
NASA Contractor Report 172224

1C A SE   Soao  410 2224
CONVENIENT STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS

OF HYPERBOLIC INITIAL-BOUNDARY VALUE PROBLEMS

Moshe Goldbe_g

and

Eitan Tadmor r;:;, . . ..........

Contract No. NASI-17070

September 1983

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and

SpaceAdministration LANGLEY RESEARCH CENTER

Langley Research Center LIERARY,NASA
Hampton,Virginia 23665 HAMPTON,VlR,GIr,'!A





"'C! D:·A:.(''''cc
.J'oJ \ \1'.,A\.... •..J

t 1 F~!::~.;·~·.~r·~:=A-CR.-1722.2L1
DISPLAY 12/2/1 .~.

23N3571t*~ ISSUE 21 PAGE
ICASE-22-58 NAS 1~26:t72224

AF-AFOSR-8150-82 83/09/00 ! i?,\;r"! t'":cc T C Tcri rir;rl !~'.~cr'.1T
:·..J .. \i, ...JL.t"1.·,J·.,j L\ LLLJ W:·J'·,..I'·,Ji·i\-\i.j, l

SAP:"',',!;\ !! r..IT T C
\\'tri. iL-. \"11. L-...J

.r' • • ...
l f ,-.1'· -:.". i !
r.. i ·::il i;:AC \ I •

.~ . . .. . .
:'1:.·-4r,-; ': :--~: ,-"!" ~.,,:::: 1 .,-•. :.-...
n<..J,.\\\ \ \ \ \. .::; i. \ '::4 \. \. r.J\ \.

Convenient stabl1ttv criteria for dtfference approximattons of hvperboltc
initial-boundarY value problems TLSP: Final Report
A~.JG()LD8ERG, l~'l.; 8/'TAOt~iiOR, t..

I "TTl _
...j \. i L.

!...! -:f,-: ~-: -: .r•. r·. '" ! -I;: T r·. r· ~-" t ..... 1 .~'. ,.-~ T:-;." -: ..-.. ! ! !'-.. ;-. "'!'"
\,,0\\\\-' :..}\\; 'i'::;\~'1 \C:..... iH\\'-Ji\ L.::J.\ ':JCt 1.\\:=.i....

Untv , Santa Barbara ... ; Tel-Avtv Untv.
••A·.l'"\--}. ,,.t.,1r .l·"r'": 4
M<j·'::',i i;if" M'·J i.

Prepared in COOP2ra110n Wlln Technton - Israel Inst. of Tech., Cal1fornta
tjrli\l., Sar"lt.3. 8.3rt}.3r.3; arvj Tel-A,\li-\l tjt11\i.

l','lA"jS = ~/~~:APPRO>~ I t~'lAT I j)r\L-····~f80tjr\iDAR\l \lALiJE PR08LEi':t;~f~~F I r\l ITE 0 IFFEREi\ICE THE~JR\1 /:;-::
CTl"~D T; TT·c';
-J \nu LLl. \ \

l\~ ITU ..
'v·....·" \ \-
CiJRP:

MINS: / EULER EQUATIONS OF MOTION; EXTRAPOLATION/MATRICES (MATHEMATICS)
/·'.0.("·,
rH..H\,-

AES~

l",: 1 +- ;~..~. =-'
\.,,'·..A'.. \;"'·.Ji

Nem conventent stabtlttv criterta are provided lu lnlS pape~ for a large
class of finite dtfference approximations to tntt1al-boundafv value
problerns ass(ic;i.3ted V-il tti tt1E: t1\-,'peri){)1 ic; S~lstera tl s~.1b t = aJJ 8110 }( + Btl + f
in the quarter plane x or = 0, l or = O. Ustng the new criteria,
stabt11 t~/ is east l)-~ E:EL.;til t8t-\ed f(ir r\!Jhl~r;:}t.l:; c:oratjtr\att()tl:3 of ii.Jell l(r-i()!)-lrl
baste scnemes and boundary conditions; thus generaltztng many special

.~---~-- -------_._--.





CONVENIENTSTABILITYCEITEE_FORDIFFERENCEAPPEOXIMATIONS
OFHYPERBOLICINITIAL-BOUNDAHYVALUEPEOBLEMS

Moshe Goldberg* Kitan Tadmor**

Mathematics Department Institute for Computer Applications
Technion - Israel Institute in Science and Engineering

of Technology NASA Langley Research Center
Haifa 32000, Israel Hampton, Virgina 23665

and and

Institute for the Interdisciplinary Department of Applied Mathematics
Applications of Algebra School of Mathematical Sciences
and Combinatorics Tel Aviv University

University of California Ramat-Aviv 69978, Israel
Santa Barbara, California 93106

ABSTRACT

New convenient stability criteria are provided in this paper for a
large class of finite difference approximations to initial-boundary
value problems associated with the hyperbolic system
u_ =Au_ +Bu+f in the quarter plane x_>0, t_0. Using the new
criteria, stability is easily established for numerous combinations of
well known basic schemes and boundary conditions, thus generaliz-
ing many special cases studied in recent literature.
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O. Introduction.

In this paper we extend the results of 13] to obtain convenient, more versa-

tile, sufficient stability criteria for a wide class of difference approximations for

initial-boundary value problems associated with the hyperbolic system

u_ = Au¢ + Bu + f in the quarter plane z _-O, t _- O. Our difference approxima-

tion consists of a general difference scheme - explicit or implicit; dissipative or

not, two-level or multi-level- and boundary conditions of the type discussed in

[3].

We restrictattentiontothe casewhere theoutflowpartofour boundary

conditionsistranslatory;i.e.,determinedatallboundarypointsby thesame

coefficients.Such boundaryconditionsarecommonly usedinpractice;and in

particular,when theboundaryconsistsofa singlepoint,theboundarycondi-

tionsaretranslatorybydefinition.

Throughoutthepaperwe assume thatthe basicscheme isstableforthe

pureCauchyproblem,and thattheassumptionsthatguaranteethevalidityof

thestabilitytheoryofGustafsson,Kreissand Sundstr6m[5]holdinour ease.

Withthisinmind,we raisethequestionofstabilityfortheentireapproximation

inthesenseofDefinition3.8in[5].

