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ABSTRACT - An intense and fast spike -like solar burst was observed with

high sensitivity in microwaves and hard X-rays, on December 18, 1980, at

19h 21m 20s U.T. •It is shown that the burst was built up of short time

scale structures superimposed on an underlying gradual emission, the time

evolution of which showed remarkable proportionality between hard X-ray

and microwave.fluxes. The finer time structureu were best defined at

mm-microwaves. At the peak of the event the finer structures repeat

every 30-60 ms, (displaying an equivalent repetition rate of 16-20 s-1).
k

The more slowly varying component with a time scale of about 1 second was

identified in microwaves and hard X-rays throughout the burst duration.
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Similarly to what has been found for mm-microwave burst emission, we

suggest that X-ray fluxes might also be proportional to the repetition

' rate of basic units of energy injection	 quasi-quantized).	 We estimate

that one such injection produces a pulse of hard X-ray photons with about

4 x 1021 erg, for E >` 25 keV.	 We use this figure to estimate the

' relevant parameters of one primary energy release site both in the case

where hard X-rays are produced primarily by thick-target bremsstrahlung,

and when they are purely thermal, and also discuss the relation of this

figure to global energy considerations. 	 We find, in particular, that a

thick-target interpretation only becomes	 ossible if individual pulses9	 P	 Y	 P	 p

have durations larger than 0.2s.

, 1. OBSERVATIONS OF tHE SOLAR BURST OF 18 DECEMBER 1980, 1921:20 UT.

An intense spike-like burst was observed on 18 December

1980, 1921:20 UT, at various energy ranges, by several space and ground-

based observatories (NOAA, 1981). 	 It corresponded to an SN optical flare

that occurred in NOAA region 2840 at a location of N07 W11. 	 Hard X-ray

data with high sensitivityand time resolution were obtained by the

Hard X-ray Burst Spectrometer 	 HXRBS	 on the Solar Maximum Mission 	 SMM

satellite,	 (Orwig et al., 1980; Dennis et al., 1982).	 High sensitivity

and time resolution mm-microwave data were obtained with the Itapetinga

i
14-m antenna, at 22 GHz and 44 GHz (Kaufmann et al., 1982a), and cm-

microwave data were obtained with the Owens Valley interferometer, at.

10.6 GHz	 Zirin et al.	 1978).

In Figure 1 we show the hard X-ray burst in five energy.

•

k
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ranges.	 In	 Figure 2 we show the saine event at 44 GHz, 22 GHz and

10.6 GHz.

"Slow" time structures, with a time scale of about one

second are observed throughout the burst duration.	 They are particularly

well defined at 44 GHz and in the hard X-ray plot but they are smoothed

out at lower microwave frequencies.	 A very similar burst was obtained

i
►,v HXRBS on March 29, 1980 at 0918 UT (Dennis et al., 1981).	 It

Presented a e-folding rise and fall time of - 2s, hard spectrum, and

multiple time structures at the peak.

2. ULTRAFAST TIME ANALYSIS AT MM-MICROWAVES
a

The 22 GHz and 44 GHz flux data have a 3a detection limit

* of about 0.03 s.f.u. and time resolution of about 1 ms (Kaufmann et al.,

19826).	 The burst flux rise implies in a growth of the system noise, and

therefore the minimum detection limit at the peak of the event becomes

about 0.3 s.f.u. at 22 GHz, and of about, 0.05 s.f.u. at 44 GHz (Kaufmann

et al., 1982a). The time profiles shown in Figure 2 have been expanded

q for the major time structure at the peak of the burst ( 1921:19 - 1921 : 20UT),
a;

and are reproduced again in Figures 3 and 4. 	 At the time of maximum flux,

a "ripple"	 is observed with a peak -to-peak flux AS of about 2.9 s.f.u. at
{... E

t 22 GHz, and 0.2 s.f . u. at 44 GHz.	 These values are very small compared {

to the total flux S, with eS/S - 0.01 both at 22 GHz and at 44GHz but

they are, however sufficiently large to be measurable. 	 The structures

correlated at 22 GHz and 44 GHz are nearly " in phase", within about 10 ms.

