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ABSTRACT

New convenient stability criteria are provided in this paper for a
large class of finite difference approximations to initial-boundary
value problems associated with the hyperbolic system
W = Ay, + Bu +f in the quarter plane z >0, £ > 0. Using the new
criteria, stability is easily established for numerous combinations of
well known basic schemes and boundary conditions, thus generaliz-

ing many special cases studied in recent literature.
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0. Introduction.

In this paper we extend the results of [3] to obtain convenient, more versa-
tile, sufficient stability criteria for a wide class of difference approximations for
initial-boundary value problems associated with the hyperbolic system
w = Au; + Bu + f in the quarter plane z >0, £ = 0. Our difference approxima-
tion consists of a general difference scheme -- explicit or implicit, dissipative or
not, two-level or multi-level -- and boundary conditions of the type discussed in
[3].

We restrict attention to the case where the outflow part of our boundary
conditions is translatory; i.e., determined at all boundary points by the same
coeflicients, Such boundary conditions are commonly used in practice; and in
particular, when the boundary consists of a single point, the boundary condi-

tions are translatory by definition.

Throughout the paper we assume that the basic scheme is stable for the
pure Cauchy problem, and that the assumptions that guarantee the validity of
the stability theory of Gustafsson, Kreiss and Sundstrém [5] hold in our case.
With this in mind, we raise the question of stability for the entire approximation

in the sense of Definition 3.3 in [5].

We begin our stability analysis in Section 1 by recalling Theorem 2.1 of [3],
which implies that the entire approximation is stable if and only if the scalar
outflow components of its principal part are stable. Thus, our global stability
question is reduced to that of a scalar, homogeneous, outflow problem which is
the main subject of this paper.

Our stability criteria for the reduced problem -- stated in Section 2 and pro-
ven in Section 3 -- depend both on the basic scheme and the boundary condi-
tions, but very little on the intricate interaction between the two. Moreover, we

show in Remark 3.1 that our old results in [3] easily follow from the present



ones. Thus, our new criteria provide in many cases a convenient alternative to

the well known Gustafsson-Kreiss-Sundstrém criterion in [5].

In the second part of Section 2 we use the new stability criteria to reestab-
lish all the main examples in our previous paper [3]. We show, for instance, that
if the basic scheme is arbitrary (dissipative or not) and the boundary conditions
are generated by either the explicit or implicit right-sided Euler schemes, then
overall stability is assured. For dissipative basic schemes we prove stability if
the boundary conditions are determined by either oblique extrapolation, by the
Box-Scheme, or by the right-sided weighted Euler scheme. These and other
examples incorporate most of the cases discussed in recent literature [1]-
[3].[5].[6].[8]-[10],[1R].[13].[15],[16].

Section 2 contains some new examples as well. Among these we find that if
the basic scheme is arbitrary and two-level, then horizontal extrapolation at the
boundary maintains overall stability. Other stable cases occur when the basic
scheme is given by either the backward (implicit) Euler scheme or by the
Crank-Nicolson scheme and the boundary conditions are determined by oblique
extrapolation. Such examples, where neither the basic scheme nor the boun-
dary conditions are necessarily dissipative, could not have been handled by our

previous results in [3].

As in [3], we point out that there is no difficulty to extend our stability cri-
teria to problems with two boundaries. This is so since if the corresponding left
and right quarter-plane problems are stable, then by Theorem 5.4 of [5], the ori-

ginal problem is stable as well.



1. The Difference Approximation and the Reduced Problem.

Consider the first order hyperbolic system of partial differential equations
du(z, t)/ ot = Adu(z, t)/ oz + Bulz, t) +f(z,t), z=0,¢t=>=0, (l.la)

where u(z, t) = (ulV(z, t), ..., u™)(z, t))' is the unknown vector (prime denot-
ing the transpose), f(z, t) = (f{)(z, ¢), ..., f™(z, t)) is a given vector, and 4
and B are fixed nXn matrices such that A is Hermitian and nonsingular. Without

restriction we may assume that A is diagonal of the form

AI 0 I 144
A=l . Al <o, A7>n, (1.2)

where A! and 47 are of orders Ixl and (n — 1) X (n — 1), respectively.

The solution of {1.1) is determined uniquely if we prescribe initial values

u(z, 0) =u’(z), z =0, (1.1b)
and boundary conditions

u/(0, ) = Sd”(0, t) + g(t), t=0, (1.1c)
where S is a fixed I x(n — 1) matrix, g(t) is a given I-vector, and
o = ®, . u®), o = @Y, MY (1.3)
is a partition of u into its inflow and outflow components, corresponding to the
partition of 4 in (1.2).

