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CONVECTIVE DIFFUSION EQUATION FOR SMALL VISCOSITY
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Abstract

The equation _ W2 gy(U)
u = f (u) + is studied by means of a compact

x

finite difference scheme and numerical solutions are compared to the analytic

inviscid (_ = O) solutions. The correct internal and external boundary

layer behaviour is observed, due to an inherent feature of the scheme which

automatically produces upwind differencing in inviscid regions and the correct

viscous behaviour in viscous regions.
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INTI_ODUCTION

Consider a domain D with boundary r in the x y plane, in which

u(_) is the solution of the time-independent convection diffusion equation

ix(U) + gy(U) = _ V2 u (I.I)

B

for u = u on F. Certain features of this problem can provide useful

insights into the Navier-Stokes equations and their invlscid limit, the Euler

equations (we emp]oy terminology suggested by these applications in the

following discussion). In fluid dynamics it is common to obtain the time-

independent solutions to these problems by solving the time dependent problem

for large times. In this paper we instead study (I.I) by a tlme-lndependent

finite difference equation to which rather standard iterative methods will be

shown to apply.

A large variety of finite difference methods can be employed to solve this

problem in the sense that if u(_,h) indicates the solution of a finite

difference scheme in which h is a typical mesh length then u(v,h) . u(_)

as h + 0 in, say, an L2 norm. In particular, integrating (I.i) over a

subdomain D" with boundary F" produces the conservative integral

formulation

(f n + g ny)dS = _ _ V u.n as, (1.2)F" x F" --

where _ = (nx,ny)T is the unit normal vector. Conservative finite

difference schemes approximatethis equation in each cell. Nonconservative

schemesinsteadapproximatethe equivalentdifferentialequation

a u + b u = 9 V2 u, (1.3)
x y
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where a = 3f/3u and b = _g/3u in each cell. Since u(_) is smooth both

approaches produce the correct solution in the limit h + O.

The situation is more complicated for the "invlscid" weak solution u0

which satisfies

(f n + g ny)dS = O, (1 4)F" x "

for all closed curves F'. This is equivalent to the hyperbolic problem

O u0a u + b = O, (1.5)x y

provided u0 is differentlable. However, in the inviscid case boundary data

may only be prescribed on part of F, say F0 Furthermore there may be

nonunique solutions with discontinuities (shocks) or closed characteristic

curves (recirculating flows) if a2 + b2 = 0 at points in D.

Many of the essential facts concerning the relationship of the solution

u(v) of (I.i) with the "physically relevant" solution u0 of (1.4) are

suggested by formal singular perturbation arguments. Specifically, in the

limit u + 0, we expect that the solution u(u) of (I.i) converges to the

"physical" weak solution u0 of (1.4) and boundary layers arise on the

complement of r0 in F, i.e., that part of F on which no boundary data is

required for the inviscid problem for u0.

The use of finite difference schemes to calculate the solution u(_) in

the limit _ + 0 introduces a second limiting process h + 0. It is natural

0
to consider the d_fferent limiting paths by which u(9,h) + u as suggested

by the following figure:
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h+ 0

u(v,h) u(9)

I \

_ + 0 I _.h + 0 _ + 0

I \

l "\ o
u(h)--....... _-u

h+O

Figure i: Typical limiting processes considered in this paper.

The solid arrows indicate limiting processes which are known to be

convergent, assuming a consistent stable finite difference scheme. The dotted

arrows denote limiting processes which in general may not be convergent, or

0
may converge to a solution different from u •

This paper is concerned with investigating a finite difference scheme

which offers useful insights into this problem. The scheme has its origin in

a compact exponential scheme described by Philips and Rose [i] for time-

dependent problems; an application of this scheme to the Navier-Stokes

equations was also described by Rose [3]. An effective time-independent

solution method is provided by employing the flux-elimination technique

described in Phillips and Rose [2]. The first few sections describe the

application of these developments to equation (i.I). The relationship of the

solution u(v,h) to u0 is then explored by several numerical experiments

and simple heuristic analyses.