3
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Counting 10-12 spikes in the peak time duration of about

0.6 sec, implies in a repetition rate of about 16-20 s -1 . This rate at

the peak would correspond to a 22 GHz flux zz 100 s.f.u., according to the

correlation flux vs. repetition rate established for various burst by

Kaufmann et al., (1980). This value in fair agreement with observations

taking into account the number of uncertainties involved in the

determination of the absolute flux scale when using large antennas.

Instrumental or observational effects were considered, and

they cannot account for the ultrafast time structures found i n solar

burst. The obtention of larger repetition rates for larger fluxes in a

solar burst constitute a trend that cannot be explained as an

experimental effect. The ultrafast time structures are not found when

tracking the solar limb or active centers. Atmospheric turbulence may

produce fluctuations in clear sky conditions in rare occasions. They have

a much slower time scale (> seconds). Subsecond structures would imply

in atmospheric inhomocgeneities moving at supersonic speeds, which is

unrealistic.

The tracking accuracy of the Itapetinga antenna (less than

2 aresec, r.m.s.) can be determined by tracking the solar limb and more

accurately by measuring the tachometers' loopsduring tracking. The time

scale is again slower than the sub-second structures observed. The

antenna structure has a mechanical reasonant frequency of about .2 Hz. The

main reflector cannot respond to subsecon d vibrations. The Cassegrain

subreflector may oscillate or vibrate at a higher rate. This, however,

was not observed in laser beam experiment, which has shown a maximum

r;
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subreflector lateva1 displacement of 5mm from 10-75 degrees in elevation,

in a smooth displacement with"elevation. The effects of subreflector

lateral displacement on gain were analysed by Predmore (1978) and

Zarghamee (1982) for Cassegrain optics identica l, to Itapetinga ant^^na.

Any gain change produced by lateral displacement of the subrefle, Aor must

be 2-4 times larger at 44 GHz compared to 22 GHz, which is not observed

in the sub-second structures. The estimates depend on how well the

subreflector was aligned and the peak gain will change with elevation

(Zarghamee, 1982). A peak gain change one percent (at a 70db level)

would imply in a variation in elevation angle larger than 30 aresec, which

is unrealistic for the Itapetinga antenna. On the other hand, estimates

of relative gain variation due to subreflector lateral displacement,

derived by Predmore (1978), predict a ^mm displacement for one percent

• gain variation at 22 GHz, corresponding to four percent cha"ge of gain

at 44 GHz. For obtaining a 5mm displacement of the subreflector,

however, the antenna should move from elevations 10-75°. For a two

aresec movement (or oscillation) we might predict a subreflector

displacement of about 10 -5 mm, which is beyond any possibility of

measurement. If the antenna is mispointed to the burst source, the gain

variations due to one of the causes indicated above, become more

pronounced. But still the effects .should be significantly larger at

44 GHz (which was not observed), and implying in amplitude of mechanical

vibrations not attained by the system. We can therefore conclude that the

observed sub-second time structures in solar bursts cannot be explained.

by observational effects.
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3. OVERALL BURST CHARACTERISTICS

x
Some other overall burst characteristics, which are relevant

to the present study, are now described:	 These show the complexity of high

sensitivity and high time resolution data in relation to the spike-like

and smoothed out burst observed by other methods. 	 The microwave radio

spectrum at peak emission was derived using additional data from Sagamore

Hill radio-observatory I NOAA, 1981; Cliver, 1981) and Huancayo Observatory

(I-Aitsuka, 1981) (Figure 5).	 The time resolution and absolute timing

accuracy of these measurements obtained by patrol telescopes are poorer

than about one second.	 The time profiles indicate a featureless spike and
k '

a rather typical spectrum, with a relatively high turnover frequency at

about 15 GHz.	 At frequencies below 1.4 GHz the spectrum rises and the

burst splits into major time structures of different morphology (Cliver,

1981).	 At dm- and longer wavelengths the radio emission arises higher in

the corona and will not be discussed here.