In order to solve the initial-boundary value problem (1.1) by a finite
difference approximation we introduce, as usual, a mesh size Az > 0, At > 0,
such that A = At/Az = constant; and using the notation v,(t) = v(vAz, t), we
approximate (1.1a) by a general, consistent, two-sided, solvable, multi-level

basic scheme of the form



Qv (t + At) = >i:c Qov,(t — oht) + Atb,(t)
(1.42)

Qq=.§ AjEj. Ev,=v,, o=-=1,...,8, v=r,7r+1,. .
j=—

Here, the nXxn matrices 4;, are polynomials in 4 and AfB, and the n-vectors
b,(t) depend smoothly on f(z, t) and its derivatives.

The equations in (1.4a) have a unique solution if we provide initial values
v(oAt) =v2(cAt), o©=0,...,s, v=0,12 ..., (1.4b)

where in addition we must specify, at each time step t = uAt, u=s,s +1,...,
boundary values v,(t + At), v=0,...,r —1. As in [3], these boundary values
will be determined by two sets of boundary conditions, the first of which is
obtained by taking the last n —! components of general boundary conditions of

the form

T_ vt + At) = in Tov,(t — oht) + Atd,(t),

T¢=§C}‘,E". o=-1,....q. v=0,..., r -1,
j=0

where the matrices Cj, are polynomials in A and AtB, the Cj(-1) are nonsingular,

and the n-vectors d,(¢) are functions of f(z, £) and its derivatives.

If we put

B ) o] ol
jo = gt C}II;II v WE | d, = 4/

in accordance with the partition of A and u in (1.2),(1.3), then this set of condi-

tions takes the explicit form




T wl(t + At) + THIT vI(t + At)

%0 THI it — oht) + TE T vt — oat)| + AtQX(2), (1.4c)
o=
nga =_§oq!£anv a=[l[Il V=0,---|T_1-

J:

We call such boundary conditions franslatory since they are determined at all

boundary points by the same coeflicients.

For the second set of boundary conditions we use the analytic condition
vi{t + At) = SvI(t + At) + g(t + At), (1.44d)

together with 7 — 1 additional conditions (not necessarily translatory) of the

form

vi(t + At)= ¥ {D{J vj(t + At) + DLT vt + At)] + Atel(t),
J_.

(1.4¢)

where the matrices D),/ and D},f —of orders Ixi and ix(n —l) respectively --
are polynomials in the blocks A% and AtB%f, «, 8 = I, II, of the matching parti-

tions

I o pil gll
A=y 4ul| MB =AMtlpnr gl

so that the D_,-I,,I vanish whenever B does; and the I-vectors el(t) are functions of

f(z, t), g(t), and their derivatives.

It has been shown in [3] that equations (1.4c, d, e) can be solved uniquely
for the required boundary values v, (¢ + At), v =0, ... ,r —1, in terms of neigh-
boring values of v, at least for sufficiently small Af; and that boundary condi-
tions of the form (1.4e) can be constructed to any degree of accuracy. A con-

crete example of second order accurate boundary conditions of the form (1.4e),



for the special case B = f = 0, was given in [2].

The difference approximation is completely defined now by (1.4); so assum-
ing that the basic scheme is stable for the pure Cauchy problem (—e < v < e),
we may ask whether the entire approximation is stable. More precisely, we
make from now on the same assumptions about approximation (1.4) as in [5], so
that the stability theory of Gustafsson, Kreiss and Sundstrém holds, and raise

the above stability question in the sense of Definition 3.3 of [5].

As in [3], the first step will be to reduce our stability question to that of a
scalar, outflow approximation with homogeneous translatory boundary condi-
tions. This reduction is obtained by applying (1.4a, b, ¢) to the scalar outflow

problem
u =au,, a =constant >0, x=>0,t=0 (1.5)
(which requires no analytic boundary conditions). In other words, we set
Al=B=f=0 A7 =qa = constant >0,

so that (1.1a) yields (1.5); and (1.4a, b, c) reduces to a self-contained, scalar,

homogeneous approximation which consists of the basic scheme

Qv (t + At) = f} Qu it —oAt), v=r,r+1, ...,
o=0
(1.6a)
Qo=.§ aoki, o=-1,....,s8;
t=—r
with initial values

v (oAt) =vl(oAt), o¢=0,...,s, v=012,..; (1.6b)

and translatory outflow boundary conditions



T_w(t + At) = & Tt —oAt), v =0,...,7—1,
o=0
(1.6¢c)

Ty = '§0 ijEj’ Co(-1) # 0, c=-1,....q9,
J:

where the scalars g, and ¢j, are polynomials in a, and the basic scheme {1.6a)
is consistent with (1.5).

We are now ready to use our main result in Section 2 of [3], which we refor-

mulate as follows:

THEOREM 1.1 (Theorem 2.1, [3]). Approzimation (1.4) is stable if and only
if its reduced form in (1.8) is stable,

In other words, we have that approrimation (1.4) is stable if and only if the
scalar outflow components of ils principal part are stable.

The above reduction theorem implies that from now on we may restrict our
stability study to the scalar outflow approximation (1.6). Hence, we conclude
this section by stating the following five assumptions which will hold throughout
the paper, and guarantee the validity of the Gustafsson-Kreiss-Sundstréom theory
[5] for approximation (1.6).

