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r 1. INTRODUCTION and SUMMARY

The principal purpose of this task was to determine the optical

figure changes of a fused silica mirror, mounted in an aluminum

structure, at temperatures of 30 kelvins or less. The test arrange-

. ment included a tangent flexure mounting and conductive thermal

connectors chosen to be viable candidates for a flight-qualified

telescope system. The test cycles were successfully executed, and

mirror temperatures as low 12.8 kelvins were attained. Unpredicted,

but in retrospect not unusual, local figure irregularities were

observed. They correlated perfectly with the core configuration

of the lightweight mirror. These irregularities are almost certainly

a result of thermal flux from the large, warm, observing window.

Although the window emittance at wavelengths longer than 5#m had been

reduced by a multi-layer metal-dielectric coating, calculations based

on its measured reflectance indicate that it is radiating a total of

25 watts into the test chamber.

The worst case mirror surface varlations from a true sphere

amounted to 0.28 waves rms at a test wavelength of 633nm, or 0.181sm

rms. We orig tally reduced our data on the basis of differencing room

temperature and cold mirror interferograms. However, we further dis-

covered that the mirror surface was moving quite rapidly during our

observation, and temperature data indicated that large thermal fluxes

are present. We believe that any changes which might be ascribed to

material property inhomogeneity are engulfed by the thermal gradient

deflections which develop in a matter of seconds during the optical

observation periods.

The thermal flux boundary conditions of our tests have proven

tc b- much more severe than those expected in the SIRTF operational

environment. The value of our tests lies in a demonstration that

solutions for conductive cooling and mounting of a fused silica

mirror in an aluminum structure for use at 10 kelvins are close at

hand, and that the ultimate design of component and telescope system

testing facilities for SIRTF will require very close attention to
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all details of the thermal boundary conditions imposed. Further cryo-

genic testing of fused silica mirrors, freed from the restrictions and

boundary conditions of these tests - an existing mirror fitted into

an existing test chamber - appears well ratmumded.

Some failures of the thermal connectors recommend design refine-

ments and further breadboard testing of such components. More precise

*experimental characterisation of the effect of structure deflections

acting through the mount flexures to produce mirror figure changes is

desirable.

The mount design appears to have performed as expected, with no

evidence of any failure or malfunction. Forces transmitted through

the mount as a result of differential expansion between the mirror and

mounting ring primarily affect the cylindrical and "tricorn" (20 and 30)

mirror defloctions. Both absolute values and differences in these

deflections remained below 1 wave peak-to-valley (at 633nm) in all

cases examined.
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f	 2. 3TATEMENT OF WORK

Paragraph 2.1 and 2.2 are quoted verbatim from the contract

document.

2.1 SCOPE AND PURPOSE

The contractor shall provide the personnel, materials,

and facilities needed to evaluate the capability of a light-

weighted fused silica mirror to meet the following goals:

1. Hold figure at cryogenic temperature

2. Be mounted so that differential expansion effects at

cryogenic temperature will not exceed the required

figure tolerance.

3. Be cooled to uniform temperatures across the mirror

at operating temperature.

The contractor shall provide the demonstration program

described herein, using a test mirror selecte4 so that the

results can be applied to a 1-meter-class telescope.

2.2 TASKS

The contractor shall perform the following:

	

2.2.1	 Define an optical system that will meet the performance

requirements of the Shittle Infrared Telescope Facility (SIRTF)

contained in specification 2-27981 attached. Deviations from

specified mirror requirements shall be - permissible to take

advantage of fused silica capabilities. Derive an overall

system optical tolerance budget intended to achieve diffraction-

limited performance at 2µm wavelength at 10K temperature, and

assign the tightest tolerances that are feasible, within current s

proven technology, to the primary mirror. Convert this require-

ment to an rms surface figure error requirement for the mirror.

The optical design and the tradeoff: that support its selection

shall be reviewed with ARC at or prior to design review.

	

2.2.2	 Show analyti.:ally that the selected Itsk-Herasus IR&D mirror

can be used to evaluate the capability of a fused silica mirror

4
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for use as a SWF-size primary mirror, based on the tolerance

budget from Task 1.

	

2.2.3	 Design mounts and heat exchange provisions (using conductive

and radiative cools :=e, for the test mirror. The mounts and

heat: exchange provisions shall be analytically shown to allow

the mirror to meet the figure requirements assigned by Task 1,
and to be sealeable to SIRTF size.

	2.2.6	 Modify the test mirror as required. Fabrication .if the

test mirror shall use proven techniques applicable to SIKTF.

	

2.2.5	 Fabricate the mounts and heat exchange previsions designed

in Task 3.

	

2.2.6	 Assemble the mirror and mounts onto an aluminum test fixture

representative of the telescope, and make interferograms at

a suitable wavelength to ascertain that at roost temperature

the surface figure error with optical axis horizontal is 0.04#tm

rms (equivalent to diffraction limit at 2tim).

	

2.2.7	 Using the same test fixture and a comparable test setup the

mirror shall be cooled at 30K or below, and interferograms shall

be made. The mirror will be cooled as much below 30K as is

reasonably achievable, with a goal of 20K. Data taking will

start at as low a temperature below 30K as is reasonably achievable

for each data taking sequence i.e. start to adjust focus and take

interferograms at or below 30K. (Each data taking sequence of

focus adjust and interferogram taking is estimated to require

5 to 6 minutes.) The figure changes due to cooling will be

determined by comparing the resulting interferograms with the

room temperature interfsrograms. The cycle from room temperature

to 30K or less will be repeated once. Mirror temperature uniformity

'	 shall be estimated from smoothed temperature-time data at a few

mirror locations.

	

2.2.8	 Compare the analytical and test results for predictability

of mirror performance. Describe any additional figuring necessary

to achieve the required figure at low temperature.

5
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2.3 	 S

Two additions to the statement of woft. both representing
own increase in the scope of the work were ice.

2.3.1	 Ameadoent of Februaty 1982

Upgrade the lox temperature thermometry on the used
silica mirror and cooling tin_ k to the mechanical cooler by use

of silicon diode sensors.

Verify proper operation of the mechanical cooler with the

improved thermometers in an offline test prior to initiation of

the mirror test sequences.

2.3.2	 l endm -t of May 1983

The contractor is directed to stake and analyse a real-time,

video retard of test interferomtry. A continuous measurement

in real time of the optical properties of the Itak/Berasus

fused silica test mirror at cryogenic temperature is needed to

evaluate, in at least one case, the transient in optical per-
formm ee under the thermal load cbuditions existing in this

test.

