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1.0 INTRODUCTION

the fifth monthly progress report includes corrections and additions

to the previously submitted reports. Zhe addition of the SRB propellant

thickness as a state variable is included with the associated partial

derivatives.

During this reporting period, preliminary results of the estimation

program checkout was presented to NASA technical personnel.
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The system described by equation (1) is ohser•ied at discrete times, tk,

with not all states being directly measured. Some measurements are non-

linear functions of the elements of the state vector aft). In general

the measurement process is described as

z* 	1(x(tk )) + vk	 (2)

where

zk = m-dimensional observation vector

hk = functional representation of the measurements in terms of

the states

vk = m -dimensional, zero-mean, while Gaussian noise sequence with

covariance

E[V. VT)	 R. B.-1 --j	 1 1 0 ]

Examples of the elements of the observation vector z include radar

measurements of range, azimuth, and elevation from the radar site to the

vehicle.

It is assumed that the system process noise vector w(t) and the

measurement noise vector vk are uncorrelated. Also, the system state

initial condition vector x is not correlated with either of these two-o

noise vectors. Therefore

E[w(t) Yk	 0, E[w(t) xo)	 0, E[xo 41-0

where the superscript T denotes transpose. For later reference, the

following matricies are defined
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2.0 FILTERING AND SMOOTHING ALGORITHM

The Space Shuttle Parameter Estimation Program utilizes optimal

estimation techniques to provide estimates of the propulsion system

parameters. The technique selected is the extended Kalman filter and

the modified Bryson-Frazier smoother. By modeling the propulsion system

parameters as time correlated random variables, improved estimates of

tt ,-,se parameters are obtained and are properly time phased by removing

the filter induced lag by using the combined filter/smoother. The

smoother also provides improved estimates of the initial state estimates.

The system, in state-space notation, is modeled as the continuous

dynamical system disturbed by additive Gaussian white noise

A - f (x(t), t) + G(t) w(t) + u(t), x(o) - x 	 (1 )

where

x n-dimensional state vector

x	 Gaussian initial condition vector with covariance P
-b	 o

w(t) - p-dimensional white, zer.3-mean white Gaussian nois y with

covariance

E[w(t) Tw (T)] - Q(t) 6(t - T)

u(t) - n-d i mensional control vector.

The elements of the vector x(t) represent vehicle positic

attitudes, angular rates, aerodynamic and propulsion parame

ment biases, etc. Elements of u(t) include known control

as SSME power level commands.
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(3)

"	 and

ah(x(tk))	

(4)

hese matricies are linearizations of the dynamics and measure.ent models

respectively, evaluated about either a nominal or reference value of the

state, or about the state estimate.

2.1 Extended Kalman Filter Algorithm

The extended Kalman filter algorithm is in essence a conventional

linear Kalman filter algorithm applied to a mathematical model resulting

from the linearization of the .ystem model equation (1), and measurement

process, equation (2), about a current state estimate. The filter yields

optimal estimates if the linearization is accurate, i.e., the state esti-

mate closely approximates the tvie state. The derivation of the algorithm

caa be found in reference (1J.

The algorithm proceeds as follows. After initialization of the state

estimate and covariance, the state estimate and covariance are propagated

forward in time until a measurement update is available, by

I 	 f(z(t) I t)	 ,	 tk-1 < t < t 	 (5)

and

P(t) = F(x(t), t) P(t) + P(t) F(x(t), t) T + G(t) Q(t) G(t)T
	

(6)



At the measurement time, the state estimate and covariance are updated

by

&(+) _ J&(-) + Kk(
-Zk

 - !!k(x&(-)))	 (7)

and

Pk (+) _ (I - K  Hk (&(-))) Pk (-)	 (S)

wtere the (-) and (+) represent the appropriate values just before

and just after the update. The updated values are used to reinitialize

the time propagation equations (3) and (4) for integrating up to the next

measurement time. The Kalman gain matrix is computed as

Kk = Pk (-) Hk ( zj (-) ) T (Hk (&(-)) Pk (-) Hk (^(-) ) T + Rk ) -1	(9)

This algorithm is repeated until the last time point, t N , is processed.

For later use in the smoother algorithm, various combinations of the state

estimates (x), measurements (z), linearized dynamics matrix (F) and

measurement matrix (H), measurement noise covariance (R) and estimation

error covariance matrix (P) must be stored for each time instant to be

processed by the smoother algorithm.

2.2 Modified Bryson-Frazier 8noother Algorithm

The operation of the smoother algorithm is similar to the filter

algorithm except in reverse time. The derivation of this smoother algorithm

is found in reference (2). This fixed interval smoothing algorithm pro-

vides optimal estimates giver, all the measurements in comparison to the

filtering algorithm providing optimal estimates given the previous



measurements processed. Therefore the smoother provides improved estimates

in ad'ition to removing the time lag induced by the filter ,algorithm.

