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GENERATION OF ORTHOGONAL GRIDS
BY BOUNDARY GRID RELAXATION

S. NAKAMURA

The Ohio State Universily
Mechanical Engineering Department

200 W. 18th Avenue
Columbus, Ohio 43210

Abstraet; Two elliptic grid generation schemes that yield orthogonal
grids are presented (FGBR and UBGR). Each scheme is different from the
original elliptic grid generation skbeme developed by Thompson, et al., in
the treatment of boundary points. With the UBGR scheme, the grid points
on the flow boundaries are automatically determined by the algorithm,
while with the FBGR scheme at most one half of the boundary grid points
may be prespeciiied and the remainder of boundary grid points are deter-
mined automatically. Numerical examples show their capability of easy
stretching, clustering and shock fitting while maintaining orthogonality of
grid. The present method can be implemented into existing elliptic grid
generation programs with relatively minor modiflcatons.

§ 1. Introduction

The elliptic grid generation scheme developed by Thompson, et al. [1],
has been regarded as a method to generate non-orthogonal grids. However,
approximate orthogonality of grids in the , leinity of flow boundary may be
achieved by the algorithm devised by Steger and Sorenson [2].

Analytical conformal mapping [3], or its numerical version, generates or-
thogonal grids. The advantages of completely orthogonal grids are (a) the
difference equations on the transformed coordinates are simpler than on non-
orthogonal grids, and thus both computing time and memory space may be
saved, (b) accuracy of the difference equations on orthogonal grids is better
than on non-orthogonal girds, (c) if the computational domain is rectangular,
a fast direct solver may be applicable in place of iterative schemes.

The most fundamental difference between the conformal mapping and the
elliptic grid generation method is that the grids on the flow boundary are
prespecifled in the elliptic grid generation, while in the former the grids on
the boundary are determined ^y the confomal mapping.



The objective of the present paper is to show that orthogonal grids may
be generated by using the elliptic grid generation equations by automatically
determining at least one half of the boundary grid points as part of the grid
generation. The present method is more versatile than conformal mapping
because (a) clustering and stretching of grids are easy, (b) adapting to the
flow solution is possible, (c) orthogonal grids may be generated even when
one half of the boij udary grid points are fixed, and (d) the algorithm may be
extended to control orthogonality of grids in three -dimensional elliptic grid
generation.

	

The coefficient of the cross derivative term in the elliptic partial differential	 f
equations on the computational dome`n, which will be called the 13-coefficient,
becomes zero if the transformation is orthogonal. The simplification of the
flow equations on orthogonal grids is due to this fact. However, an orthogonal

}	 coordinate transformation does not necessarily mean that the B-coefficient in
a numerical _ computations is exactly zero [4]. This is because even if the coor-

dinate transformation is analytically orthogonal, the B-coefficient in numeri-
cal computations is calculated by finite difference approximation. Therefore,

,from the view point of numerical computations , it is desirable to have the6	 r

numerically calculated B-coefficient exactly zero, than to have analytically
orthogonal grids as the case of conformal mapping. In this paper- we use
the term " numerical orthogonality" meaning that the &coefficient calculated
numerl.cally is zero. Al^hough the grids generated by the proposed shemesf

are riot numerically orthogonal in this sense, but are rather approximation to
analytically orthogonal grids. However, feasibility of generating numerically
orthogonal grids by using elliptic systems is discussed later. 	 a

I	 In the remainder of this paper, (1) the elliptic PDEs and the boundary
f	 conditions to generate analytically orthogonal grids are derived from or-
j thogonality conditions, (2) the elliptic equations and boundary conditions

are transformed onto the computational domain, (3) difference equations for
the elliptic grid generation equations and boundary conditions are derived,
(4) grids generated by the present method for a number of geometries are il-
lustrated, anod finally (5) feasibility of generating numerically orthogonal grid
is discussed('

l

§Z. Elliptic Partial Differential Equations and Boundary Conditions for
Orthogonal, Coordinate Tranr1ormations

Denoting x-y and ^-r/ as physical and `af)mputational coordinates, 'respec-

2

LN



Lively, let us consider two families of curves, ^(x, y) = and q(x, y) = d,
on the physical domain as shown in Fig. 1, where c and d are parameters.
We now determine the conditions for the two families of curves to become
orthogonal. Along a curve, = c, we have

dt=t dx+tydy=0

or equivalently,

(dyldx)l = — xl y	 (2)

where subscript 1 indicates that the derivative is the slope of = c on the
x-y plane. Similarly, the slope of the curve n = d is written as

(dyldx)2 = — nx/ny 	 (3)

The orthogonality between e = c and n = d requires that Eq.(2) be the
negative reciprocal of Eq.(3), that is,

rl" _ — ny = ak(x, y)	 (4)
ey	 Tx

where a is a constant, and k(x, y) is a continuous function which may be
arbitrarily specified. Equation (4) may be equivalently written as

% = akey	 (5)
ily = --akex

The transformation between x-y and a-rj is conformal if ak	 1. Otherwise
the transformation is orthogonal but not conformal.