The hard X-ray photon energy spectrum, obtained for the

peak emission (1921:18.83 - 1921:19.98 UT) shows a rather hard spectrum,

fitting Dither a power-law plot with Y - 3.2 or a thermal curve with

T = 6.1 x 108K.

The Owens Valley 10.6 GHz data, with a time resolution of

about 100 ms and a detection limit of about 0.15 s.f.u., also provide

information on circular polarization and on the burst source position.

In,Figure 6 we show the right- and left-handed circularly polarized

)( in relative unitsoutput	 as well as the time variation of theP 

t
	 t
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polarization degree. The 14.6 GHz interferometer phase data indicated

that the burst source position remained fixed h arc second (one dimension),

`	 throughout the burst duration. The relatively stow decrease of

polarization degree with the increase in flux is a quite well known trend

Kaufmann and Santos, 1973; Steffen, 1975; Kane et al., 1983. The still

limited time resolution, however, prevents us from detecting very fast

polarization changes of the type reported by Kaufmann et al .,(1983b).

The high frequency microwave spectral index a(S a f')

,f can be derived frow the two highest microwave frefrequencies 22 GHz and 44q
•

=r GHz, which are assumed to be both in the optically thin pzrt of the
,i

gyrosynchrotron emission spectrum (Takakura;1972; Dulk et al., 1979).

From the data shown in Figures 2 and 5, we obtain a spectral index of

about a	 ti -4.5	 at the peak of the event. 	 From other data shown44-22

in Figure 5, this index can be <	 -4.5 for 35 and 44 GHz.

-
The time variation of the underlying burst emission showed

remarkable proportionality between microwaves (for f > 15 GHz) and hard

X-rays ,.	 This is illustrated in Figure 7, for the,, riFe-and-fall phases of

the event, at 22 GHz	 n	 har	 X r ys (e	 a ).	 The half-widthand	 d	 X-rays	 > 26 k V

..	 durations of the burst, however, display 	 a marked reduction towards

higher microwave frequencies (Figure 8). 	 At frequencies larger than the

turnover frequencj (- 15 GHz) the rise-and-fall spike half-width duration

approaches 3-4 seconds comparable to the half-width	 duration in hard

X-rays which is similar for all the various energy ran	 within	 theY	 9Y	 es9

noise of the measurements. 	 '
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4. INTERPRETATION ON THE FAST FINE STRUCTURES

t The overall characteristics of a relatively simple spike-

like solar burst (traditionally classiHed as a "Simple 2" burst) can be

more or less interpreted by means of existing models (Takakura,.1972);

Crannell et al.,1978; Dulk et al.,1979; M8tzler et al.0979). Analysis,

however, becomes complicated with the evidence of superimposed rapid

fluctuations in emission.,

x,

E^

Brown et al (1980) hava suggested that X-ray emission

of an apparently featureless burst could be conceived as the convolution

in time and space of the production of many short lived kernels, which

were not resolved in time due to the limitations in instrumental 	 time

resolution. For any multikernel model, the emitted flux can be

represented by an integral of the form (Brown et al.,1980).

K	

u.

where U (9) is a pulse of emitted photons by one kernel, K is a set
of kernel parameters, and Q K is the rate of production of kernels per

unit K. For a given kernel emission function 	 Uk CC) , different

kernel production function QK(t) can produce a wide variety of temporal

and spectral`forms in the time smoothed total emission I(c, t).

Using this assumption, Brown et al.,(1980) reconciled the suggested

proportionality between emission measure and temperature in the thermal-

model (Crannell et al.,1978; MStzler et al.,1979) with multiple emitting

kernels, impulsively heated and cooled by anomalous conduction, according

i
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€	 to the mechanism suggested by Brown et al,,(1979). Brown o al., (1983)

have given a similar interpretation of frequency dependent delays in

°	 microwave bursts.

We propose to identifythe ultrafast tiro 	 structures

reported hcre with time resolved emission from such individual kernels.