2. A COHPACTSCHEME

Consider (i.i) in system form

Vx + Wy = ix(U) + gy(U)

v = _ ux (2. I)

W = D U
Y

In a square cell _i,j' with sides of length 2h, Uiil/2,j, ui,j±i/2,

vii l_,j, wi,j±I/2 represent the average values of the analytic variables on

the corresponding sides of
i,j"

ui,j+ 1/2

wi,j+ 1/2

X

ui-I/2,j ui+v2,j

_i,j

vi-i/2 ,j vi+ i/2,j

X

Figure 2: Location of finite difference variables in a cell
i,J"



Because solutionsof (2.1) are smooth, if h is sufficientlysmall any

solutionof (2.1) can be approximatedlocallyby

9 V2 u = a u + b u
x y

where a,b indicateaverage values of fu' gu in the cell. This equation

has elmentarysolutions u = exp(ex+ By) where e(a - 9e) + 8(b - 98) = 0.

Any linearcombinationof four such solutionscan be used to obtaina solution

having the prescribedaveragevalues ui±i_ ,j, ul,j±I_ on the sides of

Hi,j; the correspondingaveragevalues vi± I/2,j,wl,j±I/2 are then related

by four algebraic equations. The followingalgebraic system arises when a

solutionof the form

u = cI + c2 expI_ ) + c3 exp(b-_) + c4 exp( ax +_by)

is considered.

a) 6 v + _ w = 6 f + 6y gx y x

b) I_x - h Px 6x)V = V 6x u

(2.2)

- h py 6y)W = _ _ uc) IPy y

2 - w) = 91Ux - _yd) h lqx 6x v % 6y )u

where

_x u = (ui+I/2,j - ui_ 1/2,j)/2h

u lui+1/2,j+ui_i/2,j)/2,



etc., and, if p = h/_, 6 = ap, e = bp, then
x y

p(e) coth e - e-I (2.3)
= Px ---P(0x)' py - p(ey)

q(6) = e-I p(e) qx - q(ex)' qy - q(ey). (2.4)

The simple behaviour of p(6), q(e) are shown in Figure 3.

Figure 3. Graph of p(e), q(e).

The dimensionless parameters 8 , 8 are the cell Reynolds numbers and
x y

provide a measure of the relative importance of diffusion versus transport

effects in a cell. An important feature of this scheme is the manner in which



upwind differencing arises when [el + =. From (2.3), (2.4),

p(0) ~ sgn(e) lfll large

~ 0/3 [O[ small

(2.5)

q(e) ~ le[-I ]el large

~ 1/3 [e] small.

In (2.2b) (_x - h Px _x )v represents a weighted average of the values

on the two cell sides. For [el + m the weights tend to 0 or 11/2,j
thereby selecting one or another of the values depending on the sign of e.

For [e[ + 0 the weights tend to 1/2 giving a simple central average _x v.

An important point to note is that equation (2.2a) can be interpreted as a

finite difference form of the conservative integral equation (1.2). Summation

over all the cells in domain D yields

(f n + g ny)h = _ (v n + w n )h, (2.6)F x F x y

so the scheme is globally conservative. This is _mportant in ensuring the

correct calculation of nonlinear shocks, as will be shown later.

The scheme (2.2) is called compact because it involves only the values

of u, v, w associated with an individual cell. Any relationships between

values in other cells arise from imposing the further condition that values

are continuous across cell boundaries. When a and b are constant in all

cells an energy estimate similar to that in [i], [2] can be obtained from

(2.2); the result is that the solution u(_,h) converges as h + 0 to a

smooth solution u(_) of (2.1) with O(h 2) accuracy.



3. FLUX ELIMINATION

Let

V = (_x v, Ax v, _y w, A w] rY

(3.1)

U = (_x u, Ax u, _y u, A u)TY

where A = h 6. Equations (2.2) may be solved for V to obtain

V = R(U) (3.2)

where
-- a

- f+A g)]
O Ax u + px [(_x _y)U + p qy(Ax Y

(_x - _y)U + p qy(A x f + A g)Y

R(O) = 0-1 (3.3)

o d u + py[(By - _x)U + p qx(Ax f + A g)]Y Y

(_y - Bx)U + p qx(Ax f + A g)Y

in which o = qx + qy"

Following the method outlined in Phillips and Rose [2] consider two

neighboring cells _ij and _i+l,j having the common values ui+l/2,j and

vi+i/2,j associated with their common side. Clearly

Vi+l_ ,j = (_x + Ax)Vi,j = (Bx - Ax)Vi+l,J

so that



(i 1 0 0)Ri,j(U ) = (I -I 0 O)Ri+I,j(U).