The smoothing algorithm adjoint variables, X and A are "initialized"

at the final time processed by the filter, T,

A(T-) _ -HN (HN PN HN + RN)-1 ( .EN - HN (XN (-))) 6t	(10)
N,T

and

A(T-) - H(HN PN HT + RN)-1 HN 
6N	 t

N,T
	 (11 )

If T is not an observation time, a and A are zero. The adjoint

variables are propagated in reverse time to the next previous measurement

time by

a-F(x(t), t) a	 ,	 tk<t<tk+1
	

(12)

A	 - F(k(t), t)T A - A F(ic(t), t)	 (13)

At the time of an available measurement, t k , the adjoint variables

are updated by

A(-)	 A (+) - Hk(Hk Pk H + Rk )-1 ( (z* - hk (X-k (-)) )

+ (H 
k  

Pk N + Rk ) K a (+) )
	

(14)

and

A(-) - (I - Kk 
x 

)T A(+) (I - k 
k

) + H
k (Hk Pk N + Rk)

-1 H	 05)



The smoother state estimate and error covariance are obtained using the

filter estimate and covariance and the adjoint variables by

x* (t) _ A(t) - P(t) A(t)	 (16

and

P (t) w P(t) - P(t) A(t) P(t). 	 (17)

Due to the potential number of time points to be processed, smoother

i

	 estimates may only be computed at the discrete measurement times. For

this approach the propagation equations (10) and ( 11) are replaced by

^k (+)	 mk a ( - ) k+1	
(18 )

and

-'	 Ak(+) _ 
0k Ak+1 (-) ®k 	(19)

where 
mk is the state transition matrix formed with the linearized

dynamics matrix F to propagate the adjoint variable from time tk+1

to time tk . The algorithm continues in reverse time until the initial

time is reached.

2.3 Iterations with the Filter/8noother Algorithm

The performance of the filter/smoother algorithm is a direct result

of the accuracy of the linearization. Repeated operations of the algorithms

with adjustments in initial state estimates and covariance in each cycle

can yield improved estimates. This technique is known as global iterated



filtering as defined in reference (3l. Each cycle of operating the

algorithms would yield increasing improvements in the state estimates.

This feature of the algorithm operation is of special interest to

the propulsion parameter estimation problem using the NASA predictive

models. Initial, or nominal, values of the parameters of interest can

be used to obtain the necessary partial derivatives indicated earlier.

From operating the algorithm improved estimates of those parameters are

obtained. Using these improved estimates, more accurate partial deriva-

tives are obtained for use in the algorithms. This process is continued

until there is in essence no change in the partial derivatives or quality

of the state estimates. If the linearization is accurate, the measure-

ment residual should be a white noise proc3ss with known covariance.



3.0 FILTER/SMOOTHER ALGORITHM SYSTEM AND MEASUREMENT MODEL

The usefulness of the filter/smoother algorithm is to provide esti-

mates of the system states from the observed motion and dynamics while

the system is driven by known and unknown elements. These unknown elements

are elements of the system state vector to be estimates. The evolution of

motion resulting from these known and unknown elements is assumed to be

suitably represented for this study by a six degree-of-freedom (6 DOF) rigid

body equations of motion. These equations are presented and discussed in

section 3.1.

To implement these equations into the filter/smoother algorithm

presented in section 2.0, a linearization of the system state and measure-

ment models is required. These linearized equations are presented in

sec
t
ion 3.2.

3.1 Equations of Motion and Measurement Equations

3.1.1 Rigid Body Equations of notion

The rate of change of vehicle velocity in body coordinates, v(B),

as a result of external for ges acting on the vehicle is described by

	

pAv2	 f(B)	 f(B)
-(B)	 m	 B I (I)	 (I)	 (B)	 ;-P	 —F
v	 cf + C a	(r	 )- w x v	 + m + m	

(20)

where

p = atmospheric density

A a aerodynamic coefficient referenced area

m = magnitude of vehicle velocity relative to the surrounding air

mass

a

r'



$(I) (r (I) ) = gravity vector in inertial coordinates

w . angular rotation of the body relative to the inertial frame

f (B) • resultant thrust force vector in body coordinates
ZWT

f (B) . resultant pluae force vector in body coordinates

7h* rate of change of vehicle position in inertial coordinates, r(I),

ie then obtained by 	 -

r(I) = ICS v(B)	 (21)

whore 
I 
C B is the transformation matrix from body coordinates to

inertial coordinates. Me elements of the I C B transrormation matrix

are obtained from the resulting Eu iea .z,?Ies defined by

•-	 1
1	 sinjtanO	 ccssgtun<	 p

8	 0	 cosq	 -s 4,nq	 q

^y	 0	 sing secO	 cosgsec9 r

where •, 9, and 4P are roll, pitch and yaw attitudes respectively.

The roll, pitch and yaw rates of the body relative to inertial coordinates

are p, q, and r respectively. Finally, the rate of change of the body

rates relative to inertial is gives



p !
	 PAv2	 PAv2

!^ x i q = [ I ] -1 [ 
2m A c

m +	 2m (r̂ (B ) - 
rig ) ) x c f

I^

- w x ('rut ) +TSB ) + TP(B) ]
	

(23)

where

I vehicle moments of inertia matrix

fc = aerodynamic coefficient referenced length and moment

coefficient vector

_r ((g ) = vehicle center-of-gravity vector in body coordinates

EA(B) = aerodynamic coefficient reference position in body coordinates

T= resultant thrust torque vector in body coordinates

T	 = resultant plane torque vector in body coordinates

The equations of motion represent the first twelve elements of the system

state vector. These equations are summarized in Table 3.1.1-1.

The moment of inertia matrix I in general is given by

Ix	 -Ixy	 - IzX!