We beginourstabilityanalysisinSection1 byrecallingTheorem2.1of[8],

whichimpliesthattheentireapproximationisstableifand onlyifthescalar

outflowcomponentsofitsprincipalpartare stable.Thus,our globalstability

questionisreducedtothatofa scalar,homogeneous,outflowproblemwhichis

themain subjectofthispaper.

Our stabilitycriteriaforthereducedproblem--statedinSection2and pro-

ven inSection3 - dependbothon thebasicscheme and theboundarycondi-

tions,butverylittleon theintricateinteractionbetweenthetwo.Moreover,we

show inRemark 8.ithatour oldresultsin[3]easilyfollowfrom thepresent
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ones. Thus, our new criteria provide in many cases a convenient alternative to

the well known Gustafsson-Kreiss-Sundstrbm criterion in [5].

In the second part of Section 2 we use the new stability criteria to reestab-

lish all the main examples in our previous paper [3]. We show, for instance, that

if the basic scheme is arbitrary (dissipative or not) and the boundary conditions

are generated by either the explicit or implicit right-sided Euler schemes, then

overall stability is assured. For dissipative basic schemes we prove stability if

the boundary conditions are determined by either oblique extrapolation, by the

Box-Scheme, or by the right-sided weighted Euler scheme. These and other

examples incorporate most of the cases discussed in recent literature [1]-

[3],[5],[6],[8]-[ 10],[ 12],[ 13],[15],[ 16].

Section 2 contains some new examples as well. Among these we find that if

the basic scheme is arbitrary and two-level, then horizontal extrapolation at the

boundary maintains overall stability. Other stable cases occur when the basic

scheme is given by either the backward (implicit) Euler scheme or by the

Crank-Nicolson scheme and the boundary conditions are determined by oblique

extrapolation. Such examples, where neither the basic scheme nor the boun-

dary conditions are necessarily dissipative, could not have been handled by our

previous results in [3].

As in [3], we point out that there is no difficulty to extend our stability cri-

teria to problems with two boundaries. This is so since if the corresponding left

and right quarter-plane problems are stable, then by Theorem 5.4 of [5], the ori-

ginal problem is stable as well.
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1. The Difference Approximation and the Reduced Problem.

Consider the first order hyperbolic system of partial differential equations

Ou(x, t)/Ot = AOu(x, t)/Oz + Bu(x, t) + f(z, t), x _ O,t >_O, (1.1a)

where u(x,t)= (u(')(x,t).....u(n)(x,t))'istheunknownvector(primedenot-

ingthetranspose),f(z,t)= (f(*)(x,t).....f(n)(x,t))'isa givenvector,andA

and/_arefixednxn matricessuchthatA isHermitianand nonsingular.Without

restrictionwe may assumethatA isdiagonaloftheform

[Az 0] Az AHA = AH, <0, >0, (1.2)

whereA!andAIIareofordersIxland (n - l)x (n - l),respectively.

The solutionof(i.i)isdetermineduniquelyifwe prescribeinitialvalues

u(x,0)= u°(x),x - 0, (l.lb)

andboundaryconditions

u'(0,t)=SuH(O,t)+g(t),t > 0, (1.1c)

whereS isafixedIx(n-l) matrix,g(t)isagivenl-vector,and

u'= (_c,)....._co),,u"=(_c_+,)....._c.)), (I._)

isa partitionofu intoitsinflowand outflowcomponents,correspondingtothe

partitionofA in(1.2).

In order to solvethe initial-boundaryvalueproblem (1.1)by a finite

differenceapproximationwe introduce,as usual,a mesh sizeAx > 0,At> 0,

suchthatX = At/An:= constant;and usingthenotationvv(t)= v(vhx,t),we

approximate (1.1a) by a general, consistent,two-sided, solvable,multi-level

basicschemeoftheform
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8

Q_,vdt + at) = _. Q_v_(t- aat) + atbdt)
ff=O

(1.4a1
O_ = _. Ai.Ei, Evv=v_+,, _=-1 ..... s, v=r,r + 1.....

$=--r

Here,thenxn matricesAjaarepolynomialsinA andMB, andthen-vectors

l_(t)dependsmoothlyonf(z,t)anditsderivatives.

The equationsin(l.4a)have a uniquesolutionifwe provideinitialvalues

vv(aAt) = v°(¢At), €;= 0..... s, v = O, 1, 2..... (1.4b)

where in addition we must specify, at each time step t =/_At,/_ = s, s + 1.....

boundary values vv(t + At), v = 0..... r - 1. As in [8], these boundary values

will be determined by two sets of boundary eonditions, the first of which is

obtained by taking the last n - l components of general boundary conditions of

theform

T-,vdt + At) = _. T_v_(t - c;At) + atd_(t),
ff=O

T== P. Cj-=EJ, a=-I ..... q, v=O ..... r-l,
j=O

where the matrices Cj-#are polynomials in A and AtB, the C1(_1) are nonsingular,

and the n-vectors d_(t) are functions of f(z, t) and its derivatives.

Ifwe put

q°=tq:{'q:{"J'

inaccordancewiththepartitionofA and u in(1.2),(1.3),thenthissetofcondi-

tionstakestheexplicitform



-5-

Tlla = m _l.Ial_jZv_a_ , a=I,H, v=O ..... r-l.
j=O

We call such boundary conditions translatory since they are determined at all

boundary points by the same coefficients.

For the second set of boundary conditions we use the analytic condition

v0_(t + At) : SvXJ(t + At) + g(t + At), (lAd)

together with r - 1 additional conditions (not necessarily translatory) of the

form

v_(t + At) = _. [ 191J v](t + At) + D]J' v]Z(t + At)] + hte_(t),
i=1

(1.4e)

v=l ..... r-l,

where the matrices /)]/ and D]II -of orders l×l and lx(n -l) respectively-

are polynomials in the blocks Aa and AtB a_, a, fl = I, H, of the matching parti-

tions

A - AII , AtB = ht_rii BIIIIj,

so that the D]_ vanish whenever B does; and the l-vectors e_(t) are functions of

t(2:, t), g(t), and their derivatives.

It has been shown in [3] that equations (1.4c, d, e) can be solved uniquely

for the required boundary values vv(t + At), v = 0..... r - 1, in terms of neigh-

boring values of v, at least for sufftciently small At; and that boundary condi-

tions of the form (1.4e) can be constructed to any degree of accuracy. A con-

crete example of second order accurate boundary conditions of the form (1.4e),
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forthe specialcaseB = f = 0,was givenin[2].