Equation (5) is a sufficient condition for orthogonality, but it is not suitable
in determining e(x, y) and n(x, y). To find more appopriate equations, we
eliminate ^ or n from Eq. (5) (one at a time) and obtain elliptic PDEs as
follows

(k^x)x -i- ( key)y = 0

( i nx)y + ( 1 ny)y 0	
(g)

k	 k
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Notice that the above equations do not involve the constant a. Equation
(6) is a convenient form because the equations are elliptic PDEr,, for which
there are many solution methods available. Unfortunately, Eq. (6) is not
a sufficient condition for orthogonality any more, but is only a necessary
condition. This is because, while Eq. (6) is derived from Eq. (5), the reverse
is not possible without additional conditions. However, the solution of Eq.
(6) are uniquely determined when 'boundary conditions are specified. In fact,
the orthogonal set of ^ and I are determined with appropriate boundary
condition!;.

In order to derive boundary conditions rigorously, we write the following
theorem:

[Theorem] Suppose e(x, y) and y(x, y) are smooth functions on th(^ x-y plane.
In order that the family of curves rl(x, y) = d are orthogonal to a curve
^(x, y)	 c, the partial derivative of n normal to the curve = c must be
zero.

[Proof'[ The gradient of the curve e = c is given by Eq.(1). The derivative of
n(x, y) normal to ^ c may be written as

8rl(x , y)/On = tjxix + slyly	 (7)

where l,, and ly are directional cosines of the outward normal to ^ = c.
Referring to Fig. 2, the gradient of = c is related to the directional cosines
as

(dy/dx)1 = —6s/ly 	 (8)

Eliminating (dy/dx) 1 with Eq.(2) and a slight rewriting yields

ly/4 = lX/G	 (0)

Notice that, if ly approaches zero, ^.. also approaches zero (e = c becomes
vertical) while l,, and ex are both nonzero. Therefore, even when ly apprachet;
zero, the left side of Eq.(9) remains nonzero and nonsingular.

Introducing Eq.(9) into Eq.(7) yields

On(x , y)len = ( yl )(rlx ^ +rly^y)	 (10)

f

i

a
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`;if the left side of Eq.(10) is set to zero, them,

which is equivalent to Eq. (4). Thus. F c and tj	 d are orthogonal.

[Corollary) If a boundary of the x-y domain is represented by a curve = r,
the derivative of V(x, y) normal to = 0 must, be zero along that part of
the boundary. Similarly, if a boundary of the x-y domain is represented by
a curve q = d, the derivative of ^(x, y) normal is #1 = d must be zero.

The above corollary may be intepreted as that, when the value of C (or n) is
set to a constant along a portion of the flow boundary, the normal derivative
of j? (or C respectively) must be zero along that portion.

In applying the above rule to grid generation, suppose the whole boundary
o! the x-y domain is divided into four parts, Gs, g = 1 to 4, each of which
is transformed respectively to the left, top, right and bottom sides of the
rectangular computational domain, 0 < C <, Cmax and 0 < j? < r/max (We
Fig.3a). Thus, the boundary values of a and n are specified as

t = 0 along G1

TI = Amax a"'-Ug G2	
(12)

along Gg
Ti = 0 along G4

The additional boundary conditions are set in accordance with the corollary
as hollows:

8n(x, y)/8n 0 along G, and G3	
(13)

OC(x, y)/8n = 0 along G2 ud G4

In conclusion, an orthogonal tranformation of the x-y domain to the ^-)j
domain is completed if Eq. (6) with bounday conditions Egs.(12) and (13) are
solved.

