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1. Introduction

Variability is a basic property of galactic cosmic rays which are

observed in the heliosphere. Temporal changes are observed on all time

scales that have been studied and at all distances that have been

explored. These variations are of several different classes depending on

the time scale considered, ranging from quasi-periodic changes with a

scale of 11-years, to intermittent depressions on a scale of a month, and

tc nearly discontinuous changes on a scale of days. F),ve classes of

cosmic ray variations, identified long ago from ground based

observations, are shown in Figure 1. Reviews of the early results have

been written by Sandstrom (1965), Dorman 1%1963), Webber ( 1962), Lockwood

(1971), and Rao ( 1972). A Forbush decrease is recognized as a rapid

decrease in cosmic ray intensity, followed by a more gradual recovery

lasting several days. Corotating Forbush decreases are similar to

Forbush decreases, but they differ in that 1) the intensity drops more

slowly, the time of decrease 'being nearly as long as the recovery time,

and 2) Corotating Forbu° _i decreases are quasi -stationary patterns which

tend to recur ( Rao, 1972) and which are observed try corotate between two	 ^.
t

spacecraft separated in longitude ( Barouch and B ► rlaga, 1975), whereas

Forbush decreases are non-stationary phenomena. The 27 -day variations
ti

are essentially Corotating Forbush decreases which recur at 27 day

intervals, as seen at Earth. Long -lasting Forbush decreases resemble
E

Forbush decreases in that the decrease occurs relatively rapidly, but the

depression may last for weeks or even months ( Lockwood, 1971). Cosmic 	 ;?

ray Storms (Sandstrom, 1965) appear to consist of a succession of closely
E

spaced Forbush decreases, and may be regarded as a type of long-lasting

Forbush decreases. The 11-year variation is a well-known quasi-periodic

pattern which is anti-correlated with solar activity.

Observations of cosmic rays have been made from 0.3 AU to beyond

u
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25 AU. The Helios 1 and 2 spacecraft have made many passes between 0.3

AU and 1 AU since 1974. A nearly continuous record of cosmic rays for

more than one solar cycle has been obtained from interplanetary

spacecraft near earth. Pioneer 10 is movit,g beyond 25 AU, while Voyagers

1 and 2 and Pioneer 11 are making observations beyond 10 AU. Thus we new

have an extensive network of interplanetary observatcries. One objective

of this review is to describe the cosmic ray variations observed by these

spacecraft corresponding to the classes of variations listed in Figure 1.

It is generally assumed that the galactic cosmic ray intensity

outside the heliosphere is essentially constant, so that the observed

variations in cosmic ray intensity are due to the interplanetary magnetic

field and the supersonic solar wind which carries the magnetic field.

The problem is to determine the basic configurations of the

interplanetary flows and fields, to understand the radial and temporal

evolution of these configurations, and to reltite these configurations to

the cosmic ray variations. Various classes cf flow patterns that have

been observed in the solar wind are listed in Figure 1, and their

relstion to the classes of cosmic ray variations is indio.;ted. This

review aims to describe these relations in a general way, with emphasis

on results from spacecraft observations. Some quantitative theoretical

models of solar wind flows will also be discussed, but much progr ess in

understanding to date has been made by means of inductive reasoning,

intuition and insight. Scattering mechanisms and cosmic ray propagation

models are not discussed; the large literature on this topic is reviewed

by Quenby (1983), Jones (1983), Fisk (1979. 1980) arW Rao (1972).

We have only local measurements of the magnetic field and plasma at

Just a few widely separated points near the ecliptic plane in the vast

three-dimensional heliosphere, so the interplanetary configurations

cannot be determined unambiguously. The cosmic rays, on the other hand,

provide indirect, integral teasurements of the global configuration,

since they sample a large volume of the" heliosphere in a relatively short

time before being detected. Thus, measurements of cosmic rays complement

measurementrs of the magnetic field and plasma.
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2. Corotating Flows, Corotating Forbush Decreases, and 27- ay Variations

"Recurrent interplanetary streams", having a period of v, 27 days as

seen at Earth, are shown by the heavy curve in Figure 2, from Iucci

(1979). The existence of such streams was originally postulated to
explain the observation of recurrent geomagnetic storms and was

demonstrated by Neugebauer et al. (1966). "Twenty-seven day variation3lO
in the galactic cosmic ray intensity are shown by the lighter curves in
Figure 2. The existence of such variations has also been known for many
years (e.g., Meyer and Simpson, 1954; Monk and Compton, 1939) and a
relation between these 27-day cosmic ray variations and recurrent streams
was suggested in the early papers. Figure 2 shows that recurrent streams

are indeed associated with 27-day variations, and it was suggested that
the speed itself is a factor which causes the cosmic ray variations.

