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At the measurement time, the state estimate and covariance are updated

by

3k(+) - 3k(-) + Kk(gk - Ek(gk(-))) (7)

and
Pk(+) = (I - Kk Hk‘zk(°))) Pk(') (8)

where the ({--) and (+) represent the appropriate values just before
and just after the update. The updated values are uved to reinitialize
the time propagation equations (3) and (4) for integrating up to the next

measurement time. The Kalman gain matrix is computed as

Kk = Pk(-) Hk(ij(-)) (}&(Ek(-)) Pk(-) Hk(ﬁk(-)) + Rk) (9)

This algorithm is repeated until the last time point, t_, is processed.

N
For later use in the smoother algorithm, various combinations of the state
egtimates (g}, measurements (z), linearized dynamics matrix (F) and
measurement matrix (H), measurement noise covariance (R) and estimation

error covariance matrix (P) must be stored for each time instant to be

processed by the smoother algorithm. ‘

2.2 Modified Bryson-Frazier Smoother Algorithm

The operation of the smoother algorithm is similar to the filter

algorithm except in reverse time. The derivation of this smoother algorithm
is found in reference [2). This fixed interval smoothing algorithm pro-
vides optimal estimates given all the measurements in comparison to the

filtering algorithm providing optimal estimates given the previous




1.0 INTRODUCTION

This fourth monthly progress report again contains qortections and
additions to the previously submitted reports. The additions include a
simplified SRB model that is directly incorporated into the estimation
algorithm and provides the required partial derivatives. The resulting
partial derivatives are analytical rather than numerical as would be the
case using the SOBER routines.

The filter and smoother routine developments have continued. These

routines are being checked out.
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2.0 FILTERING AND SMOOTHING ALGORITHM

The Space Shuttle Parameter Eatimation Program utilizes optimal
estimation techniques to provide estimates of the propulsion system
parameters. The technique selected is the extended Kalman filter and
the modified Bryson-Frazier smoother. By modeling the propulsion system
parameters as time correlated random variables, improved estimates of
these parameters are obtained and are properly time phased by removing
the filter induced lag by using the combined filter/smoother. The
smoother also provides improved estimates of the initial state estimates.

The system, in state-space notation, is modeled as the continuous

dynamical system disturbed by additive Gaussian white noise

x = £(x(t), t) + G(t) w(t) + u(t), x(o) = X, (1)

where
X = n-dimensional state vector
x, = Gaussian initial condition vector with covariance Po
w(t) = p-dimensional white, zero-mean white Gaussian noise with

covariance
T
E[w(t) w ()] = Q(t) &8(t - 1)
u(t) = n-dimensional control vector.

Ti.2 elements of the vector x(t) represent vehicle position, velocities,
attitudes, angular rates, aerodynamic and propulsion parameters, measure-
ment biases, etc. Elements of u(t) include known control inputs such

as SSME power level commands.




The system described by equation (1) is observed at discrete times, tk‘
with not all states being directly measured. Some measurements are non-
linear functions of the elements of the state wvector x(t). In general

the measurement process is described as

zZ = Ek(i(tk)) + Y (2)
where
z = m-dimensional observation vector
Ek = functional representation of the measurements in terms of
the states
!k = m-dimensional, zero-mean, while Gaussian noise sequence with

covariance

Elv, v?] = R, 6 .
-1 = i i,j

Examples of the elements of the observation vector Ek include radar
measurements of range, azimuth, and elevation from the radar site to the
vehicle.

It is assumed that the system process noise vector w(t) and the

measurement noise vector v, are uncorrelated. Alsn, the system state

A

initial condition vector 50 is not correlated with either of these two

noise vectors. Therefore

Elw(t) v1 = 0, Elw(t) x11 =20, Elx vl =0

where the superscript T denotes transpose. For later reference, the

following matricies are defined



Bf (x(t), t)

F(i(t), t) = -—W (3)
and
Oh(f_(tk))
H(@(-)) = —Eg(—t-;-)— . (4)

These matricies are linearizations of the dynamics ziid m:asurement models
respectively, evaluated about either a nominal or reference value of the

state, or about the state estimate.

2.1 Extended Kalman Filter Algorithm

The extended Kalman filter algorithm is in essence a conventional
linear Kalman filter algorithm applied to a mathematical model resulting
from the linearization of the system model equation (1), and measurement
process, equation (2), about a current state estimate. The filter yields
optimal estimates if the linearization is accurate, i.e., the state esti-
mate closely approximates the true state. The derivation of the algorithm
can be found in reference [11].

The algorithm proceeds as follows. After initialization of the state
estimate and covariance, the state estimate and covariance are propagated

forward in time until a measurement update is available, by
% = £(k(t), t) , £, <t <t (5)

and

B(t) = F(x(t), £) P(t) + P(t) F(x(t), ©)T + G(&) o) ae)  (6)



At the measurement time, the state estimate and covariance are updated

by

3k(+) = gk(-) + Kk(gk - gk(gk(-))) (7)

and
Pk(+) = (I - Kk Hk(gk(-))) Pk(-) (8)

where the ({.-) and (+) represent the appropriate values just before
and just after the update. The updated values are ured to reinitialize
the time propagation equations (3) and (4) for integrating up to the next

measurement time. The Kalman gain matrix is computed as

Kk = Pk(-) Hk(ij(-)) (Hk(ﬁk(-)) Pk(-) Hk(ﬁk(_)) + Rk) (9)

This algorithm is repeated until the last time point, ¢t_, is processed.

N
For later use in the smoother algorithm, various combinations of the state
estimates (8), measurements (2), linearized dynamics matrix (F) and
measurement matrix (H), measurement noise covariance (R) and estimation

error covariance matrix (P) must be stored for each time instant to be

processed by the smoother algorithm.

2,2 Modified Bryson-Frazier Smoother Algorithm

The operation of the smoother algorithm is similar to the filter

ol bt W

algorithm except in reverse time. The derivation of this smoother algorithm
is found in reference {2]. This fixed interval smoothing algorithm pro-
vides optimal estimates given all the measurements in comparison to the

filtering algorithm providing optimal estimates given the previous
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measurements processed. Therefore the smoother provides improved estimates

in addition to removing the time lag induced by the filter algurithm.

