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At the measurement time, the state estimate and covariance are updated

by

(+) _ V-) + Kk (z4 - hK ( (-)) )
	

(7)

and

Pk (+) _ (I - K  Hk (4(-))) Pk (-)	 (8)

where the (,•) and (+) represent the appropriate values just before

and just after the update. The updated values are uved to reinitialize

the time propagation equations (3) and (4) for integrating up to the next

measurement time. The Kalman gain matrix is computed as

Kk	Pk (-) Hk )T (Hk(x_k(-)) Pk (-) Hk (x(-))T + Rk ) -1	(9)

This algorithm is repeated until the last time point, tN , is processed.

For later use in the smoother algorithm, various combinations of the state

estimates (x), measurements (z), linearized dynamics matrix (F) and

measurement matrix (H), measurement noise covariance (R) and estimation

P

error covariance matrix (P) must be stored for each time instant to be

processed by the smoother algorithm.

2.2 Modified Bryson-Frazier Smoother Algori thm

The operation of the smoother algorithm is similar to the filter

algorithm except in reverse time. The derivation of this smoother algorithm

is found in reference (2]. This fixed interval smoothing algorithm pro-

vides optimal estimates given all the measurements in comparison to the

filtering algorithm providing optimal estimates given the previous

!`
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1.0 INTRODUCTION

This fourth monthly progress report again contains corrections and

additions to the previously submitted reports. The additions include a

simplified SRB model that is directly incorporated into the estimation

algorithm and provides the required partial derivatives. The resulting

partial derivatives are analytical rather than numerical as would be the

case using the SOBER routines.

Die filter and smoother routine developments have continued. 11hese

routines are being checked out.
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2.0 FILTERING AND SMOOTHING ALGORITHM

The Space Shuttle Parameter Estimation Program utilizes optimal

estimation techniques to provide estimates of the propulsion system

parameters. The technique selected is the extended Kalman filter and

the modified Bryson-Frazier smoother. By modeling the propulsion system

parameters as time correlated random variables, improved estimates of

these parameters are obtained and are properly time phased by removing

the filter induced lag by using the combined filter/smoother. The

smoother also provides improved estimates of the initial state estimates.

The system, in state-space notation, is modeled as the continuous

dynamical system disturbed by additive Gaussian white noise

A = f (x(t), t) + G(t) w(t) + u(t), x(o) - x 	 (1 )

where

x = n-dimensional state vector

-xo - Gaussian initial condition vector with covariance Po

w(t) = p-dimensional white, zero-mean white Gaussian noise with

covariance

E[w(t) wT (T)l = Q(t) 6(t - t)

u(t) = n-dimensional control vector.

TLa elements of the vector x(t) represent vehicle position, velocities,

attitudes, angular rates, aerodynamic and propulsion parameters, measure-

ment biases, etc. Elements of u(t) include known control inputs such

as SSME power level command;.
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The system described by equation ( 1) is observed at discrete times, tk,

with not all states being directly measured. some measurements are non-

linear functions of the elements of the state vector x(t). In general

the measurement process is described as

= h_k (x(tk )) + vk	 (2)

where

zk = m-dimensional observation vector

hk = functional representation of the measurements in terms of

the states

vk - m-dimensional, zero-mean, while Gaussian noise sequence with

covariance

E[v, vT) = R. 8.--1 ;-j	 1 1P]

Examples of the elements of the observation vector k include radar

measurements of range, azimuth, and elevation from the radar site to the

vehicle.

It is assumed that the system process noise vector w(t) and the

measurement noise vector 
Yc are uncorrelated. Also, the system state

initial condition vector xx is not correlated with either of these two

noise vectors. Therefore

E[w(t) vT 	 0, E[w(t) xT	 0, E[x^ Y 	 0

where the superscript T denotes transpose. For later reference, the

following matricies are lefined



These matricies are linearizations of the dynainics acid measurement models

respectively, evaluated about either a nominal or reference value of the

state, or about the state estimate.

2.1 Extended Kalman Filter Algorithm

The extended Kalman filter algorithm is in essence a conventional

linear Kalman filter algorithm applied to a mathematical model resulting

from the linearization of the system model equation (1), and measurement

process, equation (2), about a current state estimate. The filter yields

optimal estimates if the linearization is accurate, i.e., the state esti-

mate closely approximates the true state. The derivation of the algorithm

can be found in reference (1).

The algorithm proceeds as follows. After initialization of the state

estimate and covariance, the state estimate and covariance are propagated

forward in time until a measurement update is available, by

I 	 f(A(t), t)	 ,	 tk_1 < t < t 	 (5)

and

P(t) = F(x(t), t) P(t) + P(t) F(x(t), t) T + G(t) Q(t) G(t)T
	

(6)
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At the measurement time, the state estimate and covariance are updated

by

&(+) - &(-) + Kk (4 - 4(V-)))	 (7)

and

Pk (+) - (I - K  Hk (x& (-))) Pk (-)	 (8)

where the (--) and (+) represent the appropriate values just before

and just after the update. The updated values are used to reinitialize

the time propagation equations (3) and (4) for integrating up to the next

measurement time. The Kalman gain matrix is computed as

Kk	Pk (-) Hk (xj (-))T (Hk(x-k(-)) Pk (-) Hk ((-))T + Rk ) -1	(9)

This algorithm is repeated until the last time point, t N , is processed.

For later use in the smoother algorithm, various combinations of the state

estimates (x), measurements (z), linearized dynamics matrix (F) and

measurement matrix (H), measurement noise covariance (R) and estimation

error covariance matrix (P) must be stored for each time instant to be

processed by the smoother algorithm.

2.2 Modified Bryson-Frazier Smoother Algori thm

The operation of the smoother algorithm is similar to the filter

algorithm except in reverse time. The derivation of this smoother algorithm

is found in reference (2]. This fixed interval smoothing algorithm pro-

video optimal estimates given all the measurements in comparison to the

filtering algorithm providing optimal estimates given the previous



measurements processed. Therefore the smoother provides improved estimates

in addition to removing the time lag induced by the filter algorithm.

The smoothing algorithm adjoint variables, A and A are "initialized"

at the final time processed by the filter, T,

A (T-) - -HN(HN PN H  + RN )
-1 

(zN - H_j(icN(-)) )
6t.