3

6



Our tolerance analysis of a nominal 0.85a aperture, f/24

Ca.asegrain telescope with a central obstruction of 402 linear

obscuration, together with some results of our study of the Teal

Ruby telescope system then under construction, were used to con-

struct the wavefront error budget shorn in Figure 3-1. This budget-

-	 establishes, on a bottom-up basis, our best current estimate of

the errors anticipated in a fused silica SIRTF telescope toleranced

r	 for diffraction-limited performance at gum. For the primary air%=

we have computed an error for a temperature soak from room t 	 a

to 10 0K. The value shorn assuess no cold null figuring and is baud

an a scaling of previous cold test results for a 72-in. ULE mirror.

Kota also that if the mirror has a front-to-back expansion coefficient

variation there will be a focus change when subjected to the tesgera-

ture offset from room temperature to 101 . For a 10 -4/K

differential expansion we would experience up to 0.2-in. of dafocus

in the image plane. This is of no consequence to telescope operation

since a mean focal position would be established experimentally.

Variations about the mean temperature are accommodated in the "differ-

ential soak"'form.

Axial/radial gradient and mount errors coming from differences

in expansion between the mount and the mirror substrate for differ-

ential expansion coefficient effects within the mount proper) were

established based on the Taal Ruby analysis.

The axial gradient value of 0.08 wave represents approximately
It	

1/8°C allowable axial gradient on the primary mirror.

Secondary mirror errors have boon sat at one-third those of

the primary based on Teal Ruby ezpartence.

Error sources on the reflected

have been established as equivalent

for first-cut budget purposes. The

ponent are likely to be more severe

here.

I em from the beam splitter

to those of the secondary mirror

affects on the refracting con-

, but have not been addreszed

7
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The thermal error sources entitled "mirror structure mismatch

and differential soak" represents the degree of athermalisation of

t a telescope at its operational cryogenic temperature. Thus

although the telescope is focused for operation at 10K , swings

around 10'10 coupled with any differential expansion between the

mirror and the structure will result in defocus and other wavefront

errors. In this error source we have also included the effects of

the front-to-back expansion coefficient variations within the mirror

•
	

structures as cascaded with an estimated t 5K temperature variation

as well as the minor effects of radius changes due to uniform expansion

r	 within the mirror substrates.

When one totals all of that error sources associated with the

primary mirror, we find an rms wavefront error total of about 0.13A

(to 0.15A, as a function of gravity deformation) . Thu, for our

demonstration mirror we planned to detect changes of 0.05 to 0,07

wave of tha n o-optically induced i 	 9 ity error froym room

temperature to 10K out of error totals of 0.15A rms WIT. Test

1	 accuracies of 0.01 to 0.02A no were expected.

9



4. TKST ARRANGSiilT

A critical understanding of the probable performance of fused
silica as the SIM primary mirror material was determined to require
optical surface evaluation of a mirror that is:

1. Moderately lightweight

2. Representative of current fabricat- I.on technology
3. Not far different in scale from the expected SIRTB aperture,

which may approach La.

4. Supported in a structure that sinulates an aluminum telescope •
structure.

S. Tested at a temperature of 30 K or colder.

Itek Optical Systems had already undertaken a joint IRU effort

with Beraeus-Amersil for construction of a 26-in., diameter mirror

for evaluation of the combinatior. of Itek's numerically controlled
machining of fused silica and the Rerseus-Amersil expertise in are

i	 fusion of silica. In addition, Itak determined that an existing

thermal-optical vacuum test chamber, having a liquid nitrogen shroud

and a Cryo-Torr Model 20 cryo pump, could be modified for lower-

temperature operation and would accommodate the 26-in. mirror. This

test chamber has a high-quality BK-7 observation window with a 34-in.

diameter clear aperture. With the cooperation of Heraeus-Amersil,

and the agreement of Itek management that the chamber modification

represented a prudent capital investment for future needs, we were

able to structure the total evaluation effort.

The design and construction of an additional, helium cryostat-

cooled, thermal shroud for the test chamber presented some practical 	 +

problems in fitting it and the mirror mounting details between the

26.5-in. major mirror diameter and the 35 -in. inner diameter of the

existing liquid nitrogen-cooled shroud. At the same time, we had to

minimize parasitic heat leaks to the shroud and mirror and ensure

good thermal contact between all parts of the shroud and to the mirror.

The achievement of practical cool down times, and the reduction of

• thermal gradients when stable test conditions were desired, necessitated

careful analysis of all the thermal boundary conditions expected.

10
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I

For example, we found that the moat critical boundary condition fo.

the optical tests was not direct radiation from the window to the

mirror, but radiation to the inner surface of the shroud then conduction

through the shroud and mirror thermal eonauctore to the rear surface

of the mirror. Subsequent consideration also indicates that the energy

reflected to the open annulus left between mirror and shroud, then

.absorbed at the uncoated side and rear surfaces of the mirror is an

additional perturbation. Multiple reflections in the mirror-window

optical cavity also contribute to this transfer path.

Conductive connections to the mirror are needed because radiative

'	 cooling of the mirror mass to temperatures mach below 1001< leads

to impractically long cooling times. At 3010, black body radiation

to a Ox sink requires 15 hours to reduce the temperature of a lem

thickness of fused silica by 1X.

A final critical item in the test arrangement was the detailed

design of the mechanical connections between the mirror and the

aluminum auxiliary shroud used to simulate the ultimate SUffF telescope

structure. Here we copied from the tangential flexure leaf, flexural

pivot connection used in our Teal Ruby telescope but wing aluminum

throughout in place of 1 rer. We fortunately included a breadboard

test of this tubstitution. Modification and retesting, as detailed

in Appendix	 indicates the.t the combination of an Invas pivot and

an aluminum leaf, plus the su of a poly+;rethane adhesive formulated

for cryogenic use, provide a satisfactory solution. Design details

for the oeprational system remain to be optimized by further tasting,

however.

our experimental approach is summarized in Table 4-1, and a

sehematte of the test arrangement is shown in Figure 4-1.

.
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Table 4-1

SIRTF Optics Development Experimental Approach

Test Facility

- Modify existing thermal-vacuum test chamber to provide

secondary shroud cooled to 10 to 20 K 34-in. diameter

window aperture available.