The smoothing algorithm adjoint variables, A and A are "initialized”

at the final time processed by the filter, T,

T T "1 ~
L(T-) = -HN(HN PN HN + RN) (EN - EN(XN(-))) 6t (10)
N,T
and
A(T-) = H.(H. P_ H™ + R)™' H_8 1)
- NN NN Y RN Nty

If T is not an observation time, A and A are zero. The adjoint

variables are propagated in reverse time tc the next previous measurement

time by
l_ﬂ - F(E(t)» t) é_ » tk it < tk+1 (12)
£=-ra@, 0T A -2 r&@), t) (13)

At the time of an available measurement, ¢t the adjoint variables

k,
are updated by

T T -1
A=) = A(+) = H (4 B H +R)™ ((z -h (x (=)

+ (P H 4+ R) K AG+)) (14)

and

T T T -1
A(-) = (I - Kk Hk) Al+) (1 - Kk Hk) +»P&(Hk Pk Hk + Rk) Hk (15)

R




The smoother state estimate and error covariance are obtained using the

filter estimate and covariance and the adjoint variables by

x"(t) = &(t) - P(t) A(L) (16)
and

P (t) = P(t) - P(t) A(t} P(t). (17)

Due to the potential number of time points to be processed, smoother
estimates may only be computed at the discrete measuremerit times. For

this approach the propagaticn equations (10) and (11) ar2 replaced by

T
A (9 =0 A=) (18)
and
A(+) = OL A (=) 0@ (19)
k k k+1 k

where OE is the state transition matrix formed with the linearized

dynamics matrix F to propagate the adjoint variable from time tk+1

to time tk. ™e algorithm continues in reverse time until the initial

time is reached.

2.3 Iterations with the Filter/9moother Algorithm

The perfocrmance of the filter/smoother algorithm is a direct result

of the accuracy of the linearization. Repeated operations of the algorithms

with adjustments in initial state estimates and covariance in each cycle

can yield improved estimates. This technique is known as global iterated

a
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tiltering as defined in reference [3]. Each cycle of operating the
algorithms would yield increasing improvements in the state estimates.
This feature of the algorithm operation is of special interest to
the propulsion parameter estimation problem using the NASA predictive
models. Initial, or nominal, values of the parameters of interest can
be used to obtain the necessary partial derivatives indicated earlier.
From operating the algorithm imprnved estimates of those parameters are
obtained. Using these improved estimates, more accurate partial deriva-
tives are obtained for use in the algorithms. This process is continued
until there is in essence no change in the partial derivatives or quality
of the state estimates. If the linearization is accurate, the measure-

ment residual should be a white noise process with known covariance.

s A . oI




3.0 FILTER/SMOOTHER ALGORITHM SYSTEM AND MEASUREMENT MODEL

The usefulness of the filter/smoother algorithm is to provide esti-
mates of the system states from the observed motion and dynamics while
the system ig driven by known and unknown elements. These unknown elements
are elemants of the system state vector to be nstimated. The evolution of
motion resulting from these known and unknown elaments is assumed to be
suitably represented for this study by a six degree-of-freedom (6 DOF) rigid
body equations of motion. These equa~ions are presented and discussed in
section 3.1.

To implement these equations into the filter /smoother algorithm
presented in section 2.0, a linearization of the system state and measure-
ment models is required. These linearized equations are presented in

section 3.2.

3.1 Equations of Motion and Measurement Equations

3.1.1 Rigid Body Equations of Motion

The rate of change of vehicle velocity in body coordinates, X(B),

as a result of external forces acting on the wvehicle is described by

sz f(B) f‘,B)
«(B) " B.I (I) , (I) (B) =1 p
v =—27n—-_c_f+C9_ (r )-gx_\{_ *m +m (20)

where
p = atmospheric density
A = aerodynamic coefficient referenced area
Vh = magnitude of vehicle velocity relative to the surrounding air

mass

L U bt At




m = vehizle mass

g = asrodynamic force coefficient wvector
(1) (1) .
q (r °") = gravity vector in inertial coordinates

w = angular rotation of the body relative to the inertial irame

_f_:,s) = resultant thrust force vector in body coordinates
E;B) = resultant plume force vector in body coordinates

The rate of change of vehicle position in inertial coordinates, 5(1),

is then obtained by

;(I) - ICB v(B)

(21)

where ICB is the transformation matrix from body coordinates to

inertial coordinates. The elements of the ICB transformation matrix

are obtained from the re~ulting Euler angles defined by

; 1 sinptan® ~na,tan61 ;:>.1
6!lalo cose -ging q
& 0 singsecO cosesectd r

where ¢, 0, and ¢ are roll, pitch and yaw attitudes respectively.
The roll, pitch and yaw rates of the body relative to inertial roordinatss
are p, q, and r respectively. Finally, the rate of change of the body

rates relative to inercial is given by
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P PAv2 PAV2
Wws=|q|= [I]'1 [—F R + —=2 (r(B) - r(B)) X ¢
- 2 —nm 2 A —cg £
o
. (B) (B)
-wx (Tw) +3r + Tp 1 (23)

where

vehicle moments of inertia matrix

-
(]

£c_ = aerodynamic coefficient referenced length and moment

coefficient vector

(B)

E&g = vehicle center-of -gravity wvector in body coordinates

5;8) = aerodynamic coefficient reference position in body coordinates
I;B) = resultant thrust torque vector in body coordinates

Eéa) = resultant plane torque vector in body coordinates

The equations of motion represent the first twelve eiements of the system
state vector. These equations are summarized in Table 3.1.1-1.