Such multiple energy release sites should be present, 	 at various

repetition rates, according 	 to a variety of mechanisms for primary energy

release in flares (eq. Gold and Hoyle,1960; Futh et al.,1963; Kuperus

1976).	 The apparent observation of distinct fast and ultrafast

time scales might then be associo ed with a hierarchy of unstable scale

sizes or wavelengths in such mechanisms. 	 If this broad picture is correct

. then the overall mm-microwave flux level (so far called the "underlying"

flux) could in fact have an important contribution from the kernels

themselves which, in the short time scales involved, would lead to extremely

f high radio brightness temperature	 (Kaufmann et al., 1982b) for which

there is some evidence - eg. values exceeding 10 8K for	 cm-microwave

bursts observed by interferometers (Kundu, 1980; Marsh et al., 1980).

Then, the overall fluxes in microwaves and hard X-rays should be described

as being	 approximately proportional to the convolution in space and time

of multiple primary energetic- injections.

According to Kaufmann et al.(1980), 22 GHz bursts are

build up from discrete primary bursts (quasi-quantized), the energy

content of each of which is roughly independent of the overall burst

flux. The overall flux is then chiefly determined by the production
r°

rate of sources of such primary bursts, i.e., by the repetition rate R.
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A similar conclusion was Pbtained independently from the statistical

analysis of a large collection of soft X-ray bursts Naufmann et al .$

1978).	 The overall flux vs R trend was also verified for several bursts

observed at another microwave frequency, but at a larger time scale

Wiehl and Matzler, 1980	 and in a burst observed simultaneou sl y(	 ^	 )^	 y ta

hard X-rays, UV and 22 GHz (Tandberg-Hanssen et al,, 1983). 	 Ultra-fast

time structures at hard X-rays were identified by several authors

• (Dennis et al., 1981;	 Charikov et al., 1981; Kiplinger et al`, 1983).

Charikov et al., (1981) indicate that the ultra-fast time structures

a • had X-rays have similar characteristics	 the s tructures	 u dt	 r	 X	 y	 h	 i	 offo und 	 tn	 a

mm-microwaves by Kaufmann et al., (1980).	 Simultaneous observations of

ultra-fast time structures at mm-microwaves and hard X-ra ys werer
recently obtained (Takakura et al., 1983) suggesting a nearly one-to-one

correspondence of the structures.

The fact that the index y remained nearly constant during

f the fast rise and fall of the spike studied here (Figure 9) lends

further support to the idea that the event comprises superposition of

w	 basic primary injections of similar nature, at various ' repetition rates.

Such a situation implies that, in the proposed model, all

the kernels are described approximately by taking a Delta function

distribution of • K in Equation (1) and replacing

f4K ^^^ ^K = R 
^'^	 (2)k

f

r

A&	 R
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Then the overall radio flux will be

s 01	 (3)

The excellent correspondence found for ultrafast structures

at hard X-rays and microwaves (Takakura et al.,1983) strongly suggest

that both have a common origin and that we should therefore also write

the hard X-rays overall fluxes as

z csio n	 U CE)	 (a)

where each kernel is characterized by a typical amount of photon emission

UR(f) in microwave and UX ( e) in X-rays with UX a UR.

In hard X-rays, the observed energy spectrum at maximun,

for e > 25 keV, provides 1(25) - 600 photons cm 2 s -1 which, for a

repetition rate of, say R(t) = 16 s -1 implies U(25) z 33 photons cm 2.

At the Sun the number of > 25 keV photons emitted becomes nx (25) - 1029

photons and the total energy in 25 keV photons is

6X C2S,	 ^'!X ^25^ x ('rrJ) ti y x/o e7	 (5)

5. PHYSICAL, CONDITIONS IN ENERGY RELEASE SITES

Here we consider the implications for flare plasma

parameters of interpreting the ultrafast structures reported above in

terms of sucessive emissions from a rapid series of primary energy

release events. We will use the hard X-ray flux to indicate the total

a

X'

h



electron energy requireiments and the microwave data to define the

required time scales.	 Since the total electron energy needed to	 produce

.a specified number of photons 	 by bremsstrahlung is strongly dependent on

the degree of relaxation of the source (cf. Brown and Smith 1980), we

f will consider here two limiting cases of a purely thermal model and of

a thick-target model.	 The former is essentially the model proposed by

Brown et al.	 (1980) in which the energy release events result mainly in

ri plasma heating,	 The latter- corresponds to a case in which most of the

hard X-rays come from a thick-target stream of electrons originating

in a rapid series of energy release events resulting in electron

acceleration.

