
I

II I II IIII1I IIII II IIII I1IIII1 I111 I11I II 11I111 IIII " IIIII IIIII II I II :
3 1176 00160 0395 :

NASA Contractor Report 165811

PAN AIR GEOMETRY ~1ANAGEMENT
SYSTEM (PAGMS) - A DATA-BASE
~1ANAGEr~ENT SYSTEM FOR PAN
AIR TYPE GEOMETRY DATA

Jon F. Hall

KENTRON INTERNATIONAL, INC.
Hampton Technical Center

an LTV Company
Hampton, Virginia 23666

Contract NASl-16000
November 1981

NJ\SJ\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

NASA-CR-165811
19830027672

111
NF01336

CONTENTS

SUMr~ARY · · · · · · · · · · · · · · · · · INTRODUCTION · · · · · · · · · · · DISCUSSION · · · · · · · · · · · · · THE PAGMS LIBRARY · · · · · · · · · · · · CONCLUDING REMARKS · · · ·
APPENDIX A - PAGMS SUBROUTINES AND DESCRIPTIONS

OPENDB · · · · · · · CATLOG · · · · CATLST · · · · · · · · · · · · ADDNET · · · · · · · · GETNET
DELNET · · · · · · · · · REPNET
RENAME · · · . · · · · · · · · · GETNAM · · · · · · · · · · · · · · CLOSDB · · · · · · · . . . · · · · · · · · · · · EXAMPLE OF CAT LOG OUTPUT · · · · EXAMPLE OF CATLST OUTPUT
ERROR CODES · · · · · . . · · · · · · · · ·

APPENDIX B - PAGMS FILE STRUCTURE NOS VERSION

DATA ACCESS ~1ETHOD • .• ..•.
FILE INFORMATION TABLE • • . •
NETHORK DIRECTORY •.•.
N ETIJORK DATA SETS • • . • • • • •
EXECUTION CONTROL CARDS •

. . . .

. . . .

REFERENCES .••• . • •

PAGE

1
2
3
4
4

6
8

10
11
13
14
15
16
17
18
19
20
21

23
24
24
24
25

30

PAN AI R GEm1ETRY MANAGEMENT SYSTEMS (PAGMS) - A
DATA-BASE r~ANAGEMENT SYSTEM FOR PAN AIR TYPE

GEOMETRY DATA

by

Jon F. Hall

Kentron International, Inc.

Hampton, Virginia 23666

SUMMARY

A data-base management sys tern call ed PAGt·1S (fan Ai r §.eometry !1anagement

~ystem) has been developed to facilitate the data transfers in applications

computer programs that create, modify, plot or otherwise manipulate PAN AIR

type geometry data 1n preparation for input to the PAN AIR system of computer

programs. PAGMS is composed of a series of FORTRAN callable subroutines which

can be accessed directly from applications programs. Currently only a NOS

version of PAGMS has been developed.

INTRODUCTION

PAN AIR (reference 1) is a system of computer programs which perform

linear theory subsonic or supersonic analyses of complex aircraft configura­

tions. Use of PAN AIR requires that the input of the configuration surface

geometry be divided into networks of panels defined by X, Y, Z Cartesian

coordinates. A network can be thought of as a patch of the configuration

surface with some logical significance such as the upper surface of a wing

or the starboard side of a fuselage. Networks are further subdivided into

quadrilateral panels which are defined by the coordinates of four corner points

as described in the PAN AIR User's Manual (reference 2).

Creation of this often extensive geometry data (e.q. by digitizer), its

intermediate manipulation (e.g. by computer graphics), and its subsequent

output in a form compatible with the PAN AIR system require a software tool

to efficiently handle the resulting large and often numerous data transfers

between disk and core memory by applications type computer programs. A data­

base management system called PAGMS (fan Air ~eometry ~anagement ~stem) has

been developed to facilitate the manipulation of network geometry data. l The

purpose of this report is to describe the structure and use of PAGMS.

lpAN AIR has its own data-base management system (SDMS) to handle
geometry data once It has been received. The two systems are distinct and
should not be confused.