The moment of inertia matrix I in general is given by

I - ~I
x Xy zXx
I=|-I I -I (24)
Xy y yz
-1 -I I
zx yz z

for the moment axis terms, i.e., Iy, and the product of inertia terms,

i.e., I .
PAY
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The aerodynamic force and moment coefficients and plume forces are
defined as functions of angle-of-attack, @, and angle-of -gideslip, B, as
shown in Figure 3.1.1-1., The body referenced relative velocity vector,

removing the wind wvelocity, LAY from the vehicle welocity, is given by

v = v(B) - BCI v = v(B) - BCLL V(LL) (25)
- - - - -
where \_r': LL) is the local-level referenced wind velocity wvector. The

following equations define a®@ and B in terms of the components of xr

v
r
a = tan” (=) (26)
ol
Ve
B = sin-1 (;—g-) (27)
m
where
b
Vo = (vz_2 + vr2 + vrz) (28)
1 2 3
(B) . |
The resultant thrust force £'I‘ is expanded as
- ¢ T
fT.
n . n e ()
(B) B ¢ A B
= = f (29)
B =ik G0 if1 G in
0

where the transformation matrix BC?” transforms the magnitude of thrust

for each thrvsting device, f irom its center-line to the body

T ?

i
coordinates. The general eqaution for fT is
i
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where
f,r = vacuum thrust
ivac

Ps = gtmospheric pressure at motor exit
i

Ae = motor exit cone area

The matrix Bcf' is different for the SSME's and SRB's and is given by

BMP MP G G CQ. SSME
Q.
Be . (30)
ch‘ SRB i
where
B _MP . ,
C = transformation from the engine mount plane to the body i
coordinates ;
MP G . . "
C~ = transformation from the gimbal reference plane to mount plane
(structural cdeformation)
(S . . .
C = transformation from enterline to the gimbal reference plane
B % ) .
C = transformation from SRB nozzle centerline to the body

coordinates (gimbal angles).

it




The resultant thrust torque is the summation of the torque contribution

from each thrusting device and is given by

¢
. fr, (31)
(B) (B) (B) B &
I =l @ Lg% G| 0
0
where
géB) = body coordinates of the thrust reference point for the

i
ith thrusting device.

3.1.2 Measurement Equations

The measurements assumed available for the filter /smoother algorithm
include inertial platform acceleration and attitudes, ground based radar
tracking, SRB's head pressure, SSME's chamber pressures, liquid HZ flow
rates, pressurant flow rates. The ET volumetric levels are available;
however, due to their limited number (4), they may only be used for
alternate checks of the filter/smoother algorithm.performance.

The propulsion related measurements will be treated in a separate
section. In the following, the inertial platform acceleration measurements,
attitude measurements and ground based tracking measurements models will

be described for later linearization.



3.1.2.1 Platform Acceleration Measurements

Accelerometers mounted orthogonally on an inertially stabilized
platform,not located at the vehicle center of gravity, sense externally
applied special forces and accelerations due to body rotation. The

accelerometer measurement is modeled by

2 (B) (B)

Av £ f
(s) sppp P B P Zr ~p
Em = C ¢ c I 2m Ef + m + m
(B) (B) . (B) _(B) (s) (s)
+u_x_x<£x(gs -Ecg)+c_u_x(£s --1_.¢g)]+£>el + v, (32)

where
SCp = transformation from platform coordinates to sensing coordinates
PCP = transformation from misaligned platform coordinates to
platform coordinates

p' B . . . . .
C~ = transformation from body to misaligned platform coordinates
(B) .

s = body coordinates of the platform center
(Ss) .

Ea = accelerometer bias vector

X;S) = accelerometer measurement noise vector

3.1.2.2 Platform Attitude Measurements

The inertially stabilized platform for the STS is a four axis IMU
with a redundant rell axis [4]. Vehicle body attitudes are generated

via quaternions [5]. It is assumed that an equivalent representation



can be made to obtain vehicle attitude by a three rotation sequence of
roll, pitch, yaw to transform from inertial to body coordiantes. This
approach has been used in reference [6].

The attitude angle measurement model is given by

(s) (s) + v(S) (33)

-8

[

-?-+§6

3

where

1
Ee = platform misalignment bias vector (used to formulate pCP )

géS) = attitude measurement noise vector.

The transformation matrix used to transform from body to inertial

coordinates in terms of the elements of the 6 vector is given by

cosOcosé singsinBcos¢ cospsinbcosd
-cosgsing +singsing
IB cosOsing singsin®sing cospsinbsing
C = . (34)
+cospcosd -gingcosé¢
-8ind singpcos8 cosgpcosd

3.1.2.) Ground Based Tracking Measurements

Grounc. bagsed radar tracking devicus can provide measurements of
range, azinuth and elevation from the radar sight to the vehicle. Azimuth

and elevation are established relative to the sight's local level. If
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the tracking device is a passive optical tracker (not laser) then only
azimuth and elevation measurements are available requiring more than one
to establish position information.

Defining x, y, and z as the local east, north and up position of the
vehicle relative to the ground based tracking device, the radar measurement

equations are given by

L]

p=(x2+y2+zz) +b +v (35)
P p
-1 x

A = tan (;)+bA+VA (36)

-1 z
E = tan ( ) +b_+AE + v {37)

E E
2 2
X +y
where

bp, bA‘ bE = range, azimuth, elevation biases

AE = atmospheric refraction correction

vp, Va? Vg = range, azimuth, elevation measurement noise.

The position wvector of the vehicle relative to the tracking device is

given by
X
A (LL) LL ECF ECF_ECI (I) (ECF)
y =A£_v = C [T ¢ r - IeoR ] (38)
z
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where QUALITY
LL_ECF
(o] = transformation from earth cernter fixed to local level
E"CFCECI = earth centered inertial to earth centered fixed
(ECF) ;
TR - position vector of tracking device in ECF coordinates.
The transformation matrix I"["CE:CF is given by
-8inA -ginLcosA cosLcosA
LLCECF = cosA ~sinLsinA cosLsinA (39)
0 cosL ) sinL

where L and ) are the geodetic latitude and east longitude of the

device. The transformation matrix. ECFCECI is given by

Fcos[mE(t - tRNP)] sin[wE(t - tRNP)] 0
ECF _ECI .
C = -51n[wE(t - tRNP)] cos[wE(t - tRNP)] 0 | [RNP] (40)
0 0 1
where

NE = earth rotation rate

tRNP a time tag for RNP matrix

The position vector, r(ECF), of the tracking device is given by

=RDR

i & N

T————— R




Re

(

\/ canL + (1 - e)2 ninzL

(ECF) (

LRoR

Re
\, coszx.. + (1 - e)2 sinzL

2

RE(‘I -@e)

(

\/ coszL + (1 - e)2 sinzL

where

+ h) coslcosi

+ h) cosLsin)

+ h) sinL

R, = equatorial radius of Ficher ellipsoid

E
e = flattening of Fisher ellipsoid

h = altitude of the device apove Fisher ellipsoid

(41)

&
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3.2 Linearized System State and Measurement Equations

The vehicle equations of motion are nonlinear functions of their
motion variables and are implicit furctions of other elements of the
system states. The measurement equations involve similar function rela-
tionships. The linearizations for the filter/smoother algorithm require
partial derivatives with respect to the motion variables, i.e., X(B) and
0, and with respect to other elements of the state vector, yielding
explicit functional relationships for the elements of interest.