	 )

N,T

and

A(T-) - HN ( HN PN HN + RN) -1 HN 6t	 (11)
A	 N,T

If T is not an observation time, A and A are zero. The adjoint

variables are propagated in reverse time to the next previous measurement

time by

a - - F(x(t), t) X	 ,	 t  < t < tk+1
	

(12)

A	 - F(x(t), t) T A - A F(x(t), t)	 (13)

At the time of an available measurement, t k , the adjoint variables

are updated by

a(-)	 i(+) - Hk(Hk Pk Hk + Rk )
-1 

((	 - hk(x̂k(-)))

TT+ ( i ^ Pk Hk + R  ) Kk )1(+) )	 (14)

and

	

A(-) - (I - Kk Hk ) T A(+) (I - K  V + Hk (Hk Pk Hk	 -1 + R ) 	 H	 (15)



The smoother state estimate and error covariance are obtained using the

filter estimate and covariance and the adjoint variables by

x* (t) - x(t) - P(t) A (t) 	 (16)

and

•
P (t) - P(t) - NO A(t) P(t). 	 (17)

Due to the potential number of time points to be processed, smoother

estimates may only be computed at the discrete measurement times. For

this approach the propagation equations (1C) and (11) ar3 replaced by

Ak (+) - 0kA (-) k+1	
(18)

and

Ak (+) - mk Ak+1(-) Ok	 (19)

where •k is the state transition matrix formed with the linearized

dynamics matrix F to propagate the adjoint variable from time tk+1

to time tk . "*is algorithm continues in reverse time until the initial

time is reached.

2.3 Iterations with the Filter/3noother Algorithm

The performance of the filter/smoother algorithm is a direct result

of the accuracy of the linearization. Repeated operations of the algorithms

with adjustments in initial state estimates and covariance in each cycle

can yield improved estimates. This technique is known as global iterated

i
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tiltering as defined in reference [3]. Each cycle of operating the

algorithms would yield increasing improvements in the state estimates.

This feature of the algorithm operation is of special interest to

the propulsion parameter estimation problem using the NASA predictive

models. Initial, or nominal, values of the parameters of interest can

be used to obtain the necessary partial derivatives indicated earlier.

From operating the algorithm improved estimates of those parameters are

obtained. Using these improved estimates, more accurate partial deriva-

tives are obtained for use in the algorithms. This process is continued

until there is in essence no change in the partial derivatives or quality

of the state estimates. If the linearization is accurate, the measure-

ment residual should be a white noise process with known covariance.



3.0 FILTER/SMOOTHER ALGORITHM SYSTEM AND MEASUREMENT MODEL

The usefulness of the filter /smoother algorithm is to provide esti-

mates of the system states from the observed motion and dynamics while

the system is driven by known and unknown elements. These t+nknown elements

are elements of the system state vector to be estimated. The evolution of

motion resulting from these known and unknown elements is assumed to be

suitably represented for this study by a six degree-of-freedom (6 DOF) rigid

body equations of motion. These equations are presented and discussed in

section 3.1.

To implement these equations into the filter/smoother algorithm

presented in section 2.0, a linearization of the system state and measure-

ment models is required. These linearized equations are presented in

section 3.2.

3.1 Equationn of Motion and Measurement Equations

}	 3.1.1 Rigid Body Equations of Motion

The rate of change of vehicle velocity in body coordinates, v(B),i
as a result of external forces acting on the vehicle is described by

2	 (B)	 1B)
•(B`	 mpAv	

fB I	 (I)	 (I)	 (B)	 -T
2m ^{ + C	 (r	 ) - w x v	 +m	 + m	

(20)

where

p - atmospheric density

A = aerodynamic coefficient referenced area

vm - magnitude of vehicle velocity relative to the surrounding air

mass



a

m = whi=le mass

cf m aerodynamic force coefficient vector

SL	 (r(I)) = gravity vector in inertial coordinates

m angular rotation of the body relative to the inertial frame

f (B) = resultant thrust force vector in body coordinates

ff	 = resultant plume force vector in body coordinates

7be rate of change of vehicle position in inertial coordinates, E. 
(I) 

a

is then obtained by

=(I) . ICB v(B)	 (21)

where 
I 
C B is the transformation matrix from body coordinates to

inertial coordinates. The elements of the 
I 
C B transformation matrix

are obtained from there..::'_" +.nq Eder angles defined by

r	 1	 sinrtan9	 •nsrtane^ I p^

8 s 0	 soar	 -ainr	 q

•
U	 sinrsec8	 cosrsece r

where r, 8, and + are roll, pitch and yaw attitudes respectively.

The roll, pitch and yaw rates of the body relative to inertial roordinat= ►e

are p, q, and r respectively. Finally, the rate of change of the body

rates relative to inertial is given by
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OF POOR QUALITY

	

IP	 2	 2
PAv	 P Av

	

^► Q	 [ I -1 ( 2m 
f-m + 2m (EA ) - -cg ) ) x

- tv x (?t) +( B ) + TPB )
	

(23)

where

I = vehicle moments of inertia matrix

= aerodynamic coefficient referenced length and moment

coefficient vector

r( ) = vehicle center-of-gravity vector in body coordinates

(B) = aerodynamic coefficient reference position in body coordinates

4B) = resultant thrust torque vector in body coordinates

TPB) = resultant plane torque vector in body coordinates

The equations of motion represent the first twelve elements of the system

state vector. These equations are summarized in Table 3.1.1-1.

The moment of inertia matrix I in general is given by

Ix	-Ixy

xY	 y

-I	 -Izx	 y z

-Izx]

-I	 (24)
yz

Iz

for the moment axis terms, i.e., I y , and the product of inertia terms,

zx'
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The aerodynamic force and moment coefficients and plume forces are

defined as functions of angle-of-attack, a, and angle -of-sideslip, S, as

shown in Figure 3.1.1-1. The body referenced relative velocity vector,

removing the wind velocity, vw, from the vehicle velocity, is given by

V - v
(B) - BCI v _ v (B) - BCLL v (LL)	 (25)

-r —	 _Iw —	 -w

where vtLL) 
is the local -level referenced wind velocity vector. The

following equations define a and S in terms of the components of yr

v
r

a tan -l ( 3)	 (26)v
r1

v
r

B sin -1 ( v 3)	 (27)
M

where

V - (v 2 +v 2 +v 2 )	 (28)
m	 r1	 r2	 r3

The resultant thrust force f (B) is expanded as

f T.

f (B) _	 BCC, 
0	

D	 BCg. f (^') (29)
-T	 i=1	 i	 i= 1	 i Z_Ti

0

where the transformation matrix BC  transforms the magnitude of thrust
i

for each thrusting device, fT', Yrom its center-line to the body
i

coordinates. The general eqaution for fT is
1
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t

d

fT 	= vacuum thrust
i. vac

Ps - atmospheric pressure at motor exit
.
i

A = motor exit cone area
e

The matrix 
BCg, 

is different for the SSME's and SRB's and is given by

BCMP MPCG G 
C 
I	 SSME

B %i
C =

B 
C 
I	 SRB

where

BCMP = 
transformation from the engine mount plane to the body

coordinates

MPCG transformation from the gimba: reference plane to mount plane

(structural deformation)

GC(' = transformation from enterl.ine to the gimbal reference plane

BCC. 
= transformation from SRB nozzle centerline to the body

coordinates (gimbal angles).