Assumption 1.1 (Assumption 3.1, [5]; Assumption 2.1, [3]). Approximation
(1.8) is boundedly soluable; i.e., there exists a constant K > 0 such that for each

y € lx(Az) there is a unique solution w€ I3(Az) to the equations

Qw,=Yy,, v=r,r+1,...,

Tw,=1Yy,, v=0...,r -1,
with ||lw| = K||y|| ; where @_; and T_, are defined in (1.6a, c), and {3(Az) is the
space of all grid functions w = {w,} = with |w|P = Az T2 |wy|? < .
Assumption 1.2 (Assumption 5.1, [5]; Assumption 2.2, [3]). The basic

scheme is stable for the pure Cauchy problem —= < v < =, That is, if we define



the basic characteristic function by

Pz, k) = E} a; (2 )i (1.7)
j=-r
where
aj(z) = aj_y) _vz:o 27 laj, , j=-r,...,p, (1.8)

then we have:
(i) The von Neumann condition; i.e., the solutions z (k) of the basic charac-

Leristic equation

P(z,k)=0 (1.9)
satisfy

|z(k)| =1 for all kwith|k] = 1.

(i) If |k| =1, and if z(k) is a root of (1.9) with |z(k)| = 1, then z (k) is a
simple root of (1.9).

Assumption 1.3 (see Assumption 5.4 together with Definition 10.1, [5]; com-
pare Osher [10]). The basic scheme (1.6a) belongs to the family of schemes for
which the Gustafsson-Kreiss-Sundstrém theory in [5] holds. This family contains

in particular the following two classes:

(i) Dissipative basic schemes; i.e., schemes for which the roots z(k) of

(1.9) satisfyv
|z(k)| <1 for all kwith|k| =1, k # 1. (1.10)
(ii) Unitary basic schemes (also known as strictly nondissipative
schemes) where the roots of (1.9) satisfy
[z(k)] =1 foralllk| =1. (1.11)

Obviously, if the basic scheme belongs to any of these two classes, then it

satisfies the von Neumann condition in Assumption 1.2 (i).




Assumption 1.4 (Assumption 5.5, [5]; Assumption 2.4, [3]).
a_,(z),a,(2)#0 foralllz|=1.
Assumption 1.5. We assume that

m
Y lej(z)| #0 foralllz|=1
j=o

where, in analogy with (1.8),

c;(2) = cj(y) —0}50 2% ¢;p, j=0,....m (1.12)

Assumption 1.5 is necessary for stability, as shown in Remark 3.4 below.
This last assumption -- which should have been included in [3] as well -- is easily

verified for all practical boundary conditions.

2. Statement of Results and Examples.

In order to state our main stability criteria we define, in complete analogy

with (1.7), the boundary characteristic function
R(z, k) = % cj(z)d
§=0
where the ¢;(2) are given in (1.12). Defining the function
Nz, k) = |P(z, €)| + [R(z, K)]

we shall prove in Section 3:

THEOREM 2.1 (1st Main Theorem). Approximation (1.6) is stable if
Nz,k) #0 forall |z|=1,0<|k|=<1, (2,k)# (1 1) (2.1)

Next, let us divide the (z, ) domain in (2.1) into three disjoint parts and

restate Theorem 2.1 as follows:
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THEOREM 2.1". (1st Main Theorem revisited) Approzimation (1.6) is stable if

Mz,6)#0 foral |z|=1, |g|=1c#1; (2.2a)
Nz, 6=1)#0 foral |z|=1,z #1; (2.2b)
2z, k) #20 forall |z|=1,0<|k| <1 (2.2¢)

The advantage of this setting is explained by Theorem 2.2 in which we pro-
vide useful sufficient conditions for each of the three inequalities in (2.2) to hold.

Before stating this theorem, however, we need the following definitions:

Definition 2.1. The boundary conditions (1.6¢) are said to be dissipative if

the roots z (k) of the boundary characteristic equation
R(z,k)=0 (2.3)
satisfy
[2(k)| <1 fordlllk|<1,k#1.
Definition 2.2. We say that the boundary conditions (1.6c) satisfy the von
Neumann condition if the roots z (k) of (2.3) satisfy
[z{(€)| <1 for all|k| =1.
Definition 2.3. The boundary conditions (1.6¢) are called boundedly solu-

able if there exists a constant X > 0 so that for each y€ I3(Az) there is a unique

solution we I(Az) to
T_,w,=1Y,, v=012,..., (R.4)
with [k || = Klly||.
Evidently, these definitions are analogous to those made for the basic

scheme in Assumptions 1.3(i), 1.2(i) and 1.1, respectively; and again, dissipa-

tivity implies the von Neumann condition.
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Having these definitions we shall prove:
THEOREM 2.2 (2nd Main Theorem).

(i) If either the basic scheme or the boundary conditions are dissipative,

then (2.2a) holds.
(ii) nequality (2.2b) is satisfied if any one of the following holds:
(a) The basic scheme is two-level.
(b) The basic scheme is three-level and
Nz =-1,k=1)#0. (2.5)
(c) The boundary conditions are two-level and at least of zero order of

accuracy.