The differenceapproximationiscompletelydefinednow by (1.4);so assum-

ing thatthe basicscheme isstableforthe pure Cauchy problem (-0o< u < =),

we may ask whether the entireapproximationisstable.More precisely,we

make from now on the same assumptionsabout approximation(1.4)asin [5],so

that the stabilitytheory of Gustafsson,Kreissand Sundstr6m holds,and raise

the above stabilityquestioninthe senseofDefinition3.3of[5].

As in [3],the firststepwillbe to reduce our stabilityquestionto thatofa

scalar,outflowapproximationwith homogeneous translatoryboundary condi-

tions.Thisreductionisobtainedby applying(1.4a,b, c) to the scalaroutflow

problem

_ = _ux, a = constant> O, x ->O,t >-0 (1.5)

(whichrequiresno analyticboundary conditions).Inotherwords,we set

A I =B =[=0, AII- _ -- constant >0;

so that (1.1a) yields (1.5); and (1.4a, b, c) reduces to a self-contained, scalar,

homogeneous approximationwhich consistsofthebasicscheme

S

Q__v_(t+ _t) = :c Q.v_(t- _t), _ =T,r + 1.....
a=O

(1.6a)

Q.= _ -.j°EJ, _=-1 ..... _;

with initial values

v.((TAt) = vvo(aAt), _ = 0..... s, v = O, 1, 2 .... ; (1.6b)

and translatory outflow boundary conditions
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T__v_(t+At)= _ T_v.(t-aAt),v=O .....r-i,
o=O

(1.6c)

Ta = ?. cj_EJ, c0(-i)# O, a = -I.....q,
j=0

where the scalarsai#and cjaare polynomialsin a, and the basicscheme (l.6a)

isconsistentwith(1.5).

We are now ready to use our main resultinSection2 of[3],which we refor-

mulate as follows:

THEOREM 1.1 (Theorem 2.1, [3]). Approximation (1.4) is stable if and only

(1.6)stable.

In other words, we have that approximation (1.4) is stable _ and only if the

scalar outflow components of its p_ncipa! part are stable.

The above reduction theorem implies that from now on we may restrict our

stability study to the scalar outflow approximation (1.6). Hence, we conclude

this section by stating the following five assumptions which will hold throughout

the paper, and guarantee the validity of the Gustafsson-Kreiss-Sundstr5m theory

[5] for approximation (1.6).

Assumption 1.1 (Assumption 3.1, [5]; Assumption 2.1, [8]). Approximation

(1.6) is boundedly solvable; i.e., there exists a constant K > 0 such that for each

y E 12(Ax) there is a unique solution w € 12(Am) to the equations

Q-lWv=yv, u:r,r + 1.....

T-lwv = Yv , u= 0..... r- 1,

with ]lwll-< Klly H ; where Q-1 and T-1 are defined in (1.6a, c), and 12(Ax ) is the

space of all grid functions w = lw_lT=o with ]lwll2 - Am ?.T=0]w_l 2 < oo.

Assumption 1.2 (Assumption 5.1, [5]; Assumption 2.2, [8]). The basic

scheme is stable for the pure Cauchy problem -_ < v < _. That is, if we define
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the basic characteristic function by

P(z,_) = _, %.(z)_J (1.7)
j=-r

where

8

_j(_)--_j{_,)- r.z-_-1.j_,i= -_.....p, (1.8)
u=O

then we have:

(i) The von Neumann condition; i.e., Lhe solutions z (_) of the basic charac-

teristic equation

P(z, _) = 0 (1.9)

satisfy

Iz(_)l <- 1 for al! _wi2h ]_] = 1.

(ii) If I_1 = 1, and ifz(_)is arootof (1.9) with Iz(_)l = 1, thenz(_) isa

simple root of (1.9).

Assumption 1.8 (see Assumption 5.4 together with Definition 10.1, [5]; com-

pare Osher [10]). The basic scheme (1.6a) belongs to the family of schemes for

which the Gustafsson-Kreiss-SundstrSm theory in [5] holds. This family contains

in particular the following two classes:

(i) Dissipative basic schemes; i.e., schemes for which the roots z (_) of

(1.9) satisfy

fz(_)l<l Ior alZ_hl_l = l. _ _1. (1.10)

(ii) Unitary basic schemes (also known as strictly nondissipative

schemes) where the roots of (1.9) satisfy

I_(_)I=I lotallIx[=i. (1.11)

Obviously,ifthe basicscheme belongsto any ofthesetwo classes,then it

satisfiesthevon Neumann conditioninAssumption 1.2(i).
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Assumption1.4(Assumption5.5,[5];Assumption2.4,[3]).

a_rCZ 0 for Zlzl>_I,

Assumption 1.5.We assume that

17%

r.IcjCz)l_0/or_llzl>-1
i=0

where,inanalogywith(1.8),

=J(')-=Jc-,)- _._-°-'_Jo,J=o.....,_. (1.12)
a=O

Assumption1.5isnecessaryforstability,asshowninRemark3.4below.

Thislastassumption--which shouldhave been includedin[3]as well--iseasily

verifiedforallpracticalboundary conditions.

2.StatementofResultsandExamples.

Inordertostateourmainstabilitycriteriawe define,incompleteanalogy

with (1.7), the boundary characteristic function

rtL

R(z, _)= x cj(z)_J
j=0

where the cj (z) are given in (1.12). Defining the function

O(z,,:)- IF(z, _)1+ IR(z, _)1

we shall prove in Section 3:

THEOREM 2.1 (lst Main Theorem). Approximation (1.6) _s stable if

n(z,_)_ o for ,,.u Izl ->1,o< I_1-<1, (z,_)_ (1,1). (2.1)

Next, let us divide the (z, m) domain in (2.1) into three disjoint parts and

restate Theorem 2.1 as follows:
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THEOREM 2.1'. (1st Main Theorem revisited) Aptrrozimation (1.6) is stable if

n(z, _) _ 0 Ior .l! [zI->1, I_1=1,_ _ 1; (2.2a)

n(z,_=1)_ 0 for .zl Izl ->1,z _ z: (2.25)

n(_,_)_ o for _z Izl -_i, o < I_I < i. (2.20)

TheadvantageofthissettingisexplainedbyTheorem2.2inwhichwe pro-

videusefulsufficientconditionsforeach ofthe threeinequalitiesin(2.2)tohold.