(30)



The resultant thrust torque is the summation of the torque contribution

from each thrusting device and is given by

r ^,
f T.

i	 g
0

where

r (B) body coordinates of the thrust reference^	 Y	 point for the
i

ith thrusting device.

3.1.2 Measurement Equations

The measurements assumed available for the filter'smoother algorithm

include inertial platform acceleration and attitudes, ground based radar

tracking, SRB's head pressure, SSME's chamber pressures, liquid H 2 flow

rates, pressurant flow rates. The ET volumetric levels are available;

however, due to their limited number (4), they may only be used for

alternate checks of the filter/smoother algorithm performance.

The propulsion related measurements will be treated in a separate

section. In the following, the inertial platform acceleration measurements,

attitude measurements and ground based tracking measurements models will

be described for later linearization.

y

(31)



3.1.2.1 Platform Acceleration Measurements

Accelerometers mounted orthogonally on an inertially stabilized

platform,not located at the vehicle center of gravity, sense externally

applied special forces and accelerations due to body rotation. The

accelerometer measurement is modeled by

2	 (B)	 (B)
(S) = S 

C 
P PCP' P' CB 

[R2nm Zf + n + m

+ w x w x (r(B ) - (B) ) + w x ((B ) - Wig) ) l + b(S ) + V(S )
	 (32)

where

SCP = transformation from platform coordinates to sensing coordinates

C = transformation from misaligned platform coordinates to

platform coordinates

P1 
B C = transformation from body to misaligned platform coordinates

!B) 
= body coordinates of the platform center

b (S) = accelerometer bias vector
-a

v (S) = accelerometer measurement noise vector
-a

3.1.2.2 Platform Attitude Measurements

The inertially stabilized platform for the STS is a four axis IMU

with a redundant roll axis [4]. Vehicle body attitudes are generated

via quaternions [5]. It is assumed that an equivalent representation



can be made to obtain vehicle attitude by a three rotation sequence of

roll, pitch, yaw to transform from inertial to body coordiantes. 'ibis

approach has been used in reference (6].

The attitude angle measurement model is given by

e^S) e + b	 + (S)	 (33)

where

be = platform misalignment bias vector (used to formulate C )

(S) = attitude measurement noise vector..

The transformation matrix used to transform from body to inertial

coordinates in terms of the elements of the a vector is given by

r
cosecos4F	 sinTsinecoo	 cosgsinecos4p

-cosVsin^	 +sinqisin^

ICB _ cosesin4,	 singsinesinQ	 coscpsinesin^
(34)

+cos^pcos+	 -sin9cos+

-sine	 sinTcose	 cosTcose

3.1.2.1 Ground Based Tracking Measurements

Grounc. based radar tracking devicos can provide measurements of

range, azimuth and elevation from the radar sight to the vehicle. Azimuth

and elevation are established relative to the sight's local level. If

;g' S.



The position vector of the vehicle relative to the tracking device is

given by

x

y =

z

OF POUK (11i+.

the tracking device is a passive optical tracker (not laser) then only

azimuth and elevation measurem©nts are available requiring more than one

to establish position information.

Defining x, y, and z as the local east, north and up position of the

vehicle relative to the ground based tracking device, the radar measurement

equations are given by

p = (x2 + y 2 + z2 ) + b + v	 (35)
P	 P

A - tan -1 (y) + bA + vA	(36)

E=tan-1 (	 z	 ) +bE +DE+vE	(37)
-X22 y2

whet e

bp , bA , b  - range, azimuth, elevation biases

AE = atmospheric refraction correction

vp , vA , vE - range, azimuth, elevation measurement noise.
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where

LLC
ECF . transformation from earth center fixed to local level

ECFECIC 	
= earth centered inertial to earth centered fixed

(ECF)
EWR 
(EC

F) position vector of tracking device in ECF coordinates.

The transformation matrix LLCECF is given by

-sink	 -sinLcosA	 cosLcosa

LLCECF	
cosX	 -sin Lsink	 cosLs in)1 	 (39)

0	 cosL	 sinL

where L and A are the geodetic latitude and east longitude of the

device. The transformation matrix. 
ECFCECI 

is given by

cos [wE (t - tRNP ) ]	 sin [ wE ( t - tRNP) ]	 0

ECFECIC
	

_
sin (wE ( t - t

RNP )]	
Cos [wE ( t - tRNPA 	0 (RNP] (40)

0	 0	 1

where

W  = earth rotation rate

tRNP = time tag for RNP matrix

The position vector, ^ F 'R, 	 of the tracking device is given by



--im. A

(	
E	

+ h) cosLcosA

Coo 2L + 0 - e) 2  sin2L

r(ECF)	 (	 E	 + h) cosLsink	 (41)
J008 2 L + 0 - e) 2 sin 2L

RE (1 - e)2
(	 + h) sinL

Cos 2 L + 0 - a) 2 sin2L

where

RE = equatorial radius of Fisher ellipsoid

e - flattening of Fisher ellipsoid

h = altitude of the device above Fisher ellipsoid



3.2 Linearized System State and Measurement Equations

The vehicle equations of motion are nonlinear functions of their

motion variables and are implicit functions of other elements of the

system states. The measurement equations involve similar function rela-

tionsW.ps. The linearizations for the filter/smoother algorithm require

partial derivatives with respect to the motion variables, i.e., v (H) and

A, and with respect to other elements of the state vector, yielding

explicit functional relationships for the elements of interest.

For system state equations the partial derivatives will be presented

in section 3.2.1 for tho state elements in order of occurrence for the

first twelve states. Other partial derivatives for candidate state ele-

ments will follow in section 3.3.1. The measurement equation partial

derivatives for the first twelve states will be presented in section 3.2.2.

Partial derivatives of the measurement equations for other candidate states

will be presented in section 3.3.2.

The resulting partial derivatives are imbedded into the linearized

system state matrix, F(x(t), t), as shown in Figure 3.2-1 . A corresponding

linearized measurement matrix, H(x ), is similarly formed with the
LLK

measurement equations' partial derivatives.

3.2.1 System State Partial Derivatives

Partial derivatives of each of the equations listed in Figure 3.2-1

are developed in their order of occurrence with respect co the order of
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the corresponding atates. Partial derivatives of thrust terms are present*:

as though for c single device.

Inertial Position Rate Equation

The first nonzero partial derivative of the r( I) equation is with

respect to v(B).

8	
(r(I)) = ICB.

8v 8) 

The second nonzero partial derivat:&,ve is with respect to e. This partial

derivative results in a third order tensor and occurs frequently ii, later

developments. The generalized form is presented in Appendix A.