Similarly considering the value wi,j+i/2 common to cells _i,j and

we also have
_i,j+l

(0 0 I I)Ri,j(U ) = (0 0 i -I)Ri,j+I(U).

Using (3.3) there results

a) Bx{o-l[(_x - _y)U + O qy(Ax f + Ay g)]}

-i

- Ax{A x u + Px _ [(_x - _y)U + p qy(A x f + Ay g)]} = 0

(3.4)

b) _y{-l[(_y _ _x)U + O qx(Ax f + Ay g)]}

- Ay{Ay u + py -l[(_y _ Bx)U + O qx(Ax f + Ay g)]} = O.

The values of u related by each of these equations are indicated in

Figure 4. We refer to (3.4) as the flux-ellminated form of (2.2). From its

solution v and w may be calculated from (3.2).

When only u is prescribed on the boundary then (3.4) applies as

indicated at all interior points. When, more generally, v or w are

prescribed at boundary points additional equations expressing these prescribed

values are obtained from (3.2). Finally we call attention to the fact that

the parameters h and _ occur in (3.4) only in the combination p = h/v.



i0

X , X X

i,j i+l,j i,j+l

x x X

_i,j

X

(a) (b)

Figure 4: Stencilsfor (3.4a,b)

4. LIMITINGFORMSOF FLUX-ELIMINATEDEQUATIONS

As stated in the introduction we shall be interested in studying the

solution u(_,h) of (3.4) as h + 0, _(h) + 0. Depending on the function

_(h), as h + 0, p = h/v approaches 0, a constant, or =. In this section

we shall describe some results of formally applying the limits O . 0,= in

(3.4) using the asymptotic values for p,q given in (2.5). For our purpose

it will be sufficient to examine only (3.4a).

Case i: P + 0

When O Z 0 then p ~ 0, q Z 1/3 and (3.4a) reduces to

(ui_ 1/2 ,j + I0 Ui+l/2 ,j + ui+3/2,j)

- 3(ui,j_I/2 + ui,j+i/2 + ui+ 1,j_1/2 + ui+ l,j+I/2) __ 0.
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Case 2: p +

When 161 >> 1 then p ~ sgn(6), q ~ le1-1 and so in this case different

limiting forms arise depending on sgn(a), sgn(b) where a = fu, b = gu" We

write

a_ _ el, j a+ _ ai+l, j

b_ _ bi, j b+ _ bi+l, j

(i) ai > O, bi > 0

Equation (3.4a) reduces to

(b_ - a_)ui_i/2,j + (b_ + a_)ui+i/2,j - 2b_ ui,j_i/2 __ O.

The relevant stencil is shown below with arrows indicating the direction of

the inviscid characteristic. Note that the reduced equation uses only

"upwind" information to calculate ui+l/2,j. In particular if these two cells

are the entire computational domain then the prescribed boundary values on the

upwind side of ui+l/2 ,j solely determine its values. This corresponds to

the analytic situation in which the inviscid weak solution requires boundary

data only on the "inflow" part of the boundary at which characteristics enter

the domain.

Figure 5: case (1)
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(ii) a+ < o, a_ > O, b± > 0 (Ibl >> lal)

Equation (3.4a) reduces to

a_ Ui_l/2 ,j + (a_ - a+)ui+l/2,j - a+ ui+3/2, j

-2a_ ui,j_l_ + 2a+ Ui+l,j_i/2 t 0.

Again ui+l/2, j is influenced only by upwind points as shown below.

X X

Figure 6: ease (li)

(iii) a+ > 0, a_ < 0, b, > 0 (Ibl>> lal)

Here

i

ui+i/2, j - _ (ui, j _i/2 + Ui+l,j_I/2) _ 0.

X X

Figure 7: case (ill)
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In interpreting these observations it must he remembered that

corresponding equations arise from (3.4b). These examples provide useful

insights in understanding the test problems considered in the next section.

In these problems p varies from 0.3 to 40 with corresponding values of 8

ranging from 0 to 40 so the actual finite difference equations can be very

close to the different limiting forms in different parts of the domain.