I = -I	 I	 -I	 (24)
xy	 y	 y z

zx	 y z	 z

for the moment axis terms, i.e., I y , and the product of inertia terms,

i.e., Izx.
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The aerodynamic force and moment coefficients and plume forces are

defined as functions of angle-0f -attack, a, and angle -of-sideslip, B, as

shown in Figure 3.1.1-1. The body referenced relative velocity vector,

removing the wind velocity, vw , from the vehicle velocity, is given by

V = v (B) - BCI V = v (B) - BOLL v( LL)	
(25)

r 

where 
v(LL) 

is the local-level referenced wind velocity vector. The

following equations define a and 8 in terms of the components of v 

v
r

a tan -1 (3 ) 	 _	 (26)v
r1

v
r

B = sin -1 ( v 3)	 (27)
m

where

m = (v2 + v 2 + '-' 2 )	 C28)r	 r	 r
1	 2	 3

The resultant thrust force 
f(B) 

is expanded as

f T'
f(B) - E B 1	 0	 I	 E BC^ f(^')	 (29)

T	 i=1	 i	 !^	 i=1	 i

where the transformation. matrix BC, transforms the magnitude of thrusti

for each thrusting device, f T. from its center-line to the body
1

coordinates. The general equation for fT is
1

$ _.0
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coordinates (gimbal angles).

in

fT,	 fT.	 - PsAe1	 ivac	 i

where

T.
= vacuum thrust

i vac

P S. = atmospheric pressure at motor exit1

A = motor exit cone area
e

The matrix 
BC. 

is different for the SSME's and SRB's and is given by

rBCMP MPCG GCS.	 SSME

BC i =
	

(30)

BC(L	
SRB

where

BCMP 
= transformation from the engine mount plane to the body

coordinates

MP C
G = transformation from the gimbal reference plane to mount plane

(structural deformation)

GCS = transformation from enterline to the gimbal reference plane

BCC. 
= transformation from SRB nozzle centerline to the body



Lrust torque is the summation of the torque contribution

Ang device and is given by

f T,

T(B) = E (ET. 
_ r(B)) x B^^.	

Oi

T	 i=1 ET.	 -cg	 i

0

where

E
T. = body coordinates of the thrust reference point for the
i

ith thrusting device.

3.1.2 Measurement Equations

The measurements assumed available for the filter/smoother algorithm

include inertial platform acceleration and attitudes, ground based radar

tracking, SRB's head pressure, SSME's chamber pressures, liquid H 2 flow

rates, pressurant flow rates. The ET volumetric levels are available;

however, due to their limited number (4), they may only be used for

alternate checks of the filter/smoother algorithm performance.

The propulsion related measurements will be treated in a separate

section. In the following, the inertial platfcrm acceleration measurements,

attitude measurements and ground based tracking measurements models will

be described for later linearization.

(31)



)rm Acceleration Measurements

hers mounted orthogonally on an inertially stabilized

platform,not located at the vehicle center of gravity, sense externally

applied special forces and accelerations due to body rotation. The

accelerometer measurement is modeled by

2	 (B)	 (B)
(S)	 SCP PCP' P' CB [ p 2m cf + m +

M	

m

+ w x w x (r(B) _ ((g)) +; x ((B) _ (g)A + b( S) + v(S)(32)

where

SCP = transformation from platform coordinates to sensing coordinates

CP = transformation from misaligned platform coordinates to

platform coordinates

P CH = transformation from body to misaligned platform coordinates

E( B) = body coordinates of the platform center

b (S) = accelerometer bias vector
--a

V(S) 
= accelerometer measurement noise vector

-6

3.1.2.2 Platform Attitude Measurements

The inertially stabilized platform for the STS is a four axis IMU

with a redundant roll axis [4]. Vehicle body attitudes ere generated

via quaternions [5). It is assumed that an equivalent representation



can be made to obtain vehicle attitude by a three rotation sequence of

roll, pitch, yaw to transform from inertial to body coordiantes. This

approach has been used in reference [6].

The attitude angle measurement model is given by

0 = 9 + b + 4S)	 (33)

where

be = platform misalignment bias vector (used to formulate PC )

v (S) = attitude measurement noise vector.

The transformation matrix used to transform from body to inertial

coordinates in terms of the elements of the a vector is given by

cosecos+	 sin(psinecos(#	 cos(psinecosc

	

-cos(psin(	 +singsin^

I CB -	 cosesin4#	 sin(psinesin(	 cos(psinesin^
+cos(pcos^	 -sinVcosc

-sine	 sinTcose	 cos9cose

3.1.2.3 Ground Based Tracking Measurements

Ground based radar tracking devices can provide measurements of

range, azimuth and elevation from the radar sight to the vehicle. Azimuth

and elevation are established relative to the sight's local level. If

(34)
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the tracking device is a passive optical tracker (not laser) then only

azimuth and elevation measurements are available requiring more than one

to establish position information.

Defining x, y, and z as the local east, north and up position of `he

vehicle relative to the ground based tracking device, the radar measurement

equations are given by

p = (x2 + y2 + z2 ) + by + vp	(35)

A = tan-1 x ) + bA + vA	(36)

E = tan (	
z	 ) + b  + AE + v 
	

(37)
x2 + y2

where

bp , bA, bE = range, azimuth, elevation biases

AE = atmospheric refraction correction

vp , vA, v  = range, azimuth, elevation measurement noise.