Body Velocity Rate Equation

The partial derivative of v (B) with respect to r (I) is given for

altitude terms approximately as

Q) T
8	 8 r

8r (V - 8h 'r(I))	 (43)

where

8v a)	 Av@	 c +pAvm	 r m pAvM 8cf 	pAvm 8cf 8p

8h	 2m 8h ^	

+

m =f 8h	 2m	

+

8m 8h	 2m 80 8h

1 8 (L B A) OPs	 8f (d)	 8f (B) ^	
+)f 

(a) ^

+ -( C	 + ^— 4 -^ m + --^— s	 (44)M	 Bps	 8h	 8h	 8m 8h	 88 8h

(42)



The partial derivatives of 8 m
	 as	 80	

am -
	 8S	

a V

av (B)	 av(B)	 8v (
B) ' 8h ' ah and ah

occur frequently and are given in Appendix B.

The gravity vector BCI I(I) (r (I) ) partial derivative with respect

to r (I) is

2
3r1	

- 1	 3r1r2	 3r1r2

	

I
r 1 2	 (r12	 Ir12

	BC1(I) (
r(I)) BLI ^_ 3r1r2	 3 r2 - 1	

3r2r3

8r(i)	
r(I)I3	 iEj2	 Irl2	 IrI2

2

3 r 
1 
r 
3
	 3r2r3	 3 r3 - 1

2	 2	 ^r^L

(45)

where

µ = gravitational constant.

av(B)
The partial derivative,	 ( I) is the sum of the matricies in equations

8r

43 and 45.

The partial derivative of v (B) with respect to i

av (B) pA 
m	

a 
m	

pA 
m aEf am	 pA m2 

a2l
aV (B) - R; =f aV(B) + 2m as av (B) + Zn as

1 of	
as	

of	
as

+ m a°` av (B) + 
0 

av(B)



where

^ka} - skew symmetric matrix made from the elements of the vector w

and equivalent to the cross product operator w x ( ).

The partial derivative of v (B) with respect to 8 is

av(B) pA m
	

a m a r pA 
m2 a!Rf am avr

ae - m 2f av ae + 2m am av
,
 ae

2
+ pA m a	 a8 - Ir + a'' 9(I) (r (I) )

2m as av ae as

of (B)	 av	 of (B)	 av
p_	 ^ as_ _r

+ m am a'v
am

 ae
—r 

+ as av ae	 (47 )
-r —	 yr e

The partial derivatives of 
a

are given in Appendix B and the partial
vr

av
derivative	 is given in Appendix A. The last partial derivative

is given in Appendix C.

The partial derivative of v (B) with respect to w is

av (B)	 pAvm2 a2f	
(B)

aw	 2M	
aw + ^v (48)



(50)

01
0'

0^
J

(49)

Euler Angle Rate Equation

The Euler angle rate equation is a function of both the Diler angles

and the inertial rates. The linearization will yield the two associated

matricies.

First with respect to the vector 6, the following matrix results

gcosVtane- rsin(ptane
84

_ -gsingi - rcoscP

gcosVsece - rsinTcose

gsin qpsec20 + rcos(psec2a

0

gsinlsecetane + rcosTsecetane

The partial derivative of 9 with respect to w is

—	 1	 sin(ptane	 cosiptane
ae

	

= 0	 cosip	 -sing

	

0	 singsece	 cosTsece

Inertial Angular Acceleration Equation

The first partial derivative of this equation is with respect to the

vector r (I) . Using the approximation indicated in equation 43, this

partial derivative is



OF PCC)"

•	 2

{Advm ap c + (pv Adc + (r (B) - r (B) ) x pv Ac )evm
ar

(I)	 2 ah Zm 	 m -M	 -cg	 m c ah

2	 2
+ (pvm Ad

acM	
(B) _ r (B) ) x p in A acf )
 8m

2 8m	 cg	 2 8m ah

(51)

2	 2
pvm 	 8 m	 (B) _ (B)	

p m A 8- as+ ( 2 8B + 
(EA 	 rcg ) x	 2	 80) 8h

(t)	 (I )T

+ (( (B) _ r (B)) x B C % 
8^, 8 ps + a T  +

 8T P  am + 8T  as )} r
LT-T	 -cg	 8 

P  
8 h	 a h	 8m ah	 8B ah I r (I)

Next, with respect to the vector v (B) , the partial derivative is

aw	
= LI] -1 {(pv Ad c + ^r (B) 

- r (B) ) x pv A c ) 8 
m

av(B)	 m -M	 ^,	 -cg	 m -f av(B)

2	 2p m Ad ac	
( B)	 (B)	 p m A 82C 8a

+ ( 2 
8a + (EA - rcg ) x
	 2	 am)av(B)

(52)
2

pvm Ara 8cm	
(B) _ (B)	 p m 

2
A aEf88+ (	 2	 as + ( EA	

—cg ) x
	

2	 8B) ay (B)

aT 
am	 8TH a9

+ am 
(IV (B) + 80 av(B)} -
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The partial derivative with respect to the vector a is

[I] 	 cc + ( (B) _ r ) x 
pvmA c 

) 
-

2	 2

+ (
pvm 

Ad a 	
+ (:B) 

_ r(B)) 
x 

p m A aaf) as
2 8a ^► -cq	 2 as 8e

(53)

2	 2

+(

pvm Ad a-M
+( r(B) _ r ( B ) )X p m Aa ) as

	

2 8s	 --A	 -cg	 2	 as 8e

aT	 8T+=& +-Pao }.
an ae	 as ae

The final partial derivative for the first twelve states is with respect

to the vector w. This operation yields

•	 2	 2
{pAdvm	 -m 

+ 
k ( B ) _ r, (B)} pA m ^-f

aw	 2	 8w	 --A	 -cg	 2	 aw

(54)

+ ^Iwl - W-I I}

At



3.2.2 Measurement Partial Derivatives

The measurements assumed to be available, as discussed earlier, include

ground based radar tracking, inertially stabilized platform attitudes

relative to the vehicle body, and stabilized platform mounted 3 axis

orthogonal accelerations. As with the state dynamics matrix, the measure-

ment equations are linearized about the best state estimates.