(d) The boundary conditions are three-level, at least zero order accu-

rate, and (2.5) is satisfied.

(iii) If the boundary conditions satisfy the von Neumann condition and are

boundedly soluable, then (2.2¢) holds.
The proofs of Theorems 2.1 and 2.2 will be given in Section 3.

We turn now to examples. Before doing so, however, let us recall one more
result which provides a useful sufficient condition for the boundary conditions to

be boundedly solvable.
LEMMA 2.1 (Lemma 3.2, [3]).

(i) The boundary conditions (1.6c) are boundedly solvable if and only if

T_y(k) = )5 Cj-yk? #0 for all 0< || =1 (.8)
j=0
(ii) In particular, explicit boundary conditions are always boundedly solu-
able,

This result is associated with important observations on solvability by Osher

[11].
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We remark that part (i) of Lemma 3.2 in [3] merely states that if (2.6) holds,
then the boundary conditions are boundedly solvable. Following the proof of
Lemma 3.2 in [3], however, one realizes without difficulty that in fact, (2.6) is
both sufficient and necessary for the bounded solvability of the boundary condi-

tions (1.6c), as stated above.

Ezample 2.1 ([3, Example 3.5]; compare the special cases in [5, Theorems
6.1, 6.2 and 6.3], [13, (3.2)], and [2, Example 2]). Let the basic scheme (1.6a) be
arbitrary (dissipative or not), and let the boundary conditions (1.6c) be gen-

erated by the right-sided, first order accurate, explicit Euler scheme:
v (t +At) = v, (t) + Aa[v,,(E) —v (t)], O0<Aa <1, wv=0,..r - 1.

These two-level boundary conditions are known to be dissipative (see Example
3.5, [3]), hence Theorem 2.2(i)(iic) implies (2.2a, b). Since the boundary condi-
tions are explicit, then by Lemma 2.1 they are solvable; and since they are dissi-
pative, the von Neumann condition is satisfied. Consequently, Theorem 2.2(iii)

yields (2.2¢c), and stability is established by Theorem 2.1".

It is a trivial matter to verify that for this, as well as for all the following

examples, Assumption 1.5 is fulfilled.

Ezrample 2.2 ([3, Example 3.6]; compare the special cases [13, (3.3)], and [2,
Example 3]). Take an arbitrary basic scheme, and determine the boundary con-

dition by the right-sided, first order accurate, implicit Euler scheme:
v (t + At) —Aafv,n(t + At) — v (t + At)] =v,(t), Aa >0, v=0,...,7 —1.

As in the previous example, the boundary conditions are two-level and dissipa-
tive (e.g. Example 3.6, [3]), so Theorem R2.2(i)(iic) gives (2.2a, b). The dissipa-
tivity of the boundary conditions also implies the von Neumann condition. And it
is trivially verified (Example 3.6 [3] again) that T_)(k) # 0 for |«| <1 (where

T_,(x) is defined in (2.6)), so that Lemma 2.1(i) implies solvability. Thus, (2.2¢)
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follows from Theorem 2.2(iii); and Theorem 2.1' assures stability.

Example 2.3 (Compare the special cases in [B, Theorem 6], [10, Section
XX111], [5, Theorems 6.1 and 8.3], [1], [6, Theorem 2.1], and [3, Example 3.1]).
Take an arbitrary two-level basic scheme, and define the boundary conditions by

horizontal extrapolation of order w — 1:

v (t + At) = J_z:;I (D17 hyy(t + ), v=0..r -1 (2.7)

We have

R(z.x) = R(e) = 1 = £ ((-1)" = (1 - )"
i=1

so R(x) # 0 for k£ # 1, which directly gives (2.2a, ¢). Moreover, since the basic
scheme is two-level, Theorem 2.2(iia) implies (2.2b); and Theorem 2.1’ again
proves stability.

It is interesting to note that the above result may fail, both for dissipative
and nondissipative basic schemes, if the basic scheme is of more than two time-
levels. A nondissipative counterexample was given by Gustafsson et al. in
Theorem 6.2 of [5] (see also [6]) who showed that the unitary, 3-level Leap-Frog

scheme
v (t + At) = v, (t = At) + Aafv, () —v,(t)] v=1,238.. (2.8)

provides an unstable approximation in combination with the linear boundary
extrapolation ((2.7) withw =2 ):
vo(t + At) = 2uy(t + At) —wg(t + At).

We proved instability ([3], (3.6)) for the case where the basic scheme is the 3-

level, 5-point, dissipative version of (2.8):
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vt + At) =[] - %—-(E’ — IR - B YR, (t — At) + Aa(E — E-Yu,(t),

0<e<l, 0<Aa=<l-—s, v=2 3...,

and the boundary conditions are given by (2.7) with v = 0, 1.