Beforestatingthistheorem,however,we need thefollowingdefinitions:

!)efinition2.1.Theboundaryconditions(1.6c)aresaidtobedissipativeff

therootsz(_)oftheboundary characteristicequation

R(_,_)= o (2.3)

satisfy

Definition 2.2. We say that the boundary conditions (1.6c) satisfy the von

Neumann condition if the roots z (A:) of (2.3) satisfy

Definition 2.8. The boundary conditions (I.60) are called boundeclly solv-

able ff there exists a constant K > 0 so that for each yc 12(Ax) there is a unique

solution _v€ 12(hx) to

T-i _v. = Yv, w = 0, 1, 2 ..... (2.4)

_th I1_11-<KllYlI.

Evidently, these definitions are analogous to those made for the basic

scheme in Assumptions 1.3(0, 1.2(0 and 1.1, respectively; and again, dissipa-

tivity implies the von Neumann condition.
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Having these definitions we shall prove:

THEOREM 2.2 (2nd Main Theorem).

(i) If either the basic scheme or the boundary condi2ions are dissipative,

then (2.2a) holds.

(ii) Inequality (2.2b) is satisfied if any one ojr the follo_ing holds:

(a) The basic scheme is two-level.

(b) The basic scheme is three-level and

_](z = -1, _ = i) _ 0. (2.5)

(c) The boundary conditions are t_vo-level and at least of zero order of

accuracy.

(d) The boundary conditions are three-leve!, at least zero order accu-

rate, and (2.5) is satisfied.

(iii) If the boundary condi2ions satisfy the yon Neumann condi2ion and are

boundedly solvable, then (2.2c) holds.

The proofs of Theorems 2.1 and 2.2 will be given in Section 3.

We turn now to examples. Before doing so, however, let us recall one more

result which provides a useful sufficient condition for the boundary conditions to

be boundedly solvable.

LEMMA2.1 (Lemma 3.2, [3]).

(i) Theboundary cond_ions (1.6e)are bounde_y solvableif and onZyil

T_l(/C) - _, cj(_l)/J i_ 0 for all 0 < I_l-<1. (2._)
t=o

(ii) In particular, explici2 boundary conditions are alzvays boundedly solv-

able.

This result is associated with important observations on solvability by Osher

[11].
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We remark that part (i) of Lemma 8.2 in [B] merely states that if (2.6) holds,

then the boundary conditions are boundedly solvable. Following the proof of

Lemma 3.2 in [8], however, one realizes without difficulty that in fact, (2.6) is

both sufficient and necessary for the bounded solvability of the boundary condi-

tions (1.6c), as stated above.

Example 2.1 ([3, Example 8.5]; compare the special cases in [5, Theorems

6. i, 6.2 and 6.3], [iS, (3.2)], and [2, Example 2]). Let the basic scheme (1.6a) be

arbitrary (dissipative or not), and let the boundary conditions (1.6c) be gen-

erated by the right-sided, first order accurate, explicit Euler scheme:

_(t +At) =v_(t)+Xa[_+,(t)-vdt)], O<Xa <1, w=O ..... f -- I.

These two-level boundary conditions are known to be dissipative (see Example

3.5, [3]), hence Theorem 2.2(i)(iic) implies (2.2a, b). Since the boundary condi-

tions are explicit, then by Lemma 2.1 they are solvable; and since they are dissi-

pative, the yon Neumann condition is satisfied. Consequently, Theorem 2.2(iii)

yields (2.Be), and stability is established by Theorem 2. t'.

It is a trivial matter to verify that for this, as well as for all the following

examples, Assumption 1.5 is fulfilled.

Example 2.2 ([3, Example 3.6]; compare the special cases [18, (3.3)], and [2,

Example 3]). Take an arbitrary basic scheme, and determine the boundary con-

dition by the right-sided, first order accurate, implicit Euler scheme:

vdt + At)- Xa[vv+,(t+at) - vv(t+at)] =vdt), X->0, v =0..... r - 1.

As in the previous example, the boundary conditions are two-level and dissipa-

tive (e.g. Example 3.6, [3]), so Theorem 2.2(i)(fie) gives (2.2a, b). The dissipa-

tivity of the boundary conditions also implies the von Neumann condition. And it

is trivially verified (Example 8.6 [3] again) that T-l(x) _ 0 for ]_I -< z (where

T_l(tc) is defined in (2,6)), so that Lemma 2.1(0 implies solvability. Thus, (2.2c)
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follows from Theorem 2.2(iii); and Theorem 2.1' assures stability.

Example 2.3 (Compare the special cases in [8, Theorem 6], [10, Section

XXIII], [5, Theorems 6.1 and 8.3],[1],[8,Theorem 2.1], and [3, Example 3.1]).

Take an arbitrary two-level basic scheme, and define the boundary conditions by

horizontal extrapolation of order _ - 1:

_v(t+at)= _. (_)(-:);+l_v+j(t+at), _=0.....r - :. (2.7)j=l

Wehave

R(_,_)=R(_)=:- §(_)(-:)J+'_J=(:-_)",
j=l J

so R(_) _ 0 for _ _ 1, which directly gives (2.2a, c). Moreover, since the basic

scheme is two-level, Theorem 2.2(iia) implies (2.2b); and Theorem 2.1' again

proves stability.

It is interesting to note that the above result may fail, both for dissipative

and nondissipative basic schemes, if the basic scheme is of more than two time-

levels. A nondissipative eounterexample was given by Gustafsson et al. in

Theorem 6.2 of [5] (see also [8]) who showed that the unitary, a-level Leap-Frog

scheme

_v(t+at) =_v(t- at) +x=[v_+,(t) - __,(t)] v = :, 2,a..... (2.8)

provides an unstable approximation in combination with the linear boundary

extrapolation ((2.7) with _; = 2 ):

vo(t + at) = 2v:(t + At) -v_(t + at).

We proved instability ([3], (8.8)) for the case where the basic scheme is the 3-

level, 5-point, dissipative version of (2.8):
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_,,(t+_t)=[I-I-_-(E-i)2(I-E-1)2]vv(t-_t)+Xa(E-E-Ovv(t),

0<_<i, 0<ka_<l-_. _=2,3 .....

and theboundary conditionsaregivenby (2.7)with_,: 0,i.