Radar Track Measurement FMIation

Referring to the radar track measurement equations, the required

partial derivatives are

aAr (LL)
ap	
p 

-_
v 
I)

V

 
(55)

8r	 8Ar	 8r

aAr (LL)
aA _	 8A	 w	

(56)
8r (I)
	

8Ar
(LL) 

8r (I)
-v	 -

8Ar (LL)
8E_	 8E	 --v	

(57)
8r (I)	 8Ar(LL)	 8r(I)

w-

aAr (LL)
The last partial derivative in each of these equations,	

-(I)	
is

ar

8Ar (LL)
IV	 - LLCECF ECFCECY

8r (I)
(58)



The rest of the re quired partial derivatives are

T

Ur

 8e _ _ -V 	 / I ry
	

(59)

V

BAraLL)	
Ix2 y— 2 , x2 + x2 	 0]	 (60)

	

V	 Y	 Y

	

BE	
= 

I	 -xz	

./ -yz

	 x2 +2y2	 l (61)
BAr 

(LL)
v	 p2 x2 + y 	 p2 V x	 Y2 + 2 	 p

Inertially Stabilized Platform Attitude Equation

The inertial platform is assumed to provide attitude angle measure-

:rents of the true attitude plus an attitude bias plus measurment noise.

The partial derivative of the measured attitudes with respect to the

vector 8 yields an identity matrix.

Accelerometer Measurement Equation

The accelerometer senses specific body forces excluding gravity along

the sensing axes. With reference to the accelerometer equation, the

partial derivative with respect to r (I) is



t

IAA	 L

OF POOR ( UAU'N

8am(S) 
S 
BAv2 

8	 pAm	 am

8r (I)	
C [ 2m 8h Zf + m =f 8h

pA m 
2 

8cf as pA m 2802 80
+ 2m 8a 8h + 2m 80 8h

A)	 (B)	 (B)	 (I)T

	

1 B (L 
a^	 Bps 8 f 

P 8a	 -4 88 r
+ m 	 Bps	 8h + 8a	 8h + 813	 8h )) Ir(I) 

I

The partial derivative with respect to v (B) yields

8a m(S)	 S B pA v	 a v	 pAvm2 8o-f 8a	 pA m2 82f 8S

8v (B)
	 C [ m -°f 8v(B) 

+ 
2m as 1v (BT + 2m as av(B)

of	 of
-P am

+ m[aa	 B) + 80 8SB))	 (63)

	

av	 8v

For the partial derivative of the accelerometer with respect to

the vector A, the measurement equation is temporarily rewritten as

a (S) _ SCP' P' CE s (B) + b (S) + v(S)
-m	 —	 -a	 --a

where the vector s (B) represents the sum of the aerodynamic, thrust,

PI Bplume and rotational coupling terms. The matrix 	 C is the same

matrix as I CR . The required partial derivative results from

(62)

(64)
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(65)

(S)

8 80	 SC P
, 8	 ICB s(B).

The partial derivative on the right hand side is developed in Appendix A

with the vector s (B) representing the sum of the terms indicated above.

The final partial derivative for the accelerometer measurement is

with respect to the body rotation vector w. Defining

Ar1
s

Ars = Art
s

Ar
3
sj

(r (B) - r(B))
-s	 -cg

(66)

and denoting w  as the ith element of the vector w, the resulting

matrix is

w2Ar 2 + w3Ar 3	w1Ar2 - 2w2Ar1	w1Ar3 - 2w3Ar1

SamgCB w Ar - 2w Ar	 w Ar +w Ar	 w Ar - 2w Ar
aw =	 2 1	 1 2	 1 1	 j3	 2 3	 3 2

w3Ar 1 - 2w1 Ar3	w3Ar2 - 2w2Ar3	w1Ar1 + w2Ar2

(67)



aW	 pAv 2

8r	
_ CI] -1 ^ 2m

-cg

aa

Fr s -
SCB ^W X W1

--cg

From equation 32, the part

respect to 
rcg 

is

3.2.3 Additional Parameter Partial Derivatives

The mathematical developments are presented in this section for the

partial derivatives of the system and measurement equations to allow for

additional candidate parameters to be included in the estimation algorithms.

These parameters include center-of-gravity, rr , moments ("f inertia, I,

wind velocity, vW, and inertial platform tilt errors. Aerodynamic and

plume parameter partial derivatives are also presented.

The computer program is being structured to permit these parameters

to be easily incorporated without significant impact on the program code.

3.2.3.1 Center-of-Gravity

From equation 23, the partial derivative of angular acceleration with

respect to rcg is



Nuation 23 is rewritten as

 0 0W

0 0w2 ip

0 0 w3j

0

-w3 ; iC

1	 p
w2j

(70)

(71)

(72)

OF POOR,

3.2.3.2 Moments of Inertia

The moments-of-inertia are grouped into "principal" terms, iQ, and

cross product terms, iCp . From equation 24, these vectors are defined as
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where `T represents the sum of the nonrotational torques in equation 23.

Defining an intermediate vector a as

a - IT - Wx (IW)

the partial derivatives of the angular acceleration with respect to

ipand icp are

0	 -w2'a3	 23,
6;

8i 88 (I
-1 a)	 - (I) -1	 W1 3W	 0	 -W1W3

la-f ixed
-w1 W2	 W1w2	 0

and

(73)

(74)

_c

1

w W	
W	

W
2	 2I

12	
3 _ 2,

2	 2	 I (75)

	

W , - W3	 W1W2

W 
2 
W 
3
	

-W1W3

W1 W2

8i	
(I -1 a)	 - [I]	 -a2w3

-cp
	

-cp	
l a-fixed

?.	 2
1W2 

-W1

where
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r0	 Iza1 + Izxa3 +I7 Ixya2

Ixa2 +
Ixya1

0

(76)

2	 I

Ixy )a^

)a2

)a3

(77)

+ Izxa2 + Ixya3

+ Izxa1

+ Ix a1
Y
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-2(I I	 + I I	 -2(I I	 + I I	 -2(i I	 + I iz xy	 zx yz )a 1	 y zx	 xy yz )a 1	 x yz	 xy xz )a 1

[Il -1 A -2(	 )a2	 -2(	 )a2	 -2(	 "	 )a2

I)-2(	 )a3	 -2(	 )a3	 -
2(	 )	 )a31

and

	IxIYIz - Ixy lyz Izx - Izxlxy lyz - Iy lzx2 - I  xy 2 - Ix Iyz2	 (^8)

3.2.3.3 wind velocity

From equations 20 and 25, the partial derivative of the vehicle

acceleration with respect to v  is

	

8v
(B)

avm2 pAvm 2 8ef 
8a	

pA m2 8cf 
88	 (i9)8vw 

_	 c

2m -f 8v% 

+	

a ,2m am 	
+

882m	 8-W

The first of the partial derivatives in equation 79 can be obtained

from the following equation

2	 T	 (B 
)T 

( B)	 (B')T B	 T	 B 8
v	 -r	

wyr = v
	 v	 - 2 v	

C -W -W C C v
	 (80)  m

From equa.cion 80, the following is obtained

av 2

8v	 - 2 
vrT BC-	

(81)W



OF PGGtx.^

n

and

v
^T

r
- v? (vr smc 21 c11 + 	 c 21V + 	 c31 )vm 1 2 3

_a^ v

2	 2 r2v v^v	 +v vc
22

- (v c +v	 c +v	 c	 )m	 r2	 r3 m
m

r1 12 r2 22 r3 32

v
r

v 2 (v )mc23 c13 + vr c23 + vrc33M
r1 2 3

(83)

Denoting the elements of the matrix BC as c11' c12, etc., the following

equations are obtained for the partial derivatives of a and S with

respect to vw;

Tr ( r 1 c31	 vr3c1 1)
Ba

av	 2 -1	 2	 ( r c32	 r c12)	
(82)

-w v	 + v	 1	 3
r 1	r3	

((vr1c33 - vr3c13)

3.2.3.4 inertial Platform Tilt

Temporarily rewriting equation (32) as

a (S) = SC P (I + 66 r.) s
-m	 — — (84)



3

where

6e = vector whose elements are the axes misalignments

PI B
s = sum of the bracketed terms in equation 32 multiplied by C .