The 27-day variations in cosmic ray intensity are simply recurrences
of a "corotating Forbush decrearse". Similarly, a recurrent stream is

simply the reappearance of a single long-lived stream, which is called a

11 corotating stream" because it appears to rotate with the sun as seen by

an observer in an inertial frame. Thus the problem of understanding	 r

27-day variations reduces to the problem of understanding corotating	 (

Forbush decreases. This in turn involves understanding the relation

between corotating Forbush decreases and corotating streams, as well as	 Ik
an understanding of the corotating streams themselves. 	 y

A correlation between corotating Forbush decreases and corotating

enhancements of the interplanetary magnetic field strength was observed 	 1

by Barouch and Burl , /,,Aga (1975). Barouch and .Burlaga (1976) suggested that
drifts associated with the gradients in JBI might be a.factor in

producing corotating Forbush decreases. The correlation between

increases in IBS and reductions in cosmic ray intensity was confirmed by 	 3

Duggal et al. (1983), who also showeda relation between reductions in

JBI and increases in cosmic ray flux.
ke
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In addition to the speed and magnetic field strength, a third factor
W41ch might be involved in corotating Forbush decreases is the presence
of small—scale flutuations in the magnetic field direction. The

amplitudes of such fluctuations are largest where the speed is highest
(Belcher and Davis, 1971; Behannon and Burlaga, 1981; and Barnes, 1979)

so the cosmic ray intensity might be reduced by diffusion among these

t disturbances, The diffusion mechanism was proposed by Morrison (1954,
1956) and a quantitative diffusion model was presented by Morfill et al.

('1979)• A model based on tracing particle orbits was presented by Thomas
and Gall (1982) .

The relative importance of the speed, magnetic field strength and

magnetic -fluctuations has not been determined. One of the difficulties

is that the enhancements in magnetic field strength are correlated with

the velocity profile and with enhancements in the fluctuations of the

mmi	 magnetic field, so that a correlation between one of these factors and

`E	 the cosmic. ray intensity implies a correlation of the other factors with

the cosmic ray intensity. The relation between B and V is caused by the

dynamical evolution of a co r otating stream. and it should change with

distance from the sun. Thus an understanding of the magnetohydrodynamics

of corotating streams, together with measurements as a funoti,n of

distance from the sun, should contribute to a better underotanding of

recurrent Forbush decreases.

Scine of thq basic features of corotating streams are il'lustrated in
Figure 3. A stream originates in a long—lived source (a cot*oval

hole--see Hundhausen, 1977) with a limited azimuthal extent. Near the

sun corotating streams have a thin boundary (Rosenbauer et al., 1977;
Schwenn et al., 1978; Burlaga, 1979). An element of plasma tends to move

at a nearly constant supersonic speed beyond several solar radii, but of

course the speed profile is inhomogeneous in longitude. As a consequence

of the sun's rotation, fast plasma overtakes slower plasma ahead of it,

which was emitted from more westerly solar longitudes. As a result,

material at the interface between fast and slow plasma is compressed.

Since the magnetic field is frozen to the highly conducting plasma, it

too is enhanced at the leading part of the speed profile. This is the
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reason for the correlation between field strength and speed discussed

above. The temperature is alto increased in this process, and altogether

the result is the formation of a pressure wave ahead of th lt stream

(Burlaga and Ogilvie, 1970) at the expense of kinetic energy of the

stream, essentially by a kinematic process related to the rotation of the

sun (Burlaga and Barouch, 1976). This pressure wave tends to expand both

toward and away from the sun, and corotat."^►.g forward and reverse :shock

can form at the boundaries of this pressure wave beyond 1 AU. The

existence of a corotating reverse shock at 1 AU has been demonstrated by

Burlaga (1970). The presence of corotating shock pairs beyond 1 AU was

established using Pioneer data by Hundhausen and Gosling (1976), Gosling

et al. (1976), Smith and Nolfe (1976), and confirmed with Voyager data by

Gazis (1983)• For reviews of the early work, see Hundhausen (1972),

Burlaga (1975), Gosling (1981) and Pizzo (1983).

Magnetohydrodynamic models of corotating streams have been

extensively developed (e.g., Steinolfson et al., 1975; Dryer et al.,

1978; Goldstein and Jokip11, 1977; Whang,	 1980,	 1981; and Pizzo, 1982).