Example B.4 ([8, Example 8.2]; compare the special cases in [2, Example 1]

and [6, Theorem 2.2]). Let the basic scheme be dissipative, and determine the

boundary conditions by oblique extrapolation of order _0- 1:

vv(t+,,t)= )(-1)'.'_.+5[t - (j - OAt], _ = o.....r - 1. (2.9)

Since the basic scheme is dissipative, then Theorem 2.2(0 implies (2.2a). Furth-

ermore, the boundary characteristic function for (2.9) is

R(z,_)=1- _.(?)(-1)J+lz-J_J= (1- z-'R)°,
i=1 J

hence

_)(z,_)>_lR(z,_)ls0, z_. (2.10)

This yields (2.2b, c); and Theorem 2.1' implies stability.

Example 2.5 ([3, Example 3.3]; compare the special cases [5, Theorem 6.1],

[12, (3.4)], and [2, Example 4]). Take any dissipative basic scheme, and let the

boundary conditions be generated by the second order accurate Box-Scheme:

_(t +At)+_l(t + At)- xa[vv_,(t+At)- vv(t + At)]

=_(t) +_+,(t) +_,,,[_,(t) -vv(t)]. _,= o.....,- - 1.

As in the previous example, dissipativity implies (2.2a); and Theorem 2.2(iic)

implies (2.2b). Next, we recall Example 3.3 of [3] where it was shown without

difficulty that the roots z(_) of the boundary characteristic function satisfy

[z(_)] = 1 for I_:l = 1, and that T-I(_:) _ 0 for I_:l -< 1. Thus, the boundary con-
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ditions satisfy the von Neumann condition; and Lemma 2.1(i) implies solvability.

With this, Theorem 2.2(iii) gives (2.2c), and by Theorem 2.1' stability follows.

Exsmple 2.6 ([8, Example 8.4]; compare the special case in [i8, (6.2b)]).

Take any dissipative basic scheme, and define the boundary conditions by the

right-sided, S-level, weighted Euler scheme:

,,_(t+ At)=v_(t- Z_t)+X_[2_,.__(t)- _(t +At)- _,(t - Z_t)].
(_.11)

0<Ao_ 1, v=O ..... r--1.

As in the two previous examples, Theorem 2.2(i) implies (2.2a). Further, we have

R(_.,c)= 1- _-2_ X,_(2,_-__ 1- _-_);

so

[_(z= -1. ,_= 1)>-I_'(z = -1. ,_= 1)1=4Xs>0,

and Theorem 2.2(lid) yields (2.2b). Next, as in Example 3.4 of [3], we find that

the roots of R(z, _.) satisfy

(,_: e_9 =e__As+b(0 b(0 - "V(Xs)_+e-_[1 -(X_)2]: (2.12)As+ 1 '

andsince0 < As <-I,thenIb(_)I-<1forI_I-<rr;therefore

Iz( 'c= _91 "< Xs + Ib(_)l < 1, I_1 <_,- As+l -

sotheyonNeumann conditionholds.By Lem_ma_.l(ii)we alsohavesolvability.

HenceTheorem2.2(1ii)yields(2.2c);andTheorem2.1'assuresstability.

Example2.7.Letuskeeptheboundaryconditionsin(2.11),and extendthe

resultofExample2.6tonondissipativebasicschemeswhosecharacteristicfunc-

tionssatisfy

P(_ = -1, ,_= -1) _ o. (2.1s)

Evidently,we obtain(2.2b,c)preciselyasforthepreviousexample.Inorderto
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prove (2.2a) we set p = (ha) _ and observe that b(_) in (2.12) satisfies for

o< I_1<_,

Ib(_)l==p=+(1-p)=+2p(1-p) cos25<p=+(1-p)=+2p(1-p) = 1

Thus, by (2.12),

I=(_=e'91-<_ + Ib(01 <1, o< I_1<_;Aa+l

or in other words

R(z,_)_0, Izl->l, I_1=1, _# _1 (2.14)

By(2.12)again,

z(_= -i)= Xa_I- _-$-]-;

hence one rootisz (_= -I) = -i and the othersatisfies]z(_= -i)[< i;so

R(z,_ = -1) # 0, I=I ->1, = # -1 (215)

Collecting (2.13) - (2.15) we find therefore that

O(=._)=lP(z,_)l+lR(=,_)l_O, I=1->1, I_1=1, _1.

Thus, (2.2a) is established, and Theorem 2.1' implies stability.

We remark that certain well known nondissipative basic schemes satisfy

(2.18). This includes, for example, the unitary Crank-Nicolson scheme

vdt +at)- x4-_v_+_(t+ At)- v__,(t + at)]

(a._6)

_v(t)+ x4-_..,(t)- _-l(t)], v= 1,2,3....:

andthealmost-dissipative*backwardEulerscheme

'We call a basic scheme almost dissi;a2ive if (1.10) holds, except for a finite number of
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vv-l(t + At)] vv(t)o

(2.1v)
V=T,T + I.....

which isincludedinthe familyofschemes forwhichthe Gustafsson-Kreiss-

Sundstr6mtheoryholds.

Ifwe consider,however,thealmost-dissipativeLax-Friedrichsscheme

v_(t +at) = 1 ____-[__,(t)+_,,_,(t)]+ <, b,,.,(t) -v__,(t)],

0<_a <i, u = I,2,3,'"

(whichisalsoadmittedbytheGustafsson-Kreiss-SundstrSmtheory;e.g.Osher

[i0]),we findthatP(z =-i, _ =-I) = 0,i.e.,(2.18)fails.Indeed,itcan be

shownthatthisschemetogetherwiththeboundaryconditionsin(2.1i)provides

anunstableapproximation.

Ezample 2.8([15,Section8];compare [16,Example6.2]).Take any two-

levelbasicscheme,and determinetheboundaryconditionsby theright-sided,

two-stepEulerscheme:

v,,(t+at)=,,_(t- at)+ 2x-.b__,(t- at) -,,,,(t - z_t)],

0<Aa < I/2, v=0 .....r-l.

Then,

R(z, _) = 1 -z-_[1 + 2Xa(_- i)],

sotherootsz(a;)ofR(z ,_)satisfy

Iz(_=e_914=Z+=X:(2Xa-O(1-cos_)<Z, 0<1€1<-_.