The position vector of the vehicle relative to the tracking device is

given by

x

A Arr	 = LLCECF ( ECFCECI r (I) _ ERDRF)1	 (38)Y	 _

z



-sinl

LLECFC 	
cosy

0

-a inLcosa	 cosLcosA

-sinLsinA	 cosLsina i
f

cosL	 sinL

(39)

X are the geodetic latitude and east longitude of the

ansformation matrix 
ECFCECI 

is given by

Cos (w E (t - tRNP) I 	sin [wE(t - tRNP)I
	 0 1

-sin[wE (t - tRNP)]	 Cos [wE (t - tRNP )1	 0 [RNPI (40)

0	 0	 1

rotation rate

e tag for RNP matrix

ctor, ^RF ) , of the tracking device is given by

OF POOR QUALITY

LLC
ECF , transformation from earth center f ixed to local level

ECFC
ECI - ea;.--h centered inertial to earth centered fixed

(ERF ) - position vector of tracking device in ECF coordinates.
The transformation matrix 

LLCECF 
is given by



( + h) cosLcosaJ cos 2 L +	 (1 - e) 2 sin 2L

R
E

( + h) cosLsina

J cos 2 L +	 (1 - e) 2 sin2L

RE (1 - e)2
( + h) sinL

J cos 2 L +	 (1 - e)
2

sin2L

(ECF )
rRDR (41 )

OF PO U R Qt r"3LWY

where

RE = equatorial radius of Fisher ellipsoid

e - flattening of Fisher ellipsoid

h : altitude of the device above Fisher ellipsoid



3.2 Linearized Sy stem State and Measurement Equations

The vehicle equations of motion are nonlinear fu.r-tions of their

motion variables and are implicit functions of other ements of the

system states. The measurement equations involve similar function rela-

tionships. The linearizations for the filter/smoother algorithm require

partial derivatives with respect to the motion variables, i.e., v (B) and

A, and u'th respect to other elements of the state vector, yielding

explicit functional relationships for the elements of interest.

For system state equations the partial derivatives will be presented

in section 3.2.1 for the state elements in order of occurrence for the

first twelve states. Other partial derivatives for candidate state ele-

ments will follow in section 3.3.1. The measurement equation partial

derivatives for the first twelve states will be presented in section 3.2.2.

Partial derivatives of the measurement equations for other candidate states

will be presented in section 3.3.2.

The resulting partial derivatives are imbedded into the linearized

system state matrix, F(x(t), t), as shown in Figure 3.2-1 . A corresponding

linearized measurement matrix, H(2E.), is similarly formed with the

measurement equations' partial derivatives.

3.2.1 System State Partial Derivatives

Partial derivatives of each of the equations listed in Figure 3.2-1

are developed in their order of occurrence with respect to the order of
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i

the corresponding states. Partial derivatives of thrust terms are presented

as though for a single device.

Inertial Position Rate Dquation

the first n nzaro partial derivative of the r (I) equation is with

raspect to v(B)

a 

(r(I) ) . ICB.
av(B) 

The second nonzero partial derivative is with respect to @. This partial

derivative results in a third order tensor acid occurs frequently in later

developments. The generalized form is presented in Appendix A.

Bodv Velocitv Rate Eauation

The partial derivative of v (B) with respect to r (I) is given for

altitude terms approximately as

(Z )'
8 _ 8 r

8r(I)	 5K ir(I))	
(43)

where

8v (B)	 Avm	 pAvm	 8 m pAvm 82C
as

pAvm 8E
f
 as

8h	 2m bh °-f + m Ef 8h + 2m 8a ah + 2m 86 8h

1 8	 A) ape 8f
+ (B) af(B) ^ 8f (B)

aEr
+ 	

^.-( C	 ^- +- P —i + -p —)	 (44)
m	 ape ah	 ah	 8a 8h	 80 8h

(42)
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The partial derivatives of
av

 ^B) ,	 H(H) '	 a^(B) ' 8 ' 8h
80 	

av

 and 8hm
8v	 8v	 av

occur frequently and are given in Appendix B.

The gravity vector BCI ^(I) (r (I) ) partial derivative with respect

to r (I) is

BI al(I)(r(I))	
B I

C	 ar(I)	 C I r () 3—I

2
3r1	

- 1	 3 r 
1 
r 
2	

3r' 12
1K.1 2
	

Ir12	
I_I2

2
3r1r2	 3 r2 - 1	 3 r 

2 
r 
3

Ir^ 2	(rI2	 (rI2

2

3 r 
1 
r 
3
	 3r2r3	 3 r3	 - 1

IrI 2 	Ir_I2	 Ir
,2

(45)

where

µ = gravitational constant.

(W B)

The partial derivative, (I) , is the sum of the matricies in equations
8r

43 and 45.

The partial derivative of v (B) with respect to v (B) is given by

av(B) pA m	 a 
m	

pa'm a-°f 
clot	

pA 
m2 a2f 

as

av(B) - m 2f av (B) + 21D 3a av (B)	 2m 80 av(B)

1clf	
clot	

of	
86

+ m ( am av (B) + as av(B) ) .. ^w}
(46)
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j
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skew symmetric matrix made from the elements of the vector w

and equivalent to the cross product operator w x ( ).

The partial derivative of v (B) with respect to 8 is

8v (B) pA m	 av avr pA m2 acf as eVr

	a6	 m -°f av ae + 2m am av ae

2+ pAvm acf 80 	 + a ( BCI ^(I) (r 
(T) ) l2m 8S av ae N	 -

R	
of 

(B)	
av	 of 

(B)	 avi -P as	 ^_ as
+ m	 ar a	 ae +	 88 av	 ae ) .	 (47 )

The partial derivatives of 
as 

are given in Appendix B and the partial
-r

av
derivative 

a--re 
is given in Appendix A. The last partial derivative

is given in Appendix C.

The partial derivative of v (B) with respect to w is

	

av 
(B)
	 pAv 2 ac

m	 8w + iv (S)(48)

	

8w	 2m 
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F	 Eller Angle Rate Equation

The Euler angle rate equation is a function of both the Eller angles

and the inertial ratec. The linearization will yield the two associated

matricies .