They are illustrated by results of a model of Pizzo (1980) shown in

Figure 4, taken from a review by Burlaga (1979), 	 At the left are assumed

profiles at the .inner boundary for the calculation (0.3 AU); these are

based on actual observe"Lions of stream profiles made by the plasma j

experiment of Rosenbauer on Helios.	 Note that 1) the boundary of the
a

stream is rel4tively thin, 2) the density N is low , lp the stream, and 3)

the temperature T is high in the stream. 	 The computeej profiles at 1 AU

are shown at the right of Figure 4.	 The boundary of the corotating

stream is marked by an interface at which the flow direction changes, the 3

density drops and the temperature increases. 	 At the front of the stream,

there is an-enhancement in density, temperature and field strength owing'

to the compression discussed above, and collectively they produce an

enhancement in the total (magnetic plus thermal) pressure PT,	 One can

see a reverse shock beginning to form behind the interface, and a forward

shock would form ahead of the interface beyond 1 AU. 	 In situ
tt:J

<^observations at 1 AU very clot^ely resemble the theoretical profiles shown °

in Figure 4.
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profiles (right) at 1 AU.
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Models of the evolution of streams beyond 1 AU have been referred to

above, and they are reviewed by Pizzo (1983) and Gosling 1981). Here we

shall simply discuss the basic qualitative features of the radial

evolution of corotating flows as shown in Figure 5 The amplitude of the

pressure wave grows out to some distance, and it is bounded by a forward

shook and a reverse shook. As the shocks move apart, the ;pressure wave

expands. This accelerates material in an increasingly large region ahead

of the stream, and it decelerates an increasingly large part of the

stream itself. Thus, at large distances, the streams are eroded and the
dominant features are the pressure waves. The diminution of the streams

with heliospheric distance has been demonstrated by Miholov and Wolfe

(1979) and Collard et al. (1982) using Pioneer data and it was confirmed

by Gazis (1983)• The existence of large corotating pressure waves in the

absence fast corotating streams beyond 1 AU has been demonstrated by

Burlaga (1983) using Voyager data.

The models and observations of corotating streams show that the

amplitude of the streams diminishes with distance from the sun while the

enhancement of the magnetic field strength relative to the ambient value

increases. Thus, in principle it is possible to deteiinine whether the

bulk speed or the magnetic field strength (or the Fluctuations of the

magnetic field which accompany enhancements in field strength) is more

important, in producing corotating Forbush decreases. The final answer is

not yet; known, but an example of the kind of results available is given
1!

in Figure 6, from Burlaga et al. (1982) which shows measurements made at

8 AU by Voyager 1. Recurrent Forbush decreases were observed to

April-May, 1980 and in June, 1980. As observed at 1 AU, the decreases in

cosmic ray intensity are correlated with the bulk speed and with
r	 .

enhancements in the magnetic field strength. At 8 AU, however, the

amplitudes of the streams are small, whereas the enhancements in magnetic

field strength are large. Correlative studies, using these results

together with measurements made at Helios and near earth, should

determine the relative importance of B and V in modulating cosmic rays.

The large-scale structure of the heliosphere at times when stationary

corotating systems are dominant is sketched in Figure 7, from Burlaga s
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(1983) and Burlaga et al. (1983)• Near the sure, corotating streams are

dominant, and they carry'b strong signature of their source (e.g., low

density corresponding to eoronal holes). Farther from the sun,

non-linear pressure waves grew and the streams are eroded, so that

corotating pressure waves should be the dominant feature rather than

corotating streams. A significant restructuring of N, B, T occurs as a

result of dynamical processes driven by the nonuniformity in V, and

information about the source is gradually lost. The pressure waves

expand, and beyond s 25 AU the pressure wave associated with one stream

will have interacted extensively with the pressure wave from the

following stream, so that the individual interaction regions lose their

identity. There results a "wave interaction zone", in which one no

longer expects to see simple corotating Forbush decreases like those

inside of v` 10 AU. We may thus anticipate qualitatively different cosmic

ray v viations at large distances from the sun.

`	 WAVE
INTERACTION

ZONE

STREAM
PRESSURL:

WAVE
ZONE	 tO	 20	 30 AUZONE

,.

y	 ^.

A schematic view of the solar wind structure under stationary
conditions.

rj

Figure 7:
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3. Transients and Forbush Decreases

Xn the preceding section we discussed quasi-stationary patterns,

which persist for many days or even many solar rotations and are

associated with long-lived sources on the sun. In this section we shall

consider transient phenomena, whose effects are seen for only a few days,

which do not corotate or recur, and which are associated with impulsive

solar processes such as flares and prominances.

