reciprocating piston engines has been studied both by experimental (1 – 12) and analytical (13 – 34) methods. These investigations have revealed that recirculating flows (vortices) form during the intake stroke by the jet issuing from the intake valve. Under some conditions these vortices may persist throughout the compression stroke (32) and seriously affect the ignition and flame propagation processes. Since these vortices can play such an important role in the combustion process, their formation, growth, and break-up during the intake stroke, and their subsequent behavior during the compression stroke must be understood. However, most of the previous studies focused only on the problem of vortex motion during the intake stroke. In spite of the importance of the problem, relatively little is known about the behavior of vortices during the compression stroke. This investigation was addressed therefore to the study of vortex motion during the compression stroke of those vortices which form during the intake stroke. To accomplish this, velocities were calculated inside axisymmetric piston-cylinder configurations. The velocity fields were presented in graphical forms which illustrate the formation, growth, and break-up of the vortices.

II. DESCRIPTION OF THE PROBLEM

The following problem was analyzed. A hollow circular cylinder is closed on one end by a flat piston and on the other end by a flat plate (Fig. 1). The piston is connected to a crank shaft through a connecting rod. The piston is driven by rotation of the crank shaft about the crank pin at an angular velocity \(\Omega \), resulting in a piston velocity \(u_p \).
The flat plate has a centrally located annular opening (valve opening) in it which opens instantaneously at the beginning of the intake stroke (crank angle \(\phi = 0 \)) and closes instantaneously at the end of the intake stroke (\(\phi = \pi \)).

The temperatures at the cylinder wall \(T_w \), valve \(T_v \), cylinder head \(T_h \), and piston \(T_p \) are constants, but may have different values.

The fluid enters the piston-cylinder configuration described above through the valve opening during the intake stroke. The stagnation temperature \(T_i \) and stagnation pressure \(P_i \) of the entering fluid are both taken to be constants. At the valve opening (seat angle \(\alpha \)), the entering fluid may have velocity components in the radial \((V_r) \) and axial \((V_z) \) directions, but not in the tangential direction. The magnitude of the velocity at the valve opening depends upon the instantaneous flow field inside the cylinder as well as the stagnation temperature and pressure of the entering fluid.

The viscous and thermally conducting fluid which enters the cylinder is an ideal gas having constant thermodynamic and transport properties.

At the beginning of the intake stroke, the gas in the clearance volume (residual gas) is taken to be a stagnant, ideal gas at stagnation temperature \(T_i \) and stagnation pressure \(P_c \) \((P_c \leq P_i)\). The residual gas has the same thermodynamic and transport properties as the intake charge.

III. METHOD OF SOLUTION

The basic equations governing the problem are the conservation equations of mass, radial momentum, axial momentum, and energy (35). To render these equations more amenable to numerical methods of solution, body forces were neglected and the bulk viscosity was taken to be zero.
The governing equations, applicable to laminar flows, are summarized in Table 1. Turbulence was taken into account by the method described subsequently. Equations 1 - 13 (Table 1) constitute a closed system in the four basic dependent variables: density (ρ), radial velocity (V_r), axial velocity (V_z), and energy (e).

The boundary and initial conditions corresponding to Eqs. 1 - 13 are given in Table 2. The no-slip condition requires the fluid velocity next to a solid wall to be equal to the velocity of the solid wall (Eqs. 14 and 15). The gas temperature next to solid walls equals the temperature of the walls. With all walls maintained at constant temperatures, this boundary condition results in Eqs. 16 - 19.

The stagnation pressure and stagnation temperature of the gas at the valve opening are constant with respect to time as reflected by Eqs. 20 and 21. The radial and axial velocities at the valve opening are related, as indicated by Eq. 22. The axial velocity at the valve opening is determined by applying the conservation of mass equation at the valve opening (Eq. 23).

The symmetry conditions at the center line result in Eq. 24. At time t equal to zero, the piston is at the TDC position ($\phi = 0$) and the residual gas in the clearance volume is a stagnant, ideal gas at stagnation pressure P_c and stagnation temperature T_i. These initial conditions are specified by Eq. 25.

Recent evidence suggests that the type of turbulence model employed in the analysis does not affect significantly the calculated flow pattern (36). For this reason the increased mixing due to turbulence was simulated in a simple and convenient manner by choosing appropriate values of the effective transport properties.
It has been observed that the effective viscosity for turbulent flows inside spark ignition engine cylinders is roughly 100 times higher than the viscosity corresponding to laminar flows (37). Therefore, the viscosity, μ, was taken to be 100 times the viscosity of air. The value of the thermal conductivity, λ, was selected by taking the turbulent Prandtl number ($Pr = \mu C_p / \lambda$) to be equal to unity (38, 39).