The following partial derivative of the measured acceleration with

respect to 6e is obtained

8a (S)

F6 	
—

 
S 
C 
P 

^	 (85)

3.2.3.5 Aerodynamic and Plume Parameters

A linear model for the aerodynamic and plume characteristics is

used. This model is expanded as

Sf 2C + 2fa at + cfs	 +	 (86)

and	
-cm = Imo + -cMa at

+ cros s +	 (87)

f 
= f + fPM a + fps s	 +	 ( 88)

where additional terms to represent rates, cross couplings, and controls

can be included.

The basic approach of establishing the partial derivatives will be

illustrated for a couple of terms, c f.a and cMa . Using these example



illustrations, the rest

obtained. From equation

av(B)
	 a^(B) 

ac
_	 -f

acs 	a^ acs
CL	 a

Df the candidate parameters can be similarly

20, the following partial derivative is obtained

pAv 2
_	

21n	
a [ U]	 (89)

where

[U] = unit 3 x 3 matrix with one ' s (1) on the diagonal and zeros

off the diagonal

From equation 23, the partial derivative of angular acceleration with

respect to 
cM 

is
a

a^,	 aw ac	 pAv 2

ac	 ac ac	
= [I] -1 	2	 a[UJ.

-m	 -n -m
at	 a

The corresponding partial derivative with respect to c
f
 is

--
at

•
_	 air as	 P Av

ac	 ac ac = [r]_1	 2m

2

 ^^(B) - Wig)} a[U].
-f	 -f - fa	 a

The static aerodynamic coefficient model has been obtained by a multiple

regression analysis of the current aerodynamic tubular data. 'ibis model

is presented in Appendix D with the associated regression coefficients.

(90)

(91 )



3.3 Propulsion Parameter States and Measurements

A candidate approach for incoi-orating the NASA propulsion model's

capabilities has been identified. This approach utilizes nominal pre-

dicted values of thrust, pressures, propellant and pressurant mass flow

rates, and utilizes sensitivities a • partial derivatives of these

variables with respect to the ir.de "ndent parameters selected for esti-

mation by the algorithm.

The approach is to include deviations from nominal values of

measured chamber pressure, rower levee, propellant and pressurant mass

flow rates as states. '7ae aodels assumed for these deviations are time

correlated random proce,;ses. Then as states, partial derivatives of

the first twelve states with respect to these variables will be required.

Fbr the SSME and SRB, this modeling approach is discussed in the

following. Additionally, the necessary partial derivatives of the first

twelve state variables with reseect to the additional states are presented.

3.3.1 SSME Propulsion Parameter Model

For the SSME, the total actual values of vacuum thrust and oxidizer

mass flow rates are modeled by

f  = f 	 + Af T	(92)
nom

and

m0 = m0	+ Am 
	

(93)

2	 2	 2
nom



The measurements of fuel mass flow rate, pressurant mass flow rates and

power level are modeled as

m =m	 +Am	 +b•	 +s•	 (94)
H2	

H2nom	
H2	

mH2	 mH2

m	 =m	 +Atn	 +b•	 +s•	 (95)
H2	H2	 Ha	 mH	 mH2

P	 Pnom	 P	

2 P

	 P

m	 =m	 +Am	 +b•	 +s•	 (96)

02p	 02Pnom	 02p	 m02p	

m02p

and

PL = PL nom + APL + bPL + s PL .	 (97)

These measured quantities include measurement noise s ( ) and potential

bias states b ( ) modeled as random constants. In these measurements,

the A'd variables are to be included as states in the estimation

algorithm. If the nominal values are zero or unknown, then the A'd

variables absorb the entire estimate. Where required, the estimate for

the variables used in the estimation algorithm is formed using the

nominal and the estimate of the deviation, etc. In example, thrust and

fuel mass flow rate estimates are formed as

f  = f 	 + Af T	(98)
nom



and

(99)m ^m	 +Am +b•
H2	

H2nom	
HZ	

mH2

The deviation or A'd measurement variables are mode7Qd as time

correlated random variables. This permits these variables to vary within

a band of frequencies. The typical model is then given as

dt A( ) _ - T
	

A( > + T
	

s( )	 (100)O	 O

where the parenthesis ( ) would be replaced by the variables, i.e., m  .
*	 2

For the SSME, an additional variable Acmult is modeled as in equation

100 and included as a state variable with the A'd measurement

variables.

The thrust deviation is expanded as in the following truncated Taylor

series as a function of the independent parameters.

of T	 of T	 .	 of T
Af T 

= R,
Am 	 +	 Am	 +	 * Ac

H2	H2	
X02	

O	 82p	Ac

P	
P	

P

8f	 of

	

+ aPL APL + aMR AMR.	 (101)

In the v (B) and w equations, with equation 101 replacing f T
i

the partial derivatives of f T with respect to the A'd variables are

obtained directly from equation 101.

i

i

3^
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It is desirable to include vehicle mass bias as a state. 7he SSME's

system contribution to the mass deviation is given by

A
^SSME' s ' E (Am

H + Am 	 - AmH	- AmO	) .	 (1 U2 )
i	 2.	 2.	 2	 2

	

1	 1	
Pi	 Pi

	In equation 101, the Am 	 contribution to the mass deviation is not
2

available from measurements. As with the thrust deviation, this quantity

is formed as

Am = 
X 	

Am	 + 
X02 

Am	 + ^0* Ac*02 L!I-
H2 	

H2P	
W02p
	 02P	

8Ac

.

+ X02 APL + am02 AMR.
8PL	 8MR

(103)

which is in terms of other estimated state variables. In equations 101

and 103 the deviation in mixture ratio, AMR, is obtained algebraically

from

mH2	 _ mH2

AMR =	
nom

a^H
2

8MR

(104)

The partial derivatives for the SSME above have been incorporated into

the estimation algorithm as functions of engine power level.