That is, our explicit boundary conditions are dissipative and satisfy the von Neu-

mann condition. Hence, by Lemma 2.1(ii) and Theorem 2.2 we obtain (2.2), and
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Theorem 2.1' assures stability.

Example 2.9 (in [5, Theorem 6.3] and [6, Theorem 2.2]). Consider the uni-

tary, unconditionally stable Crank-Nicolson scheme in (2.16), with oblique extra-

polation at the boundary:

vo(t + at) : ._, (_)(-1)3.lv,f[t -- (i -- 1)At] (2.18)
J=l J

as in (2.9). Since we have (2.10), then in order to comply with the assumptions

of Theorem 2.1 it remains to show that

_(z,_)-Ip(z,_)l+lR(z,_)1_o, z=_, I_l=i, _1:

so it suffices to prove that

--1- -.-'[1 + 0,
(2.19)

z =_=_ _, 0<151-<_.

Indeed,

P(_ = e_, .:= e_) = 1 - cos_+ (cos2_- cos_- 1)+ _:sin_(1- -g--cos_),

so observing that the real and imaginary parts do not var_sh simultaneously, we

immediately obtain (2.19), and stability follows.

Example 2.10 (in [6, Theorem 2.2]). Take the almost-dissipative, uncondi-

tionally stable backward Euler scheme in (2.17) with the oblique boundary extra-

polation in (2.18). As in the pre_ous example, in order to prove stability _a

Theorem 2.1 it is sufficient to show that

--_-(_:- _-') - _-' _ 0, . - _ =_, 0< I_l-_rr. (2.20)P(z, 1 I

Since

P(z =e _,I¢=e _) = 1-ka cos_-cos_+i sin_,
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then,comparing the realand imaginarypartsagain,we get (2.g0),and stability

isestablished.

At the end of Section8 we make severalremarks concerningthese exam-

ples.

3. Proofs and Remarks.

In order to prove Theorems 2.1 and 2.2 we begin by considering the basic

characteristic function P(z, m) in (1.7). By Assumption 1.4, for each z with

Iz I -_ 1, P(z, _) has r +p roots _(z). These roots, which play a major role in

the stability analysis of approximation (1.6), have the following separation pro-

perty:

LEMMA3.1 ([3], Lemma 4.3; compare Lemmas 5.1 and 5.2, [5]). For Izl > 1,

the basic characteristic function P(z, _) has precisely r roots _c(z) with

0 < l_(z)J< i,proots_h l_(z)l> i,-.no[noroots_h l_(z)l= 1.

According to this lemma, the roots _(z) of P(z, _) split for [z ] > 1 into two

groups: r inner roots satisfying ]_(z)l < 1, and p outer roots with [_(z)[ > 1.

Using Assumption 1.4 and a continuity argument, we see that these groups of

inner and outer roots remain well defined for Iz I -_ 1 as well, where milder ine-

qualities, In(z)] _ 1 and [m(z)l _ 1 hold, respectively. Since by Assumption 1.4,

_;= 0 is not a root of P(z, _) for Iz [ -_ 1, we obtain

LEMMA 3.2 ([3], Lemma 4.3). For Izl _ 1, the r + p roots _(z) of the basic

characteristic function P(z , _) split into r inner roots ugth 0 < _(z) I <- i,and p

oterroots 1.

We can now quote our main preliminary stability criterion in [3]:

THEOREM 3.1 ([3], Theorem 4.Z). Approximation (1.6) is stable if and only

if for every z with ]z [ _ 1 and all corresponding inner roots m(z) , the boundary
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charaeterSvtic function R (z , _) satisfies

R(z, _(z))# 0. (3.1)

Ifg(z)isan innerrootforz, [z[>_i,then by definition,

P(z, =0.

Thus,combiningthisfactwith(3.I),we immediatelyobtain,

COROLLARY 3.1. Atrproxirnation (1.6) is stable if and only if for every z

"_h Iz I >- 1 ,,rid all correspondinginnerroots_(z),

gt(z,_,(z)) -- IP(z, _(z))] + IR(z, _(z)) I _ 0. (3.2)

We shall need yet another result which describes the behavior of the inner

roots for z = 1:

LEMMA 3.3 ([3], Lemma 5.1). If z = 1, then _= 1 is not an inner root of

P(z, _,).

This brings us to

Proof of Theorem 2.1. Take any z, [z[ >_1, and let g(z) be a corresponding

inner root. If z _ 1, then by Lemma 3.2, we have 0< ] _:(z)] _ 1; so the

hypothesis in (2.1) implies (3.2). If on the other hand, z = 1, then by Lemma 3.3,

x(z)= 1 is excluded as an inner root; so by Lemma 3.2 we have

0 < I g(z)[ _ 1, g(z) # 1, and again (2.1) yields (3.2). By Corollary 3.1 therefore,

approximation 1.6 is stable, and the proof is complete. []

Proof ofTheorem 2.2. (i) If either the basic scheme or the boundary condi-

tions are dissipative, then by Assumption 1.3(i) and Definition 2.1, either

P(z,_,)#O, I=l>-i, !_1=l, _i,
or

I=l- i, I l=l,
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and(2.2a)follows.

(iia) Since the boundary scheme is consistent with (1.5), it is at least first

order accurate; so, in particular, it satisfies the ordinary zero order accuracy

condition

i=-r o=0 i=-r

which we equivalentlywrite as

P(z = 1, _ = 1) = O. (3.3)

By assumption, the basic scheme is two-level, so the function P(z, _ = 1) is a

_rst degree polynomial in z -1 which, by (3.3), has a unique root z -1 = 1. Thus,

P(=,_-O_0, I=1_>1,=_1,

and we obtain (2.2b).

(iib)IntheB-levelcasewe stillhave(3.3),butnow P(z,/¢= I)isasecond

degreepolynomialinz-zwithrealcoefficients.By (3.3),z-z= I isoneofthe

roots,sotheotherrootmustberealaswell;thus

P(=,_= 1)# O, I=1= 1, z # _1. (_.4)

In addition, since the basic scheme satisfies the yon Neumann condition

(Assumption1.2(i)),then

P(_,_= 1)_o, !=I > 1. (3.5)

By(8.4)and(8.5)therefore,

_(z,_=1)#O, !=1->1, z # _1, (3.8)

which together with the assumption in (2.5) gives us (2.2b).