First with respect to the vector 8, the following matrix results

gcos9tane- rsingtane
	

gsin4psec20 + rcosTsec2a
	

0

_ -qsinT - rcosT
	

0
	

0
	

(49)

gcosjsece - rsinTcose gsinTsecO tane + rcosTsecetane
	

0

The partial derivative of 4 with respect to w is

	

1	 sin4ptane	 cos(ptane

	

= 0	 cos(P	 -sinq,
	

(50)

	

`0	 sinTsece	 cosTsece j

Inertial Angular Acceleration Equation

The first partial derivative of this equation is with respect to the

vector r (I) . Using the approximation indicated in equation 43, this

partial derivative is



1
r
r

r,
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8u^	 Adv 2	 8v
er (I) a [ I l -^ { 2m ^ c + (p yAdc + ( B) _ Wig)) 

x p y -f ) h

+ (pvm2 8 -̂n + (r(B) _ r(B)) x p m2A 8)
2	 as	 EA	 -cg	 2	 8m 8h

(51)

+ ( pv
m2

Ad 8 m + ((B) _ r (B) ) x p m2A 8cf) 86
2 70	 EA	 -cg	 2	 80 8h

(^.)	 (I)T

-	
a p(B)	 (B)	 B 4. 8^,	 s a T	 a	 8^	

as	 aB r+ ( (ri,	 cg ) x C a ps 8h + 8 h + as ah + 80 8h )} I 
r (I)

Next, with respect to the vector v (B) , the partial derivative is

&;	 av
8V (B) - [I ] -1 {(pv^Ad c + (r (B) _ (g)) x p v^A 

Cf 8 (B)

+ (pvm2 a + ( r(B) _ r(B)) x p m 2 A 8c f) 
as

2	 as	 -A	 -cg	 2	 80L 8V (B)

(52)

	+ (pvm2	 8—m + ( r(B) _ r(B)) x p m2A 8cf) 
aB

	

2	 aB	 -A	 -Cg	 2	 80 av(B)

OTa
+te as +te, aB } 

-am 
8V (B)
	 aB 

(IV (B)

n
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The partial derivative with respect to the vector a is

88 = (a ] -1 ((pvmAd cm
 + ( B) - r	

a
. ) x p 

vA Ef 
) 
-

2	 2

+ ( p
vm Ad B	

+ (
(B) - r(B)) X p m A acf ) as

2	 as	 EA	 -cg	 2	 as 8e

(53)
2	 2

+ (pvm Ad 
am 

+ (EA - r (B) ) X p m A 
8cf) 

a6
2	 as	 —A	 -cg	 2	 as ae

8T	 8T
+ ^ as + ^ as }.

as ae	 813 ae

The final partial derivative for the first twelve states is with respect

to the vector w. This operation yields

	

•	 2	 2
(pAd m ^-tn + EA - r (B) } pAVM gym'

	

aw	 2	 aw	 EA 	 -cg	 2	 aw

(54)

+ ^Iwl - { Wu I I



3.2.2 Measurement Partial Derivatives

The measurements assumed to be available, as discussed earlier, include

ground based radar tracking, inertially stabilized platform attitudes

relative to the vehicle body, and stabilized platform mounted 3 axis

orthogonal accelerations. As with the state dynamics matrix, the measure-

ment equations are linearized about the best state estimates.

Radar Track Measurement Equation

Referring to the radar track measurement equations, the required

partial derivatives are

8Ar(LL;

88r(I) 8Ar- (L̂  8r I)	
(55)

-v	 -

8Ar(LL)
8A _	 8A	 V	

(56)
8r(I) - 8Ar(LL) 8r(I)

-V	 -

8,&r (LL)
8E _ 	8E	 "V

8r (I)	 8Ar(LL)	 er(I)	
(57)

8Ar(LL)
The last partial derivative in each of these equations, 	 -(I) , is8r

8Ar (LL)
-V_	 C	 C	

(58)
LLECF ECFECI.

8r 
(I)



i

i

The rest of the required partial derivatives are

8p	 - Ar(LL)T/ 
I 
Or

BA.r (LL)
	 -v	 _V

-v

BAr(LL)
	 (x22	 2 ,	 x2 + y2	 Ol
	 (60)

-v

8E	 -xz	 -yz	 xV ` + y2
	

(61)
8 r((LL)	

P2 V x2 + y 2 	p2 x2 +Y
2
	P2

Inertially Stabilized Platform Attitude Equation

The inertial platform is assumed to provide attitude angle measure-

ments of the true attitude plus an attitude bias plus measurment noise.

The partial derivative of the measured attitudes with respect to the

vector 8 yields an identity matrix.

Accelerometer Measurement Equation

The accelerometer senses specific body forces excluding gravity along

the sensing axes. With reference to the accelerometer equation, the

partial derivative with respect to r (I) is

(59)



8a (S) S B A v2 8	 pAv 	av
..P.

8r
(I) a C [ 2m 8h 2 + m ^f 8h

pAv 
2 
% 8a pAv 

2
82f 86

+

	

	
(62 )

2m 8m ah + 2m 80 ah 

(^)	 (B)	 (B)	 (I)T

	

1 B g, of T	 aps 8^ as 8^ as r
+ m( C	 Bps 	8h + a«	 8h 

+ 
aB 	 8h )) ( r (I)I

The partial derivative with respect to v (B) yields

8a (S)	 pAv	 av	 pAv 2 ac	 pAv 2 ac
m	 S B m	 m	 m Ef as	 m -f as

av (B) = C [ m °f 
av 

(B) +-	 2m as av (BT + 2m as 
av 

(B)

of	 of
—P am

+ m( 8'a B) + 86 a^(B))	
(63)

	av	 av

For the partial derivative of the accelerometer witt respect to

the vector e, the measurement equation is temporarily rewritten as

a (S) _ SCP' P' CB s (B) + h (S) + v(S)	 (64)
-m	 —	 -a	 -a

w;iere the vector s (B) represents the sum of the aerodynamic, thrust,

	

plume and rotational coupling terms. The matrix 	 CB is the same

matrix as ICB . The required partial derivative results from



(
8a (S)

 a	 ICB s(B).
80	 ae

The partial derivative on the right hand side is developed in Appendix A

with the vector s (B) representing the sv:n of the terms indicated above.