Optical Test Configuration

- Finish mirror to smooth sphere of 175-in. radius, test

at center of curvature with laser unequal path interferometer

(LUPI). Concurrently test window by observing interference

between front and rear surface reflections of a collimated

beam.

Mirror fount

- Tangent flexures designed to introduce less than 0.02-a

wavefront error on cooling of aluminum fixture and silica

mirror

Mirror Cooling

- Copper braid, Invar buttons soldered to vacuum-evaporated

chromium-nickel film on mirror backplate

- Liquid nitrogen, then helium-cryostat cooling of copper

heat sink plate behind mirror.
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As the mechanical design developed, and estimates of the

dimensions and mass of various parts could be made, a thermal

mathematical model, including the variations with temperature of

the conductivity and specific heat of the components, was assembled.

System cooling was programmed as a two-stage operation. In the

first stage, liquid nitrogen would be supplied to the outer shroud

and the rear plate of the inner shroud. In the second stage, as

the system approached 80K , the rear plate would be purged while

maintaining the liquid nitrogen supply to the outer shroud, and

the cryostat would be put into operation. Component dimensions and

masses were updated on completion of the manufacturing drawings, and

the analyses rerun.

Results of the thermal analyses are included in Appendix A.

The breadboard design verification tests undertaken to prove out

the mount design, mirror thermal conductor design, other thermo-

mechanical aspects and cryostat operation are described in Appendix B.

Details and comments on the temperature instrumentation are

included in Appendix C.



Liquid nitrogen first stage cooling was begun at 10:45AM on

March 2, 1983. After 22 hours of operation, the inner shroud and

mirror had reached near steady state temperatures of 89 and 93K,

respectively, and cryostat cooling was started at 9:30AM on March

3, 1983.

Representative interferograms of the mirror plus window (one

fringe - 1/2 wave surface displacement) and of the window alone

(one fringe - 1/2 (n-1) n = 1/6 wave equivalent mirror surface dis-

placement ) at room temperature* and with the mirror at approximately

13K are shown in Figure 5-1 (a-d). Temperatures indicated by the

four silicon diodes on the mirror surfaces appear in Figure 5-2.

The most striking feature of these interferometric data, visible

in Figure 5-1c and shown in more detail by the contour plots generated

by digital data reduction, is the localized irregularity evident

all around the outer area of the mirror. Figure 5-3, a surface

contour map with 0.1 wave (633nm) contour intervals (heavy lines

representing hills) illustrates these features. The hills correlate

precisely with the hexagonal-celled structure of the mirror core.

Further details of the reduced data are presented in Appendix D.

The silicon diode data show that the mirror temperature, at

the rear surface and mid-point of the circumference, is rising quite

rapidly - up to 0.6 kelvins per minute. Our curiosity eventually led

us to examine the difference in two interferograms taken at 17:19:40

and 17:21:08, i.e. separated by one minute, 28 seconds in time on

March 4, 1983. The contour plot resulting from this subtraction is

shown in Figure 5-4. Here the contour interval is 0.25 waves (633nm);

the data show that some of the hills rise, while others recede. The

rms change in the surface is also striking, showing that the change

occurring in little more than a minute approaches the magnitude we

might have interpreted as the change incurred by the temperature

*As shown in Table D-1, Appendix D, the room temperature figure of
the mirror, as mounted in the test chamber and under vacuum, was
O.10um rms, compared to a desired value (para. 2.2.6 above) of 0.04um
rms. This "baseline error" is still readily subtracted, however.

15



excursion alone. (Although the magnitude and character of the room

temperature to cold differencing were markedly different from our

expectations.) Further discussion is deferred to Section 8 below.

16
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ô ^
3 O .r

Z !-
Q Q

ne

c E

w
F--

c/n

ORIGINAL PAW J*
OF POUR QUALITY

17



z
2E

0
w ww
w I—

z
a

J W ^„^

O ~E ^
3 0

S o
cr-

3 Q

N

ORIGINAL PA GE 1!t
OF POOR QUALITY

18



d ^^
^l	 =
r

0 0

ao ^

V

L-

wu-
w
z

w

3 w
a ^

D	 u7z w
¢ F-

^ 3
G G
^ J

ORIGINAL PAGE 15

OF POOR QUALITY

19



f w
C:7 ^

W wW a
w w
Z

O
> J
J
Z F--O Q
3 aCO
Z ^
3 ^
LL-'---
C'

V)

.d

lC^

URIWINAL FAui iS
OF POOR QUALITY

20



Iq
^^ t

^t

1 /3

vi

V-

BY:	 TITLE: ^,^/trr T > 7^i> PAGE:

DEPT:	 DATE:	 /3;.30 - 16 :3^ /fo^/^, -31YIi-3^ I PROJECT:

ORIGINAL PAGE iS
OF POOR QUALITY C41YYG ^wde	 ^o`^ or, o.^

0 ^Wb/ 6 /Pea ; fie., {u

©	 ^4gyf	 /t'ear^ (^ 0G o C-4- earP"I e-

O / 1f 7 F 1

® Q .^^^o Mid-s/^^ ^ o 'ciouc

^cr^P^a

l^

1 1s 	 _t

/Z
	 Lbor^ o^^----^	 Door's c%sea/

a

Tin e- — /6-, 3o /v 16 : 3 o /i 03/7 / 3/5`/t 3

Figure 5-2a	 21

E 103 REL 6/66 ENGINEERING ANAL^SIS SHEET



II O

O

1O

BY:	 TITLE -/,y^,^ 	 PAGE:

DEPT:	 DATE:	 /x:90 -/P,"do hrs -Ny ,P`3 PROJECT:

6/1G	 x//)/a G/G 14p44xdn err ^/To/'

© ^ y7^/ ^es^; 9 o c%ck^ new ^ af'

ORIGINAL Pd1,, ,- is rZi

OF POOR QUALM

Ilk

^CmPE^ 7^i/^ ^=E1vi.^J

c^

3	 I

	

Loos oe-Dn e d-	 Doa/s c%.s e-0/

^z

Mme

	