We have already noted that to produce the observed mean

hard X-ray flux ultrafast structures with a repetition time T = 60ms

requires the emission of about 10 
29 

photons above 25 keV from each
z

a energy release site.	 Since the relative amplitude of the ultrafast

'ripple'	 is ,Silly p m 10-2 , the lifetime T of each site must be

F, substantially	 longer than T.	 The exact relationship between T, T and

A depends	 somewhat on the time profile of an individual burst. 	 We have

considered in detail the case of superposition of a long series of

symetric pulses with triangular time profiles	 of base length T and

regular T and find that for T/T >> 1, the resulting ripple of spacing
E ,

T has relative amplitude n = T2 /2T
2 .
	 A roughly similar result is to be

expected from addition of pulses of different shape (e.q. gaussian)

but the same half-widht (cf.(c) below). 	 For triangular pulses to

.reproduce the observed case of e = 10
-2

with T = 60 ms implies

ti" = 400 ms or a half width for each emission process of t o = T/2= 200 ms..	 .
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Together with the X-ray flux and spectrum, t o enables us

to place useful constraints on plasma parameters required for both the

thick-target and thermal cases. In each we characterize the energy

release site by a size L ' = 108 L8 cm a density n = 1010 n 10 cm-3 , and

a magnetic field B = 102 B2 gauss.

(a) Thick-Target Case

We assume that only collisionRl losses from the non-thermal

electrons are important, neglecting return current losses (cf. Emslie,

1979; Brown and ilayward 1982) and wave generation (cf. Hoyng et al.,1978;

Smith and Emslie,1983). Inclusion of these would only enhance the

conclusions we reach below. The emission of n25 photons of e > 25 keV

with power-law flux spectrum of index Y is then attributed to the

collisional thick-target emission from injection of a pulse of N25

electrons with spectral index 6 = Y + 1/2. These are related by

integrating along the electron path in a fashion similar to that used by

Brown et al (1980) (their equations (25) - (37) for an injected

Maxwellian tail). With Kramer's cross-section, the present case gives

14^s  	
1ViS,^^ C^-^^=	 (6)

From the observed X-ray flux we found n25 = 1029 and from

the spectrum Y = 3.2, so (6) implies N25 = 5 x 1035 electrons, or a total

energy ^25 = 2 x 1028 ergs in one pulse.

To supply this much energy by magnetic field annihilation

requires at the very least that B 20 /87r > S25 or

r

i

a^

F_.
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.t p > 7	 (7)

(even if most of the field is annihilafred and most of the energy goes

into accelerated electrons).

Secondly, it order that this energy be release fast

a enough to be consistent with the observed characteristic lifetime to

of a single ultrafast structure demands at the least that L/VA < t0'

t:

where VA is the A1fv"en speed, or

^^4Z	 > 2.3	
(8)

= 200 ' 	obta ined a	 for triangular	 1for the t0 	ms	 above_ 	 _ ,pu l ses.

Thirdly, to provide a sufficient supply of , beam electrons

we must impose the requirement that the neutralizing return current

R established in the ambient plasma should be stable ( cf. Hoyng et al.,

F

^t

1976; Brown and Melrose , 1977).	 This means that the beam flux = N 	 /L 2 t25	 0

should not exceed the ambient density times a multiple < 10 times the

ion-speed ( kTe/mp )
1/2 .

Taking Te - 10	 K as a maximum plausible

temperature in the ambient plasma, we find with the above N 25 and to that

stability requires

^;o= L^	 >	 q	 (9)

Together with (8) this would imply B2 > 21 or fields exceeding 2000 gauss

which is unacceptably .high even for the most optimistic case of inequality

(8).	 The further requirement that L
8 

< 1 in order to keep the total
,

t
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volume of the many dissipation sites within reasonable limits also

demands high fields by (7) but this requirement is the less severe of

the two.