The proof of (iic) is identical to that of (iia), except that P(z, _) is replaced

by R(z, _,), where by the zero order accuracy of the boundary conditions, we

have R(z = 1, _ = 1) = 0 instead of (3.3).
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For the proofof (lid)we stillhave (8.5);and sincethe boundary conditions

arethree-levelwe may replace(3.4)by

R(z,,_=l) # 0, I'-I = 1,z # +1. (S.7)

By (3.5)and (3.7)we obtain(3.6)again,which togetherwith(2.5)yields(lid).

(iii)Sincethefunctionzq+'R(z,_)isa polynomialinz and _,itcan be writ-

ten as

zq+'R(z,g)= (z - z,)...(z- za)Re(z,_) (3.8)

where Re(z,g) is a polynomialin g whose leadingcoefficientis i and whose

othercoefficientsare rationalfunctionsofz. By Assumption 1.6,the boundary

characteristicfunction

tl%

i=0

isnot the zero polynomialin g forany (0xed)z with ]zI_>i. Thus,the zj in

(8.8)mustsatisfy

I_-I<1, 1=1..... d.

Itfollowsthatthe leadingcoefficientofzq+*R(z,_)in(3.8)isuniformlybounded

awayfromzeroforallIz[_>I.Hence,theroots_ = _(z)ofRo(z,_),andthere-

forethoseofR(z, m),are continuousfunctionsofz forIz I>-i.

Sincethe boundary conditionsare assumed to be boundedly solvable,then

by Lemma Z.1(i)we have

T_,(,_)= _. _i(_,)_J,_o. o< I,_1<-1. (3.9a)
j=0

Moreover,by (1.6c)

r_,(0)= co(-,)# O, (8.9b)

So,combining(S.9a,b)we obtain
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T_,(_)_ 0, I_1< X. (3.10)

Sinceby hypothesis,the boundary conditionsalsosatisfythe von Neunaann

condition,then for ]zI> i,thefunctionR(z,_)doesnotvanishon the unitcir-

cle I_l= i. Hence, by the continuityestablishedabove,the number of roots

_= _:(z)of R(z, _;)satisfying[m(z)[- i, isindependent of z, ]z] > i, and it

thusequalsthenumber ofroots_,]_[<-I,ofthefunction

R(z-+=, _) = T-l(_).

By (3.10) therefore, R(z, _) has no roots Ix] - 1 for ]z > 1, so we have

R(z, _), 0, I_1-<1, lz I> 1. (3.11)

By (3.11), the roots _(z) of R(z, _) satisfy I_(z)l > 1 if Iz I > 1. So for ]z] >_ 1,

these continuous roots satisfy ]_(z) I -> 1, i.e.,

U(z,_,)#O, I,_1<1, Izl_+,

and (2.2c) follows. []

In concluding the paper we make the following remarks:

Remark 3.1. Our main results in [3] follow immediately from the present

ones. Indeed, consider Theorem 3.3 of [3] where we assume that the basic

scheme is dissipative, that the boundary conditions are boundedly solvable and

satisfy the yon Neumann condition, and that

R(_:,_;=I)_0, lzl=l, z #i. (3.12)

With these assumptions, Theorem 2.2(i)(fii) gives (2.2a, c). Moreover, by

Assumption 1.2(0 we have (3.5), which together with (3.12) yields (2.2b). Thus,

Theorem 2.1' implies stability, and Theorem 3.3 of [3] follows.

]n Theorem 3.4 of [3] it is assumed that the basic scheme is arbitrary, that

the boundary conditions are boundedly solvable and dissipative, and that (3.12)

holds. Again, Theorem 2.2(i)(iii) yields (2.2a, c), and (3.12) together with (3.5)
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gives (2.2b); so Theorem 2. i' implies Theorem 3.4 of [3].

Theorems 3.1 and 3.g in [3] follow from Theorem 2.1' and 2.2 with similar

ease.

Rera.urk 3.2. Examples 2.1-2.6 contain all the main examples in [3]. Exam-

ple 2.3 (with a nondissipative basic scheme), and Examples 2.7-2.10, are new,

however, in the sense that they could not have been handled by our old results

in [3]. For examples 2.3, 2.7, 2.9 and 2.10 this is true since Theorems 3.1-3.4 in

[3] all require that either the basic scheme or the boundary conditions be dissi-

pative. For Example 2.8, where the basic scheme is not necessarily dissipative

but the boundary conditions are, one may hope that Theorem 8.4 of [3] would

help, But R(z = -1, g = I) = 0; so (3.7) in [3] is violated, and Theorem 3.4 of [8]

fails.

Rern.=rk 8.3. Not all interesting cases are covered by our results. For

instance, Gustafsson et al. showed in Theorem 6.1 of [5] that the Leap-Frog

scheme in (2.8) together with the linear oblique boundary extrapolation

_o(t + At) = 2_,(t) -_(t - At),

providesa stableapproximation.We easilyfind,however,that

tl(z = -1, _ = -1) = IP(z =-1, _ = -1)1 + IR(z =-1, _ = -1) = 0,

so (2.1) may not hold. Consequently, Theorem 2.1 fails for this example, sho_ng

thatour criteriaare sufficientbut notnecessaryforstability.

Remurk 3.4.Let us show thatAssumption 1.5isnecessaryforthe stability

ofapproximation(1.6).Indeed,ifAssumption 1.5fails,then atsome z = z0with

Iz01->i,allthe cj(z)in(1.12)vanishsimultaneously.Hence,

R(z =zo, ) = cj(zo) J-=0; (3.13)
j=0

that is, R(z = zo,/¢ ) is the zero polynomial in _. By Lemma 3.2, for z = Zo, the
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basic characteristic function P(z, _) has r inner roots _(z0) with

0 < I_(Zo) l -< 1. For each of these roots (3.13) implies

R(_: _o,_ =_(_o))=0,

and Theorem 3.1 assures instability.

For example, consider any dissipative basic scheme with boundary condi-

tions determined by the two-level, zero order vertical extrapolation:

v_(t+At)=_(t), _= 0..... T - 1. (3.14)

Clearly, these explicit boundary conditions are boundedly solvable (Lemma 2.1),

and they satisfy the yon Neumann condition. Thus the hypotheses of Theorem

2.2 hold, and Theorem 2.1' should have implied stability. As mentioned in Sec-

tion 4 of [14], however, the approximation is unstable. The reason for this insta-

bility is that the boundary conditions in (8.14) fail to satisfy Assumption 1.5,

since

n%

l_s(z)I_=,= 11-z-_i_=,=o.
j=0

Thisexample,though found unstableinthe sense ofDefinition8.Bof [5],is

stableinthe lasensedescribedin[14].