Forbush decreases are characterized by a rapid decrease in cosmic ray

sntensity followed by a gradual recovery lasting several days. An

association between Forbush decreases and geoma^$net c storms was

Identified in the earliest papers (see Sandstrom, 1965; and Dorman,

1963), Magnetic storms were attributed to plasma clouds (compact objects

composed of fully ionized plasma propagating away from the sun) by
d

Lindeman (1919) and by Chapman and Ferraro (1929). Alfven (1954) showed

that a beam of plasma moving away from the sun would carry along magnetic

fields from the sun. Although he considered quasi-stationary streams in

his calculation, the idea of a magnetic cloud is suggested by his sketch,

reproduced in Figure 8. Thus, it was natural to attribute Forbush

decrease to the interaction of cosmic rays with a "magnetized plasma

cloud'i .

The nature of the interaction of cosmic rays with a magnetized plasma

cloud depends on the configuration of the magnetic field in the cloud.

Morrison (1954, 1956) suggested that the magnetic field in a cloud is

turbulent. He argued that cosmic rays would propagate into a cloud by

diffusion, and he explained Forbush decreases as a consequence of the

fact that the time to fill a cloud by diffusion is smaller than the time

for a cloud to propagate from the sun to 1 AU. Cocconi et al. (1958) and

Gold (1959, 1962) suggested that the magnetic field in a cloud is ordered

and rooted at the sure, forming a 'magnetic tongue" (see Figure 8). They

explained Forbush decrease&,as a consequence of scattering of cosmic rays

by gradients in the magnetic`+field. Piddington (1958) suggested that a

magnetic tongue could become detatched from the sun by the process of

magnetic reconnection, forming a closed "bottle" or "bubble".
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The existence of shock waves in the solar wind was suggested by Gold

(1955). and Parker ( 1961) showed that the ambient interplanetary magnetic

field would be compressed and distorted by a smock, forming a shell of

intense magnetic fields. He argued that Forbush decreases could be

produced by the diffusion of cosmic rays through this shell (also see

Parker, 1963). Note that in this model there is no plasma cloud carrying

additional magnetic flux from the sun, but the effect of the shell of the

compressed interplanetary field on cosmic rays is similar to that of

Morrison's turbulent magnetized plasma cloud.

In situ observations have demonstrated the existence of hydromagnetic

shocks and a "sheath" behind the shock consisting of compressed,

distorted ambient magnetic fields, as suggested by Parker. There is also

evidence for plasma clouds of more limited angular extent in which the

magnetic field is higher than average. These plasma clouds often t"allow

shocks, and it is thought that many (or even all) interplanetary shocks

are driven by such plasma clouds (see Borrini et al., 1982 and the

^	 extensive references therein). Currently, the words "driver" or "ejecta"

are used in the literature instead of plasma cloud to emphasize this

relation to shocks. The present view, based on in situ observations, is

a synthesis of the early ideas (see Hundhausen, 1972). We shall ;refer to

the total configuration (consisting of a shock, a sheath, and a

magnetized plasma cloud) , , as an " interplanetary transient". The magnetic

field configurations in plasma clouds can have many different forms. 	
f

Although there is much indirect evidence for tongues and bottles (e.g.,

see Hundhausen, 1972; Gosling et al., 1973; Bobrov, 1979; Pudovkin, 1977,	 +

1979; Gersnios, 1981; Bame et al., 1981; ;arris and Krimigis, 1982),

convincing evidence based on direct observations of the magnetic field

has been elusive.
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Observations of a magnetized plasma cloud with a loop-like magnetic

field configuration are shown in Figure 9, from Burlaga et al. (1982).

The cloud is indicated as the region between the two clashed lines on

June 20. Ottao, sees that the magnetic field strength in the cloud is

higher than average, as suggested by the early models. When the

spacecraft entered the cloud, the magnetic field was pointing northward

at a large angle with respect to the ecliptic. As the cloud moved past

the spacecraft, the magnetic field vector was observed to rotate parallel

to a plane to a southward direction at the rear (sunward) boundary of the

loop. This pattern is consistent with the passage of a magnetic loop.

Observations by just one spacecraft are not sufficient to determine the

geometry of the loop.! In particular, one cannot determine whether or not

the lo!,, sis open or closed (see Burlaga and Behannon, 1982). Even

multispacecraft observations (Burlaga et al., 1981) are not always

sufficient to answer this questions.