For system state equations the partial derivatives will be presentad
in section 3.2.1 for tho state elements in order of occurrence for the
first twelve states. Other partial derivatives for candidate state ele-
ments will follow in section 3.3.1. The measurement equation partial
derivatives for the first twelve states will be presented in section 3.2.2.
Partial derivatives of the measure%ent equations for other candidate states
will be presented in section 3.3.2.

The resulting partial derivatives are imbedded into the linearized
system state matrix, F(x(t), t), as shown in Figure 3.2-1 . A corresponding
linearized measurement matrix, H(ﬁx)' is similarly formed with the

measurement equations' partial derivatives.

3.2.1 System State Partial Derivatives

Partial derivatives of each of the equations listed in Figure 3.2-1

are developed in their order of occurrence with respect to the order of
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the corresponding states. Partial derivatives of thrust terms are presente.:

as though for o single device.

Inertial Position Rate Equation

The first nonzero partial derivative of the é}l) equation is with

respact to !(B):

— T 2 IR (42)
oy

The second nonzero parcial derivative is with respect to 6. This partial
derivative results in a third orde:r tensor and occurs frequently in la%er

developments. The generalized form is pressnted in Appendix A.

Body Velocity Rate Equation

The partial derivative of i(a) with respect to E(I) is given for

altitude terms approximately as

rmT
) 8 =
—_— e —— (43)
°£m 3h 'E(r)'
where
. (B) 2 . 2 2
v _ Avm 3% pAvm ) Ev pAvm ng . . pAvm agf %8
Bh 2m h < * "m S Ont 2m O0a Oh ' m 8B Oh
() (B) (B) {s)
RETLIU BRI S Y I N (44)
m op dh 8h °  8a oh 88  Odh



av B3a a8 ?& ap 4 avm

(B) ' (8) '3 * an ™
v 8y

The partial derivatives of n ,
av(B)

d

occur frequently and are given in Appendix B.

The gravity vector BCI g_(I)(£ (I)) partial derivative with respect
to I'.(I) is
rz r.r r.r
1 172 172
3 -1 3 3
2 2 2
|zl |zl ]
(1), (1) 2
Bt 2z 0, Bt 312 m2_ gy g2 (45)
(1) - ()3 |72 2 - 2
or 2" |z |z] |z
r r,r 2
173 253 I3
3 3 3 - -1
2 2 2
|z |z |z
where
B = gravitational constant.
ai(B)
The partial derivative, 17’ is the sum of the matricies in equations
or
43 and 45.
. . . *(B) . (B) . .
The partial derivative of v with respect to v is given by
*(B) 2 2
v ) pAvm . avm . pl\vm agf 3 . pAvm a_g-t o8
GZ(B) m ay_(B) 2m  da aX(B) zn 9 ay_(B)
of of
1 . p_0Ga —p _9a8
tal Tt - (46)
6! al




where

fw} = skew symmetric matrix made from the elements of the vector o

and equivalent to the cross product operator w x ( ).

The partial derivative of i(B) with respect to 8 is

> (B) 2
v _ pAv ov_ dv pAvm agf 3 a!r
a0 m —€ 3v_ 06 2m 30 dv_ 36
— — 1‘ —
av 2o 3
. Seo8 T 8 mI (D) (D)
2m 0B dv_ 00 = 88
(B) (B)
of av of ov
s L =28 < el 1.
m 0 dv_ 96 o8 adv_ a8
- - -

(47)

The partial derivatives of

3v are given in Appendix B and the partial
1‘
ov

derivative ‘% is given in Appendix A. The last partial derivative
is given in Appendix C.

The partial derivative of v (B)

v with respect to w is
*(B) 2
oy, _ PAV, agf + £ (B).}.

W T 2m B TS

(48)



Euler Angle Rate Equation

The Euler angle rate equation is a function of both the Euler angles

and the inertial rates. The linearization will yield the two associated

matricies.

First with respect to the vector ©, the following matrix results

qcosptan@- rsingtané

. qsinvsecze + rcosvsecze 01

09 i

—_— = ; - i

% -gsing - rcose¢ 0 0t (49)
qcosgpsecd - rsinpcos® gsingsecOtan® + rcospsecBtand 0J

The partial derivative of é_ with respect to w is

-
. 1 singptan® - coseptan
8%
% - 0 cose -sing (50)
0 singseco cos¢gsect

Inertial Angular Acceleration Equation

The first partial derivative of this equation is with respect to the
vector EfI). Using the approximation indicated in equation 43, this

partial derivative is
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OF PCCE &
% , v’ (8) _(B) v,
(D [1] { 7 35 Sn * (pv Adc + (r,~ - g ) x pv_Ac, )~z
v zhd ac \' 2A ac
Il Bt LR P =)
2 8a -A g 2 8o’ dh
(51)
v 2Pd ac v "A 8¢
. i NP ¢ I I e, 08
2 a8 -A -cg 2 B’ oh
T
(@) (1)
(B -r(B))xBCq‘af_’r aps+32p+52292+329 -aﬁ')}£
-cg Gps dh dh d8a dh 98 dh lr(I)I
Next, with respect to the vector X(B), the partial derivative is
au.) ov
- -1 ,_(B) (B) m
(B) L1] {(pvad So P ;T 1-ch ) x meA Ef) (B)
ov. . v
2 2
L M 8¢ s e® _® P %t 8
2 da ta " Lg% 2 aa'av(B)
- (52)
v2m ac v ac
. S @ ), %, o8
2 a8 ~A =g 2 o8 av(13)
S .
Ba (B) a8 (B)" °
av av
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The partial derivative with respect to the vector 6 is

ow
- -1 (B) (B)
-—ag- (1] {(pvad e, + (r -r

avm
=A =g ) x pva gf) —“Z
v 2Ad ac v 2A ac
+(pm -i+(1£8)—r(8))x£—'-“——-:£) S
2 Oa =-A =g 2 o 08
(53)
v 2Ad dc v 2A dc
P s NP ¢ D¢ DI i 2% 1
2 a8 A g 2 08" 30
aT oT
4 —R 8  “p38,
3a 36 98 28
The final partial derivative for the first twelve states is with respect
to the vector w. This operation yields

O e 1B _ By pAV, Og¢
8w O

(54)
+ Elw} - fwi 1}




3.2.2 Measurement Partial Derivatives

The measurements assumed to be available, as discussed earlier, include
ground based radar tracking, inertially stabilized platform attitudes
relative to the vehicle body, and stabilized platform mounted 3 axis
orthogonal accelerations. As witﬁ the state dynamics matrix, the measure-

ment equations are linearized about the best state estimates.