Solutions to the governing equations and the corresponding initial and boundary conditions formulated above must be obtained by numerical methods. In this investigation, the implicit-factored, finite-difference method of Beam and Warming (40, 41) was used to obtain solutions. The details of the method are not given here because of the very long description this would require. Readers interested in the solution procedure are referred to references 42 and 43 which contain detailed descriptions of the method, including the formulation of the finite-difference equations and numerical boundary conditions, and discussions of the grid sizes, time steps, stability criteria, and computer time.

IV. RESULTS

Calculations were performed to explore the vortex patterns inside the cylinder during the intake and compression strokes. The emphasis of this investigation was on the behavior of vortices during the compression stroke. However, vortex formation during the intake stroke was also examined, since it is these vortices which carry over into the compression stroke.

The ranges of the parameters for which numerical solutions were obtained are summarized in Table 3. The values of the parameters describing the geometry and operating conditions were selected so as to correspond to those typically found
in spark-ignition engines. The thermodynamic and transport properties were chosen so as to be physically reasonable and to permit the use of convenient grid sizes in the numerical solutions.

The axial and radial components of the gas velocities inside the cylinder were calculated as functions of time and for all the conditions listed in Table 3. In the interest of brevity, only typical results are presented here which illustrate the major features of the flow pattern. The resultant velocity vectors were plotted providing a picture of the flow pattern. These graphical results were deemed adequate for the purpose of this study which was to observe the flow pattern inside the cylinder.

Intake Stroke

During the intake stroke, two toroidal vortices were formed by the vorticity generated by the jet at the valve opening and by the adverse pressure gradients produced by the jet impinging on the piston surface (Figs. 2 and 3). One of these vortices was located between the jet and the cylinder wall (cylinder-head vortex). The other was located between the jet and the center line (valve vortex). The formation and subsequent motion of these vortices were found to be consistent with those observed in previous experimental (1 - 9) and numerical (15 - 30) studies.

However, the present results showed one phenomenon that has not been reported previously. At bore-to-stroke ratio of less than unity, the cylinder-head vortex broke up into two smaller vortices (Fig. 2). The break-up was caused by interaction of the valve and cylinder-head vortices. Ekchian and Hoult (1) also noted vortex break-up in their tests with water injected into a
circular cylinder. However, in Ekchian and Hoult's experiments, the vortex break-up was due to flow instability and not to vortex interaction. In Ekchian and Hoult's experiments the vortex broke up and then degenerated into a random flow. In the present study the vortex did not degenerate into a random flow because flow instability and three-dimensional flow (needed for the complete vortex break-up) were not included in the numerical solution.

Compression Stroke

During the intake stroke, the jet separated the cylinder-head and valve vortices minimizing the interaction between them (Figs. 2 and 3). During the compression stroke, the cylinder-head and valve vortices were no longer separated by the jet, allowing the two vortices to interact. Because of the rotational motion of the two vortices, they forced each other towards the piston. Since the two vortices were of unequal strength, the weaker one was pushed closer to the piston surface by the stronger one.

As the piston speed increased during the compression stroke (crank angle ϕ between 190 and 243 degrees), the two vortices began to coalesce (Fig. 4). The time of this coalescing depended upon the strength of the vortex which was nearer to the piston surface.

At crank angles ϕ between 230 and 240 degrees, the two vortices coalesced into a single toroidal vortex (Fig. 4). The coalescing of the cylinder-head and valve vortices has not been described by previous investigators. The disappearance of one vortex was found by Ashurst (18) and by Diwaker, et al (19) in numerical simulations of similar piston-cylinder problems.
Towards the end of the compression stroke (crank angle $\phi > 320$ degrees) a new recirculating flow (corner vortex) formed in the corner of the cylinder-head and cylinder wall (Fig. 4). The formation of the corner vortex has also been reported by Chong, et al (14) and Gosman, et al (29).

Finally, it is noted that in an actual cylinder, a vortex also forms near the cylinder wall due to the piston scraping off the boundary layer next to the cylinder wall during the compression stroke (10 - 12, 31, 32, 44 and 45). This vortex was not included in this study, since the interest here was only in those vortices which form during the intake stroke.
REFERENCES

LIST OF FIGURES

Figure

1 Geometry used in the present study.

2 Flow patterns during the intake stroke as a function of crank angle
from TDC: \(r_p/r_c = 0.78, \Omega = 400 \text{ rpm, } P_i/P_c = 1 \) and \(\alpha = 0^\circ \)
(Table 3).

3 Flow patterns during the intake stroke as a function of crank angle
from TDC: \(r_p/r_c = 1.67, \Omega = 400 \text{ rpm, } P_i/P_c = 1 \) and \(\alpha = 0^\circ \)
(Table 3).