The magnetic cloud in Figure 9 was moving faster than the ambient

solar wind, as may be seen from the speed profile. The density in the

cloud was filamentary (see also Burlaga et al., 1981), probably related

to the fact that the magnetic pressure in a cloud is higher than the

thermal pressure (Klein and Burlaga, 1982). The cloud was preceded by a

shock across which the density, temperature, and magnetic field strength

increased. Between the cloud and the shock was a sheath consisting of

compressed and disordered magnetic fields, as suggested by Parker's

model. Thus, Figure 9 illustrates an interplanetary transient which

combines all the features of earlier models: a magnetized plasma cloud

with an ordered loop-Like configuration, a shock, and a sheath of

compressed and turbulent magnetic fields.

Cosmic rays encountering •,uch a configuration might be expected to

diffuse in the sheath behind the shock and drift due to the gradients in

field strength and direction both within and ahead of the cloud. Another

factor of possible significance to the motion of cosmic rays is the

indication that magnetic clouds might expand at approximately half the

Alfvtfn speed as they move away from the sun (Burlaga and Behannon,

1982). This could be a consequence of the fact that the magnetic field
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pressure exceeds the plasma pressure in a cloud (Klein and Burlaga, 1982;

Parker, 1957)• Cosmic rays in such an expanding cloud or in the sheath

might be decelerated as proposed by Singer (1958). Detailed studies of,
the relations between magnetic clouds and cosmic rays have not been made,
but they are obviously worth undertaking.'

The magnetic cloud in Figure 9 was related to a coronal mass ejection

observed near the sun (Burlaga et al., 1982). Specifically, the magnetic

cloud was observed by Helios 1 when it was over the west limb of the sun
and at a distance of 0.5 AU, and a white light transient (coronal mass

ejection) was observed by the earth orbiting spacecraft P79-1 to be
moving toward Helios before it arrived at Helios. The time delay between
the observation of the coronal mass ejection and the arrival of the

magnetic cloud at Helios gives a speed for the cloud'in close agreement

with the speed of the cloud measured directly at of Helios 1.

A close relation between interplanetary shocks and coronal mass

ejections has been found by Gosling et al. (1974), Sheeley et al. (1982)
and Schwenn et al. (1982). It remains to be determined whether or not
coronal mass ejections are always accompanied by magnetized plasma clouds

in the solar wind. Since magnetic clouds and interp?,anetary shocks are

related to coronal mass ejections, and since coronal mass ejections are

related to prominences (MacQueen, 1980; Hia.dner, 1977; Harvey and
Sheele	 1	 we might expect future studies to revealY. 977), 	 1 a correlationg	 p	 a	

f
between magnetized plasma clouds and prominences. `This would confirm the

suggestion of Lindeman (1919) and Chapman and Ferraro (1929) that many
plasma clouds are c-elated to prominences. It would also be important for

understanding the 11-year variations of cosmic rays.

We have been discussing observations made near or within 1 AU.

Interplanetary transients and Forbush decreaseshave been observed beyond

1 AU. Flare-associated shocks observed by Pioneer 10 and Pioneer 11 were

investigated in a series of papers (see the reviews by Intriligator,

1977; 1980 Smith and Wolfe, 1977 and 1979; and Smith, 1983). Burlaga et
al. (1980, 1981) analyzed multispacecraft observations of flows within
2 AU.
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A large Forbush decrease observed at 16 AU by Pioneer 10 and at 7 AU
by Pioneer 11, was discussed by Van Allen (1979) (Figure 10) and Pyle et

al. (1979). The size of the decreases at these large distances was

comparable to that of a corresponding Forbush decrease observed by the

Alert neutron monitor. The duration appeared to be longer at larger

distances, but this may have been due to the superposition of several

effects (von Rosenvit:ge et al., 1979). The decrease propagated away from

the sun at a constant radial speed of 960 km/s, and it extended over at

least 160° in longitude. Detailed comparisons of the co,'Aic ray data

with magnetic field and plasma data were not made. A major tack for the

next few years will be to make detailed joint analyses of Forbush

decreases and transient flow configurations with data taken over a wide

range of longitudes and radial distances from the sun.
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4. Systems of Transients and Long-Lasting Forbush'Decreases