§3. Derivation of Grid Generation Equations

The grid generation equations that map the. uniformaly spaced Cartesian
grids on the computational domain onto the physical domain are obtained

5
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by inverting Eq.(6) and the boundary conditions, Egs,(12}(13), in accordance
with

fs — vql

(14)
r!s —yf/f
ny = zf /,!

where J is the Jacobian given by

x fyn -- zot

Fiquation (6) is transformed to

xnLy — y^;Lx = —(JJk ) (ynkf yfynkn + xnk f xfxjkV11
z L	 Lx — J k 2k 	 k	 x2k	 x x k	

(15
a	 f y yl	 (I ) iyf 	yfjyf f + f ,7 -- ^ E f)

!	 In the above equations, L is a quasi-linear elliptic partial differential operator
s	 given by

L_A82 —2B^ 
8 

+C^ 2	 (16)gf ̂  ^ +^
where

A = f2 + V2

B — xexn + yEJtj

C-z2+A

Separating Ly and Lx in Eq.(15) yields

Lx , — (any + 2x fx,i#)
(17)

Ly = '(P'Y + 2y fy ial

where
a (ynkf yfkn)
P -- (x9kf x fkg)

7 (xfy9 + zgyf)

%J,
4
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The boundary conditions, Eq.(12), are implemented on the computational
domain as follows: First, define

,/i(z, y) = 0 on Fi, g = 1, 2,3 and A	 (18)

where Fr , = 1, 2, 3 and 4, are the left, top, right and bottom boundaries
' of the computational domain respWc ively, and f' = 0 is the shape of the

corresponding boundary on the x-y domain. By using Egs.(7) and and (14),
Eq.(13)becomes

—y4 1Z + x(ly = 0 along G1(f 0) and G3(	 ma)	 (19)
y" lx — X,? ?. = 0 along GZ(n = IN,..) and G401= 0)

where ly and ly are directional cosines of the outward tormal on the boundary,

A central difference scheme is used to discretize Eq.(17) to yield

A(xi--1,j — 2xi,9 + xi+l,j) + C (x i,j-1 2xi ,j + xi,j+l)

= B(xi+l,j+l — xi-1,j+I — xi+l,j- 1 + x i—l,j=1)12 +R^	 b

F la	 '(20)
A(yi— x -- 2y + yi 1 + C yi 1 — 2yi + yi 1 

= B(yi+1 Oj+I — yi-1,j+I -- yi+ ,j-1 J- yi- 1,j-1)/2 + R(ay)

= Fs(y)	 i

where R(,") and R(Y) represent the difference approximations for the right
sides of Eq.(17).

	

Equation (20) is solved iteratively. Any of the iterative methods used for 	 f
existing elliptic grid generation scheme should work for the present method.

§4. Undetermined Boundary Grid Relaxation (UBGR) scheme

The numerical treatment of boundary conditions is different in the two
schemes proposed: UBGR and FBGR. In the UBGR scheme, all the grid
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points on the boundary are undetermined, while up to one half of the boun-
dary grid points may be prespecified in the FBGR scheme and the remaining
boundary grid points are undetermined.

Detail of the treatment of the boundar y Conditions for the UBGR scheme
is described in the remainder of this section. The boundary conditions for
the FBGR scheme are explained in a later section since it is an extension of
the UBGR scheme,

For internal grid points, the two equations in Eq.(20) detemine x=,j and
yj,j, provided that the coordinates of the surrounding eight grid points are
given. Of course the coordinates of the surrounding grid points are iteratively
revised in every iteration step. However, assuming temporarily that the
coordinates-of the surrounding grid points are known simplifies explanation
of the derivation of the difference equations for the boundary grid points.

For a grid point on the boundary, the two equations in Eq.(20) can not
be satisfied simuitanously because of the following additional constraints: (1)
boundary grid must be on the specified boundary line, and (2) orthogonality of
grid lines at the bounday is required..Althogh the othogonality requirement
can be incorporated into the elliptic equation as a bounday condition, the
first constraint does not allow the two elliptic equations to be independent.
This means that only one of the two equations can be used unless the two
equations are linearly dependent.

In order to find an appropriate equation, consider a boundary grid point
(i, j to be determined on a boundary as depicted in Fig, 4a. We assume that
the three surrounding grid points denoted by L, R, and B are temporarily
fixed: The variables s and t are local Cartesian coordinates as shown in Fig.
4b. The elliptic equations for x and y may be written in terms of s and t as

AsCC -- 2Bs f,r + Cs,1 ,7 R(l)	 (21a)

Attg - 2Btfq + Ctn" .-= R(0	 (21b)

Since Egs.(21a) and (21b) are independent, one has to choose only one of
the two equations. We choose Eq.(21a) and abandon- i21b) for the following
reasons: The coordinate t is in the normal direction froth the boundary so ti j
on the 'boundary is not allowed to change. On the other hand, s is tangent
to the boundary so ss,j has a freedom to change.