2

DISCUSSION

The major impetus for developing PAGMS was to provide fast random access

to network data from interactive graphics programs. As high speed and short

response times are particularly desirable characteristics in interactive

computer programs, simplified bulk data storage and retrieval becomes a

necessity. This is especially true when large numbers of data transfers are

involved. Achieving this performance requires the ability to address disk

memory directly. As Langley Research Center supports both the NOS and PRIME

computer systems, random disk addressing can be accomplished through the use

of CDC Record Manager routines on NOS and their counterpart file manipulation

routines on PRIME.

For purposes of program portability and NOS to PRIME compatability, programs

should be as free of machine dependent code as is practical. While this may not

be completely achievable, an effort is being made to group machine dependent

code into well documented modules. Version 1.0 of the PAN AIR Geometry Manage­

ment System is currently available on NOS as a library of FORTRAN callable

routines that will have identical arguments with the PRIME version under

development. 2 Both libraries will be compiled with their respective

FTN compilers. These subroutine calls can be included in applications

programs to efficiently handle network data manipulations.

2A PRIME version is currently being developed and will be released
at a later date.

3

THE PAGMS LIBRARY

The PAGMS library of subroutines was designed to retrieve, store and

otherwise manipulate a fundamental unit of data called a network. The PAGMS

network consists of three one-dimensional arrays of specified length contain­

ing X, Y, Z Cartesian coordinate data. Each netweork is uniquely identified

by the user and to the system through the use of a network identifier consist­

ing of up to twenty alphanumeric characters. All references to network data

must include the network identifier.

To use PAGMS, the data base must first be opened by calling routlne OPENDB

with a data base name, the name of the disk flle on which the data base

is to reside, and the TAPE/UNIT number to which error messages are to be

written. To create networks in the data base from collected sets of data, sub­

routine ADDNET is called with a specified network identifier. In a similar

fashion GETNET retrieves a network, DELNET deletes a network, REPNET replaces

a network and RENAME renames a network. Calling subroutine CATLOG will produce

a catalog listing of all network information on the data base. To make all

data base transactions permanent, CLOSDB is called to close the data base.

A description of the function of each subroutine and its argument list

is found in appendix A. The data base file structure, organization and imple­

mentation for the NOS version can be found in appendix B.

CONCLUDING REMARKS

A data-base management system has been developed to facilitate the data

transfers in applications program which create, modify, plot, or otherwise

manipulate PAN AIR type network geometry data. PAGMS {fan ~ir ~eometry

4

~anagement 3Ystem) is a series of FORTRAN callable subroutines which may be

accessed directly by applications programs executing on NOS. A PRIME

verSlon is under development. The system provides an efficient means for

handling the often extensive data associated with PAN AIR networks for

configuration modeling.

5

APPENDIX A

PAGMS SUBROUTINES

I. OPENDB

A. Functi on

This subroutine opens the data base, initializes the system common memory

and examines a file status word to determine whether or not the file currently

exists. If it does not, then a creation run is assumed and a file information

table and a zero filled network directory are created and copied to the data base.

If the file currently exists, its contents are copled to local scratch file

SFLZZZ. All subsequent data base transactions will be performed on this scratch

file until such time as the data base lS closed and made permanent. This

feature is used as a safeguard in the event of premature job termination due

to system failure or user error. Note: Only one data base may be opened at any

given time.

6

B. Calling Sequence

CALL OPENDB (MFILE, IDGEOM, MUNIT)

C. Arguments

1. MFILE - Input alphanumeric array. Specifies the name of the

file (limited to 7 alphanumeric characters) on which the data base

currently resides. If the file is being opened for the first time,

this is the name of the file on which the data base is to be created.

On re-opening a data base, it is the user's responsibillty to ensure

that MFILE is a local file, otherwise OPENDB will treat it as a

creation run and open a new file.

2. IDGEOM - Input alphanumeric array. Contains 80 alphanumeric

characters to be used at the discretion of the user to either

identify the configuration on the data base, name the data base or

provide header information. IDGEOM is output when subroutine

CATLOG is called. IDGEOM is a dummy variable on all but the first

call to OPENDB.

3. MUNIT - Input variable, integer number. Specifies the number of

the tape or unit to which all error messages are to be written.

If MUNIT is set to zero, all error messages will be suppressed.

Regardless of the input value of MUNIT, the NOS version places

non-zero error codes in the user's dayfile.

7

II. CATLOG

A. Function

This subroutine catalogs the contents of the data base. It essentially dumps

the contents of the file information table and the network directory to a specified

tape unit. CATLOG provides the following information:

8

1. New or old data base.

2.