J	 i

22 —I
Figure 5-2b

I0J NCL I/N CNGINCCRING ANALYSIS SMCCT

I

i



CSFROB87 OPTICSGO 13 M53M12 83.111	
PLOT NUMBER 7

SUBTRACT	 SUBTRACT MINUS SUBTRACT
1

NONE	 (G)	 RMS	 0.26	 PKTPK	 2.03	 FRED	 SCALED

ORIGINAL P/,OE fS
OF POOR QUALITY

TOP

I

a	 r ^^

P.^o
	

04	 a	 o	 ^^=-

;tww

Figure S-3

23



ORIGINAL PACE FS
OF POOR QUALITY

ISF RD056 0°TICKO '09 . 59-:22 63.13^
	

Ft 0T , 	 p
	

U

SUBTRACT
	

W.634093 MINUS COW035

1

	
f	 _

:ONE	 IG)	 ;Rm3
	

0.15	 ?KTFK	 1.78	 FR:O	 SCR! E0

	

70P	
-

i , o ÔL^
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6. RESULTS - SECOND COLD C'{CLE

Much of April was spent in reviewing the data collected in cur

first cold test sequence and discussing possible changes in test

procedure which could improve our understanding of the thermal boundary

conditions of the test. As a result, a contract amendment directing

us to "make and analyze a real-titre, video record or test inter feromec*ti•'

was issued.

The second cold tESt sequence was initiated on 16 May. Cooling

proceeded at a somewhat slower rate than in the first test (approximately

8 hours .Longer to reach a mirror temperature of 15K ), and at 8:50AM

on 19 May we first at*.empted t) obtain a rapid sequence of Polaroid

photographs of the interference pattern without adjusting the inter-

ferometer between exposures. Only the first of these provti useful.

the returning wavefront from the mirror apparently moving out of

register with the reference wavefront in the interferometer. T',is

one photo, however, was substantially identical appearance to those

of the first test sequence, and we then rearranged the test. set-up

for video recording of the interferometer pattern.

Some preliminary adjustments of the system were recorded at

10:39 and 11:15AM. After further allowa,.ce for thermal stabLlization

additional recording was done at 2:16 and 4:05PM. We attempted to

preset the interferometer and video camera at focus through small

holes in the thermal doors, but vibrations and drift during door

operation required interferometer readjustments and prevented

immediate recording of a fringe pattern as the doors were opened.

l, was noted that the structure-correlated irregularities in

the mirror surface, previously confined to the out-r area, now

appeared over the entire surface In the final two test sequences.

We jud-ed tt.at some individual frames of the video record .Mould be

suitable for data reduction, i.n snite of significant A bration and

wander of the fringe pattern, and passive warming of the ysteni was

stared.

Post-test attempts to obtain single frame prints from the video

tape have not yielded interferograns well-suited to digital data

25	 i



^	 reduction, even though digital image processing was tried for removal

^)	 of a quite noisy background from scatter and reflections in the video

camera lens. Figure 6-1, a best focus, zero wedge fringe pattern

captured during the 2:16PM test, provides the best available subjective

picture of the mirror deflection (one fringe = 316nm surface deflection.).

The thermal doors and "window shade" remained closed over night.

At 9:01AM on May 20, a condensation pattern over part of the mirror

was fount, and an interferogram of the clear areas was recorded. At

the time, the mirror temperature was about 160°K, and-the thermal doors

and "window shade" were left open to accelerate warming. Later (5:27PM)

observation revealed condensation over the entire mirror, producing

the scattering pattern shown in Figure 6-2. The scattering is more

pronounced at the rib locations, indicating that these areas are colder

than the face plate areas over the open cells of the mirror.

A final interferogram was made on 23 May, with the systems still

under vacuum, but stabilized at room temperature (as indicated by

thermocouple records).

v	 Appendix Eis a data summary for tfiis second cold cycle. Fringe

reduction data and con*_- •+r plots for the interferograms of 8:56:05 on

5/19 and of 5/23/83 are included there, together with the temperature

time histories of all data sequences of 5/19/83.

1!
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7. RESULTS - POST-TEST INSPECTION

We removed and inspected the mirror-flexure-aluminum ring assembly.

A number of failures of the thermal conductor connections, indicating

that the current design details of the soldering of Invar buttons to

evaporated chrome-nickel-gold spots on the mirror may be marginal for

the ultimate flight system. We had previously repaired some failures

of these connections in initial assembly by direct ultrasonic soldering

to the glass using an indium-tin eutectic. A total of 34 connections

(out of 120) were thus repaired, 16 of these were noted as failed on

disassembly, and an additional 4 came loose under light finger pressure.

Of the 86 connections made to the evaporated spots, 2 were pulled off

during disassembly, 12 were noted as having failed, and of the latter,

2 failures were fractures in the glass, not the joint. We have thus

not demonstrated a complete solution to the thermal conductors needed

for SIRTF, and further breadboard testing, possibly including combined

!	 low temperature and vibration testing, appears recommended.

Visual inspection of the flexure-mounts has shown no evidence of

any damage or malfunction.
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S. DISCUSSION AND CONCLUSIONS

As noted in Section 5 above, discussions following our design
review had anticipated some perturbation of the mirror by the heat

flux from the window, via the shroud and conductive paths to the rear

surface of the mirror. On the basis of the more localized surface

deflections seen on most of our interferograms, we believe that direct

and multiply reflected radiative transfer from the window to the

edge and rear surface of the mirror is also a significant factor.

Some exploratory calculations show that this mechanism is plausible,

but since our temperature data are limited, we have not been able to

provide a detailed analysis of the mechanism causing the localized

deflections.

The first observations supporting our speculations on the

thermal boundary conditions at the mirror surface result from a

differencing of successive interferograms taken while the thermal

doors on the inner shroud remained open (FRED Summary Sheet Serial 058,
Appendix B). These show that the mirfor surface changes, over a period

of one minute, were nearly equal to the differences between the first

interferogram taken and the surface contour at room temperature.

Temperatures indicated by the silicon diodes attached to the mirror,

in the same time period, were changing at rates as high as 0.6 kelvins/
minute. In spite of our provision of small holes in the doors to

permit pre-focusing of the interferometer prior to'door opening, we
found that it required 60 to 90 seconds after full opening of the

doors to adjust the interferometer and record the first fringe photo-

graph. With some further consideration of the possible time scales

of mirror response, this led us to the attempts, during our second

test cycle, to obtain fringe data on video record as the doors were

opened. Again, in spite of prefocusing, the wininum delay achieved

between door opening and an even marginally readable fringe pattern

was approximately 30 seconds.