The final partial derivative for the accelerometer measurement is

with respect to the body rotation vector w. Defining

(65)

Art
s

Ar	 Ar$	
t
s

Ar3
s

(r (B) - r(B))
—s	 -cg

(66)

and denoting w  as the i th element of the vector w, the resulting

matrix is

w2Ar2 + w3Ar3	w1Ar2 - 2w2Ar
1
	w1Ar3 - 2w3Ar1

	

Sam	
SC	

2 1
B

	aw	
w Ar - 2w 1 2
	 1 1	 :i

Az	 w Ar +w Ar 3
	

w 2 Ar 3 - 2w 3 2Ar	 (67)

w3Ar
1
 - 2w

1
Ar3	w3Ar2 - 2w2Ar3	 w1Ar1 + w2Ar2

a



3.2.3 Additional Parameter Partial Derivatives

The mathematical developments are presented in this section for the

partial derivatives of the system and measurement equations to allow for

additional candidate parameters to be included in the estimation algorithms.

These parameters include center-of-gravity, r cg , moments of inertia, I,

wind velocity, vW, and inertial platform tilt errors. Aerodynamic and

plume parameter partial derivatives are also presented.

The computer program is being structured to permit these parameters

to be easily incorporated without significant impact on the program code.

3.2.3.1 Center-of-Gravity

From equation 23, the partial derivative of angular acceleration with

respect to 
rcg 

is

f T4' !
8w	 pAv 2	 n	 1

8r = [1)- 1 [ 2m ^c,, +
 in

 ^ BC(' 	0]( 68 )
cg

0

From equation 32, the partial derivative of the measured acceleration with

respect to rcg is

s

ar'^' 
_ -S CB

;w x W^

-cg
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3.2.3.2 Moments of Inertia

The moments-of-inertia are grouped into "principal" terms, i p , and

cross product terms, gi p . From equation 24, these vectors are defined as

I
x

i ^	 I
p	 y

I
z

and

I
xy

i	 I
-cp	 zx

I
yz

With these definitions, equation 23 is rewritten as

	

1w 1 	0	 0

w = [I] -1 [ET - awl	 0	 w2	 0

	

0	 0	
W 3

	

-w2 	-w3	 0

+	 -W1	 0	 -^3	 ]
p

0	 -W1	 -W2

(70)

(71 )

(72)
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where ET repi, rents the sum of the nonrotational torques in equation 23.

Defining an intermediate vector a as

a - ET - w x ( Iw)	 (73)

the partial derivatives of the angular acceleration with respect to

i p and iCp are

0	 -w2(^3
	

go) 243
8;

8i - 88 (I -^ a)	 - (I) - ^	 W1 W3
0	 -w1w3	 (74)

-Q	 -P	 la-fixed
-w^w2	 w^w2	 0

8w

8i	 - 88	
( I-1 a)

-cp	 -cp

w1w2

[I) - ^	 -w2w3

a-fixed	
2	 2

w2 -w1

1
-w w2	u) 32 - w 

2

1
2

2	 2	 I ;75 )
W - w3 w

1
 w2

w2w3	 -W w3 I

and

where



Iya3 +Iyza2

Iyza1 - 2Izxa2 + Ixya3

Iya1 
+ Ixya2

(77)

-2I
yza 1 +Izxa 2 + Ixya3

Ixa 3 + IzXa1

Ixa2 + Ixr

OF POOVI

0

-1(a a) Iza2 +a^ T

L Iyza3

Iya3 +Iyza2

z
	 Iya1 + Ixya2

0
	

Ixa2 + Ixya1

Ixa3 + Zzx 1	 0

(76)

	

( Iy lz - Iyz2)a1	 (IxIz - IzX2)a1	 (Ixly - Ixy2)a1

	

)a2	 (	 )a2
	

(	 )a2

i (	 „	 )a3	 (	 )a3	 (	 )a3

88	 (I-1 a)
-cp

I za2 + Iyza3

1
Iza1

+Izxa3

Iyza 1
+ Izxa2 - 2Ixya3

and



I w

-2(T Z	 + I I	 -2(I I	 + I I	 -2 ( I I	 + T Iz xy	 zx yz 
)a 

1	 y zx	 xy yz 
)a 

1	 x yz	 xy xz )a1

tI) -1 	-2(	 "	 )a2	 -2(	 )a2	 -2(	 "	 )a2

-2(	 )a3	 -2(	 ) a3	 -2(	 )	 )a 3j

and

A- I I I- I I I	 - I I I	 - I I 2 - I I 2 - I I 2
x y z	 xy yz zx	 zx xy yz	 y zx	 z xy	 x yz

3.2.3.3 Wind Velocity

From equations 20 and 25, the partial derivative of the vehicle

acceleration with respect to -vw is

8v (B) pA
	

8 m2 pA m2 8ct an	 pAVm2 82f as
!	 8v - 2m Ef 8v + 2m am av + m	 as 8v

-w	 -r	 -w	 -W

The first of the partial derivati :as in equation 79 can be obtained

from the following equation

v2 -v T v -v(B)Tv(B) -
2v

(B)TDC 
v + v T CB BC v

m-r -r -	 -	 -	 -w -w	 -W

From equation 80, the following is obtained

av 2

8vs--2v^TBC.	 (81 )
-w

(79)