Lockwood (1958. 1960, 1971) noted the existence of "long-lasting

Forbush decreases", and he suggested that they are an important part of

the 11-year variation. The occurrence of sequences of closely spaced

Forbush decreases, called cosmic ray storms W the early literature (see

Sandstrom, 1965), has also been known for many years. Figure 11 shows r,

long-lasting Forbush decrease in which the cosmic ray intensity is

depressed for a month. It has structure which suggests a successir^n of

several Forbush decreases. The decrease in cosmic ray intensity is

NOVEMBER ,1968

Figure 11: A long-lasting Forbush decrease at 1 AU, with associated
enhancements in magnetic field strength and times of SSC
(arrows)
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long-lasting because the Nth Forbush decrease (iocurs before the recovery

of the (N-1)th Forbush decrease is complete. The strength of the

interplanetary magnetic field is high at the times of the largest

decreases in cosmic ray intensity. The arrows at the bottom of 'the

figure indicate the times of geomagnetic storm sudden commencements,

hence the passage of interplanetary shocks. The major decreases in

Cosmic ray intensity follow the arrival of shocks. Based on these old

other similar observations, Barouch and Burlaga (1975) concluded that

long-lasting Forbush decreases are due to the passage of several

tr..^nsient magnetic field enhancements. This may be regarded as

confirmation of the hypothesis that cosmic ray storms are due to the

Passage of several magnetized plasma clouds in close succession.

The above results, together with the observations of recurrent

streams associated with 27-day variations discussed in Section 2, show

that it is meaningful to speak of a "system of transient flows" and a

"system of corotating flows", each lasting for one or more solar

rotations. The problem of understanding long-term variations in cosmic

ray intensity' can be approached by examining the effects of these two

extreme types of flow systems on cosmic rays.

A system of transient flows can follow a system of corotating flows

and vice-versa. An example of this is shown in Figure 12 from Burlaga et

al. (1982). For two months prior to January 1, 1978, a system of

corotating flows was observed by Voyager 2, as indicated by the presence

of stream interfaces and the absence of shocks not associated with

interface;:,. For nearly three months after January 1, 1978, a system of

transient flows was observed, 
as 

indicated by the presence of shocks and

the absence of stream interfaces. The system of cot;-otating flows

produced corotating Forbush decreases, but no net reduction in the cosmic

ray intensity. The system of transient flows, on the other hand, did

produce a permanent reduction in the cosmic ray intensity.

The effects described above may also be seen by examining other time

intervals in Figure 12, and additional observations showing the same

effects have been discussed by McDonald et al. (1982) and Burlaga et al.
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(1932, 1983a, '3983b). Summarizing, 1) there exist systems of corotating
flows lasting at least two solar rotations which perturb the cosmic ray
intensity profile but cause no net reduction in intensity, 2) there exist
systems of transient flows (associated with shocks) lasting at lrzast two
solar rotations which do cause a net reduction in cosmic ray intensity,

and 3) these two kinds of flow Nystems can exist side by side.

A geometrical picture of the interplanetary medium suggested by these

observations is illustrated schematically by Figure 13. It is assumed

for simplicity that the sun and interplanetary medium can exist in one

of two extreme states; a "quiet state" in which the solar wind consists
of corotating flows and no transients, while the sun has stationary
coronal holes but no active regions; and a "disturbed state" in which the

solar wind consists of transient flows with no corotating streams, while

the sun has many sources of activity ejecting magnetized plasma clouds at
random but no sources of stationary flows. Assume that the sun has been

in the quiet state for many months, so that the solar wind has a simple
spiral geometry as illustrated by the single spiral in Figure 13a. Now

assume that the dun suddenly goes into a disturbed state, emitting

magnetized plasma clouds which fill an increasing volume as illustrated

by the shaded area in Figure 13b. Assume that after s 2 solar rotations
t

the sun returns to its quiet state. The ensemble of magnetized plasma

clouds, shocks, etc., rills a shell which moves outward at - 400 or
500 km/s, and it is followed by an ordered spiral configuration as
illustrated in Figure 13d. In this scenario, a spacecraft would observe
a sequence of corotating flows, followed by a sequence of transient

flown, followed in turn by another sequence of corotating flows. This
picture is consistent with observations in Figure 12 and the other

similar observations that have been referenced above, It is also
consistent with the general idea of a shell of turbulent magnetic fields

discussed by Morrison (1954, 1956); and Lockwood (1971).

,-

	

	 a
The effect of a shell corresponding to a system of transients is

essentially that which the early investigators proposed_, viz. a long-term,

reduction in cosmic ray inten3i 110`y. It supports the view that all

long-term reductions in cosmic ray , intensity are caused by such shells

w



a,

.I

b.

0 A.U.

A.U.

ORIGINAL PAGC pi	 25
OF POOR QUALITY

C.	 d.

SYSTEM OF TRANSIENT FLO`NS

Figure 13: A shell of transients.



26

(i.e., by systems of transients, in our language), but further studies of

spacecraft data using observations taken over many years must be made
before this view is confirmed.