3.3.2 SRB Propulsion Parameter Model

The approach for the SRB modeling follows closely that used for the

SSME. Candidate independent parameters include propellant burn rate

exponent, a, and motor efficiency coefficient, 
m-

 Others can be added

using this technique.

The actual value of vacuum thrust is given by equation 92. The

only measurement available for the SRB is the total pressure at the

forward head end of the motor case and is modeled as

P = P 

OH	

+AP +b + s	 (105)

	

OH	
nom

OH	
pOH PO
	

(105

where b ( ) and s ( ) represents a bias and measurement noise respectively.

The independent parameters, Aa and Acm , are included in the

model as states. The model assumed can be as given by equation100 or

another suitable dynamical process, i.e., random constant.

The thrust deviation is given by the following truncated Taylor

series as a function of the candidate independent parameters.

8fT8fT
Af T 8a Aa + 8c Acm +	 .

m
(106)

The partial derivatives for the v (B) and equations with respect to

the independent parameters are obtained directly from equation 106 . The

mass deviation equation for the SRB is given as

SRB
	 (107)
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where

Ami m 8—a Aa +	 (108)

The head pressure deviation, AP B , is expanded similarly
H

8F^

AP  = aaH Aa +	 .
H

(109)

A simplified model fo:- the SRB's thrust, head pressure and mass flow

rate has been developed that can be directly incorporated within the filter

algorithm for estimating burn rate coefficient, nozzle coefficient, mass

flow rate, etc. This model, to be described below, uses apriori specified

burn area and port volume as a function of burn depth into the propellant

grain. From this simplified model analytical partial derivatives required

by the estimation algorithm can be obtained.

The thrust is given by

f T = c m 
c 

T 
c m
	

(110)

where

c = nozzle coefficientM

C  = thrust coefficient

c = characteristic exhaust velocity

m . = mass flow rate

Two of the required partial derivatives with respect to mass flow rate

and nozzle coefficient are easily obtained, vis



SWAM:.

Of  . 
c c * cT	 m	 (111 )

am

and

Of T

*
C— = CT C m	 (112 )
m

Ihe partial derivative with respect to burn rate coefficient is

Of  ac  aP0 8m
8a

a 
[ aP
O 

as 
m +
 7a 

CT] c * cm	(113 )

where it has been assumed that c is not a function of a. Using the

"ideal" expression for c  [7]

2	 Y-+l	 X.71	 P - P A

C	
( 2 )Y-1 [1 - ( Pe )y )	 + 

e	 a	 e	
(114)

T : Y-1 Y+1	 P	 At	 PO
O

where

7 = ratio of specific heats

Pe - motor nozzle exit pressure

Pa - ambient atmospheric pressure at nozzle exit

A = motor nozzle exit area
e

At = motor nozzle throat area,

the first partial derivative in equation 113 is
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^i y-1 (Y+1 )
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P	 P - P A

((	 )  e

	

( Pe) ] P - A a a	 (115)
O	 0	 t	 PO

P ^

0

Tb evaluate the second partial derivative in equation 113, the following

equation for pressure [8] is used:

*	 A 1
P s (c Pp 

a 
b )1—n (116)0	 At 

where

Pp = propellant density

Ab = propellant burn area

n - propellant burn rate exponent

The following partial derivative is then obtained

1

apo*	 1 -n	 1c P
aa	

( A	 )	 (1^n) a1n	 (117)
t

The last partial derivative in equation 113 is obtained from

n
*	 1—ncpaAb

m = Pp r  Ab - pp a(	 A	 )	 Ab.	 (118)
t

'fie resulting partial derivative is

*	 n	 1c p a 1-n8n	 1	 1 -n
as s pp ( p	 (1 1 ) Ab	 (1 19 )At



To utilize the head pressure measurement and its sensitivity to

parameter variations, the following equation (7) is used

P	
cr p^.^

	

PO . 2 11 + 1 + 4RT( A pP --• ) 3	 (120)
H	 p O

where	 0 H.? ..
OF POOR QUALITY

R - gas constant

T . gas absolute temperature

c • port circumference

A - port cross section area

rb - propellant burn rate

	

f . distance from motor nozzle to	 point^	 pressure measurement 

This equation assumes a cylindrical port with an approximately constant

cross sectional area.

The partial derivatives with respect to burn rate coafficient and mass

flow rate are

	

BPOH

	 {[ 1 + ^ 1 + 16t RT p 2 V3a 2 ) 8P0
	8a	 p	 8a

p 

3
1611RT p 2 f

p V

+	 p	 PO}
3

1 + 16t RT pp2 V
p

(121 )



-	 AM W

and

ail 2	OPO	
OP	

4 RT V P

	

H	
{ [1 +	 1	 -1 0 +	 p O	 }	 (122)

	

Obi	 2	 aA	 2
	1 + 4RT(V P )	 1 + 4RT(V P )	p O	 p O

In equations 121 and 122 a cylindrical port has been assumed in determining

the port volume p. Equation 122 was obtained from equation 120 by

replacing the term c r  p p t by A. The partial derivative of PO
H

with respect to cm is obviously Zero. In using these analytical

partial derivatives, the basic performance measures of thrust, man tow

rate, head and nozzle pressures, etc. are matched between this mod%

the NASA SOBER internal ballistics routine results. The burn area and

port volume are adjusted in the simple model to obtain the agreement.

Then using the adjusted area and volume as a function of burn depth, the

partial derivatives are evalauted.

"J



(S)	 2

SA
	 _	 1	 2 SCA ( Pv2 A cf + f (B) + BCC, f N' ) )

b	 (m + Amb )	 L

3.3.3 Vehicle toss

The total rate of change of vehicle Taos is given by

RE (m) m	 + m	 + 
a
	 + 

a
 + mSSME	 SRB	 SSME	 SRB	 NON-CONSUME	

(123 )
	nom	 nom

The first two terms in this equation are the apriori assumed nominal

values. 'the third and fourth terms were discussed earlier. The last

term should be zero; however it can include a mass bias uncertainty Am b'

The equations, state and measurement, in which mass occurs are the

v (B) and am	mmequations. Assuming equation 123 can be summarized as

m + Amb then the mass ceii be written as m + Amb . Toplacing th`s

expression for the mass it the two indicated equations yields the

following partial derivatives with respect to the dab.

av
(B)

F v" 2 A
• -	 1	 (	 c + f (B) + BC4' f t4' ) )	 (124)

BAmb	
(m + bmb 

) 2 	 2	 =f -p	 i

and



4.0 PROJECTED ACTIVITIES DURING UPCOMING MONTH

During the next period, the filter and smoother routines will be

further checked out and modified to include other potential parameters,

i.e., aerodynamic coefficients. Additionally, -the results from the

simplified SRB model will be evaluated against those from the SOBER

program.

t



REFERENCES

1. Sage, A. P., Optimum Systems Control, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1968.

2. Bierman, G. J., "Fixed Interval Smoothing with Discrete
Measurements," Int. Jr. Control, Vol. 13, No. 1, 1975, pp. 65-75.