4 Flow patterns during the compression stroke as a function of crank
angle from TDC: \(r_p/r_c = 1.67, \Omega = 400 \text{ rpm, } P_i/P_c = 1 \), and \(\alpha = 0^\circ \)
(Table 3).
Fig. 02
Shib, Smith, and Spungen
TABLE 1. GOVERNING EQUATIONS*

<table>
<thead>
<tr>
<th>Equation</th>
<th>Eq. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{\partial}{\partial t} \rho + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = 0]</td>
<td>1</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) - \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>2</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>3</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V + \rho \frac{\partial V^2}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>4</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V_c + \rho \frac{\partial V_c}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>5</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>6</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V_c + \rho \frac{\partial V_c}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>7</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>8</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V_c + \rho \frac{\partial V_c}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>9</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>10</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V_c + \rho \frac{\partial V_c}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>11</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V + \rho \frac{\partial V}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>12</td>
</tr>
<tr>
<td>[\frac{\partial}{\partial t} \rho V_c + \rho \frac{\partial V_c}{\partial x} + \frac{\partial}{\partial x} (p V_c) = - \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (p \frac{\partial V}{\partial x}) + \frac{\partial \rho}{\partial x}]</td>
<td>13</td>
</tr>
</tbody>
</table>

* C_p = constant pressure specific heat, e = energy per unit volume, h = specific enthalpy, h^* = standard enthalpy of formation per unit mass at temperature T_i, M = molecular weight, p = static pressure, q_j = heat flux in the j-direction, R = universal gas constant, V_j = j-component of the velocity, λ = thermal conductivity, μ = viscosity, ρ = density, τ = shear stress.
TABLE 2. BOUNDARY AND INITIAL CONDITIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Eq. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_r = 0, \ V_z = U_T$</td>
<td>14</td>
</tr>
<tr>
<td>$V_r = V_z = 0$</td>
<td>15</td>
</tr>
<tr>
<td>$T = T_V$</td>
<td>16</td>
</tr>
<tr>
<td>$T = T_K$</td>
<td>17</td>
</tr>
<tr>
<td>$T = T_W$</td>
<td>18</td>
</tr>
<tr>
<td>$T = T_P$</td>
<td>19</td>
</tr>
<tr>
<td>$P = R \left(\frac{T}{T_f} \right)^{\frac{C_P}{C_V}}$ $V_0 \frac{C_P}{C_V (\gamma - 1)}$</td>
<td>20</td>
</tr>
<tr>
<td>$T = T_0 - \frac{V_z^2 + V_y^2}{2C_P}$</td>
<td>21</td>
</tr>
<tr>
<td>$V_r = V_z = 0$</td>
<td>22</td>
</tr>
<tr>
<td>$\frac{dV}{dt} + \left(\frac{3}{2R} \right) P V_r + \frac{3}{4R} P V_z = 0$</td>
<td>23</td>
</tr>
<tr>
<td>$\frac{dP}{dt} = V_r = \frac{3V_z}{3R} = \frac{3V_y}{3R} = 0$</td>
<td>24</td>
</tr>
<tr>
<td>$P = R/(RT_f/M), V_z = V_y = 0$</td>
<td>25</td>
</tr>
<tr>
<td>$e = T [\left(\gamma C_P - R \gamma \right) / (\gamma - 1) T_f]$</td>
<td>25</td>
</tr>
</tbody>
</table>

piston surface

cylinder head, cylinder wall, and valve

valve

cylinder head

cylinder wall

piston surface

valve opening

valve opening

valve opening

center line

everywhere inside the piston-cylinder configuration at time $t = 0$
TABLE 3. SUMMARY OF PARAMETERS USED IN THE NUMERICAL CALCULATIONS*

<table>
<thead>
<tr>
<th>r_P/r_C</th>
<th>(rpm)</th>
<th>P_1/P_C</th>
<th>α (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.78</td>
<td>400</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.67</td>
<td>400</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.67</td>
<td>400</td>
<td>1.036</td>
<td>0</td>
</tr>
<tr>
<td>1.67</td>
<td>400</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>1.67</td>
<td>400</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The following parameters were the same for all cases studied: $\mu = 3.2 \times 10^{-3}$ kg/m-s, $\lambda = 3.224$ kg-m/s2-°K, $h^ = 42,252$ m2/s2, $C_p = 1,006.6$ m2/s2-°K, $M = 28.96$ kg/kg-mole, $R = 8314.3$ kg-m2/kg-mole-°K-s, $r_p = 0.05$ m, $r_v = 0.01875$ m, $r_y = 0.03438$ m, $\delta(t=0) = 0.0$ m, $l_c = 0.2$m, $T_1 = T_v = T_h = T_w = T_p = 340\degree$ K, and $P_c = 101325$ kg/m-s2. Results are shown only for the first two cases listed in this table.