To estimate the time required for at least localized thermal

Qdeflection equilibrium (not necessarily temperature equilibrium or

even quasi-steady state) we examined the use of a thin slab, heated
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from one side. The temperature for this one dimensional case is

given by*:

T - temperature, K

F = heat flux at x=Z, W/m2

,e slab thickness, m

.k thermal conductivity, W/m-K

thermal diffusivity, ms/sec

t time

The curvature, 	 induced by this temperature distribution may

be calculated fromt:
i

T

'die

0

Yielding
a 

^ ^ 	Z^^,^
_ 96

* Carslaw, H.S. and J.C. Jaeger, "Conduction of Heat in Solids", 2nd
Edition, Clarendon Press, Article -T-8, para	 q.	 a solution
is strictly valid, of course, only for constant k and K.

t APPLIED OPTICS, 5, 5, 701 (May 1966)
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O We see that as time increases, the temperature approaches a

quasi-steady state, parabolic in x, and uniformly increasing in time,
while the curvature approaches a constant value more rapidly because

of the (2m-1) compared to (n) summation.

For a 5mm slab (the mirror faceplate thickness) of fused

silica at 13 kelvins (c-6.63 10 -1) and t-1 second, the summmed terms

yield the value 0.072. That is, 93Z of the asymptotic value of the

deflection of a 5mm section will occur within one second. For the

full thickness of the mirror (0.1m), the (1-1/e) response time is only

2 1/2 minutes.

With respect to potential radiative transfer from the window

(at 300K) to the unaluminizad, and therefore quite black at 10um.

sides and rear surfaces of the mirror a number of paths are available.

We had coated the inner window surface with a five-layer metal dielectric

coating giving the following measured reflectances:

	

Sum	 0.94

Q	 9um	 0.93

	

llum	 0.92-

12.510 0.905

	

15um	 0.88

	

20Ua	0.92

	

30um	 0.87

	

40um	 0.82

Integrating this times the black-body curve for 300 Kelvins yields an

effective emissivity of 0.094. The total radiation from a 34-in. window

aperture is then calculated to be 25 watts. About 1/4 of this will

pass directly through the thermal door opening, and some smaller

fraction goes directly-to the approximately 2-in. annular opening

between the edge of the mirror and the aluminum mounting ring. A num-
ber of multiple reflection paths also exist, however. Reflections

between the outer MLI covering of the internal shroud and the window,

and grazing incidence reflections from the inner surface of the shroud

may contribute significantly. A rudimentary ray tracing shows

that multiple reflections between the test mirror and window will also

direct much additional energy just outside the mirror edge. With window

32



and mirror reflectances of 0.9 and 0.98 respectively, those rays

required to make 5 round trips still retain more than 1/2 their

original energy density.
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oA direct observation of net heat fluxes to the mirror is provided
by the silicon diode data, since the heat conduction equation may be
written as:

div q - a CT

when q is the not heat flux to an elemental volume and pCT is the
enthalpy per unit volume. One should question whether the.heat

capacity of the diode itself or the material to which is is attached

should be used here. We have tacitly assumed, that over our sampling

times the diode temperature represents a substrate volume with a larger

heat capacity than its own, and have thps used the pC property of

fused silica for the mirror diodes, and of aluminum for the one attached

to the shroud tube. The results of these calculations of ( PCT)/at are

presented in Table 8-1. We were limited to four automatic recording

channels for the diode data. In order to obtain some data on the

shroud behavior. we switched one crazmel, after the first observation

made on May 19, from the mirror rear center to the diode mounted on

Q
the inside of the shroud tube, near the mirror mount ring. Since the

temperatures, and overall heat flux levels varied, we.also show the

indicated heat flux. values relative to the rear 6 o'clock mirror

position in parentheses.

We make three observations from the relative flux data of

Table 8-1:

a) the flux to the mirror center is lower than to the edge,

consistent with less efficient paths for both radiative and

conductive transfer from the window.

b) with one exception, the relative flux at 9 o'clock became 	 .

smaller follwoing completion of the first observation

sequence - this perhaps correlates with the subsequently

discovered higher incidence of thermal conductor failures

in the 9 o-'clock area of the mirror.

c) a larger heat pulse occurred during the observation at 11:12AM

on May 19 (intended for video checkout, rather than serious

Ginterferometry). The cause has not been established, but the

higher relative flux values at the mirror edge and side, and

lower value for the tube G—upared to later runs) suggest

34
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r'1 that the radiation transfer we increased in this case.

^J	As a final first order quantitative estimate, if we assume that
a value of a(PCT)/ 3t of 600 J/m l -s results from flux to one side
only of a Sams slab, and that the quasi-steady parabolic gradient has
been established, then we have

	

a71	 x f^t
so

y.s,/d,►^	 ^T = 3 h//M L

The curvature induced is:

I(: et F _ e.rCro `1 t ^l : r, sr(a `1 ^"-,

	

^	 s ro.^>a
and over the 3.25 inch (82.6m) diameter of the calls of the mirror
core, a total deflection of 5.3 i20 -9 )m (0.008 waves at 633um) mould
be produced. This is roughly two orders of magnitude below the observed
intracellular deflections. Part of the discrapancy may lia in the diode
locations, which are closer to the edge ring than to the center of tba
cells. We do not feel, however, that ire have developed a full , under-
standing of the mechanisms causing the observed deflections. We
retain, howevar, a strong conviction that they are not caused by
inhomogeneities of material properties, poor fusion, or other mirror
blank imperfections.

Although our test results have revealed some short comings in
precise control of thermal flux boundary conditions, and a somewhat
unexpected speed of response of the thermal bending of the mirror,
we have shown that our conductor and mount designs are at least
marginally acceptable for operational use. The results may, in fact,
be preferable to complete, unequivocal success, since we would then
have no information about the possible level of over-design . present.

O	 36
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3

Two -Items of engineering development suggest themselves

immediately. The conductor failures recommend a study of design

modifications, such as the use of the flexible polyurethane (used

in the mounts) as a bonding agent - a metallic bond is not really

necessary. Breadboard testing of such modifications should include

concurrent exposure to low temperature and vibration environments.

Secondly, our results cannot separate mirror deflections caused

directly by the thermal environment from those which may be trans-

witted through the mounting flexures. Thus a series of tests of the

mirror deflection response to controlled deflections of the mount ring

would provide a needed better knowledge of mounting effects.
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The system thermal model is shown in Figure A-1, and the thermal

analysis results for the two-stage cooldown are shown in Figure A-2.