3. Jazwinski, A. H., Stochastic Processes and Filtering Theory,
Academic Press, New York, 1970.

4. Davis, L. D., "Coordinate Systems for the Space Shuttle Program,"
NASA TMX-58153, October, 1974.

5. Perry, E. L., "Quaternions and Their Use," NASA/JSC Internal Note
82-FM-64, December, 1982.

6. Lear, W. M., "Description of the LRBET Program," NASA/JSC Internal
Note 81-FM-5, February, 1981.

7. Hill, P. G. and Peterson, C. R., Mechanics and Thermodynamics of
Pro ulsion, Adlison-Wesley, Reading, Massachusetts, 1965.

8. Redus, J. R., Private communication.



This partial derivative is one of several that occurs frequently in

the formulation of the linearized system state and measuremetn egautions.

The desired partial derivative is

1(cosecos4p )v  + ( sin(psinecos^ )v + (cosgsinecos+ ) v
1	 -cosrpsinc	 2	 +singpsin^	 3

a	
(cosAsin^, )v + ( singsinesinc^ ^	 coscpsinesinc-

aA	 1	 +cosgcos^	 'v2 + (-s incpcosc	 ) v3

(-sinA)v 1	+ (sin(pcosA)v 2	+ (cos(PcosA) v3

The resulting matrix is given in Table A-1.

A-1



N M N M
> > > >

to to C C
O O n1 .^
U U to N

d) C to C
O rl O rI
U to U m

t I 1 t
0

3 eY •b •^^•
C C N N

> y > U U
C R

C
b z} C

•.•1 O N O tR

m C N m C N
N r4 O to -4 O
U

to U
U1 1 I t t

m

L)

3

>1

mU
M

W

0 N M N M

> 3 •3 sT 3_ N .— C C N M
> O O > .1 > >

> U U to rn
.r4 CD tD 3 m m m m_

y^ U U U W U U > Np
C

C am q C N rn C to
ro •'•I •.1 0 H •1-1

OU pO
O

y
+ tl +

N U
4 + } I

a

1

w
a
ao
KC
E- ; >M N M

> >

C C M m
^I O O
to N U U
9 I} 9 9•

O .Ci G
N U m U
t I 1 }

ran
-9.

N N M
O O > >

m m m m CD m
^ a a m to

to ro rn co U U

U) C N C N CO rl O O •^
u U U y



 am 80
a (B)'	a( B)'	 0 	8 ' 8h	 8h

aah Expressions
av 	 aV 	

3v (B)'

 partial derivatives occur frequently and will be developed

in this appendix. The equation for -vr is

v _ 
v (B) - BCLL v(LL)	

B-1
-r —	 -w

Since the wind velocity, 
v(LL), 

is only a function of altitude then

a	 a
aV - 3v (B)

av
The first partial derivative, 	 ^B), is

av

.^ T

v
r1

(3 m	 1

av (B)	 m vr2	 .
i
i v

r3

The second, 
C 
B) , is given by

av

B-a

B-3
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r3

v 2 + v 2
r1	r3

8m

8v
 (B)	

0

v
r1

2	 2

1vr + vr3i	 J
The equation for 80

8v (B)
is

B-4

T
-v v
r, r2

v 3 v 2	 2
m	 r1 + v

r3

as
av(B) -	 V " 2 + v 2

r1	 r3

v
3

m

-v v
r2 r3

v 3̂ v 2 +v 2m	 r1	 r
3

B-5
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The following equations define the last three required partial derivatives

8(LL)
8a _ _ 8a	

v
B LL	 W

8h	 8v (B)	 8h	
B-6

(LL)
a6 _ _ 80	 B LL 8-°w
8h	 av(B)	 8h	 B-7

8v	 8v (LL)
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B-88h av (B)	 8h 
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APPENDIX C

PARTIAL DERIVATIVE OF THE VECTOR 
HCI 

v wrt A

The third of the frequently occurring required partial derivatives

is

	

lcosecosQ v 1	+ cosAsinQ v2	- sin8 v3

8	 (singsinecos4+)v	 + (sincpsinesin^)v
	 +	 sinjcose v

89	 -cos(psin4o	 1	 +cosIcos4+	 2	 3

	

( 
COSTS inecos+

)v
	+ (cosTsinesin4o)v	 + cosTcose v

	

+sinvsiniy	 1	 -singcos4+	 2	 3

The resulting matrix is given in Table C-1.

C--1
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APPENDIX D

AERODYNAMIC MODELING REGRESSION ANALYSIS AND RESULTS

The aerodynamic data tables provided as IVSC3 data has been incorporated

into en aerodynamic coefficient polynomial model. This modeling effort

reduces the dimensionality of the numerical tables to one and reduces the

storage requirements for the aerodynamic model.

The coefficient model used for the two stages differ slightly as a

result of the available data. The regression analysis led in the selection

of the form of the aerodynamic model. Terms with insignificant correlation

were eliminated from the model.

In equation form, the first stage static coefficients of axial force,

CA; normal force, C N ; pitching moment, C m ; rolling moment, Ct ; side force,

C Y ; and yawing moment, C n ; are given below

CA = CA + CA a + CA 2 a2 + CA 2 M0  + C 2 82 	D-1
0 	a	 a	 as A$

C  = C  + C  a + C  2 a02 	 D-2
o	 a	 aS

m
= m+
 

m 
a+ 	Ca 2 aS2	 D-3

o	 a	 as

Cf = Cf + Ct S + Cj as + Cf 2 a2	 -4S 	D
o 0	 aS	 a S
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Cy . Cy + CY p + Cy 08 + C  2 a lp	 D„5
0	 p	 as	 a p

n no + n p p+ a 010na2p
ap + C	 alp	 D-6

The corresponding second stage model is given by the following equations

CA - CA + CA a + CA 2 a2
o	 a	 a

D-7

C  = C 	 + C  at + C  
2 

012

o	 a	 a

C^=Cn +C n a+Cm2a2
o	 a	 a

Co s Cl +Cf p + Cf ap + Cf 
2 

alp
o p	 ap	 a p

Cy = Cy + Cy p + Cy ap + C  2 alp
o	 p	 ap	 a p

_ ^^ + a p +Cn ap +C	 alp
o	 p	 ap	 n0120

Fbr the first stage, data from an angle -of-attack range of

was used in the regression analysis. Data from a range of

was used for the second stage. The results, '1-k-U..., from

analysis is presented below for each of the coefficients,
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