5. NUMERICAL EXAMPLES

We have indicated earlier that we may expect that the compact scheme (2.2)

yields a solution u(_,h) which converges to the solution u(v) of (2.1)

with an L2 error of order h2 (c.f. Example I, below). In this section we

are primarily interested in studying the L2 error E between u(v,h) and

the inviscid solution u0 as h + 0, v + 0, by means of numerical

experiments.

The first question which arises concerns the possibility of solving (3.4)

for u(_,h) when p + _. Although several iterative methods were studied

with, generally, successful results our report will concentrate on the use of

the Gauss-Seidel method. One reason for our doing so stems from favorable

results, as yet unpublished, by our colleague T. N. Phillips concerning the

treatment of systems closely related to (3.4) by multigrid methods using

Gauss-Seidel as the underlying iterative scheme.

A central question motivating this study is how effectively internal and

external boundary layers arising from approximating u0 by u(_,h) can be

localized. A related question concerns the relative influence of the

viscosity v compared to inaccuracies arising from the fact that the scheme

has truncation errors of order h2. In order to help discuss this we
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introduce a parameter _ = h2/v which together with p = h/v, will be used

to study the solution as h + 0, v(h) + 0.

Another issue concerns new insights into upwind difference schemes. As

discussed earlier [el << 1 leads to a diffusion-type limit of (3.4) while

[e[ >> 1 leads to an inviscid upwind-type treatment. Both can occur if

p >> 1 and a (or b) passes through zero in some region. The functions

p,q in (3.4) automatically handle this transition with a "viscous" treatment

near a ~ 0 and an "almost-inviscid" treatment elsewhere.

The final matter concerns the question: under what limiting processes do

nonconservative finite difference schemes yield the correct asymptotic

inviscid result when h + O, v(h) + O?

The examples which follow address these questions. The first two examples

graphically illustrate the behaviour of u(v,h) in cases in which the

inviscid limit u0 is either linear or nonlinear. In the next five examples

the L2 error E between the solution u(v,h) and the inviscid, analytic

solution u0 is computed for different values of v,h and the results are

compared using simple heuristic analyses. The final example calculates the

L2 error for a problem using a nonconservative form of (3.4).

Example 1

f and g are linear and are defined by

f =au a=x- 1/2

g =bu b=l -y .

Note that f + gy = a u + b u since a + b = O. Hence the inviscidx x y x y

solution u0 is constant along characteristics defined parametrically by
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dx _ dy = b, i.e., (I - y)(1/2- x) = constant.
ds a, ds

The domain considered is 0 _ x < I, 0 < y < I and so the only inflow

boundary on which boundary data needs to be specified is on y = O. The

boundary values are chosen to be

u0(x,0)= sin_(I/2-x),

so that the solution on the interior is

uO(x,y) = sin[_(l - y)(1/2 - x)].

The boundary conditions for the finite difference problem are chosen to be

u(x,l) = uO(x,l), u(0,y) = -I, u(l,y) = I

so that boundary layers arise at x = 0,i.

Figure 8 shows contour plots of u(v,h) for several different values of

and h. (a), (b), (c) illustrate ordinary convergence arising from a

sequence in which _ is kept fixed and h is reduced by factor 1/2 each

time; little visual difference appears. (a), (d), (e) are a sequence in

which p = h/_ is kept fixed and h is reduced by factor 2 each time;

observe that the width of the boundary layers decreases. Finally, (a), (f),

(g) illustrate, a sequence in which h is kept fixed and _ is decreased by

a factor 4 each time. Note that the boundary layers at x = 0,I become

smaller until they are confined to one interior cell.
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(b) (c)

= 1/5, N = 20 _ = 1/5, N = 40

/

(a) (d) (e)

= 1/5, N = I0 _ = I/i0, N = 20 _ = 1/20, N = 40

(f) (g)

= 1/20, N = I0 _ = 1/80, N = i0

Figure B. Contour plots for Example i; (a), (b), (c) illustrate

ordinary convergence (h . 0, v = const.); in (a), (d),
(e) 0 = const., h + 0; in (a), (f), (g), h = const.,

. 0. (In (f), (g) boundary layer thickness is confined
to one cell.)



17

Example 2

This nonlinear example was suggested by our colleague E. Tadmor to test

the ability of the scheme to converge to the correct "physical" inviscld

solution for a problem with an infinite range of formal inviscid solutions.

We consider

2 3
f=u, g=u.