3.

4.

5.

6.

Name of file on which data base resides.

80 character data base identifier.

Creation date/time.

Last access date/time.

Network information.

6.1 Network identifier (20 alphanumeric characters).

6.2 Activity flag (active or inactive).

6.3 Number of columns or N-Lines.

6.4 Number of rows or M-Lines.

6.5 Number of panels.

6.6 Storage block type (an indication of the amount of storage

reserved for the network).

7. Total number of networks (active and inactive).

8. Number of deleted or inactive networks.

9. Number of active networks.

10. Number of networks added since creation.

11. Total number of panels in all networks.

12. Length of data base in 60 bit words for NOS, 32 blt words for PRIME.

13. Length in words for each storage block type.

Table A-I presents an example CATLOG listing.

B. Calling Sequence

CALL CAT LOG (LUNIT)

C. Arguments

1. LUNIT - Input variable, integer number. Specifies the number of the

tape or unit to which catalog information will be written.

9

III. CATLST

A. Function

This subroutine produces a concise listing of all active and inactive

networks on the data base. Inactive networks are prefixed with an asterisk.

This routine was intended to be used as a quick reminder to the user of the

contents of the data base. No other information is provided. Table A-II

presents an example CATLST listing.

10

B. Calling Sequence

CALL CATLST (LUNIT)

C. Arguments

1. LUNIT - Input variable, integer number. Specifies the number of

the tape or unit to which CATLST information will be written.

IV. ADDNET

A. Function

This subroutine adds a network to the data base. Networks are stored in

blocks of ~emory of predefined size. There are five block sizes: 64, 128, 256,

512, and 1024 words containing floating point data. Once the length of the

network is computed from the product N x M, a block size is determined. One

block is reserved for each X, V, Z array. If the data base is being created

for the first time, slightly more space is reserved for each network in

antlcipation of future network expansions. Currently the product of Nand M cannot

exceed 1024 (approximately 960 panels per network). Some data may be truncated

and an error message printed if more than 960 panels are specified for a net-

work.

If the data base has been previously created and is currently being

updated, AOONET will search for blocks presently being occupied by deleted

networks and overwrite them to conserve file space. At this point, the

history of the deleted network di sap pears • Otherwi se AOONET \'/ill append

the new network to the end of the file.

All networks are stored in the N-line order (columnwise). Hhen adding

a network that is M-1ine ordered, AOONET flrst transposes the network to

N-line order before placing it in the database.

B. Calling Sequence

CALL AOONET (NETTO, N, ~1, X, V, Z, IOROER, IERR)

C. Arguments

1. NETIO - Input alphanumeric array. Contains 20 alphanumeric

characters of network identification.

11

12

2. N - Input/Output variable, type integer. On input N contains

the number of columns of N-lines in the network data set. If

IERR=l, N becomes an output variable containing an adjusted

value, 2 ~ N ~ 512. See table A-II for additional details.

3. ~1 - Input/Output variable, type integer. On input r~ contains

the number of rows or M-lines in the network data set. If

IERR=2, M becomes an output variable containing an adjusted

value,2 ~ M ~ 512. See table A-II for additional details.

4. X, Y, Z - Input real arrays. Contain one-dimensional net­

work coordinate data with length N x M.

5. IORDER - Input variable, type integer. Specifies the order

in which the data is stored in X, Y and Z, i.e. by columns or

by rows.

For IORDER=l, if X, V. Z are thought of as two-dimensional

arrays, they \I/ould be dimensioned X(M, N), Y(M, N). Z(M, N)

exactly. This is termed N-line order.

For IORDER=2, if X, V, Z are thought of as two-dimensional

arrays, they would be dimensioned X(N, M), V(N, M), Z(N, M)

exactly. This is termed M-line order.

6. IERR - Output integer variable. On output, IERR returns an

error code describing the success or failure of the data base

request. See table A-II for the error codes.

v. GETNET

A. Function

This subroutine gets a network from the data base. It has a limited error

recovery capability. In the event GETNET is requested to retrieve a previously

deleted network, it may do so provided only one deleted copy exists. If success­

ful, the network is completely reactivated. No guarantee is made however, since

a previous ADDNET may have overwritten the network in question. X, V and Z must

be dimensioned at least 1024 in the calling routine.