Radar Track Measurement I'quation

Referring to the radar track measurement equations, the required

partial derivatives are

(L)
% _ o % (55)
ar(I) Ar(LL) ar(I)
—-— -w —
(LL)
T W 56)
ar(I) aAr(LL) ar(I)
— w —
(LL)
3E o 0L, 57)
ar(I) r(LL) ar(I)
— w —~—
aAr(LL)
The last partial derivative in each of these equations, S is
or
(LL)
OAr
~—y LL _ECF ECFCECI- (58)

ar(I)



The rest of the recuired partial derivatives are

T
ey = o /e | (59)
dAr
0A _ y - X
L - [ 2 2 ! 3 > 0] (€0)
OAEV X +Yy X +y

OE -XZ -y2 V x2 + y2

= [ ,
(LL) e ——— « e ——
dAr p2\/’(2+y2 pz\/x2+y2 p

] (61)

Inertially Stabilized Platform Attitude Equation

The inertial platform is assumed to provide attitude angle measure-
ments of the true attitude plus an attitude bias plus measurment noise.
The partial derivative of the measured attitudes with respect to the

vector 6 vyields an identity matrix.

Accelerometer Measurement Equation

The accelerometer senses specific body forces excluding gravity along

the sensing axes. With reference to the accelerometer equation, the

partial derivative with respect to r(I) is
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Qiciliinbae, A0
OF POOR QUALIY
(s) 2
%m s8Mn 3 pAV. BV
ar 'l M dh m =£ oh
L
Av 2 dc¢ Av 2 8c
eom Zeon Pn Zr e )
2m da dh 2m 98 8h
T

188% P e o e g L

98 oh Irml

(B)

The partial derivative with respect to v yields
(s) 2 2
da i SCB[pAvm . v . PAvV agf e . pAv agf a8
a!(B) m £ a!(B) 2m da a!(B) 2m aB a!.(B)
m  da (B) a8 _ (B)
av av

For the partial derivative of the accelerometer with respect to

the vector 8, the measurement equation is temporarily rewritten as

a(S) - SCP' P CE s(B) + b(S) + v(S) (64)
-m - -a -a
where the vector E(B) represents the sum of the aerodynamic, thrust,

plume and rotational coupling terms. The matrix P CB is the same

matrix as ICB. The required partial derivative results from
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aa(S)
-m S P @ IB (B)
) s C —og. C s . (65)

The partial derivative on the right hand side is developed in Appendix A

with the vector s (B) representing the sum of the terms indicated above.

The final partial derivative for the accelerometer measurement is

with respect to the body rotation vector w.

Defining
- -
Ar1
s
Ar é Ar = (r(B) - r(B)) (66)
~s ?.s -8 ~g
Ary
s
- J

and denoting wi as the ith element of the vector w, the resulting

matrix is

szrz + w3Ar3 w1Ar2 - ZwZAr1 4»1Ar3 - 2m3Ax:'1

aam S B

-E—‘ﬂ- = C mzAr1 - Zm,'Ar2 m,‘Ar1 wJAr3 szr3 - 2m3Ar2 (67)
m3Az~1 - 2w1Ar3 m3Ar2 - 2m2Ar3 w1Ar1 + szrz J




3.2.3 Additional Parameter Partial Derivatives

The mathematical developments are presented in this section for the
partial derivatives of the system and measurement equations to allow for
additional candidate parameters to be included in the estimation algorithms.
These parameters include center-of-gravity, Ecg’ moments ~f inertia, I,
wind velocity, v and inertial platform tilt errors. Aerodynamic and
plume parameter partial derivatives are also presented.

The computer program is being structured to permit these parameters

to be easily incorporated without significant impact on the program code.

3.2.3.1 Center-of-Gravity

From equation 23, the partial derivative of angular acceleration with

raspect to r is
=-cg

- -

£l

. 2 i

= -1 2 z. 1B (68)
-<g

.

From equation 32, the partial derivative of the measured acceleration with

respect to r is
-<g

da
. SeB tw x wi (69)
r —-— -—




3.2.3.2 Moments of Inertia

ORIGIMAL 7
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The moments-of-inertia are grouped into "principal" terms, ép' and

cross product terms,

-~ -
I
X
i = I
b y
I
z
and
I
Xy
i = I
~cp zZx
I
yz

From equation 24, these vectors are defined as

With these definitions, equation 23 is rewritten as

= (117" [z - {-g-}<

-W

-

-

r

-Ww

)

(70)
(711)
0 0
w, 0 iy (72)
0 w,
\
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where 7T represents the sum of the nonrotational torques in equation 23.

Defining an intermediate vector a as
a=1IT - wx (Iw) (73)

the partial derivatives of the angular acceleration with respect to

i and i are
> Zcp
a‘; 0 -w2m3 mzwa
- o] ~1 -1
F Tl (1 g) ~ (1) w1w3 0 -0, 0, (74)
® P a-fixed -0, W w ]
192 492
[ -
and
. 2 2
N W1IL2 -m1w2 U3 - w2
o 3 -1 -1
R T (r  a) - [1] —wywy m2 _ w2 o w (75)
—p ~cp . ‘ 3 172
g_-flxed ” 2
Wy ¢y Wiy Btk

where

oy
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0 Izﬂ‘! + szaa 1731 . Ixyaz
Iz‘z + Iyz‘:j 0 Ixaz . Ixya1
Iya3 + Iyz“z 18, +1 a o
(76)
2 ) 2
s " (Isz RPRL (Iny T Txy )a,
n )32 ( " )“2 ( . )az
" )63 ( " )53 ( " )a3 ‘
(77)
Iy‘3 + 1 a, -21yza1 - sz - Ixya3
Iyz°1 - Zszﬂz + Ixy&3 Ixa3 + sza1
ZIxy53 Ia +1 a Ca

ap—
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-2(I 1 +I_ 1 )a -2(1 1 +1I I )a -2(1 I + I I )a
z Xy zx yz 1 y zx xy yz 1 xXyz xy xz 1
-1 1 L] " " 3
- (1] 'y =2 ( )a2 =2{ )a2 -2 la,
.-2( " )a3 -2 " )a3 -2 ) )a3J
and
A=ITITITI -I I I -I I 1 -112-112-112 -
xy'z xy ' yz zx ZX XYy y2 y zx z Xy x'yz (78)