It appears then that a thick-target model in which the

ultrafast structures we observe are associated directly with electron

acceleration events by field annihilation can be excluded at least for

triangular pulses (cf.(c)below). Physically this is because the required

smallness of the Alfve"n travel time is incompatible with an annihilation

site large or dense enough for return current stability. (The present

analysis does not, however, exclude alternative thick -target

interpretations in which electrons are accelerated over larger volumes

and times but are dumped into a thick-target region by some process such

as loss cone instability in times associated with our ultrafast struc,tures).

(b) Thermal Model

Brown and Hayward (1981) have pointed out that if

Maxwellian tail electrons escape continuously from a very hot thermal

hard X -ray source, the thermal model is energetically equivalent to a

thick-target model with acceleration, and so would be unacceptable here

for the same rasons as in (a). If, however, the tail never forms or is

somehow prevented from escaping, or is lost immediately, the thermal

model can emit mainly by thermal bremsstrahlung a , l have a cooling rate

determined only by extension at the ion sound speed by anomalous

conduction. We therefore consider here only this.most efficient limiting

case.

t
t
t
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If we suppose that annihilated field energy in one event

goes entirely into thermal energy of the plasma, the temperature Tmax

attained will be

1^ r
	

(10)

If follows from (10) that the ion-sound speed after the heating will be

comparable to the Alfven speed during the heating. Thus to ensure that

the heated region has (both heating and cooling.time of the same orde,

as the characteristics time to of a dissipation region inferred above

from the observations, it is sufficient to impose the same condition (8)

as in the thick-target case. To obtain a temperature high enough

(> 3 x 108K) to fit the X-ray spectrum, however, (10) imposes the further

condition that

,^a	 (11)
Map

Next, we find by integrating Equation (33) of Brown et al.

(1980) over e > 25 keV that to emit n25 = 1029 photons during its lifetime

with peak temperature as above, the thermal source parameters must satisfy

.hro: Lg	
1•^..	

(12)

The combination of conditions (8) and (12) then give

,aa N 3.S or C3 N 3Sb t^awss

f
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which is quite plausible. 1f, for example, ' we flake B - 500 gauss then

(11) would imply n < 2.5 x IQ cm
'
 and (12) that L > 300 km which are

physically plausible, consistent with the presence of many dissipation

1	 .
sites within a reasonable total volume, and comparable with parameters

in flare models such as that of Spicer (1977) (cf. Section 6).

(c) Effect of varying pulse shape

We must emphasize that simulation of the ultrafast

Q
"ripple" by addition of pulses of shape other than triangular can lead

p, to a different estimate of to .	 In particular a sharper pulse shape

like exp [-altl
b
	can give e = 10

-2
 for half width t

o
 of order 1

a second (Correia, 1983).	 Then for the thick-target interpretation we get

B > 450 gauss and for the thermal model, B > 75 gauss. 	 Either of these

is physically possible through the thick-target requirement is much more

fi = severe.

6. CRITICAL MACROSCOPIC PRIMARY ENERGY RELEASE CONDITION

i

•

It•is not appropriate here to enter into details of how

the multiple energy release sites arise in terms of basic plasma

. physics.	 However we note that formation of smaller scale explosive

magnetic islands, as a consequence of larger scale tearing mode

phenomena, has been discussed (Samain 1976; Spicer 1977; 1981).	 The

mechanism, based on magnetohydrodynamic conditions described by Forth

et-al. , (1963), was recently analysed by Spicer (1981). 	 Initial

reconnections can generate primary magnetic islands.	 Mode coupling
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between islands may causes other , perturbation vectors which, in turn,

generate secondary islands. There is then an increase in the number of

magnetic neutral points; and an increase in the number of resulting

explosions, in time scales fast enough to be comparable to results found

in the present paper. We may suggest qualitatively that the repetition

rates of the observed ul.trafast time structures would depend, for

example, on the spectrum of tearing modes and on the effectiveness of

mode coupling set in at a given magnetic topology, peculiar to a given

active region where the solar burst occurs. It remains to be seen,

however, whether certain critical conditions needed to produce a

{	 transient burst might be nearly independent of the particular magnetic

topology, which would be required to account for the apparently nearly

constant energy content of each primary injection (i.e., quasi-quantization).