Ezample 2.4 ([3, Example 3.2]; compare the special cases in [2, Example 1]
and [6, Theorem 2.2]). Let the basic scheme be dissipative, and determine the

boundary conditions by oblique extrapolation of order w — 1;
v (t + At) = § (;?)(—1)5+1v,+j[t -G -1)At], v=0..r-1. (2.9)
i=1

Since the basic scheme is dissipative, then Theorem 2.2(i) implies (2.2a). Furth-

ermore, the boundary characteristic function for (2.9) is

R(z, k)= 1= £ (D(-1)1*127kf = (1 - 27T,
Jj=1

hence
Q(z, k)= |R(z, k)| 20, z #«. (2.10)

This yields (2.2b, ¢); and Theorem 2.1’ implies stability.

Ezample 2.5 ([3, Example 3.3]; compare the special cases [5, Theorem 6.1],
[12, (3.4)]. and [2, Example 4]). Take any dissipative basic scheme, and let the

boundary conditions be generated by the second order accurate Box-Scheme:

vt + At) + vyt + AL) —Aafv,q(t + At) — v, (t + At)]

vy (t) + vy t) + Aa[vyg(t) —v (t)], v=0,..r —1.

As in the previous example, dissipativity implies (2.2a); and Theorem R.2(iic)
implies (2.2b). Next, we recall Example 3.3 of [3] where it was shown without
difficulty that the roots z(x) of the boundary characteristic function satisfy

|z(k)| = L for || = 1, and that T_;(x) # O for |£| < 1. Thus, the boundary con-



-15-

ditions satisfy the von Neumann condition; and Lemma 2.1(i) implies solvability.

With this, Theorem 2.2(iii) gives (2.2c), and by Theorem 2.1' stability follows.

Ezample 2.6 ([3, Example 3.4]; compare the special case in [13, (6.2b)]).
Take any dissipative basic scheme, and define the boundary conditions by the

right-sided, 3-level, weighted Euler scheme:

v, (t + At) = v (t — At) + Aa[Ru,(E) — v, (t + At) —v(t —At)],
(2.11)
0<Az =1, v=0,...,7r -1

As in the two previous examples, Theorem 2.2(i) implies (2.2a). Further, we have
Rlz,k)=1-22-Aa(Bkz ! - 1-27%),
so
Qz =-1,k=1)= |R(z = -1, = 1)| = 4Aa >0,

and Theorem 2.2(iid) yields (2.2b). Next, as in Example 3.4 of [3], we find that

the roots of F(z, k) satisfy

2(c =) = o222 4 = Vi AT - (0 (212)

and since 0 < Az < 1, then |b(£)| < 1 for || < m; therefore

Aa + |b

= gi
|2(k=e*)| = Aa + 1

< 1, €| = m,

so the von Neumann condition holds. By Lemma 2.1(ii) we also have solvability.

Hence Theorem 2.2(iii) yields (2.2¢); and Theorem 2.1' assures stability.

Ezample 2.7. Let us keep the boundary conditions in (2.11), and extend the
result of Example 2.6 to nondissipative basic schemes whose characteristic func-

tions satisfy
Pz =-1,k=-1)#0. (2.13)

Evidently, we obtain (2.2b, c¢) precisely as for the previous example. In order to
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prove (2.2a) we set p = (Aa)® and observe that b(¢) in (2.12) satisfies for

0< |¢| <,

[6(£)]2=p%+ (1 —p)% +2p(1 —p) cos 2§ <p? + (1 —p)* + 2p(1 —p) = 1.
Thus, by (2.12),

Iz(x=ei£)|sm_+lﬂ§lL<1' OD< |&| <m

Aa + 1
or in other words
R(z,k)#0, |z|=1, |e| =1, £# £l (2.14)
By (2.12) again,
e - B
hence one root is z (¥ = —1) = —1 and the other satisfies |z (k = —=1)| < 1; so
Rz, k=-1)#0, |z|=1, z » -1, (2.15)

Collecting (2.13) - (2.15) we find therefore that
Nz,x)=|P(z, k)| + |[R(z.6)| #0, |z|=1, |¢| =1 k#1.

Thus, (2.2a) is established, and Theorem 2.1’ implies stability.

We remark that certain well known nondissipative basic schemes satisfy

(2.13). This includes, for example, the unitary Crank-Nicolson scheme

v (t + At) — "—:-[vm(t +AL) =y (t + AL)]
(2.16)

=u(t) + 2u(t) — ()], v=1.23..

and the almost-dissipative* backward Euler scheme

‘Wel calxll a basic scheme almost dissipative if (1.10) holds, except for a finite number of
Kk k| =1




-17-

wylt + 88) = 2w, (t + 88) = ot + 8)] = w,(t),
(2.17)

v=r,7r+1,...,
which is included in the family of schemes for which the Gustafsson-Kreiss-
Sundstrém theory holds.