B. Calling Sequence

CALL GETNET (NETID, N, M, X, V, Z, IORDER, IERR)

C. Arguments

1. NETID - Input alphanumeric array previously defined.

2. N - Output integer variable previously defined.

3. M - Output integer variable previously defined.

4. X, V, Z - Output real arrays previously defined.

5. laRDER - Input integer variable previously defined.

6. IERR - Output integer variable previously defined.

13

VI. OELNET

A. Functi on

This subroutine deletes a network from the data base. It does so in a

pseudo sense by turning on the network delete bit. Essentially this means that

the network in question is a candidate for being overwritten at the earliest

opportunity~ but can be reactivated prior to being overwritten using the GETNET

command.

B. Calling Sequence

CALL OELNET (NETIO, IERR)

C. Arguments

1. NETIO - Input alphanumeric array previously defined.

2. IERR - Output integer variable previously defined.

14

VII. REPNET

A. Function

This subroutine replaces the old network with a new one having the same

NETID. Essentially old X, Y, Z data is overwritten by new data unless the

new network requires a larger block size, in \'/hich case REPNET automatically

deletes the old network and adds a new one.

B. Calling Sequence

CALL REPNET (NETID, N, M, X, Y, Z, laRDER, IERR)

C. Arguments

1. NETID - Input alphanumeric array previously defined.

2. N - Input integer variable previously defined.

3. M - Input integer variable previously defined.

4. X, Y, Z - Input real arrays previously defined.

5. laRDER - Input integer variable previously defined.

6. IERR - Output integer variable previously defined.

15

VII. RENAME

A. Functi on

This subroutine searches the data base for the flrst occurrence of network

identifier NAMOLD and renames it NAMNEW irrespective of the delete bit status.

16

B. Calling Sequence

CALL RENAME (NAMOLD, NAMNEW, IERR)

C. Arguments

1. NAMOLD - Input alphanumeric array. Specifies the old 20

character network identifier that is to be replaced.

2. NAMNEI~ - Input alphanumeric array. Specifies the new 20

character network identifier that is to be associated with

the old network data.

3. IERR - Output integer variable. On output IERR returns an

error code describing the success or failure of the data base

request. See table A-III for error codes.

IX. l1ETNAM

A. Functi on

This subroutine returns the names of all lIactive ll network identifiers and

the total number of them. The user should be aware that the data base can contain

at most 100 networks (active plus inactive) and must dimension his arguments in

the calling routine appropriately.

B. Calling Sequence

CALL GETNAM (NETIDS, NUMNET)

C. Arguments

1. NETIDS - Output alphanumeric 2-D array. Specifies the 20

character network identifiers. It is recommended that NETIDS

be dimensioned: NETIDS (2,100) - NOS, NETIDS *4 (5,100) -

PRIME.

2. NUMNET - Output integer number. Specifies the total number

of active network identifiers returned in array NETIDS.

o < NUMNET < 100

17

x. CLOSDB

A. Function

This subroutine closes the data base making permanent all data base trans­

actions. On creation runs, the master file is closed. On modification runs

all "active" networks on the scratch file are copied to the master file thereby

permanently eliminating all remaining deleted networks. The scratch file SFLZZZ

is returned and the updated master file is closed. File MFILE is not replaced

and remains a local file after closing.

18

B. Calling Sequence

CALL CLOSDB

C. Arguments

None.

TABLE A- I - EXAt1PLE OF SUBROUTINE CATLOG OUTPUT

CATALOG CF PAtEL DATA ON OLD FILE GETlS

TWIN BODY DATABASE FROM I-ESS GE(J£TRY GETR2S

CREATION DATEITIME 81/113/21. 11.21.06.
LAST ACCESS DATEITIME 81/113/21. 11.27.06.