.	 On the other hand, it has been recently 'investigated by

Sturrock' et'al. , (1982) that the multiple structures found in the

impulsive phase of bursts may arise from explosions of an aggregation of

filaments or "fluxules" which could be quasi-quantized in magnetic. flux.

We might take a macroscopic description of a magnetic loop instability,

in relation to the results obtained in this study. For example it has been

shown that the free magnetic energy developed in a loop twisted at the

magnetic spots, can be represented by (Sturrock and Uchida 1981):

A 72

n
i

}

where S is the magnetic flux, L is the loop length and AX the amount

of differential twist. It has been shown that the tube becomes unstable

a

f

l
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for a differential rotation 4 exceeding on rad (Barnes and Sturrock

1972).

`r.

i

t Z
The magnetic flux is 	 8 W rt , where B is the magnetic

field; and	 is the loop radius. The total loop volume is approximately

The free magnetic energy available for a tube submitted to

a critical differential twist 47C x11 rad becomes

Y	 ^

r
	

i 8`t 
(T-
	

(12)

w

The total energy which can be released by a single loop in a flare can be

represented by

t_

^M

^a.

_s

ZV

8 ^L	 (13)

where Ef = 6B/B, is the fraction of the field which is annihilated.

Assuming f 0.2, t/L 0.1, a typical field B -500 gauss and loop

length L -- 5 x 109 cm, we obtain 1S► h' w 2.4 x 1029 erg, which is about

10 times larger than the single injection energy content estimated in

the previous section, P`25) - 2 x 1028 erg, if most of the primary 	 t'

energy released is transferred to the heating of electrons to hard X-ray

temperatures. This may be an indication that a single loop may release

its energy in a number of cells, namely 10 for the numerical values

involved here which is comparable to the total number of ultrafast

structures observed at the m;xximum of the event investigated here, -. 12
a

(figure 4), through there are admittedly several uncertain parameter

i nvol ved.
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ff
f;	 ,

The successive larger time scale burst structures (of,	 .

about one second may be associated with elementary flare burst) y	 y f r ur t time

scales, produced by interaction between adjacent loops, according to a

suggestion made by Emslie (1981) or by longer wavelength modes in a

tearing loop. Each loop may contain several exploding cells,depending

on its geometry and physical characteristics. Emslie's (1981) mechanism

does not see to work well o the u t 	 rm	 for	 1 rafast time structures at the

peak of the event, since it would imply an unrealistically small

separation between loops, and too small a release of energy. It does

work however, for time scales larger of about 1 second, providing

plausible numerical results for elementary flare burst time scales and

energy releases.

^t

L FINAL REMARKS

t

k	 The strong spike-Like solar burst of 18 Dec. 1980,
i

1921:20 UT, analysed with high sensitivity and time resolution, provided

i an excellent opportunity to test a number of recently sugqested ideas on

the discrete nature of mechanisms initiating the burst phenomena.

Attempts were made to reconcile the concept of elementary flare bursts

(Frost, 1969; van Beek et al., 1974; de Jager and de' Jonge, 1978) with

the concept of multikernel emission convoluted in space and time in a

Single elementary flare burst (Brown et a1., 1980) and with quasi-

quantization of primary injected energy with repetition rates proportional

to flux levels both at microwaves and hard X-rays (Kaufmann et al., 1978;

1980). The results seem quite reasonable.

s
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In a suggested general macroscopic picture, we find that

elementary flare bursts might be associated with single loop bursting

• into a number of discrete explosions, according to a multiple tearing

mode primary mechanism (Kuperus,1976; Spicer,1981). Every discrete

injection has a nearly typical energy content. Loo interactions^ 	y yp	 9Y	 p	 actionsEmslier

1981), could account for the superposition of elementary flare bursts.