(80)
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enoting the elements of the matrix HC as 
c11' 

c 12 , etc., the following

equations are obtained for the partial derivatives of a and S with

respect to v w ;

a--w v 2	 2+ v 
r1	r3

(vr1c31	 vr3c11)

(v
r 1 C32 - vr3c12)

(vr 1 c 33	 r3c13)

T

(82)

and

T
v
r

2
- (v

r c 11 + vrc31)c21v + vr c212
m

1 3

as-1_

ate"'

v

2	 2 r2v	 ,l v	 +v vc - (v c +v	 c +v	 c	 )m	 r 2	r3 m 22
m

r1 12 r2 22 r3 32

V
r

v 2 )c 23v (vr 1 c13 + vr2 C23 + vr -33m 3

3.2.3.4 Inertial Platform Tilt

Temporarily rewriting equation (32) as

a (S) = SCP (I + 66 x) s

(83)

(84)



where

60 = vector whose elements are the axes misalignments

= sum of the bracketed terms in a	 plied by P CBs	 ._	 equation 32 multi

The following partial derivative of the measured acceleration with

respect to 60 is obtained

as (S)
868 = SCP 41,	 (85)

14

3.2.3.5 Aerodynamic and Plume Parameters

A linear model for the aerodynamic and plume characteristics is

used. This model is expanded as

cf	cf'o + 2f (I at + cfa B +	 (86)

	

and cm - -ĉ no + -cma a +^ B +	 (87)

	

f  = f  + f 
13 

a + fpa B +	 (88)

where additional terms to represent rates, cross couplings, and controls

{	 can be included.

The basic approach of establishing the partial derivatives will be

illustrated for a couple of terms, cfa and ccMa . Using these example



istrations, the rest of the candidate parameters can be similarly

...._pined. Frcm equation 20, the following partial derivative is obtained

8v (B)	 av (B) ac# 	PAvm2

8cf _
	 ^ = 2m a[U]	 (89)^ 

CL	 a

where

(U] = unit 3 x 3 matrix with one's (1) on the diagonal and zeros

off the diagonal

From equation 23, the partial derivative of ongular acceleration with

respect to cm is
at

aw_	 aw ac	 2

ac	 ac act	

p Av
= [I]-1 	2	 a[U).	 (90)

a	 a

The corresponding partial derivative with respect to cf is
a

_P
ac	 - a^ ac	

= [I]-1 
Alm ^r	 - ^(^)} a[U].	 (91 )

a	 at

The static aerodynamic coefficient model has been obtained by a multiple

regression analysis of the current aerodynamic tabular data. This model

is presented in Appendix D with the associated regression coefficients.

14



3.3 Propulsion Parameter States and Measuremenv:s

A candidate approach for incorporating the NASA propulsion model's

capabilities has been identified. This approach utilizes nominal pre-

dicted values of thrust, pressure, propellant and pressurant mass flow

rates, and utilizes sensitivities or partial dfrivatives of these

variables with respect to the independent parameters selected for esti-

mation by the algorithm.

The approach is to include deviations f-cm nominal values of

:measured chamber pressure, power level, propellent and pressurant mass

flow rates as states. TY models ass _;ed for these deviations are time

correlated random processes. Then as states, partial derivatives of

the first twelve states with .-espect to these variables will be required.

For the SSME and SRB, this modeling approach is discussed in the

following. Additionally, the necessary partial derivatives of the first

twelve state variables with recepct to the additional states are presented.

3.3.1 SSME Propulsion Parameter Model

For the SSME, the total actual values of vacuum thrust and oxidizer

mass flow rates are modeled by

(92)f  = f 	 + AfT
nom

and

m0 = m
0
	 + dap .

2	 2	 2
nom



The measurements of fuel mass flow rate, pressurant mass flow rates and

power level are modeled as

m =m	 +Am +b• +s•
H2	

H2nom	
H2	

mH2	 mH2

m	 =m	 +Am	 +b•	 +s•	 (95)

H2p	 H2p	 H2p	 mH2	 mH2
nom	 p	 p

m	 =m	 +Am	 +b•	 +s•

o2p	 o2pnom	 o2p	 mo2p	 mo2p

and

PL = PL 
nom+ 

APL + bPL + s PL .
	

(97)

These measured quantities include measurement noise s ( ) and poter..tial

bias states b ( ) modeled as random constants. In these measurements,

the A'd variables are to be included as states in the estimation

algorithm. If the nominal values are zero or unknown, then the A'd

variables absorb the entire estimate. Where required, the estimate for

the variables used in the estimation algorithm is formed using the

nominal and the estimate of the deviation, etc. In example, thrust and

fuel mass flow rate estimates are formed as

f  = f 	 + Af T	(98)
nom

(94)

(96)



and

m =m	 +em +b•

	

H2	
H2nom	

H2	
mH2

The deviation or A'd measurement variables are modeled as time

correlated random variables. This permits these variables to vary within

a band of frequencies. The typical model is then given as

dt °( ) _ - T	 e( ) + i	 s( )	 (100)
O O

where the parenthesis ( ) would be replaced by the variables, i.e., m  .
*	 2

For the SSME, an additional variable Ac 
ult 

is modeled as in equation

100 and included as a state v-.riable with the A'd measurement

variables.

