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ABSTRACT

Chebyshev pseudospectral methods are used to compute two-dimensional

smooth compressible flows. Grid refinement tests show that spectral accuracy

can be obtained. Filtering is not needed if resolution is sufficiently high

and if boundary conditions are carefully prescribed.
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I. Introduction

Pseudospectral approximations to the compressible Euler equations have

recently been studied as an alternative to second or fourth order finite

differences [I], [2]. The motivation is to obtain the superior accuracy

characteristic of spectral solutions to smooth incompressible flows. For

simple linear hyperbolic models it is easy to demonstrate that spectral

approximations are indeed far superior to finite difference approximations.

(See, for example, Turkel [i], Hussaini, Salas and Zang [3].)

Hussaini, et. al. [4] have shown that spectral approximations do work in

a variety of compressible flows. However, it has not been demonstrated that

spectral accuracy is obtained in actual problems. Typically, more complicated

flows have shocks and shock capturing spectral approximations introduce global

oscillations which must be smoothed. In such cases a definite advantage in

accuracy or convergence rate of spectral over finite difference approximations

has not yet been established [4], [5]. For this reason we examine the use of

spectral methods in conjunction with shock fitting algorithms. In the region

where the solution is smooth there is hope of obtaining spectral accuracy.

In this paper we examine the accuracy of spectral methods when applied to

smooth compressible flows. Even in such cases, spectral solutions sometimes

exhibit 'Wiggles". We look at the need for smoothing the solutions to such

problems. Two benchmark problems which are non-trivial and two-dimensional

are used. The first is the interaction of a plane wave with a shock. The

second is the classical Ringleb flow.



2. Pseudospectral Method

The novelty of the pseudospectral methods is that the solution defined at

each grid point is represented by a global high order interpolating

polynomial. Derivatives, when computed from the interpolant, couple all the

points. For periodic problems Fourier interpolation is appropriate. Boundary

value problems can use Chebyshev polynominals. Computation of the

coefficients is done efficiently through the use of the Fast Fourier

Transform. For continuous solutions the interpolation error decays faster

than any polynominal of the number of mesh points.

The problems in the next two sections use the Euler equations in non-

conservation form

Qt + BOx + CQy = 0 X,Y_[0,1], t _ 0 (I)

where Q is the column vector of the unknowns and B(Q), C(Q) are square

matrices. For the shock/plane wave interaction problem of Section 3, the Y

direction is periodic. Q is approximated by a Chebyshev-Fourier expansion

M N/2-1

Q(X,Y,t) = _ _ Q (t)Tp(_)e 2_iqY,
(2)

p=0 q=-N/2 pq

where _ = 2X-I. The coefficients Qpq are products of the Chebyshev and

Fourier coefficients computed from the values of Q at the mesh points. The

derivatives of the interpolant are

M N/2-1

= 2 _ _ ^(l '0) (t)rp(_)e2_iqYQx
p=0 q=-N/2 qpq (3)

M N/2-1 (0,

= 2_ _ _ Q l)(t)Tp(_)e2_iqYQy (4)
p=O q=-N/2 pq



(I,0)
The coefficients Qpq are computed with the standard recursion formula [3]

and

(o,1)
Qpq : iqQpq (5)

For the Ringleb problem a double Chebyshev approximation is used and the

solution is approximated by

M N

Q(X,Y,t) = [ [ Q (t)Tp($)Tq(_) (6)
p=Oq=0pq

Where _ = 2Y-I. The derivatives in both directions are evaluated in a manner

analogous to eq. (3).

While the approximation of derivatives at boundaries often requires

points outside the mesh, this is not the case for the spectral approximations.

The derivatives use only points within the mesh and hence do not require

special treatment.

The time discretization used is the second order modified Euler. Let

L(Q) denote the spatial diseretization of B_X + C_y and let t = nat. Then

: [l-AtLn] Qn

(7)

Qn+l = 1/2[Qn+(I_At_)Q]

where _ = L(Q).

3. Shock/Plane Wave Interaction

The first benchmark problem is the time-dependent interaction of a plane

wave with an infinite normal shock. We use this to demonstrate the appearance



of wiggles in a case where the relevant features are not resolved. A detailed

discussion of the problem and a comparision of finite difference computations

with linear theory predictions can be found in Zang, et. al. [6]. We comment

here only that for low amplitude waves whose wave fronts are nearly parallel

to the moving shock the linear theoretical solutions are quite accurate.

Let Xs(Y,t ) denote the position of an infinite shock moving from left

to right into a gas which is quiescent except for a specified pressure wave of

amplitude, A(x). We allow the amplitude to vary smoothly from zero to a

constant value so that the shock interacts with a smooth perturbation. In the

absence of the pressure wave the shock would remain plane and move with a

shock Mach number Ms.