rETWORK IDENTIFIER ACTIVITY COLUMNS ROWS NUf'1BER OF BLOCK
213 CHARACTERS FLAG N-LINES M-LINES PANELS TYPE

NOLIFTSRFe01 ACTIVE 2 14 13 1
NOLIFT-SRFeB2 ACTIVE 2 14 13 1
NOLIFT-SRFB03 ACTIVE 2 14 13 1
NOLI FrSRF0B4 ACTIVE 2 14 13 1
NOLIFrsRFBas ACTIVE 9 11 913 3
NOLIFT-SRF006 ACTIVE 9 11 813 3
NOL I FT-SRF007 ACTIVE 14 11 130 3
NOLIFT-SRF008 ACTIVE 14 11 1313 3
NOL IFT-SRF00Q ACTIVE 9 t 1 ee 3
NOLIFT-SRFBle ACTIVE 9 11 813 3
NOLIFT-SRF011 ACTIVE 2 11 10 1
NOL IFrSRFe12 ACTIVE 2 11 Ie 1
NOUFT-SRF013 ACTIVE 2 11 10 1
NCl..IFCSRFeI4 ACTIVE 2 11 10 t
NOLIFT-SRFBIS ACTIVE 14 8 91 3
NOL IFrSRFBt 6 ACTIVE 14 8 91 3
NOLIFT-SRFBI7 ACTIVE 2 14 13 1
NOLIFrSRFB18 ACTIVE 2 14 13 1
TEMPNET297 19.42.43. *DELETED* 2 11 10 1
TEMPNET786 13.42.32. *DELETED* 9 11 80 2

TOTAL NUMBER OF NETWORKS 20
NUMBER OF DELETED NETWORKS 2
NUMBER OF ACTIVE NETWORKS 18
NETWORKS ADDED SINCE CREATION 2
TOTAL NUMBER OF PANELS 9713
LENGTH OF DATABASE (WORDS) 9088
LENGTH OF BLOCK TYPE 1 64
LENGTH OF BLOCK TYPE 2 128
LENGTH OF BLOCK TYPE 3 256
LENGTH OF BLOCK TYPE 4 512
lrNGfH OF BLOCK TYPE 5 1024

19

20

TABLE A-II - EXAMPLE OF SUBROUTINE CATLST OUTPUT

NOL[FT SRFe01
NOLIFT-SRF0B4
NOL[FT-SRFOO7
NOll FrSRF0 I 0
NOLlFT-SRF013
NOll FrSRF016

*TEMPNET297 13.42.43.

IERR

o

1

2

3

4

5

6

7

8

9

TABLE A-III PAGMS ERROR CODES

~lEANING

No Error.

Attempt to add N-Line ordered network
longer than maximum allowed block
size. Some N-Lines were deleted so
that network could be saved.

Attempt to add M-Line ordered network
longer than maximum allowed block
Slze. Some M-1ines were deleted so
that network could be saved.

Attempt to add N-Line ordered network
longer than maximum allowed block
size. M must be < 512. No action -taken.

Attempt to add M-Line ordered network
longer than maximum allowed block
size. N must be < 512. No action
taken. -

Too few ~1-1 i nes. M must be > 2.
No action taken. -

Too few N-lines. N must be > 2.
No action taken. -

Network to be added already
permanent. No action taken.

Data base overflow, number of
active and inactive networks
exceeds 100. No action taken.

Network not found under specified
identifier. No action taken.

SUGGESTED USER
CORRECTIVE ACTION

None

Reduce network size
to prevent trunca­
tion.

Reduce network size
to prevent trunca­
tion.

Reduce M.

Reduce N.

Increase ~1.

Increase N.

Replace network if
old data not impor­
tant, or add net­
work with new name.

Close data base and
re-open.

Check spelling.