3.2.3.3 Wind Velocity

From equations 20 and 25, the partial derivative of the vehicle

accelaration with respect to Yy is

(B) 2 2 2
v

dv . Eé.c OVM . pAvh ng % . pAvm ng a8 9
dv 2m =€ dv 2m o v 2n 88 ov !
- —- w -

The first of the partial derivatives in equation 79 can be obtained

from the following equation

(80)

From equacion 80, the following is obtained

= -2V C. (81)
*
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Denoting the elements of the matrix BC as ¢4, c12, etc., the following
equations are obtained for the partial derivatives of a and B with

respect to \_Iw;

T
(v ¢ -v c.,)
r1 31 r3 11
da -1
= - (82)
3v 2 2 (vp €35 = v ©q5)
- vr + vr 1 3
! 3 (v. ¢ v ¢c,.)
] 33 r3 13 )
and
T
-
v, ']
vmc21 - (v Gy *+ vr c2] + Ve c31)
m 1 2 3
8 -1 v
av j 3 — r
- = (83)
S A V22 T v Ve S * Vp Spp * Yy ©3))
2 3 m 1 2 3
v
r
Vn23 T v Vp 3 * Ve O3 t VL C35)
m 1 2 3 |

3.2.3.4 1iInertial Platform Tilt

Temporarily rewriting equation (32) as

(s)
a

=51+ 0 s (84)




vwhere
66 = vector whose elements are the axes misalignments
s = sum of the bracketed terms in equation 32 multiplied by P CB.
The following partial derivative of the measured acceleration with
respect to 66 is obtained
aém(S) s o
—_— 8
366 C Lg}, (85)

3.2.3.5 BRerodynamic and Plume Parameters

A linear model for the aerodynamic and plume characteristics is

used. This model is expanded as

S = Seo * Seq @ * Sep B+ ... (86)
and gm=§mo+gmaa+gm88+... (87)

f =f f a+f B + . ..

Zp —p+—pu “pB (88)

where additional terms to represent rates, cross couplings, and controls

can be included.

The basic approach of establishing the partial derivatives will be

illustrated for a couple of terms, Efu and Emu' Using these example

et e TN ARY i g




illustrations, the rest of the candidate parameters can be similarly

obtained. From equation 20, the following partial derivative is obtained

BG(B) GV(B) dc pAv 2
- - — m
%, - e, 3. = " m oMU (89)
= €
a o
where

[U] = unit 3 x 3 matrix with one‘'s (1) on the diagonal and zeros

off the diagonal

From equation 23, the partial derivative of angular acceleration with

respect to Em is

dw dc -1 pAv 2

= (117 ——alul. (30)

The corresponding partial derivative with respect to i

w

<,
o

&,
e.

W8

pAv 2
-1 (B) (B)
5 - Ieg } alU]. (91)

= [1]

rL.g’ rl,()

%ce

a a
The static aerodynamic coefficient model has been obtained by a multiple
regression analysis of the current aerodynamic tubular data. This model

is presented in Appendix D with the associated regression coefficients.
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3.3 Propulsion Parameter States and Measurements

A candidate approach for incoi=orating the NASA propulsion model's
capabilities has been identified. This approach utilizes nominal pre-
dicted values of thrust, pressure, propellant and pressurant mass flow
rates, and utilizes sensitivities o+ partial derivatives of these
variables with respect to the ir.dependent parameters selected for esti-
mation by the algorithm.

The approach is to include -leviations from nominal values of
measured chamber pressure, mower levei, propellant and pressurant mass
flow rates as states. The au«lels assumed for these deviations are time
correlated random processes. Then as states, partial derivatives of
the first twelve states with respect to these variables will be required.

For the SSME and SRB, this modeling approach is discussed in the
following. Additionally, the necéssary partial derivatives of the first

twelve state variables with resepct to the additional states are presented.

3.3.1 SSME Propulsion Parameter Model

For the SSME, the total actual values of vacuum thrust and oxidizer

mass flow rates are modeled by

fT = fT + AfT (92)
nom

and

m. =m +4m, . 93)




The measurements of fuel mass flow rate, pressurant mass flow rates and

power level are modeled as

ﬁ = ﬁ + Aﬁ + be + 8° (94)
H2 H2 H2 mH mH
nom 2 2
m =m + Am + be + 8¢ (95)
Hy H, H, ", "H,
P Poom p P o
ﬁ = ﬁ + Aﬁ + be + 8° (96)
0, 0, 0, mo2 mo2
P Poom p b P

and

PL = PL + APL + b +S5__. (97)
nom PL

PL

These measured quantities include measurement noise and potential

%)
bias states b( ) modeled as random constants. In these measurements,
the A'd variables are to be included as states in the estimation
algorithm. If the nominal values are zero or unknown, then the A‘'d
variables absorb the entire estimate. Where required, the estimate for
the variables used in the estimation algorithm is formed using the

nominal and the estimate of the deviation, etc. In example, thrust and

fuel mass flow rate estimates are formed as

£, =f + Af (98)

T S T




and

m. =m +Am,. +be . (99)

The deviation or A'd measurement variables are modelad as time
correlated random variables. This permits these variables to vary within
a band of frequencies. The typical model is then given as

da()==-L A+l 50 (100)

where the parenthesis ( ) would be replaced by the variables, i.e., éH .
2

*
For the SSME, an additional variable Acmult is modeled as in equation

100 and included as a state variable with the A'd measurement

variables.