H

r
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The difference form of the first and third terms of Eq;(21a) may be written
a$

,off = 8i— j oy 2eja + -9j+jry	 (22a)

8nn	
I8010 — ( s	 so-1)	

(22b)
1/2

The orthogonality boundary condition requires that the first term on the right
side of Eq.(22b) be zero,

0	 (23)

I3 introducing E 22 into E 21a and usi ng E 23By ^	 g	 .q ( )	 ,^ 	q(	 )	 8	 .q ( ), we obtain

A(8i-1 — 2,6i + 8 i+,, ) + 2C'(—s + isi 1	 R s, j	 (24)

where B in Eq. (21a) is set to zero because of orthogonality at the boundary.
If the coordinates of the surrounding grid points are known, si r, is found by
solving the above equation. Then tij is calculated by introducing the value
of sir, into the equation that defines the boundary,

Aso 0=0
	

(25)

§5,, Control of Grid Spacing

Control of grid spacing for clustering and stretching is achieved by the
following two algorithms; (1) variable grid spacing on the computational grids,
and (2) space dependent coefficient, k(z, y).

In the first approach, the Cartesian grid points with variable spacing on the
computational domain are mapped onto the physical domain as illustrated in
Fig. 5. Small grid spacing on a part of the physical domain is obtained by
imposing a small grid spacing on the computational grid in the corresponding
area. This technique may be used on the C and q directions independently.
Once the coordinates of the grid points on the physical domain are deter-
mined, the grid may used as if it were generated for an uniformely spaced
computational grid.

It
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The second approach is to change k in space. Since k in Eq.(4) is propo-
tional to the aspect ratio of a grid cell, the clustering effect in the ^-direction,
for example, is obtained by reducing the value of k in the interested area
on the physical domain. While the first approach can only change the grid
spacing uniformly in the f or 9 direction, the second approach can cluster
or stretch grid more flexibly on the physical domain. Uses of k(x, y) are
illustrated later with numerical examples.

In addition, these two techniques may be applied simultaneously in one
grid generation as needed.

§6. Fixed Boundary Grid Relaxation (FBGR) Scheme

In the UBGR scheme two end points of a grid line are undetermined so both
move along the physical boundary during iterations, while the grid line on
the computational domain is fixed. mother way of satisfying the orthogonal
grid generation equations is that: (a) one, end point of a grid line is fixed, (b)
the other end point of the grid line is left to be variable, and (c) grid spacings
adjacent to the corresponding grid line on the computational domain are
variable. This latter approach is denoted as the FBGM scheme.

This scheme can be implemented by modifying the UBGR scheme only in
the treatment of the fixed boundary grid points as explained next.

Suppose that the grid points with black circles in Fig. 6 are obtained after
an iteration step with a given set of grid spacings bfi ^i --- Si--1 and
6&+1 - f i+l — ^i. First, the hypothetical coodinates to satisfy Eq. (24)
are calculated (open circle marked as Br) as if the grid point (i, j) on the
boundary is an undetermined point. Second, the following two chord length
ratios are calculated:

rI A,A, I(AB' + BIC)

r = AB/(AB + BC)

where AB, BC, ABI and BIC are chord lengths. 'Third, the computational
grid spacings a fi and %+1 are replaced by

6e = ar2+ br
	

(27)

bed+l (66 + 641)' — 6e*
	

(28)

x

'e

(26)
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where

a = afift' — 6411(r, 11)
and

b (6f + b fi+) — a

The geometrical interpretations of the above equations are
(i) U 6 f i and 6ti+1 are the computational grid spacings, the orthogonal

boundary condition requires that the boundary grid must be at 9.
(ii) u the boundary grid is to be located at B while satisfying the or-

thogonality boundary conditions, the computational grid line i must move
toward line i — 1.
(iii)The functional relation among %, 6t i+ 1 and r' are fitted by a quadratic
polynomial, and then the revised value of the grid spacing 6 f i is calculated
by the quadratic function thus obtained,
(iv) The total computational grid spacing between (i — 1) and (i + 1) is

unchanged through this modification, namely

66+ 66+1 = 64+64+1	 (29)

grid spacings next to all the fixed boundary grid points are modified
aftce each iteration step.