CONTINUED -

21

22

TABLE A-III PAGMS ERROR CODES

CONTINUED

~~~--------------------~::==~~---SUGGESTED USER 
IERR 

10 

11 

12 

13 

14 

15 

r1EANING 

Attempt to get network that has 
been previously deleted. 
Duplicate copies exist making 
recovery lmposslble. No action 
taken. 

Attempt to get network that has 
been previously deleted. Single 
copy eXlsts, network reactlvated. 

Attempt to rename a network wlth 
a non-unlque identlfier. No actlon 
taken. 

Network directory empty. Attempt 
to get network from empty data base. 
No action taken. 

Network dlrectory empty. Attempt 
to delete/replace network from 
empty data base. REPNET wi 11 
revert to ADDNET and add the 
network. 

Attempt to rename a network from 
an empty data base. No actlon taken. 

CORRECTIVE ACTION 

Attempt to "RENAf.1E" 
first deleted copy. 

None needed. 

Use new name. 

Create data base by 
adding networks. 

Create data base by 
adding networks. 

Create data base by 
addlng networks. 



APPENDIX B 

PAGMS FILE STRUCTURE - NOS VERSION 

DATA ACCESS METHOD 

The NOS version of PAGMS uses the Control Data Corporation Cyber Record 

Manager directly. (Detailed information about Record Manager can be found 

in CDC publication 60495700 entitled "Cyber Record Manager, Basic Access 

Methods, Version 1.5 Reference Manua1"). The advantages over the FORTRAN 

IV extended READMS/WRITMS routines are threefold. First, when I/O logical 

records can be restricted to multiples of PRU's (physical record units), the 

filed length I/O buffer set up by the compiler can be suppressed. This 

results in reduced field length and faster internal data transfer, both 

important considerations in interactive programs. Secondly, a natural 

key (index pointer) to network data is the 20 character network identifier 

that PAN AIR uses to label each network. On NOS this identifier occupies 

two words and is thus unacceptable as a key to READMS/WRITMS since named 

indexing only accomodates one word of 10 characters as a key. Lastly, 

because of limits placed by PAN AIR on the number and sizes of networks, 

data base bookkeeplng is greatly simplified making it less of a nuisance to the 

programmer who has to perform it. PAN AIR restricts an input configuration 

to a maximum of 100 networks. The total number of panels per configuration 

has a practical limit of 1200-1500 due to file storage and execution costs. 

To this end, all data is stored on WA (word addressable) type files 

with U(undefined) type logical records. Buffering is suppressed. 

23 



FILE INFORMATION TABLE 

The PAGt1S file structure consists of several logical records described 

as follows. The first is called the File Information Table and has a fixed 

length of 48 words. This table includes such items as the 80 character name 

of the data bas~ the date and time of its creation and last access, the total 

number of networks, the number of entries in the Network Directory (yet to be 

defined) and the address of the first word past the end of file. As shown 

in Table B-1, free space has also been included for additional information. 

NETWORK DIRECTORY 

The next logical record is called the Network Directory and has a fixed 

length of 400 words. The directory is subdivided into 100 groups of 4 words 

each. Each group identifies and points to a particular network data set. 

The first two words of every group contain the 20 character network identi­

fication. The third word contains the address of the first word (an x­

coordinate value) of the corresponding network data set. Packed into the 

fourth \'Iord are the delete bit, the block type and the values of Nand H 

(the network length). Table B-II illustrates the Directory structure. 

During processing, copies of both the File Information Table and the 

Network Directory are kept in core to gain speed in addressing network 

data sets. 

NETHORK DATA SETS 

Following the Network Directory are the Network Data Sets. Their 

record lengths vary with block type. There are five block types ranging 

24 

\ 



in length from 64 words to 1024 I'lords. As shows in table 8-III, each 

network data set consists of 3 records, one for each X, Y, and Z 

coordinate array. 

EXECUTION CONTROL CARDS 