In the second stage (cryostat cooled) the shroud tube and thermal

door temperatures are quite close to that of the primary mirror.

We estimated that the total time required for cooling from 293 to

20K would be 24 hours .* The elements of a steady-state cryostat

load at 20K of 1.332 W are shown in Table A-1. The design

capacity of the cryostat at 20 K.is 9 to 12 W= thus we believe

overall thermal design was conservative, and the 20 K goal should

be achievable.

*Actual test operations required SO to 60 hours to bring the

mirror temperature below 20 Kelvins.

^	 Mme: ^^risciee y.^trtial
s

I Primer? rirror ruaad silica
2 Mirror saitl 1100 aluml.rrim

Mirror Conductor P1a:a Capper
4 11 upa 1100 41401PAW
3 Al orture and. door/ 11N1 aluminum

6,7 lr"d CzPW
Crraotat. CZl 1020
LX 2 Platt C&PMr

Figus'e A-1

Test Configuration System Thermal Model
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Primary mirror.	 4
I	 ^ 	 I

Kirror conductor
-: -	 plate

I

I	 t	 I

Cu cabling.
cryostat end I	 t

Cu cabling,;
^^— bezel and 4	 -
I

1	 !	 I	 ^_
C	 2	 4.	 6	 8	 10	 12	 16

Time, hours

Second stage cooling

Figure A-2

Thermal Analysis Results for Two-stage Cooldown

Heat Transfer Heat Load,
Source Mode watts

MLI Radiation 0.,61

Tripod	 supports	 (9) Conduction 0.418

LN;	 tubing	 (2) Conduction 0.489

Aperture	 (closed)
Shutter surface Radiation 0.219
Shutter edges/gap Radiation 0.023
Shutter holes

(four 2-in.	 diameter) Radiation 0.018

Shutter motor drive	 .'aft Conduction 0.096

Thermal	 instrumentation Conduction 0.108

Total	 he .̂ '-load	 at	 20 0 R, watts 1. 532
Steady-state condition

Table A-1

Steady-State Heat Load on Cryostat at TLSI Temperature
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During the early design review conducted at the NASA Ames

Research Center, a question was raised whether the estimates of the

focal shift of the fused silica mirror upon opening of the thermal

door had adequately accounted for all of the potential heat flux

paths. The radiative flux, from the chamber window to the cryostat-

cooled shroud, which is then conducted to the rear of the mirror, was

identified as a perturbation that had not been sufficiently analyzed.

Actually, two major changes in the thermal boundary conditions

necessarily occur when optical observation is begun--the thermal door

is opened, exposing the approximately 300K window to the mirror and

the interior of the shroud and, at the same time, the cryostat is

shut down to eliminate its vibration input.

These boundary conditions were applied to the system thermal model,

and all of the parasitic heat leaks we have identified were also

included. For an initial uniform temperature of 25K , the temperature

histories for nodes 1 to 4--mirror, bezel, copper plate for mirror

conductive attachments, and shrcud- -are shown in Figure A-3. The

results of this run also indicate that the heat flux through the flexures

to the mirror is (at a quasi-steady state) 0.032 W, compared to a

flux of 1.4 W via the conductive connection to the rear face of the

mirror.

Figure A-3	
ORIGINAL

 POOR 
PAQI 1&

 QUAIIn

f

-	 ---t

(	
^I

--- — 1-- Node
I

^

'

4--
i

Node 2
I

—

Node 3

I
Node 1 —{1 CK1—I

I	 I

I

35.1

33.7

Y

or 31.'
w
0

0
Y

29.

r

27.(

24.3
0	 0.10	 0.20	 0.30	 0.40	 0.50	 0.60 0.70	 0.80 0.90 1.0

Time, hours

k

Temperature Histores - Thermal Doors Open, Cryostat Off
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This latter conductive flux, and the previously modeled direct

radiation from the Window to the mirror front surface, were then
applied as time -varying boundary conditions to the more detailed
mirror model. The results, presented in Figure A-4, indicate that
an axial temperature gradient develops at a moderate rate but does
not reach a steady gradient in the analysis time of 1 hour.

33.E

33.7

31.5
a

s
r

29.3

it 1

27.0

z OK

1

11odt 9^

{	 ii

I3

Stede i
2i.•

0 0.10 0.20 0.30 0. 60 0.50 0.60 0.70 0.8	 0.90 1.0

:I". eou=

Figure A-4

SIRTF Primary Mirror Thermal Model

The principal result of this axial gradient is a change in the

overall curvature of the mirror. The change in the number of optical

power fringes. observed may be estimated as:

AN - e(node 1) - e(node 8) d2

( A/2)	 8 h

In the 0 to 40°R range, the thermal strain of fused silica is

closely represented by:

e(T) - (46 - 0.01125T 2 ) 10 -6

combining these relations, we obtain for our 26 -in. aperture, 3.5-in.-

thick test mirror

AN - 0.0192 (T8 2 - T12)

i
i

4
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The results (Figure A-5) show chat the optical power change

induced by the changed boundary conditions is sufficiently small and

slowly developing that it can be readily removed as part of the data

reduction process or by some slig:.t refocussing of the interferometer.

Perturbations from lateral gradients, which would require considerable

effort to model adequately, were expected to be much smaller than the

.few fringes per hour of this principal perturbation.

A

me

 Z--
0	 10	 20	 30	 :0	 50	 60

Time. minutes

Figure A-5

Interferometer fringe shift with

thermal shutter open (initial

temperature 25K)
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APPENDIX B

COMPONENT VERIFICATION TESTS
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e	 B.1 Flexure Mounting

An important goal is a demonstration that the mount design

is suitable for use with a fused silica mirror in an aluminum tele-

scope structure. Our mount design included a flexure pivot and

flexure leaf copied from Teal Ruby but sized, in aluminum, to

accommodate the differential expansion, radially in the pivot, between

aluminum and fused silica for the 293 to 20°K range without subjecting
either material to excessive stress. To check the design, we included

testing, by liquid nitrogen immersion, of a breadboard flexure assembly
prior to final assembly of the mirror.