1f we consider, however, the almost-dissipative Lax-Friedrichs scheme

vt +88) = S [opn(®) + 0] + B wpn(t) —va ()]

NI»—-‘

0<Aa <1, v=1,2, 3,

(which is also admitted by the Gustafsson-Kreiss-Sundstrom theory; e.g. Osher
[10]), we find that P(z = -1,k =—-1) =0, ie., (2.13) fails. Indeed, it can be
shown that this scheme together with the boundary conditions in (2.11) provides

an unstable approximation.

Ezxample 2.8 ([15, Section 3]; compare [16, Example 6.2]). Take any two-
level basic scheme, and determine the boundary conditions by the right-sided,

two-step Euler scheme:

vt + At) = v (t — At) + Rha (v, (t — At) —v (t —At)],

0<Aa <1/2, v=0,..7-1
Then,
R(z,k)=1-2z"%1+2\a(k - 1)}
so the roots z (k) of R(z,k) satisfy
[z(c=ei)|*=1+2Na(RBAa — 1)(1 —cos §) <1, O<|[{|=m

That is, our explicit boundary conditions are dissipative and satisfy the von Neu-

mann condition. Hence, by Lemma 2.1(ii) and Theorem 2.2 we obtain (2.2), and
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Theorem 2.1’ assures stability.

Ezample 2.9 (in [5, Theorem 6.3] and {6, Theorem 2.2]). Consider the uni-
tary, unconditionally stable Crank-Nicolson scheme in (2.18), with oblique extra-

polation at the boundary:
volt +8t) = § (§)(-1)*;lt - (G - 1)at] (2.18)
Jj=1

as in (2.9). Since we have (2.10), then in order to comply with the assumptions

of Theorem 2.1 it remains to show that
Nz, k)= |P(z, k)| + |R(z,k)| #0, 2=k, || =1, £# 1
so it suffices to prove that

Aa

= _A_a __l_ -1
Pz, k) =1 4(16 k) -2z 1+ i

(k—x1]#0,

(2.19)
z=k=¢e% 0< |t =m

Indeed,

P(z =e¥, gx=e¥)=1—cos £+ )\zi(coszé—cosé— 1) + 1 sin £(1 - )\z—acos £),

so observing that the real and imaginary parts do not vanish simultaneously, we

immediately obtain (2.19), and stability follows.

Ezample 2.10 (in [6, Theorem 2.2]). Take the almost-dissipative, uncondi-
tionally stable backward Euler scheme in (2.17) with the oblique boundary extra-
polation in (_2.18). As in the previous example, in order to prove stability via

Theorem 2.1 it is sufficient to show that
Pz i) =1-2 -k ~27120 z=k=e¥, 0<|¢|=m (220)

Since

P(z =e¥, k=e¥)=1-hacosé —cos¢+1isiné,
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then, comparing the real and imaginary parts again, we get (2.20), and stability
is established.

At the end of Section 3 we make several remarks concerning these exam-

ples.

3. Proofs and Remarks.

In order to prove Theorems 2.1 and 2.2 we begin by considering the basic
characteristic function P(z, x) in (1.7). By Assumption 1.4, for each 2z with
|z| =1, P(z, k) has 7 + p roots «(z). These roots, which play a major role in
the stability analysis of approximation {1.8), have the following separation pro-
perty:

LEMMA 3.1 ([3], Lemma 4.2; compare Lemmas 5.1 and 5.2, [5]). For |z]| > 1,
the basic characteristic function P(z,k) has precisely r roots x(z) with
0< |k(z)] <1, proots with |x(z)| > 1, and no roots with |k(z)| = 1.

According to this lemma, the roots «(z) of P(z, «) split for |z | > 1 into two
groups: r inner roots satisfying |«(z)| < 1, and p outer roots with |k(z)| > 1.
Using Assumption 1.4 and a continuity argument, we see that these groups of
inner and outer roots remain well defined for |z | = 1 as well, where milder ine-
qualities, |k{z)] =1 and |«(z)| = 1 hold, respectively. Since by Assumption 1.4,
& = 0 is not a root of P(z, k) for |z | = 1, we obtain

LEMMA 3.2 ([3], Lemma 4.3). For |z| =1, the T + p roots k(z) of the basic
characteristic function P(z, k) split into T inner roots with 0 < |k(z)]| < 1, and p
outer Toots with |k(z)| = 1.

We can now quote our main preliminary stability criterion in [3]:

THEOREM 3.1 ([3], Theorem 4.2). Approzximation (1.8) is stable if and only

if for every z with |z | = 1 and all corresponding inner roots k(z) , the boundary
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characteristic function R(z, k) satisfies
FE(z, k(z)) # 0. (3.1)
If k(2) is an inner root for z, |z | = 1, then by definition,
P(z, k(z)) =0.
Thus, combining this fact with (3.1), we immediately obtain,
COROLLARY 3.1. Approximation (1.6) is stable if and only if for every z
with |z | = 1 and all corv'espondving inner roots k(z),

Nz, k(z)) = |P(z, k(z))] + |R(z, k(2))] # 0. (3.2)

We shall need yet another result which describes the behavior of the inner
roots for z = 1;

LEMMA 8.3 ([3], Lemma 5.1). If z = 1, then « =1 is not an inner root of
P(z, k).