The PAGNS library of routines (NOS version) is on an indirect access 

file named PAGNSLB which may be accessed by uSlng a GET command: 

GET, PAGMSLBjUN = 359950C. 

To execute a program wlth this library a loadset card is needed. The 

following is an example when no other libraries are being loaded. 

LOSET, LIB = PAGMSLB, PRESETA = INDEF. 
LGO. 

25 



26 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

~ 

TABLE B-1 - FILE INFORt1ATION TABLE 

CONTENTS 

File Status Hord 

Fi rst Hord Address Past EOF 

Data of Creation 

Time of Creation 

Date of Last Access 

Time of Last Access 

Total Number of Networks 

Networks Added Since Creatlon 

Networks Deleted Since Creation 

Length of Directory 

New/Old Flag 

Data Base Header 

Data Base Header 

Data Base Header 

Data Base Header 

Data Base Header 

Data Base Header 

Data Base Header 

Data Base Header 

Block Size 

Block Size 2 

CONTINUED -



TABLE B-1 - FILE INFORMATION TABLE CONTINUED 

WORD CONTENTS 

22 Block Size 3 

23 Block Size 4 

24 Block Slze 5 

25 XXXXXXX 
· · 
· · · · 48 XXXXXXX 

XXXXXXX - ZERO FILL 

27 



TABLE B-II - NEn~ORK DIRECTORY 

HORD CONTENTS 

59 I 58 - 56 155 - 46 I 44 - 45 1 44 - 0 

1 NETWORK IDENTIFIER WORD 1 

2 NETWORK IDENTIFIER WORD 2 

3 NETWORK KEY (ADDRESS POINTER) 

4 DEL I BLOCK TYPE I N I ~1 I xxxxxxx 

5 NETWORK IDENTIFIER WORD 1 

6 NETWORK IDENTIFIER WORD 2 

7 NETWORK KEY (ADDRESS POINTER) 

8 DEL I BLOCK TYPE I N I ~1 I XXXXXXX 

9 NETWORK IDENTIFIER 140RD 1 

10 NETWORK I DENTI FI ER WORD 2 

11 NET~JORK KEY (ADDRESS POINTER) 

12 DEL I BLOCK TYPEI N I M T xxxxxxx 

• 
• 
• 
• 
• 
397 NETWORK IDENTIFIER WORD 1 

398 NETWORK IDENTIFIER WORD 2 

399 NETWORK KEY (ADDRESS POINTER) 

400 DEL I BLOCK TYPEI N r M I xxxxxxx 

XXXXXXX - ZERO FILL 

28 



TABLE B-III - NETWORK DATA SETS 

1 st \,Iord X (1) 

Block Type 
I (1 - 5) X (N * M) 

Free Space 

Last Word 

1s t ~Jord Y (1) 

Block Type I Y (N * M) 
(1 - 5) Free Space 

Last Word 

1st Hard Z (1) 

Block Type I Z (N * M) 
(1 - 5) Free Space 

Last Hard 

29 



REFERENCES 

1. Carmichael, R. L. and Erickson, L. L.: PAN AIR - A Higher Order Panel 

Method for Predicting Subsonic or Supersonic Linear Potential Flows 

about Arbitrary Configurations. AIAA Paper 81-1225, June 1981. 

2. Sidwell, Kenneth W.; Baruah, Pranab K.; and Busso1etti, John E.: 

30 

PAN AIR - A Computer Program for Predicting Subsonic or Supersonic 

Linear Potential Flows about Arbitrary Configurations Using a Higher 

Order Panel Method. Vol. II - User's Manual (Version 1.0), NASA 

CR 3252, May 1980. 



12 Government Accession No 3 Recipient's Catalog No 1 Report No 

NASA CR-1658ll 
4 Title and Subtitle 5 Report Date 

PAN AIR GEOMETRY MANAGEMENT SYSTEM (PAGMS) - A DATA-BASE 1--_.J..l.\.L}No)v=embl..!;;..Ler....!.1..::!..:98~1 ___ ~ 
~1ANAGEMENT SYSTEM FOR PAN AIR TYPE GEOMETRY DATA 6 PeriormlnQ OraanlzatlOn Code 

7 Author(s) 8 Performing Organization Report No 

Jon F. Hall 
1-_________________________ ---110 Work Unit No 

9 Performing Organization Name and Address 

KENTRON INTERNATIONAL, INC. 
Hampton Technical Center 
an L 1V Company 

11 Contract or Grant No 

NASl-16000 

~~Ha~mwnD~t~own~.V~irw·q~lunui~a~~2~36~6~6~-----------__ ~ 13 Ty~ of Report and P~lod Cov~~ 
12 Sponsoring Agency Name and Address 

Natlonal Aeronautics and Space Administration 
Washington, DC 20546 

15 Supplementary Notes 

Langley Technical Monitor: David S. Miller 

16 Abstract 

Contractor Report 
14 Sponsoring Agency Code 

505-43-23-02 

A data-base management system called PAGMS (Pan Air Geometry Management 
System) has been developed to facilitate the data-transfer in applTcations 
computer programs that create, modify, plot or otherwise manipulate PAN AIR 
type geometry data ln preparation for input to the PAN AIR system of computer 
programs. PAGMS is composed of a series of FORTRAN callable subroutlnes which 
can be accessed directly from applictions programs. Currently only a NOS 
version of PAGMS has been developed. 

17 Key Words (Suggested by Author(s)) 

PAN AIR, data base, 
18 Distribution Statement 

geometry, data-base management FOR NASA AND NASA CONTRACTORS ONLY 

19 Security Classlf (of this report) 

Unclassifled 
20 Security Classlf (of this page) 

Unclassified 
21 No of Pages 22 Price 

32 



End of Document 