The test case has an expansion fan attached to a shock

0.8 x - 0.3< _/__i
y 1.2

0 2y 1 <x- 0.3 < i
u (x,y) = 3(x- 0.3) 1.2 y 0--_ "

-0.2 1 < x - 0.3
0.6 y

The boundary conditionsfor the finite differencesolutionare

0
u(9,h)= u on all four sides so that the only sharp gradientsoccur at the

shock.

Figure 9 shows contourplots of u(9,h) for fixed P and decreasing h.

In (a) the shock is indistinguishablefrom the expansionfan but in (c) the

difference is obvious, and it is also clear that the numerical solution is

convergingto the physicalinviscidsolution.
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(a) (b) (c)

2 3
Figure 9. Example 2, f = u , g = u ; p = const., h + 0.

Example 3

This linear example uses the same definition of f and g as Example i,

and has the same inviscid solution u0. However this time the finite

difference scheme has boundary conditions u = u0 on all four sides of the

square domain. Three eases were run, one with a 20 × 20 grid, and two with

80 x 80 grids keeping p = h/v fixed in one case, and T = h2/v fixed in the

other. The table below shows the (i) number of Gauss-Seidel iterations,

(starting from initial conditions u = 0); (ii) the L2 error E; (iii) E

E*divided by the error for the 20 × 20 grid, and (iv) the predicted ratio

E/E* based on the following simple analysis.

Let L0 be the inviscid differential operator and L(v,h) be the viscous

finite difference operator. Then

0
L0 u = 0 and L(v,h) u(v,h) = 0,

so

h 2
L(v,h)(u 0 - u(V,h)) = (L(V,h) - L0)u0 ~ h2 • function (-_-)
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and u0 - u(_,h) = 0 on boundary; thus

flu0 - u(v,h)llL2 ~ h2 e(T) as h + 0,

where e(_) is some function of the truncation error due to viscosity.

Table I. Results for Example 3

N = 20 N = 80

p = i0 p = i0 p = 40

T = 0.5 T = 0.125 r = 0.5

No. of Iterations 15 55 25

E .334 (-2) .821 (-3) .216 (-3)

E/E* i 0.245 0.0647

Predicted Ratio 1 0.25 0.0625

Example 4

This example has linear f,g

f = 0.5 u, g =u

0
with discontinuous boundary data for which the inviscid solution u is

0 I 0.8 x < 0.3 + 0.by

U _ I -0.4 x > 0.3 + 0.by

The analysis for this case is not easy but leads to the result



2O

E~h1/2e(T),

where e is a function with asymptotic behaviour,

T + 0 e ~ •-I/4 ===> E ~ v I/4.

Thus when T is small the error E is due not to the secondorder truncation

but due rather to the viscoussmearingof the contactdiscontinuity.

Table II. Results for Example4

N = 20 N = 80

p = I0 p = i0 P = 40

= 0.5 T = 0.125 T = 0.5

No. of Iterations 10 15 15

E .144 .0969 .0901

E/E* i 0.673 0.625

PredictedRatio 1 0.707 0.5

Example 5

This example is a two-dlmenslonalversion of Berger's equation with a

shock:

2
f = 0.5 u , g = 0.4 u

and the inviscid solution u0 is
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u0 I0018= x < 0.3 + 0.5y- 4 x > 0.3 + 0.5y

In the finite difference solution the shock becomes an internal boundary

layer with width of order v. If p = h/v is kept fixed as h . 0, this

shock layer is spread over the same number of cells and hence

E ~ h 1/2e(p).

As p + 0, e ~ p_ 121L===> E ~ v I/2 and so when P is small the error is due

solely to a physically well-resolved shock.

Table III. Results for Example 5

N = 20 N = 80

p = i0 p = I0 p = 40

= 0.5 T = 0.125 T = 0.5

No. of Iterations 35 85 85

E .102 .050 .048

E/E* 1 .49 .47

Predicted Ratio 1 .5 .5

Example 6

This example is exactly the same as Example 1 except for different values

of h and _. The analysis cannot be expressed in one simple equation. If

p . 0 and h . 0 then E ~ _ I/2 since the boundary layer has thickness of

order _ and so it is well-resolved. If p is kept fixed the boundary layer
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spans a fixed number of cells and so E ~ h I/2• If T is kept fixed it has

an 0(h) effect on just the interior points adjacent to the boundary and so

E ~ h 3/2.