§7. Numerical Mustrations

Example 1:
Figure 7 shows the grid generated by the present method for a quadrilateral

domain. An uniformly spaced Cartesian grid on the computational domain
is mapped to the the physical domain by the UBGR method with k =1.

Example 2
Figure g show•, the grid generated for a NACA 0012 airfoil by the UBGR

scheme with k = 1 and no clustering. The grid is not, however, orthogonal
In the vicinity of the trailing edge since the two grid points at the trailing
edge are fixed without any FBGR treatment.

Example 3:

11
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Figure 9 shows the grid generated for a NACA 0012 airfoil by the UBGR
schern with a clustering effect created by a variable grid spacing on the
intermediate computational domain.

Example 4:
Figure 10 shows the grid points clustered around a prescribed curve to

illustrate the capability of solution adapting. This was done by setting k(x, y)
in Eq.(4), or equivalently Eq,(18), as

k(x, y) = c +
cz

1 + ih(2, y)l2

where el and c2 are positive constants and h(2, y) = 0 is the curve (for
example, a sh(wk profile) to which grid points are to be clustered. The
function h(z, y) used in the present example is

h(x,y) = sin(x) — y

Example 5:

Figure 11 s'Mows the C-type grid generated by the UBGR scheme for a
cambered air.ibil, The grid points on the Kutta cut do not match because the
points above and below were determined independently.

Example 6:
Figure 12 shows the C-type grid generated by the FBGR for NACA 0012

airfoil. The grid points on the airfoil surface and the Kutta cut are fixed,
while the grid points an the outer boundaries are all determined by the UBGR
scheme. The grid points near the trailing edge are clustered for this particular
grid but this clustering is not essential to the present grid generation scheme.

Example 7:
Figure 13 is for the same configuration as Example 6 except the airfoil. is

cambered.

All the grids shown above were calculated by the point successive over
relaxation iterative scheme, which was used for simplicity of programming.
Although no effort hag :been paid in the present study to accelerating the con-
vergence rate, the convergen'ce of the itierative scheme is felt to be slow pares
ticularly in comparison with the conventional elliptic .grid generation scheme
with fixed boundary grid points. It seems possible to increase the computa-

12
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tional efficiency for the proposed scheme by the ADI or multigrid method or
both.

§8. Numerically Orthogonal Grids

The orthogonal grids generated by the UBGR and VBGR schemes are
approximation to analytically orthogonal grids. This is because the basic
equations are based on analytically orthogonal transfomations but the finite
difference approximation was used to generate grids. In this section the
possibility of generating numerically orthogonal grids is analyzed.

The condition of numerical orthogonality may be defined as

(6ix)(6jx) + (4)(6g) = 0	 (30)

where 6s and 6j are central difference operators in the i and j directions
respectively. Rewriting Eq.(30) yields

6y/6jx = 6ix/6jy ak(x, y)	 (31)

which may be further rewritten as

6y = ak6j`x	
(32)6,x = _ ak6j y

By rewriting, we obtain

t

6,(k 6ix) + a26j(k6jx) = 0
(33)

6i( k 6sy) + a26j(k6jy) 0

The coefficient a in Eq.(33) is ;eliminated as follows. The two equations in
Eq.(32) are added after taking the square of each term, and the resulting
equation is solved for a 2 as

aZ '=
 CI(OA)	 (34)

13
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where

A = (6jy)2 j- (6j--r

By introducing Eq.(34), Eq,(33) becomes

	

^. ti ^ 1	 1
AC jl k 6i z) ^ C k 6j(k6jz) = 0

Ak6i(1r6,y) + C 16j(k6jy) = 0

	

k	 k

(35)

(36)

If the difference operator is replaced by the differential operator, Eq.(36)
becomes equivalent to Eq.(17) except Eq.(36) is missing the &coefficient.
This lase point is understandable because Eq.(36) has been derived from the
orthogonality conditioa.

Difference equations are meaningless unless the meaning of the difference
operator 6 is clearly defined. So we define 6 here as the central differeg.ce
operator associated with one grid interval. Then Eq.(36) is in the well known
five point difference form of elliptic partial differential equations. The five
points involved are shown with black dots in Fig. 14, which are called here
the primary grid points.