The computational domain lies between some arbitrarily chosen left

boundary xL and the shock on the right. The y direction is

periodic, -_ < y < _. This domain is mapped to the unit square by

X = (X-XL)/(Xs-XL), Y = y/y% (8)

where y£ is the period in y. The dependent variables are Q = (P u v S)T

where P is the logarithm of the pressure, u and v are the velocities in

x and y, and S is the entropy divided by the specific heat at constant

volume.

The boundary conditions at Y = 0 and 1 are periodic. The right side

is hounded by the moving shock and a shock fitting algorithm is used to

determine the flow variables and move the shock. The left boundary is

supersonic inflow so all variables are specified.

Table I shows the RMS error for the acoustic transmission coefficient of

an incident i0° pressure wave for A = 0.001 with an Ms = 3 shock on three



2 M 2

different Chebyshev grids. The error is defined by e -- _ (Ap-Ae) /M. The
p=l

transmission coefficient A" is taken as the fundamental Fourier amplitude
P

computed by a Fourier transform in the Y direction at each grid point in

X. The linearized solution is A'.
e

TABLE I

Rms Error in Acoustic Transmission Coefficient

Number of Chebyshev Modes RMS Error

8 13.0

16 2.4

32 0.062

Figure 1 shows A" as a function of x behind the shock for the N =

16 and 32 Chebyshev grids. The solid line shows the linear theory results

for a constant amplitude wave. The numerical wave is started up smoothly.

Because the 16 point mesh cannot resolve the startup rise, large oscillations

are present. (Note that at the time chosen the beginning of the wave occurs

near the coarsest grid spacing.) If the solution is adequately resolved as in

the 32 point calculation, the oscillations are almost eliminated.

For this problem it has not been necessary to smooth or filter for the

purpose of stability. Aesthetic reasons may lead one to cosmetically filter

the solution. However, it must be remembered that these oscillations indicate

that the solution is not adequately resolved. See also Gottlieh et. al. [7]

who show that stability can be obtained without filtering if resolution is

adequate.
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Figure I: Acoustic transmission coefficient computed with a 16 (circles)

and 32 (diamonds) point Chebyshev grid. The solid line is the

linear theory prediction.

4. Ringleb Flow

The classical Ringleb flow is used for the second benchmark problem. We

use this flow to test the algorithm on a smooth, steady, two-dimensional

supersonic and transonic problem for which an exact solution is available. We

also use it to bring out aspects associated with the specification of boundary

conditions for Chebyshev methods.

The dependent variables Q = (P u v)T were chosen where (u,v) are the

Cartesian velocity components. Since the flow is homentropic we simply set

the entropy constant. The flow geometry is computed from the exact solution

by specifying the Mach numbers at the inflow and outflow along the lower

streamline and the outflow Mach number along the upper streamline. Figure 2

shows the Mach contours of the transonic problem used. The geometry is mapped



onto a square by a transformation to (i,_), the potential-streamfunction

coordinates, which are computed from the exact solution. A double Chebyshev

grid is then used in these coordinates. Figure 3 shows a 17 x 9 point grid

for the flow of fig. 2. The supersonic flow uses only the exit portion of the

channel.

Figure 2: Mach number contours Figure 3: The 17 x 9 Chebyshe -_

for the exact solution Chebyshev grid for the

to the Ringleb flow. flow in fig. 2.

In the mapped coordinate system (_,_) correspond to (X,Y) in eq.

(i). The coefficient matrices are

- u Y¢x Y¢y - v Y_x _y
2 2

a a

B = _-_x U 0 C = _-_x V 0 (Ii)

2 2
a
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where a is the sound speed and y is the ratio of specific heats. The

contravariant velocity components are

u = Uix + V+y

(12)

V = U_x + V_y

The specification of the boundary conditions has turned out to be a most

important aspect of computing the Ringleb problem. Reference [7] details

several studies applied to finite difference methods. We now describe the

approach which works best with the Chebyshev methods.

The Ringleh problem requires several types of boundary conditions.

First, the upper and lower streamlines (ab and cd in fig. 3) are treated as

impermeable boundaries, hereafter referred to as walls. The outflow

boundary bd is chosen to be supersonic. Finally, the inflow boundary ac

can be either a subsonic or supersonic boundary, depending on where it is

placed along the channel.

For the wall boundaries the tangential momentum equation can be written

as

2

U(Uiix+Viiy ) a 2p,Ut + + _--IV@[ = 0 (13)

The equation is left in this form without explicitly writing the

derivative of the contravariant velocity, U, because the derivatives of u

and v are available from the Chebyshev interpolant. The spatial derivatives

directly at the wall are computed as described in Section 2. The time

discretization is performed as in eq. (7). From the fact that the

contravariant velocity, V = 0 along the wall, u and v can be determined.



Particular care must be used in specifying the wall pressure when using

spectral methods. An example of the disastrous results which can occur when

boundary conditions are overspecified can be seen in reference [4]. Computing

the pressure from the enthalpy or directly from the pressure equation are also

unsatisfactory. Such boundary conditions produce wiggles even for finite

difference computations. The only approach which works effectively is to use

the compatibility relation for the characteristics intersecting the wall from

the interior of the flow.