This brings us to

Proof of Theorem 2.1. Take any 2, |z | = 1, and let k(z) be a corresponding
inner root. If z # 1, then by Lemma 3.2, we have 0< | k(2)| = 1; so the
hypothesis in (2.1) implies (3.2). If on the other hand, z = 1, then by Lemma 3.3,
k(z) =1 is excluded as an inner root; so by Lemma 3.2 we have
0<|x(2)] =1, k(z) # 1, and again (2.1) yields (3.2). By Corollary 3.1 therefore,
approximation 1.8 is stable, and the proof is complete. =

Proof of Theorem 2.2. (i) If either the basic scheme or the boundary condi-

tions are dissipative, then by Assumption 1.3(i) and Definition 2.1, either

P(z,k)#0, |z|=1, |g|=1, £#1,
or

R(z, k) #0, Jz|=1, |g| =1, £#1;
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and (2.2a) follows.

(iia) Since the boundary scheme is consistent with (1.5), it is at least first
order accurate; so, in particular, it satisfies the ordinary zero order accuracy

condition

j;ﬁaj(—lﬁi g Cjo

0=0 j=—r
which we equivalently write as
P(z=1,k=1)=0. (3.3)
By assumption, the basic scheme is two-level, sb the function P(z,k=1) is a
first degree polynomial in z~! which, by (3.3), has a unique root 27! = 1. Thus,
Plz,k=1)#0 |z|=1 2z #1,
and we obtain (2.2b).

(iib) In the 3-level case we still have (3.3), but now P(z, ¥ = 1) is a second
degree polynomial in z™! with real coefficients. By (3.3), z7! = 1 is one of the

roots, so the other root must be real as well; thus
Plz,k=1)#0, |z|=1, z# £l (3.4)

In addition, since the basic scheme satisfies the von Neumann cendition

(Assumption 1.2(i)), then
Pz, k=1)#0, |z]|>1. (3.5)
By (8.4) and (3.5) therefore,
Nz, k=1)#0, |z]|=1, z # +1, (3.8)
which together with the assumption in (2.5) gives us (2.2b).

The proof of (iic) is identical to that of (iia), except that P(z, k) is replaced
by R(z, k), where by the zero order accuracy of the boundary conditions, we

have R(z = 1, k = 1) = O instead of (3.3).
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For the proof of (iid) we still have (3.5); and since the boundary conditions

are three-level we may replace (3.4) by
Rz, e=1)#0, |z|=1 2z # 1. (3.7)
By (3.5) and (3.7) we obtain (3.6) again, which together with (2.5) yields (iid).

(iii) Since the function z7*'R(z, «) is a polynomial in z and «, it can be writ-

ten as
29" R(z, k)= (2 —2,) (2 — 24) Ro(z, k) (3.8)

where Ry(2z, k) is a polynomial in x whose leading coeflicient is 1 and whose
other coefficients are rational functions of 2. By Assumption 1.6, the boundary

characteristic function
m .
R(z, k)= ¥ c;(2)k
j=0
is not the zero polynomial in « for any (fixed) z with |z | > 1. Thus, the z; in
(3.8) must satisfy
IZJ'|<1, j=l,...,d.

It follows that the leading coefTicient of 27*'R(z, «) in (3.8) is uniformly bounded
away from zero for all |z | > 1. Hence, the roots « = (2) of Ry(2, ), and there-

fore those of R(z, ), are continuous functions of z for |z | > 1.

Since the boundary conditions are assumed to be boundedly solvable, then

by Lemma 2.1(i) we have
T_ (k) = )3 cji-npd #0, 0< |k| =<1 (3.9a)
i=0
Moreover, by (1.6c)

T_I(O) =Co(-1) # 0. (39b)

So, combining (3.9a, b) we obtain
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T_(k)#0, |kl =1. (3.10)

Since by hypothesis, the boundary conditions also satisfy the von Neumann
condition, then for |z | > 1, the function F(z, «) does not vanish on the unit cir-
cle |¢| = 1. Hence, by the continuity established above, the number of roots
k = k(z) of R(z, k) satisfying |«{z)| <1, is independent of £, |2]| > 1, and it

thus equals the number of roots «, || < 1, of the function
R(z -, k) = T;l(/c).

By (3.10) therefore, R(2, k) has noroots |k| < 1 for |z| > 1, so we have

R(z, k) #0, le|=<1, |z|>1. (3.11)
By (3.11), the roots «(z) of R(z, k) satisfy |«(z)| > 1if |z| > 1. So for |z| =1,
these continuous roots satisfy |k(z)| =1, ie.,

R(z,k)#0, |g| <1, |z|=1,
and (2.2c) follows. =
In concluding the paper we make the following remarks:

Remark 3.1. Our main results in [3] follow immediately from the present
ones. Indeed, consider Theorem 3.3 of [3] where we assume that the basic
scheme is dissipative, that the boundary conditions are boundedly solvable and

satisfy the von Neumann condition, and that
R(z,k=1)#0, |z|=1, z #1. (3.12)

With these assumptions, Theorem 2.2(i)(iii) gives (2.2a, c). Moreover, by
Assumption 1.2(i) we have (3.5), which together with (3.12) yields (2.2b). Thus,

Theorem 2.1' implies stability, and Theorem 3.3 of [3] follows.