•In a simplified picture (Figure 10) the time scales

between elementary flare bursts would be regulated by the separation

~	 between loos D s uch s ^	 D-	 s 'e 98

	

^•^	 loo ps, ,	 c h a	 D	 /VA , (Em l i ,1 1) . The time scale

'	 expressing the duration of one elementary burst, containing N exploding

cells, would be related to the speed the triggering agent will travel

across the loop, of length L. Assuming this speed to be also VA , we

	

s	 have, for each primary explosion time scale -Cp - (L/N)VA 1/R(t), and

for an elementary flare burst duration EFS - N x 'b p.

k

	

{	 1a

In general, we might expect that larger and complex solar

	

R	 bursts arise from larger and magnetically more complex active centers,

which is a very well known qualitative trend for solar flares. The total

energy produced in a flare, involving M interacting loops, each one with

N > 1 exploding cells, will be

N^

E .,. U ^. N g	 (18 )
t

Large and small flares would differ from each other by the number of-

interacting loops, and the number of exploding cells each one contain.

In general, there is no reason to expect any coherent time sequence for

r
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r

i

tt	 x

the explosions and interactions. Not only could a typical energy content

be assigned to every primary cell explosion but also the primary energy

release rates would be expected to be comparable for large or small

events, as has been suggested in a•separate study of small complex bursts

(Kaufmann et al., 1983).

This picture raises the need to quite a number of

subsequent investigations, both experimental and theoretical. Higher

time resolution/sensitivity measurements on burst emission are very much

needed for more precise description of the associated discrete phenomena.

At lower fregi;encies, dm-microwaves, metric wavelengths, fast time

structures in events occurring higher in the corona might be associated

to primary accelerating mechanisms (DrOge,1977, Slottje,1978) and should

be further investigated in correspondence to mm-microwaves and hard

X-rays finer time structures. Acquisition of these measurements is

particularly important at higher X-ray energy ranges and higher microwave

frequencies - which implies the use of detectors/antennas with areas

substantially larger than the best available for the time being.
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'' CAPTIONS'TO THE FIGURES

Fig: 1 - The 18 December 1980, 1921:20 UT solar burst, observed in five

energy ranges of the HXRBS experiment on board of SMM satellite. Finer

time structures are suggested. They become ,relatively more important

for higher energies.

Fig: 2 - The 18 December 1980, 1921:20 UT spike-like burst, as observed

at 44 GHz, 22 GHz and 10.6 GHz. Slower time structures are evident,

specially at 44 GHz. The peak structure was expanded in Figures 3 and

5.

Fig. 3 - The peak time structure of the burst shown in Figure 2, in a

second time- expansion. Corrcated ultrafast time structures are observed

at both frequencies, repeating every 30-60 ms. Nearly 10-12 structures

can be counted across the maximum duration of nearly 0.6 seconds (a).

Fig.' 4 - Further time expansion (200 ms) at the maximum of the event at

22 GHz and 44 GHz (Figure 2,3). Label numbers are the same as in Figure 3.

Fig. 5 - The microwave burst spectrum at the peak emission of the burst.

r
ti
x

Fig. 6 - 10.6 GHz polarization burst data from Owens Valley Observatory,
indicate a slow reduction of the polarizati	 degree with the growth of

.	 k

the fl ux.
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Fig. 7 - The proportionality of the burst underlying flux levels at hard

X-rays and mm-microwaves was remarkable, and is shown for 1 ( > 26 keV)

vs. S (22 GNz).

Fig_. 8 - The half-width durations of the spike - like underlying emission.

Ordinates at left are for microwaves, in GNz. Ordinates at left, are for

hard X-rays, in keV. The reduction of half-width duration is evident for

higher microwave frequencies, approaching 3-4 sec at 44 GNz. At hard

X-rays, the half-width duration does not seem to depend so much on the

energy range with the half-width duration within 3-4 sec, with a slight

reduction towards higher energies.

Fig. 9 - Time evolution of the power law parameters for the hard X-ray

burst emission. It correspond to I(e, t) :: a(t) (c/co) -y . Figure (a)

describes a(t), and Figure (b) describes y(t).

Fig.10 - A simplified conception of loops in an active region, each one

releasing burst emission components from N exploding cells and constituting

elementary flare.burst. The interaction between loops would account for the

clustering of elementary burst, each one consisting of N > 1 primary

releases.

j
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