By combining the pressure and normal momentum equations, an equation for

the pressure is

Pt = T alV_IP_ - [UP_+y(U$_x+U_$x+V_y+V$_y)

(14)

yU

a---_-[(Ui*x+V$*y)]

where the upper sign applies to the lower wall and the lower sign to the upper

wall boundary. The spatial derivatives are again computed from the Chebyshev

interpolant and no special treatment is needed. The equation is updated

according to eq. (7).

The supersonic outflow and inflow boundaries pose no difficulties. At

the inflow all the quantities are specified. The outflow requires no boundary

condition, either physical or numerical. Unlike typical finite difference

methods, particularly high order ones, the Chebyshev discretization does not

require any so-called "numerical" boundary conditions.

Finally, for the subsonic inflow we specify the total enthalpy and the

angle of the flow. Typically this leads to a faster approach to the steady

state. A compatibility condition combining the normal momentum equation and

the pressure equation is



I0

Pt + (U-a]V_[)P_ - _a[Ut+U(U_Ix+Vi_y)]

(15)

= - y(U_x+U++x+V_,y+V+ly)

Since the total enthalpy is taken to be a constant along the inflow boundary,

another relation between P and U can be obtained by differentiating the

total enthalpy equation in time

_ y-ip
U y

Pt = IVil2 e Ut (16)

Solving eq. (14) and (15) allows both Pt and Ut to be computed. They too

are updated according to eq. (7). From the computed U and the fact that

V = 0, the Cartesian velocities are calculated.

TABLE II

Maximum Error in p for MacCormack and Spectral Computation

of Supersonic Ringleb Flow

Grid MacCormack Spectra]

5 x 5 2.2 x 10-2 7.5 x 10-4

9 x 9 4.1 x 10-3 I.I x 10-6

17 x 17 1.0 x 10-3 6.6 x I0-II

The fully supersonic flow is a relatively easy problem to compute. A

9 x 9 grid used is shown in fig. 4. The exact solution was chosen as the

initial condition and the computations were run long enough for errors to

propagate out of the mesh. The time steps were kept small so that the errors

would be dominated by the spatial discretization. For the 9 x 9 computation

2000 time steps were used. The Mach contours for that solution are shown in
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fig. 5. A grid refinement study is presented in Table II where the maximum

error in the pressure from the spectral calculations are compared to second

order MacCormack finite difference results. The superior error convergence

for the spectral computations is clear.

/1.2o--

Figure 4: The 9 x 9 Chebyshev- Ftg, ure 5: Computed l_ch number

Chebyshev grid used contours of the super-

for the supersonic sonic flow for the

computation. 9 x 9 grid.

The computation of the transonic flow depicted in fig. 2 is more

difficult than the supersonic flow of fig. 5. The reason is the presence of

the sonic line and the rapid expansion to sonic conditions along the inner

wall. The computations were started with the exact solution and run for

approximately the same length of physical time. The slow, explicit time

integration method used does not allow relaxation to convergence. The Mach

contours of a 17 x 9 point calculation are shown in fig. 6 and can he compared

directly with fig. 2. The largest errors occur near the high curvature



12

section of the lower wall near the sonic line, and at the lower inflow

corner. A grid refinement study is shown in Table III. Though the results

are not as spectacular as the supersonic case, the spectral still outperforms

the finite difference computations.

Finally, no filtering was needed for the Ringleb problem either for the

supersonic or the transonic cases. Solutions with wiggles result from

boundary conditions other than the ones which we described. Application of

the compatibility relations at the boundaries appears to be the best approach.

TABLE III

Maximum Error in p for MacCormack and Spectral Computation

of Transonic Ringleb Flow

Grid MacCormack Spectral

9 x 5 2.6 x 10-2 2.2 x 10-2

17 x 9 i.i x 10-2 1.9 x 10-3

33 x 17 3.2 x 10-3 5.0 x 10-5

Figure 6: Computed Mach number contours of the transonicflow

for the 17 x 9 grid.
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5. CONCLUSIONS

We have shown that for two-dimensional smooth flows it is possible to

obtain spectral accuracy characteristic of more simple problems. The first

problem considered, that of the shock/plane wave interaction, needed no

smoothing for stability. Oscillations were significant only if the flow was

not well resolved. The Rlngleb problem provided a more general boundary value

test. Careful specification of the boundary conditions allowed the

computation to be performed without smoothing.

Though the spectral method is superior to the finite difference method in

terms of accuracy, the computation times for the spectral are far longer. One

major difficulty comes from the use of an explicit time differencing

procedure. Even for finite difference computations convergence to a steady

state is very slow without some acceleration procedure. The spectral

computations have the added disadvantage that the time step, which depends on

the grid spacing, varies with N2 rather than N. The widespread use of the

spectral methods will even more strongly depend on the development of fast

relaxation methods for the Euler equations.
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