Remark 8.5.Itisknown thatthe accuracyofthe boundary conditionsplays

a decisiverolein determiningthe overallrateofconvergenceof the difference

approximation.In particular,Gustafsson[4]has shown that ifapproximation

(1.6)isstableand thebasicscheme isaccurateoforder6,then an overall6 rate

ofconvergenceisassured,iftheboundary conditionsare of6 - 1 orderofaccu-

racy atleast.

Ifwe use horizontalor obliqueboundary extrapolationas in (2.7)or (2.9),

then obviouslythereisno restrictionon accuracy at the boundary. Ingeneral,

however,the questionofmaximal possibleaccuracyfortheboundary conditions
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can be quite difficult if the boundary conditions are to satisfy certain properties.

For instance, it is not hard to see that the various boundary conditions in the

examples of Section 2 (with the exception of horizontal extrapolation), are all

stable in the sense of the definition in Assumption 1.2, with P(z, _) replaced by

the characteristic boundary function R(z, _). Thus, it seems natural to raise

the question of maximal accuracy for stable boundary conditions of type (1.6c).

This question was answered by Iserles and Strang [7, Theorems 1 and 2] who

treated the two-level case and showed that stable explicit boundary conditions

of type (1.6c) may not be more than second order accurate, while implicit condi-

tions of this type can be constructed to arbitrary order of accuracy.

References

1. M. Goldberg, On a boundary extrapolation theorem by Kreiss, Math. Comp.
3! (1977), 469-477.

2. M. Goldberg and E. Tadmor, Scheme-independent stability criteria, for
difference approximations of hyperbolic initial-boundary value problems. I,
Math. Comp. 32 (1978), 1097-1107.

3. hi. Goldberg and E. Tadmor, Scheme-independent stability criteria for
difference approximations of hyperbolic initial-boundary value problems.
II, Math. Comp. 86 (1981), 603-626.

4. B. Gustafsson, The convergence rate for difference approximations to mixed
initial boundary value problems, Math. Comp. 29 (1975), 396-406.

5. B. Gustafsson, H.-0. Kreiss and A. SundstrSm, Stability theory of difference
approximations for mixed initial-boundary value problems, Math. Comp. 26
(1972), 649-686.

6. B. Gustafsson and J. Oliger, Stable boundary approximations for implicit
time discritizations for gas dynamics, SIAM J. Sci. Star. Cornput. 3 (1982),408-421.

7. A. Iserles and G. Strang, The optimal accuracy of difference schemes,
Trans. Amer. Math. Soc. 277 (1983), 779-803.



-27-

8. H.-0. Kreiss, Difference approximations for hyperbolic difference equations,
in Numerical Solutions of Partial Differential Equations, edited by J. H.
Bramble, Academic Press, New York, 1966, 51-58.

9. H.-O. Kreiss and J. Oliger, Methods for the Approximate Solution of Time
Dependent Problems, GARP Publication Series No. 10, 1973.

I0. S. Osher,Systems of differenceequationswithgeneralhomogeneous boun-
dary conditions,Trans.Amer. Math.Soc. 187 (1969),177-201.

11. S. Osher, Stability of parabolic difference approximations to certain mixed
initial-boundary value problems, Math. Comp. 26 (1972), 13-39.

lB. G. Skbllermo, How the Boundary Conditions Affect the Stability and Accu-
racy of Some Implicit Methods for Hyperbolic Equations, Report No. 62,
1975, Dept. of Computer Science, Uppsala University, Uppsala, Sweden.

13. G. SkSllermo, Error Analysis for the Mixed Initial Boundary Value Problem
for Hyperbolic Equations, Report No. 63, t975, Dept. of Computer Science,
Uppsala University, Uppsala, Sweden.

14. E. Tadmor, The unconditional instability of inflow-dependent boundary con-
ditions in difference approximations to hyperbolic systems, Math. Comp.,
1983, to appear.

15. E. Tadmor, Scheme-Independent Stability Criteria for Difference Approxi-
mations to Hyperbolic Initial-Boundary Value Systems, Ph.D. Thesis,
Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel,
1978.

16. L. N. Trefethen, Wave Prapagation and Stability for Finite Difference
Schemes, Ph.D. Thesis, Report No. STAN-CS-82-905, Computer Science
Department, Stanford University, Stanford, California, 1982.







1, ReportNo. 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.
NASA CR- 172224

4. Title and Subtitle 5. ReportDate

Convenient Stability Criteria for Difference Approximation_ September 1983

of Hyperbolic Initial-Boundary Value Problems 6. PerformingOrganizationCode

7. Author(s) 8. PerformingOrganizationReportNo.

Moshe Goldberg, Eitan Tadmor 83-50

10. Work Unit No.
9. PerformingOrganizationNameand Address
Institute for Computer Applications in Science

and Engineering "11.Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASI-17070

13. Type of Reportand Period Covered

12. SponsoringAgencyNameand Address Contractor report
National Aeronautics and Space Administration

Washington, D.C. 20546 14. SponsoringAgencyCode

15. _pplementary Notes
Additional support: Grant Nos. AFOSR-79-0127 and AFOSR-83-OI50

Langley Technical Monitor: Robert H. Tolson

Final report

16. Abstract
New convenient stability criteria are provided in this paper for a large class of

finite difference approximations to initial-boundary value problems associated with the

hyperbolic system ut.= AUx + Bu + f in the quarter plane x _> O, t >_ 0. Using the new
criteria, stability is easily established for numerous combinations of well known basic

schemes and boundary conditions, thus generalizing many special cases studied in recent
literature.

17. Key Words (Sugg_ted by Author(s)) 18. Distribution Statement
stability
finite difference schemes 64 Numerical Analysis

hyperbolic initial-boundary value problems Unclassified-Unlimited

19. SecurityClassif.(of thisreport} 20, SecurityClassif.(of this page) 21. No. of Pages 22. Price

Unclas sified Unclassified 29 AO 3

For sale by the National Technical Information Service, Springfield, Virginia 22161 NASA-Lang'ley,"1983