A first breadboard of a fused silica boss, aluminum flexure

pivot, and aluminum flexure leaf was assembled with PR-1660 poly-

urethane adhesive.* The fused silica surfaces were left as generated

by a 150-grit diamond wheel, since our design was intended to keep

stresses low. After five cycles of immersion in liquid nitrogen, a

pair of localized fractures on the silica were found under each of

the four feet of the flexure pivot, at the pivot-silica bond. This

result is shown in Figure B-1--the fractures are ascribed to the

lateral shrinkage of the aluminum. Strong, noncompliant bonding of

a high-expansion material directly to fused silica is obviously not

recommended.=

In the belief that an Invar pivot would solve the problem.at

the glass interface and still be compatible with an aluminum flexure
leaf, we fabricated and assembled this combination using the same

adhesive. On the fourth immersion cycle an audible fracture occurred

following about 8 min. of slow immersion, about 20 sec after immersion

•	 was complete. In addition to a major fracture believed caused by

radial compression and stress concentration where the boss joins the

parent material, we found one small fracture having a morphology

similar to that caused by the aluminum pivot.

Additional fused silica test items were made up, and the
metal parts disassembled by an immersion in warm orthodichlorobenzene.

*Products Research and Chemical Corporation
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^.	 The following changes in the assembly procedure were then made:

1. The fused silica parts were etched in hydrofluoric acid

to ,remove approximately 0.005 in. from the as -generated
surfaces and

2. A polyurethane adhesive specifically formulated for cryo-
genic use was substituted (PR-1578- -its elongation at
tensile failure is 7 to 8% at 77°K).

The etching not only strengthened the glass, but also provided

a larger gap to be filled by the more compliant adhesive. Both the

aluminum and Inver pivot assemblies were made up slightly decentered

from the silica boss, so that adhesive layers of 0.003, 0.006 and

0.009 in. were present in both assemblies.

These assemblies were again tested by cycling into liquid

nitrogen, this time being held in the cold vapor for 1 hour before
immersion (although we had no evidence that thermal shock had been a

significant factor in the previous failures). The aluminum assembly

( again failed, on the first immersion cycle and with similar morphology,

as before. It does appear, however, that the severity of the fractures
is less for the thicker adhesive layers.

The-Invar pivot assembly was further tested by immersion in

liquid helium, and no evidence of fracture or debonding was observed.

B.2 Conductive Connectors

The copper braid conductive connections were proposed as an

Invar button and braided copper wire soldered to vacuum-coated chromium-

nickel-gold spots on the rear surface of the mirror. To verify their

strength and low-temperature survivability, we made up a number of

test specimens consisting of 1-3/16 in.-diameter, 1/4-in.-thick discs

of fused silica obtained from the residual core-drilled pieces of the

mirror we plan to test. To each we applied a 1/8-in.-diameter spot

consisting of successive layers of chromium, nickel, and gold by

vacuum evaporation. An Invar (and in some cases, copper) button,

previously soldered to the end of a length of braided copper wire,

was soldered to the coated spot, as shown in Figure B-2.
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	 After some preliminary trials, nine specimens were prepared

using different solders for the button-to-glass joint as shown in

Table B-1. All ware dead-load tested With 1 to 1.6kg loads, and

cycled five times into liquid nitrogen. One failure occurred in this

thersal cycling. Specimen nos. 2, 3, 4, S, and 9 were then tested

in (.ension using an Instron Universal Testing Maching with results as

summarized in Table B-2.

Table B-1

Breadboard Conductor Specimens

Spectsien Coating Dona Load
me. Batch Buttcn 5ra1A/gutton Button/Glass Test, kq	 Notaries

1 Trial Invar 60 Sn!40 ph	 60 Sn/40 Pb 1.06	 Separstee in fc^rt% Lisp
^v^I•

2 Trial Invar 60 Sn/40 Pb	 S2 In/%$ Sn 1.06	 D? not seen to wet ar
(wire) Well	 as	 60'1;10

3 No. Inver 60/40 60140 1.215

4 No.	 1 Ir.var 52!40 100	 Ir. 1.663
(croon)

No.	 I Inver 60/40 s0 In /1%ts/ 1.663
R At (cream)

6 No.	 2 Copper 50/+0 60140 1.663	 Patton off -ent•	 'f
rnati nf.	 ^r7ir,	 .1:t•i
Out

7 No.	 1 I.iv4r E•0 / 4e 52 : n /48 Sn See remarks	 Tried	 ti-. •.:n{ R:;F•
eireetlr. V,11N rf • ov
►'and.	 R•sttaehee	

•cOstwd spnt,	 hold	 '.663 ke.

B No.	 1 Copper 60/40 60/40 1.561

9 No.	 1 Copper 60/40 100 In 1.663
(cream)

All	 -\oort	 mix	 cr:!ltd
SX	 in Lk:.

No,	 t	 ,^jkilee	 on	 fc',rt^^
-v,.It.	 R1:	 -t4erf
!:rviv ad w W ^mot F•^;^Y•/

fir,^.	 yt^'e	 :H:4^ tC•
destruetler by tension cn
hreid.
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	 Table B-2

Instron Test Results

2peolaien Mo. Test Be. Tension Load
Reath", The Failure Mode,

2 1 8.9 Week at bend area

1	 1 20.0 No break

2 27.0 Break in braid at
grips

j 7 j1.S Be break

31.3 beak in braid at
grips

S 31.4 Break within Blass

4 1 20.8 Brook 1!1 broil 1,010w
button

S 1 20.4 Breok at bind area

! 1 23.' Break at % :.:i 0  9

The higher strength of the 60/40 solder joints, the fact that

even copper buttons so soldered survived immersion in liquid nitrogen,

and the somewhat batter wettability as compared to the indium solders

suggest that this most co=wr. electronic grade solder may be used

throughout conductive connections of this size. We speculate, however,

that connection of largas elements of high-expansion materials.might

fail, since the 60/40 solder becomes embrittled at about 180•x.

B-3 Cryostat-joint Conductance Test

An off-line test of a mockup of the cryostat conductor

connections was added to the contractually required tasks early in 1982.

Three purposes were served by this test:

1. Verification that the joint design would give good thermal

conductance &,-wn to 10'R

0	 2. Verification of cooling epaaeity of the cryostat we planned

to Use.

50
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3. Development of experience with silicon diode temperature

sensors and their comparison with thermocouple and platinum

resistance thermometer measurement.

The assembled mockup is shown in Figure B-3.

This assembly was enclosed in an aluminum cover, wrapped

with several layers of superinsulation, and mounted via the cryostat

externl flange to one of Itek's larger vacuum coating chambers.