With the present definition of 6, however, Eq.(30) may be written more
explicitly as

(xi+1/2,j+1/2 — Xi— 1/2 ,j+1 /2)(x+,j+1 — xi,j)	 (37a)
-(Yi+1/2,j+1/2 - yi-112,j+112xyi'j+1 " YQ) = 0

and
(2i-1-1,j -XQX-T i+1/2,j+1/2 -' xi+1/2,j-1/2)	 (37b)
(yi+la _ y0)(yi+1/2,j+1/2 °' yi+1/2, --1/2) = 6

where (z + 1/2, j -x-1/2) is a grid point in the staggered position as shown
with an open circle in Fig. 15. The grid points 'at the staggered positions
are called the auxiliary grid.. A system of elliptic difference equations in the
same form as Eq.(36) can be derived for the auxiliary grid from Eq.(37). The
important thing to be observed here is that Eq.(37) is interpreted as the con-
ditior, for numerical orthogonality between the primary and auxiliary grids,
but not for the numeical orthogonality among the primary grid points or

14



among the auxiliary gid points.. 5pt Another way of defining the meaning
of b is possible. For example, suppose 6 is the central difference operator 	 r
associated with two grid intervals. Then, the left side of Eq.(30) becomes ex-
actly the central difference approximation of the B-coefficint explained earlier.
Therefore, based on this definition the grid generated whould be numerically
orthogonal. The problem, however, is that the same five difference equations
that generates the primary grid can not be derived any more.

The present observation leads us to the conclusion that, if the grid is
generated by the conventional five point difference equation, the B-coefficient
calculated numerically by the central difference approximation with two grid
intervals can not be made exactly Zero.

On the orther hand, there is a possibility that numerically orthogonal
staggered grid may be obtained. This will require generating both the primary
and auxiliary grids by two sets of elliptic grid generation equations coupled
with appropriate boundary conditions. The detail of such a scheme needs
further research, however. 	 y

69. 0onclusions

The present paper showed that orthogonal grids may be generated by
solving a finite difference approximation for the elliptic partial differential
equations with either of the UBGR or FBGR schemes. These schemes are
more versatile than conformal mapping because (1) the grid cell aspect ratio
may be controlled through the function k(x, y), and (2) they can W used for
a local control of orthogonality of grid, and (3) the schemes can be extended
to three-dimensional grid generation to control orthogonality of grids in one
or two directions.

The proposed methods can be implemented in existing grid generation
programs which are based on the elliptic grid generation equations with
relatively minor effort. 	 x

One drawback of the proposed shemes is that the iterative convergence
rate is slower than the conventional elliptic grid generation scheme with fixed
boundary grid points. The first reason for this is that the boundary conditions
are Neuman type in the proposed schemes while the boundary conditions of
the conventional elliptic grid generation schemes: are all Dirichlet type. The
second reason is that the boundary relaxation schemes are nolinear. Since
the convergence rate of the proposed schemes ' strongly dependent of the

15
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number of grid points, the multigrid method would be useful to increase the
computing efficiency.

As an addl rionai product of the present work, It was shown that the grids
generated by the Ave-point central differex^ce approximation to the elliptic
PDEs can not be made numerically orthogonal if the B-cefcient is calculated
by the central difference apprAmation associated with two grid intervals, but
grids may be made numericAlly orthogonal between two grid systems that are
In the staggered position loo each other.
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Figure 1 Two families of curves (c and d are parameters)
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Figure 2 Directional cosines of the outward normal to 	 c
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Figure 3	 Mapping of the computational boundaries onto the
physical domain and the boundary conditions
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Figure 4 Boundary grid and local Cartesian coordinate
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Figure 6 Notations for the VBGR scheme
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'Figure 7	 Orthogonal grid . generated for a quadrilateral
domain with no grid spacing control

,Figure 8	 0-grid ' for NACA-0012 airfoil
generated by the UBGR scheme
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Figure 9	 Illustration of clustering by variable grid spacing
on the intermediate compuational domain
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Figure 10	 Grid on a rectangular domain with 'adapting
to a given curve
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Figure ii	 (.',.grid generated by the UBGR scheme
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Figure 11 (continued) Close view of the leading edge
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(A)

Figure 12 C-grid generated for NACA 0012 airfoil by the FBGR scheme
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Figure 12 (continued) Close view of leading and trailing edges
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Figure 13	 C-grid generated for an arbitrarily cambered airfoil by
the FBGR scheme
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Figure 14	 Primary grid
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Figure 15	 Auxiliary grid
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