With in situ measurements, it is possible to examine in what sense

the magnetic fields in the large-scale shells (systems of transients)

differ from magnetic fields in systems of corotating flows. Figure 14
shows the results of an analysis by Goldstein et al. (190) for two time
intervals # one corresponding to the observation of a system of transients
i`roir, January-March, 1979, and the other corresponding to the observation

Of a system of corotating flaws in the following months of April-June,

1979• Three curves are shown for each interval as a function of

frequency: the power in the magnitude of g; the power in the

fluctuations of all components of g (the trace of the spectral tensor

Sii (k) and the curve kHM(k), where H M is the magnetic helicity

(Matthaeus et al., 1982, Matthaeus and Goldstein, 1982). Magnetic
helicity is a measure of the degree to which the magnetic field is bent

or twisted. Thus, the presence of large scale magnetic loops,

tightly-wound helkiaces, or small-scale Alfve'nic fluctuations would be seen

as a relatively large kHM at the appropriate frequency. Figure 14 shows

that in the "corotating interval', the power spectra for the field

strength is not described by a simple poi ,r law; there is a large peak in

the power at v, 10 days, which corresponds to ordered pressure waves

associated with the interaction regions Of corotating flows. In

contrast, the power spectra for the magnitude and direction of the fields

are both described by a power law. There is significantly more magnetic

helicity of low frequencies in the transient interval than in the

corotating. Thus, the spectral signatures at the two classes of flows

are distinctly different. Their relation to compressible MHD turbulence

remains to be explored.

re
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5. Eleven-year Variations 	
OF POOR QUALITY

We now return to the problem of the 11-year variation of cosmic ray

intensity, illustrated in Figure 15 from McKibben et al. (1982). One

sees the well-known pattern of maxima in the cosmic ray intensity near

minima in the solar activity cycle, and vice-versa. It should also be

noted that the variation is not exactly sinus.idal 	 1) The decreases

trended to occur in a few large steps in 1955-1957 (Lockwood, 1958, and

1960) and in 1978-1980 (McDonald et al., 1981x), but more gradually in

1965-1969; and 2),Tnere were large fluctuations in the intensity on a

scale of < 1 year throughout the interval.
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Three explanat.^ons of the 11-year variation have been. proposed.

Parker (1963) suggested a quasi-stationary model in which diffusion by

small-scale fluctuations in the magnetic field and convection by the

solar wind are the dominant processes. A second explanation, advocated

by Isenberg and Jokipii (1979), Jokipii and Davila (1981), and Jokipii

and Thomas (1981) is that the 11-year variation is due to drifts in the

large-scale gradients in the magnetic field (see the reviews of Jones,

1983, Fisk, 1979, and McKibben, 1980. A third explanation, offered by

Morrison (1956) before the solar wind was discovered, is that the 11-year

variation is due to diffusion in a large Or 100 AU) shell of turbuly.nt

magnetic fields made up of intermediate-scale magnetized plasma clouds

ejected frcan flares or prominences.

Studies of the 11-year variations in the bulk speed, magnetic field

/strength and power in the small-scale fluctuations in the magnetic field;,

failed to support attractive the model of Parker ( see Lockwood, 1971;

Rao, 1972; King, 1981, and Quenby, ;83). There is evidence against the

large-scale drift model (Newkirk and Lockwood, 1981; Evenson et al.,

1979; Lee and Fisk, 1981), but there is also evidence for large-scale

3-dimen3ional effects by (Hundhau3en, 1979; Hundhausen et al., 1981, and

Duggal et al., 1981), so the case is not yet closed. There is increasing

evidence in support of the view that the 11-year variation is caused by

intermediate scale disturbances corresponding to transient flows..

associated with solar activity. Hedgecock (1975) noted that there is

more power at such scales 01 10-5  Hz) at solar maximum than • at solar
minimum. Burlaga and King ( 1979) found that during years when the cosmic

ray intensity was low the enhancements in interplanetary magnetic field

strength were more often>" associated with shocks (and thus with transient

flows) than when the cosmic ray intensity was high. Newkirk (1975) and

Newkirk et al. (1981) suggested that such magnetic field strength

enhancements, or other modulation agents of a similar scale, might be

related to coronal transients, which are .related to prominences and solar

flares whose frequency changes with solar activity.

<.°.='^? ...-.,sw_.. _ 	 -..	 _ _^..>r•__._,. '̂^k.'	 w°'"^...,.-...S„r£°_. 	 a r:,.;- .	 a	 .:..
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4

The importance of the propagation of disturbances associated with

flares and sunspot number was shown indirectly by Hatton (1980) and

r
	

Nagashima and Morishita (1980), respectively. Figure 16 from Hatton

shows that there is a correlation between the variations of cosmic ray

intensity and variations in the number of flares of importance < 1,

illustrating well-known relation between cosmic ray intensity and solar

activity. If the effects of the flares on cosmic rays are assumed to be

oceurrr,, ng only after a finite time after the flare, corresponding to a

disturbance propagating at the solar wind speed, then the relation

between the cosmic ray intensity and the flares is significantly

improved, as indicated at the bottom of figure 16.