Conductively coated mylar heaters provided an adjustable thermal

load. All test joints wore made up (as designed) with 0.005-in.-thick

pure tin washers in the joint and Belleville washers under the nuts.
Y

The assembly wat joined to the cryostat through an indium washer.

Three of the four test joints exhibited conductances of
1 Wjcm -K or more at 10 to 30 K. Data for the fourth joint appeared

anomalous as the test was run. On disassembly, we found that a steel

washer had been omitted, making the contact area of this joint much

smaller than planned.
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APPENDIX C

TEMPERATURE INSTrJMENTATION
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QThe temperature sensors used consisted of nine silicon diodes
(Lake Shore Cryogenics Model D500-Cu) and 37 Type E chromel-alumal
thermocouples. Of the diodes, five were manufacturer calibrated
and supplied by NASA Ames, together with two five channel constant
current power supplies. An additional calibrated diode was not used
because it gave erratic readings in our off-lina cryostat tests.
The remaining four diodes were uncalibrated diodes referenced to the
calibration of diode D 3880 using the data from the off-line cryostat-
joint conductance test.

The thermocouples were attached to a data-logger with direct
readout in Celsius of Fahrenheit degrees, with all channels recorded
automatically. The diodes were connected to a 4- channel printing volt-
meter reading to 0..1 millivolt. Manual switching was used to record
those diode signals not being read automatically. During the first 	 =
test runs the four diodes on the-mirror were read automatically..
After the first test of the second sequence, the diode attached to
the shroud tube was read in place of that on the center of the mirror
rear surface. Diode and thermocouple locations are listed in Table C-1.

The thermocouples develop substantial systematic errors at
temperatures below 50 Kelvins because of the low e.m.f. being generated.
They were thus used primarily to.track the first stage . (LN2) cool down .

and will not be reported in detail here.

Plots of the temperature-time.behavior.at selected points,'and
a discussion of their significance are included in the body of this

report.
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TABLE C-1

SIRTF Thermal Sensors

Silicon Diodes Sensor
# # Location:

1 D4866 Mirror, Center, Backplate

2 D4948 , Bottom, Backplate, 6 o'clock

3 D4781 , Left, Backplate, 9 o'clock
4 D3880 , Periphery, Right, 3 o'clock
5 D4780 Bezel, Inside, Right, 3 o'clock

6 Z6312 Cu Conductor Plate, Edge, Right, 3 o'clock

7 Z6306 Tube, Inside, Rear, Right, 3 o'clock
8 Z6307 Braid, Block at Bezel

9 Z6311 Cryostat, Cold Stage Flange

Thermocouples (3 Mil, Type E)

32 Adjacent to Diode 11

31 #2

33 #3

36 #4

34 Window, Inside Surface, at

35 9h" from	 at 6 o'clock
f

F

f

Thermocouples (30 Gauge, Type E)

1 Cu Conductor Plate, Center

2 Right

3 Left

4 LN2 Plate, Center

5 Right

6 Left

7 Tube, Inside, Centered, Right

8 Left

9 Forward,	 Right



TABLE C-1 (cont'd)

Thermocouples (30 Gauge, Type E)

10 Door Annulus, Inside, Right
11 Door, Right

12 80K Shroud, Centered, Right
13 Top

14 , Rear, Centered

15 , At FWD. Left Support

16 80K Door Shroud, Top

17 Copper Plate

18 Braid Flange, at Cryocooler End

19 , at Bezel End

20 80K Door Shroud, Bottom

21 Shade, Top

22 , At Optical Centerline

23 Window Bezel, Bottom

24 Top

25 Cho	 er,_at Left FWD 80K Shroud Support

26 80K Shroud Rail, Center

27 80K Shroud, Centered, Left

28 Window, Inside Surface, 1011" from
at 12 o'clock

29 , at 3 o'clock

30 , at 6 o'clock

37 Window, Outside Surface, Opposite 129

0
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APPENDIX D

I

INTERFEROMETRIC DATA REDUCTION - FIRST COLD CYCLE;
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The interferograms were reduced to surface deflection components

(cylinder, coma, tricorn, r') and contour maps using Itek Optical

Systems FRED (Fringe REDuction) Program. Subtractions were performed

point-by-point after-tilt and nearest sphere (area weighted rms

mini—mime) components were removed and the data interpolated to a

50x50 grid overlaid on the circular aperture.

Examination of these data can be tedious, and we have selected

those items which illustrate all of the important changes observed

with a minimum of repetition. We do not want to present a tutorial

on examination of all of the data components, and believe . that most

readers will be able to form their own judgements on the significance

of the data by examining the contour plots presented. We have also

summarized the values of and changes in the "low frequency" components

in Table A-1 with the.caution that the significance attributed to

differences (in particular) should not be pushed much beyond 0.1 wave

in most cases, one significant digit. Also, note that in all cases,

the indicated changes in focus are not significant since it was

usually necessary to reposition or refocus the interferometer for

each photograph.

r
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CSFRO887 OPTICSGO 13x53*08 83.11!	
PLOT NUMBER	 6

SUBTRACT	 H8391391 MINUS H83.1388
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Figure D-1-Mirror Contour at Zoom Temperature

(Under Vacuum)	
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OSFRO887 OPTICSGO 13m52%28 83.111
	

PLOT NUMBER	 3

SUBTRACT	 H83.1403 MINUS H8301401

1
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Figure D-2.i4irror Contour at 16:00 hrs., 3/4/83

(Mirror Temperature approx. 13 Kelvins)
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35FRO887 OFTICSGO 13 N 53N24 83.111
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APPENDIX E

INTERFEROMETRIC DATA REDUCTION - SECOND COLD CYCLE

O
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The only interferometric data reduced for the second cold

test cycle is shown on the FRED summary sheet, serial 1681. Deck

No. h831751 is for the interferogram (Polaroid) taken at 8:56:C5

on 5/19/83 with the mirror at approximately 15 Kelvins. Window

aberrations, again verified as small, were not subtracted. Deck

No. H831750 is for the interferogram taken on 5/23/83, at which

time the thermocouple data record indicates that the mirror temperature

was changing less than 0.2K per hour. Contour plot figure numbers

are indicated on page 2 of the summary.

Note that FRED data have not been scaled and thus represent

wavefront values. Multiplying by -0.5 to obtain mirror surface

deflections, one finds that the values are comparable to those of

the first cold cycle.

The temperature-time plots of Figures E-9 and E-10 appear

self-explanatory.
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