In Theorem 3.4 of [3] it is assumed that the basic scheme is arbitrary, that
the boundary conditions are boundedly solvable and dissipative, and that (3.12)

holds. Again, Theorem 2.2(i)(iii) yields (2.2a, c), and (3.12) together with (3.5)
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gives (2.2b); so Theorem 2.1’ implies Theorem 3.4 of [3].

Theorems 3.1 and 3.2 in [3] follow from Theorem 2.1' and 2.2 with similar

ease.

FKemark 3.2. Examples 2.1-2.6 contain all the main examples in [3]. Exam-
ple 2.3 (with a nondissipative basic scheme), and Examples 2.7-2.10, are new,
however, in the sense that they could not have been handled by our old results
in [3]. For examples 2.3, 2.7, 2.9 and 2.10 this is true since Theorems 3.1-3.4 in
[3] all require that either the basic scheme or the boundary conditions be dissi-
pative. For Example 2.8, where the basic scheme is not necessarily dissipative
but the boundary conditions are, one may hope that Theorem 3.4 of [3] would
help. But B(z = —-1, k = 1) = 0; so (3.7) in [3] is violated, and Theorem 3.4 of [3]
fails.

FKemark 3.3. Not all interesting cases are covered by our results. For
instaﬁce, Gustafsson et al. showed in Theorem 6.1 of [5] that the Leap-Frog

scheme in (2.8) together with the linear oblique boundary extrapolation
vo(t + At) = 2v,(t) —va(t — At),
provides a stable approximation. We easily find, however, that
Az =-1,6=-1)=|P(z =-1,k=-1)| + |R(z = -1,k = -1)| = 0,

so (2.1) may not hold. Consequently, Theorem 2.1 fails for this example, showing

that our criteria are sufficient but not necessary for stability.

Remark 3.4. Let us show that Assumption 1.5 is necessary for the stability
of approximation (1.6). Indeed, if Assumption 1.5 fails, then at some 2z = zo with

|zo| = 1, all the ¢;(z) in (1.12) vanish simultaneously. Hence,
R(z=zpk)= 3 cj(zo)? =0; (3.13)
Jj=0

that is, R(z = 2o,k) is the zero polynomial in x. By Lemma 3.2, for z = Zg, the
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basic characteristic function P(z,«) has 7 inner roots k(2o) with

0 < |«(2g)| = 1. For each of these roots (3.13) implies
R(z = zg, £ = £(2q)) = 0,
and Theorem 3.1 assures instability.

For example, consider any dissipative basic scheme with boundary condi-

tions determined by the two-level, zero order vertical extrapolation:
v (t +At)=v,(t), v=0,...,7 — 1L (3.14)

Clearly, these explicit boundary conditions are boundedly solvable (Lemma 2.1),
and they satisfy the von Neumann condition. Thus the hypotheses of Theorem
2.2 hold, and Theorem 2.1' should have implied stability. As mentioned in Sec-
tion 4 of [14], however, the approximation is unstable. The reason for this insta-
bility is that the boundary conditions in (3.14) fail to satisfy Assumption 1.5,

since
m
jgo ]CJ-(Z)|2=1 = !1 - Z.-l|z=1 =0.

This example, though found unstable in the sense of Definition 3.3 of [5], is

stable in the I, sense described in [14].

Remark 3.5. It is known that the accuracy of the boundary conditions plays
a decisive role in determining the overall rate of convergence of the difference
approximation. In particular, Gustafsson [4] has shown that if approximation
(1.8) is stable and the basic scheme is accurate of order 4, then an overall 0 rate
of convergence is assured, if the boundary conditions are of 6 — 1 order of accu-

racy at least.
If we use horizontal or oblique boundary extrapolation as in (2.7) or (2.9),
then obviously there is no restriction on accuracy at the boundary. In general,

however, the question of maximal possible accuracy for the boundary conditions
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can be quite difficult if the boundary conditions are to satisfy certain properties.
For instance, it is not hard to see that the various boundary conditions in the
examples of Section 2 (with the exception of horizontal extrapolation), are all
stable in the sense of the definition in Assumption 1.2, with P(z, k) replaced by
the characteristic boundary function R(z, ). Thus, it seems natural to raise
the question of maximal accuracy for stable boundary conditions of type (1.6c).
This question was answered by Iserles and Strang [7, Theorems 1 and 2] who
treated the two-level case and showed that stable explicit boundary conditions
of type (1.6c) may not be more than second order accurate, while implicit condi-

tions of this type can be constructed to arbitrary order of accuracy.
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