The thrust deviation is expanded as in the following truncated Taylor

series as a function of the independent parameters.

of of of
AfT = T AmH + amT Amo + T* Ac*
“HZ zp o, 2p dAc
P P
9 3
i SN S, (101)
+ 3L + MR :
*(B) . . . . .
In the v and W equations, with equation 101 replacing fT R

i

the partial derivatives of fT with respect to the A4'd variables are

obtained directly from equation 101.
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It is desirable to include vehicle mass bias as a state. The SSME's

system contribution to the mass deviation is given by

AmSSME,sali:(AmH +bm,  -Am, - Amg ). (102)

In equation 101, the Nno contribution to the mass deviation is not
2

available from measurements. As with the thrust deviation, this quantity

is formed as

. anoz ° &noz . &noz *
Am = Am + Am + Ac
0, MHZ Hzp a‘“02 °2p aac”
P P
an02 anoz
0
+ 3PL APL + 3MR AMR. (103)

which is in terms of other estimated state variables. 1In equations 101
and 103 the deviation in mixture ratio, AMR, is obtained algebraically

from

(104)

The partial derivatives for the SSME above have been incorporated into

the estimation algorithm as functions of engine power level.

.
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3.3.2 SRB Propulsion Parameter Model

The approach for the SRB modeling follows closely that used for the
SSME. Candidate independent parameters include propellant burn rate
exponent, a, and motor efficiency coefficient, c, - Others can be added
usirg this technique.

The actual value of vacuum thrust is given by equation 92. The
only measurement available for the SRB is the total pressure at the

forward head end of the motor case and is modeled as

P =P +AP. +b_ 4+ s (105)
% % % Po, Po
nom H H
where b and s represents a bias and measurement noise respectively.

() ()

The independent parameters, éa and Acm, are included in the
model as states. The model assumed can be as given by equation100 or
another suitable dynamical process, i.e., random constant.

The thrust deviation is given by the following truncated Taylor

series as a function of the candidate independent parameters.

of of
T T
AfT * Ba Aa -+ e Acm + 0 e . (106)
™
The partial derivatives for the é}s) and é_ equations with respect to

the independent parameters are obtained directly from equation 106 . The

mass deviation equation for the SRB is given as

am__ = I(Am) (107)
i

SRB

N B ik i e v, 5T




. &m
Am:B—a-Aad-... (108)

‘e head pressure deviation, APO » is expanded similarly
H

AP, = —4/— fa + . . . (109)

A simplified model fo:r the SRB's thrust, head pressure and mass flow
rate has been developed that can be directly incorporated within the filter
algorithm for estimating burn rate coefficient, nozzle coefficient, mass
flow rate, etc. This model, to be described below, uses apriori specified
burn area and port volume as a function of burn depth into the propellant
grain. From this simplified model analytical partial derivatives required
by the estimation algorithm can be obtained.

The thrust is given by

fT =c Cpc w (110)
where
cm = nozzle coefficient
cT = thrust coefficient
*
¢ = characteristic exhaust velocity

mass flow rate

=1
[}

Two of the required partial derivatives with respect to mass flow rate

and nozzle coefficient are easily obtained, vis

e R N e




)
i
:
*

af .

—:-CTC cm (111)
om

and

af
T * o

3 =Cpc ® (12)
m

The partial derivative with respect to burn rate coefficient is

of dc_ AP .
T T Q o om *
3 ° [apo ="t 3 cT] c c. (113)

*
vhere it has been assumed that ¢ is not a function of a. Using the

"ideal " axpression for c_ [7]

T
ﬂ = Po = Pa 2
c_ = L S RIS LA B =, (114)
T 7+1 A P
P t ¢)
0
where
¥ = vatio of specific heats

P = motor nozzle exit pressure
P_ = ambient atmospheric pressure at nozzle exit i
A = motor nozzle exit area

A, = motor nozzle throat area,

the first partial derivative in equation 113 is
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% . 2 2 2 7-1 3;1.
T L (<4 p Y P -P A
_— -k v-1 y+1 y-1 e 1 e a e
OPO £ ) (F-) R - (115)
1—1 0 (o] t Po
h
[1 <p—°> ]
TP

To evaluate the second partial derivative in egquation 113, the following

equation for pressure [8) is used:

o n (116)

vwhere

©
he)
N

propellant density

propsellant burn area

o

=]
]

propellant burn rate exponent

Te following partial derivative is then obtained

1
apP c p -
= ( Ab) ‘Tl“) al ™ (117)

The last partial derivative in equation 113 is obtained from

n

— i
c*p a Ab 1-n

m==pp rbAb-pp a( At ) Ab (118)

The resulting partial derivative is

* —_— 1
&; ¢ ppa 1-n 1 T-n
— (
% pp( A ) '1-n) Ab (119)




To utilize the head pressure measurement and its sensitivity to

parameter variations, the following equation (7] ia used

P cr, p_£
P =2 D +J1 + 4RT(—2—B)] (120)

- - "

where ORIGH AL Fo
OF POOR Qu,mrv
R = gas constant
T = gas absolute temperature

port circumference

[¢]
N

o
n

port cross section area

"
L}

propellant burn rate

]
]

distance from motor nozzle to pressure measurement point

Tis equation assumes a cylindrical port with an approximately constant
cross sectional area.

The partial derivatives with ruspect to burn rate coa2fficient and mass

flow rate are

aP
—%-5 {f J1 + 16xRT 2£3a2 ﬁ
2a * ’p ¥ 8a
P
3
16X RT pp2 %—
p
+ po} (121)

3
2 2
‘[1 + 16xRT pp v

p




and
2
me
”oﬂ 1 o, 4RT T N
—ah {1+ ] + P } (122)
i 2 ot 2
‘[1 + 4RT(-—E) ‘[1 + 4rT(E)
VP )
p o poO

In equations 121 and 122 a cylindrical port has been assumed in determining
the port volumn Vp. Equation 122 was obtained from equation 120 by

replacing the term ¢ rb pp £ by m. The partial derivative of Po
H

with respect to Cn is obviously zero. 1In using these analytical
partial derivatives, the basic performance measures of thrust, mas low
rata, head and nozzle pressures, etc. are matched between this mod. ..
the NASA SOBER internal ballistics routine results. The burn area and
port volume are adjusted in the simple model to obtain the agreement.

Then using the adjusted area and volume as a function of burn depth, the

partial derivatives are evalauted.