Direct and convincing evidence that the 11-year variation is due to

disturbances which propagate away from the sun is shown in Figure 17 from

McDonald et al. (1981a), based on simultaneous data from Helios 1 and 2

between 0.3 and 1 AU, and from Pioneer 10 between 12 AU and 20 AU. The

cosmic ray flux Is higher at Pioneer 10 than at Helios owing to the

large-scale gradient (see the insert of Figure 15 for measurements of the

gradient made by McKibben et al., 1982). Aparp from this, however, the

general shape of the profile measured by Helios is very similar to that

measured by Pioneer 10. Assuming no propagation effect (;no time delay

between the spacecraft) and allowing for the radial gradient, the Helios

profile gives the dotted curve in Figure 17, which differs systematically

from the Pioneer 10 observations. If one assumes that the changes in

cosmic ray flux propagate outward at a speed of 500 km/3 again allows for

the radial gradient, one gets the dashed curve in Figure 17. This curve

is in good agreement.with the Pioneer observations, showing that changes

associated with the 11-year variation do propagate away from the sun at

the solar wind speed. A similar conclusion was arrived at by Webber and

Lockwood (1981).
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There remains the question of the nature of the disturbances which

cause the long-term reductions in cosmic ray flux. McDonald et al.

(1981a) suggested that shock waves are a basic cause of the modulation.

The problem was investigated further by McDonald et al. (1982) and

Burlaga et al. (1982, 1983b), who showed that the modulation was caused

by systems of transient flows. For example, the step in the cosmic ray

intensity profile at the beginning of 1978, which marked the beginning of

the present 11-year cycle, was caused by a system of transients discussed

above in regard to Figure 12. Specifically, their evidence suggests that

the modulation is caused by diffusion in shells of turbulent magnetic

fields made up of transient streams, magnetic clouds and shocks. We have

come full circle back to the early ideas, but now our understanding is

based on direct observations of the solar wind plasma and magnetic fields

rather than inference and speculation.

Many questions and problems remain to be investigated. Systems of

transients and systems of corotating flows are only two extreme states of

the solar wind, and flow :systems consisting of mixtures of transient and

corotating flokm frequently occur (these too were imagined by Morrison,

1956). The investigation of `^,hese systems, their effects on cosmic rays,

and their relation to 11-year variations has only begun. Interplanetary

dynamical processes can significantly modify the turbulent shells as they

move away from the sun. For example, Burlaga et al. (1983a) showed how a

single fast corotating stream apparently overtook and compressed a shell

consisting of several transiento into a very thin region (B in Figure 7),

which caused an abrupt and permanent decrease in cosmic ray intensity in

mid-1980 (see Figure 17 and Figure 7). 7ne possibility that such
interactions might occur had been suggested by Par ker (1963). Newkirk

(1975) and McDonald et al. ( 1981x). Similarily, interactions among

transients have been discussed by Dorman (1963), Hakamada and Akasofu

(1982), and Burlaga et al. ( 19830). The nature of such interactions as a

function of distance from sun, the corresponding magnetic field

configurations, and their effects on cosmic rays are all problems which

are being investigated and that one can expect to be solved with the

spacecraft data which are available and which will be obtained in the

years ahead.

I
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6. Conclusion

Considerable progress is being made in understanding the variability

of cosmic rays on all time scales and over a wide range of distances from

the sun. Similarly', progress is being made in understanding the

stru,eture and dynamics of the interplanetary magnetic field and plasma.

Th_e&e two activities are developing synergistically, observations and

theory in one field complementing those of the other. Observations being 	 E
rl

made from an extraordinary network of deep space^ 	 y	 p p	 probes have provided new
p; 

information and a fresh perspective, but earth based measurements rind

spacecraft measurements near 1 AU continue to be invaluable for many

types of investigations.

The ideas of corotating and transient flows, which have a long and

interesting history, remain as key concepts. Our understanding of them

continues to grow deeper, as is characteristic of most important ideas.

Systems of such flows and interactions among these types flows er..e

clearly important for understanding long-term cosmic ray variations.

Their relation to solar activity is beginning to be explored using new

kinds of solar and coronal data that have recently become available.

Analysis off` theme and other problems, particularly using the data

obtained from spacecraft, should provide many significant new insights in	 y
r

the near future.

6
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