Table IV. Results for Example 6

N = 20 N = 80

P = i0 P = i0 P = 40

T = 0.5 T = 0.125 T = 0.5

No. of Iterations 15 55 25

E .448 (-i) .254 (-I) .51 (-2)

E/E* 1 0.567 0.114

Predicted Ratio 1 0.5 0.125

Example 7

This example is the same of Example 3 except that the boundary condition

at y = i is u(x,l) = I which produces a boundary layer at y = I. This

boundary layer is different from the ones in Example 6. In Example 6 the

boundaries were "outflow" boundaries, i.e., the inviscld characteristics were

pointing outwards across the boundary. In this example the characteristics

are tangential tO the boundary at y = I, similar to a stagnation point flow

in fluid dynamics.

The physical boundary has thickness of order _ I/2 so if T is kept

fixed as h . 0 it spans a fixed number of cells and E ~ h I/2• Hence

E ~ h 1/2e(r)
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-V4 V4
and as T . 0, e ~ T ===> E _ v .

Table V. Results for Example 7

N = 20 N = 80

p = I0 p = i0 p = 40

= 0.5 T = 0.125 T = 0.5

No. of Iterations 20 60 25

E .149 .107 .074

E/E* i 0.718 0.498

Predicted Ratio 1 0.707 0.5

Table VI summarizes the results of Examples 3-7.

Table VI. Summary of Asymptotic Behaviour of E

E v = const p = const r = const

Smooth u0 v h h2

Linear, discontinuous u0 v I/4 h 14 h I/2

Nonlinear, discontinuous u0 v I/2 h i_ h 1/2

Smooth u0, "wrong" outflow

boundary conditions v I/2 h I/2 h3/2

Smooth u0, "wrong" tangent

boundary conditions v 1/4 h I/4 h I/2
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Example8

This example studies a nonconservatlve form of the compact equations

obtained by replacing the term 6x f + 6y g in (2.2a) by a _x u + _ _y u

where a, b are average values of fu and gu in the cell. The test case

is

4
f =u , g = 0.4 u

with an inviscid solution

u0 = I 0"8 x < 0.3 + 0.5y-0.4 x > 0.3 + 0.5y

The error analysis shows that E has two components, E1 due to shock

smearing, and E2 due to an incorrect shock angle.

E1 ~ (shock width) I/2

~ _I/2 = h l/2p-I/2

E2 ~ (conservation loss per unit shock length) I/2

~ [(# cells across shock) x (# cells along shock)

x (truncation error per cell)] I/2
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The two error components have the same order of magnitude when p ~ h °_ .

If p << h I/2, E1 dominates and, if p >> h I/2, E2 dominates. Hence,

i_ P << hl/2

E ~ 1/2 1/2p p >> b

and at each fixed h, E is minimized by choosing p ~ h I_ , and

Emi n ~ him .

Table Vlla shows results from several experiments and Table Vllb has the

corrresponding values of Emin/h I_ and Pmin/h I/2 which, according to the

analysis, should be constants.

Table Vlla:

E N

p 20 80

0.31 .267 .162

0.62 .220 .121

1.25 .168 .133

2.5 .228 .266

5 .376 .393

Table Vllb

N

20 80

Emin/h I_ .355 .362

Pmin/h I_ .18 .18
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6. CONCLUDINGREMARKS

The experimentsreported in the previous sectionsuggest that the compact

scheme (2.2) provides an effectivemeans of approximatingboth u(9) and u0

and that the relationshipbetween these solutions which are suggested by

singular perturbationarguments is maintained,as indicatedby Figure i, by

the finite difference scheme as well. A fact of potential practical

importanceis that boundary layers can be confined to a single computational

cell. This featureis a relevantfactoras well in selectingthe conservative

form of (2.2) instead of the nonconservatlveform (we remark in passing that

it would have been preferableto have treatedthe terms p_, q6 in (2.2)by

6p, 6q instead).

Finally, the fact that the flux-ellminatedequations (3.4) can be treated

by a Gauss-Seldeliteratlvemethod indicatesthat a wide variety of more rapid

Iteratlvemethodscan also be employed. In contrast,the use of tlme-stepplng

methods to obtain u(9) or u0 can be seen to result in a more slowly

convergentJaeobl-typeiterationscheme.
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