3.3.3 Vehicle Mass

The total rate of change of vehicle mass is given by

a . . . ™ .
ac™) = Mgoup  +Pgrp  * Mgy + MMgpp + My coNSUME (123)
nom nom

The first two terms in this equation are the apriori agsumed nomiral

values. The third and fourth terms were discussed earlier. The last

term should be zaro; howaver it can include a mass bias uncertainty Amb.

The equations, state and measurement, in which mass occurs are the

i(a) and 2, equations. Assuming equation 123 can ba sumnarized as
m + &;Ib then the mase cez:i be written as m + Amb Replacing th's

expressicn for the mase ir the two indicated equations yialds the

following partial derivatives with respect to the Amb.

(B) 2
o £V, A
B e o i S S O () (124)
b (m + om ) P i
and
(s) 2
da pv_"A
“m 1 sB''m (8) BR _(%)
= - C(2 Ef+£-p +C£Tj_) (129)

(3]
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4.0 PROJECTED ACTIVITIES DURING UPCOMING MONTH

During the next period, the filter and smoother routines will be
further checked out and modified to include other potential parameters,
i.e., aerodynamic coefficients. Additionally, the results from the

gimplified SRB model will be evaluated against those from the SOBER

program.

ITTRIILIT .

N TR O] s RITRIN T R T DI IR NI T o,

T A




REFERENCES

Sage, A. P., Optimum Systems Control, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1968.

Bierman, G. J., "Fixed Interval Smoothing with Discrete
Measurements," Int. Jr. Control, Vol. 13, No. 1, 1975, pp. 65-75.

Jazwinski, A. H., Stochastic Processes and Filtering Theory,
Academic Press, New York, 1970.

Davis, L. D., "Cocrdinate Systems for the Space Shuttle Program,"
NASA TMX-58153, October, 1974.

Perry, E. L., "Quaternions and Their Use," NASA/JSC Internal Note
82-FM-64, December, 1982.

Lear, W. M., "Description of the LRBET Program," NASA/JSC Internal
Note 81-FM-5, February, 1981.

Hill, P. G. and Peterson, C. R., Mechanics and Thermodynamics of
Propulsion, Addison-Wesley, Reading, Massachusetts, 1965.

Redus, J. R., Private communication.




APPENDIX A

PARTIAL DERIVATIVE OF THE VECTOR ICB v wrt 6

This partial derivative is one of several that occurs frequently in
the formulation of the linearized system state and measuremetn eqautions.

The desired partial derivative is

singsinBcos¢ cos@sin@cosé 1
(cosScoscp)v1 + (-coswsin¢ )v2 + +sinpsing ) vy
[ . singsinBsing cospsinBsing
8 (c05931n¢)v1 + (+cos¢cos¢ ’vz * ' _singcos¢ 3 : A-1
(-sinB)v1 + (sin(pcose)v2 + (cos9@cos) vy

The resulting matrix is given in Table A-1.
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APPENDIX B

av ov
da &) da 0 m .
"(!B) ) B’ (2) ™ —a: and Ty Expressions
v 8_\:_ av

These partial derivatives occur frequently and will be developed

in this appendix. The equation for v, is

(B) B LL (LL)
=V - C \'4
— -

A<

Since the wind wvelocity, zéLL), is only a function of altitude then
3 3
av. -~ . (B) - B-2
- v
avm’
The first partial derivative, ——(5—5-, is
v
o~ - T
Yr
1
av
m 1
= =— |V - B-3
al(B) Vol Ty
Yr
3
Oa . .
The second, -——— is given by

(B) ’
v

3
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The equation for o is
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The following equations define the last three required partial darivatives

(LL)
& __ % BLL 8y .
dh (B) ah
dyv
(LL)
8 8 _ BLL 9%, .
oh (B) oh -
oy
(LL)
v dv
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13|

p~

PARTIAL DERIVATIVE OF THE VECTOR

APPENDIX C

B

I

C" v wrt 8

The third of the frequently occurring required partial derivatives

cosOcosé vy

sinq:sinacos¢)v

—cos@sing

cospsinBcos¢
+s8ingsing

1

+

cogBsing v

2

sinvsinﬁsin¢)v

+cosgcosd 2
coswsinesinw)v
-singcosd 2

The resulting matrix is given in Table C-1.

8in@ v

singcos® vy

cos@cosd vy
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APPENDIX D

AERODYNAMIC MODELING REGRESSION ANALYSIS AND RESULTS

The aerodynamic data tables provided as IVBC3 data has been incorporated
into an aerodynamic coefficient polynomial model. This modeling effort
reduces the dimensionality of the numerical tables to one and reduces the
storage requirements for the aerodynamic model.

The coefficient model used for the two stages differ slightly as a
result of the available data. The regression analysis led in the selection
of the form of the aerodynamic model. Terms with insignificant correlation
were eliminated from the model.

In equation form, the first stage static coefficients of axial force,
C,: normal force, C,; pitching moment , C i rolling moment, C,; side force,

C,:; and yawing moment, Cn: are given below

Y;

2 2 2
CA = CA + CA a + CA 2 a  + CA 2 ad + CABZ 8 D=1
o) a a af
C.,.=C, +C., a +C uBz D=2
N N N N 2
o a ab
C =C +C a+C 082 D=3
m m m m .2
o a 8
cC,=C, +C, B+¢C aB + C uzB D-4
2 L f 4 [ ]
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s+cy uB+CY2 uzs D=5
o 8 af a B

C =C +C B+¢C aB + C
n n ng L ny2p

The corresponding second stage model is given by the following equations

2
CA'CA"'CA“"'CAZ“ D=7
° [ a
C,= C +C. a + C “2 D-8
N N N N 2
[ a
2
C = C +C a+C o D=9
m m m m 2
[ a
2
CI-CI+Cl B"'Cl uB+ClzaB D-10
o B af B
2
C,=C, +C, B+C af + C a’B D=11
Y Y6 Y8 Y;a !;25
cn"cn "cn “*Cn uB+Cn2 u28 D-12
"o B af o B

For the first stage, data from an angle-of -attack range of -6 to +6 degrees
was used in the regression analysis. Data from a range of -8 to +4 degrees
was used for the second stage. The results, %tXX..., from the regression

analysis is presented below for each of the coefficients, C » above.

XX. ..
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