The thrust deviation is expanded as in the following truncated Taylor

series as a function of the independent parameters.

of	 of	 of
Af - 

T 
A;H + 

WT 
A;0 + T

	T 	
* Ac*

`H2p	

2p	

02p	

2p	 aec

of	 of

	

+ aPL APL + aim AMR.	 (101)

In the v (B) and w equations, with equation 101 replacing f T ,
i

the partial derivatives of f T with respect to the A'd variables are

obtained directly from equation 101.

(99)



It is desirable to include vehicle mass bias as a state. The SSME's

system contribution to the mass deviation is given by

Ar;SSME's - I(&;H + A °0 - &4H	 - ^0	 ).	 (102)
i	 2.	 2.	 2	 2

1	 1	
Pi	 Pi

In equation 101, the AmO contribution to the mass deviation is not
2

available from measurements. As with the thrust deviation, this quantity

is formed as

Am = 

&n0

2 Az; 	 am02 Am	 + am02 Ac*
02 

W 
H 2	

H2P	
W02
	 02P	

aAc

P	 P

+ 
X02A PL + 

X 02
AMR.

aPL	 aMR
(103)

which is in terms of other estimated state variables. In equations 101

and 103 the deviation in mixture ratio, AMR, is obtained algebraically

from

mH2
	

m H 2

AMR =	
nom

e^H
2

aMR

(104)

The partial derivatives for the SSME above have been incorporated into

the estimation algorithm as functions of engine power level.
'f

i

A



{	 3.3.2 SRB Propulsion Parameter Model

The approach for the SRB modeling follows closely that used for the

SSME. Candidate independent parameters include propellant burn rate

exponent, a, and motor efficiency coefficient, m. Others can be added

using this technique.

The actual value of vacuum thrust is given by equation 92. The

only measurement available for the SRB is the total pressure at the

forward head end of the motor case and is modeled as

PO = PO 

H	

+ APO 
H 

+ b + s
H	

nom
	 PO PO

pOH

(105 )

where b ( ) and s ( ) represents a bias and me a surement noise respectively.

The independent parameters, Aa and Acm , are included in the

model as states. The model assumed can be as given by equation100 or

another suitable dynamical process, i.e., random constant.

The thrust deviation is given by the following truncated Taylor

series as a function of the candidate independent parameters.

8f	 8f
Af T = 8a Aa + a^ Acm +	 .

m
(106)

The partial derivatives for the v (B) and w equations with respect to

the independent parameters are obtained directly from equation 106 . The

mass deviation equation for the SRB is given as

SRB = (Am )	 (107)
i i



where

Ami 
= 8+a 

Aa +	 (108)

The head pressure deviation, APB , is expanded similarly
H

8Po

APB = a:! Aa +	 (109)
H

A simplified model for the SRB's thrust, head pressure and mass flow

rate has been developed that can be directly incorporated within the filter

algorithm for estimating burn rate coefficient, nozzle coefficient, mass

flow rate, etc. 'This model, to be described below, uses apriori specified

burn area and port volume as a function of burn depth into the propellant

grain. From this simplified model analytical partial derivatives required

by the estimation algorithm can be obtained.

'IY+e thrust is given by

f T = c m 
c 
T 
c m
	

(110)

where

c = nozzle coefficient
rr.

c  = thrust coefficient

rr
c = characteristic exhaust velocity

m = mass flow rate

Two of the required partial derivatives with respect to mass flow rate

and nozzle coefficient are easily obtained, vis



Of T	 *
—^ c T c cm

art►
(111 )

and

of T	 * .
ac - c T c m

m

Zhe partial derivative with respect to burn rate coefficient is

of 
T	

ac T a PO	 8m
Oa - [aF as m + 8a c T7 c c

O	
m

*
where it has been assumed that c is not a function of a. Using the

"ideal" expression for c  (71

2-	 P - P A

c	 ^— (2 )7-1 [1 - ( Pe ) T l	 + e	 a eT
7-1+1	

PO	 At	 PO

where

7 - ratio of specific heats

Pe = motor nozzle exit pressure

Pa - ambient atmospheric pressure at nozzle exit

A = motor nozzle exit areae

At = motor nozzle throat area,

the first partial derivative in equation 113 is

(112)

(113)

(114)
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ac	
2-1

T	 ^ 2

8P0 	 7-1 (Y+1 )

71
P ^

(1 — (P )	 ]
C

Y'?

P	 F - P A
((^^) (P ) ] P	

eA a 2

O	 O	 t	 PO
(115)

Tb evaluate the second partial derivative in equation 113, the following

equation for pressure (8] is used:

*	 1

P = (c pp a 
A 
b)1-n	 (116)

0	 At

where

Pp = propellant density

Ab = propellant burn area

n = propellant burn rate exponent

The following partial derivative is then obtained

1

*	 1 -n	 t _
P p^

as = (^ A b )	 (t^n) a 1 -r'	 (117)
t

The last partial derivative in equation 113 is obtained from

n
*	 1 —nc p a Ab

m = pp r  Ab = pp a(	 A	 )	 Ab-	 (118)
t

The resulting partial derivative is

*	
n	

1c p a 1 -n	 1	 1 -nPp ('^ p
(1-:^) Ab	 (119)At
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Ib utilize the head pressure measurement and its sensitivity to

parameter variations, the following equation 171 is used

P	 cr p
PO = 2 [I + ej 1 + 4 RT ( A P )1

H	 '	 p O
(120)

where

R = gas constant

T = gas absolute temperature

c = port circumference

A  = port cross section area

r  = propellant burn rate

It = distance from motor nozzle to pressure measurement point

This equation assumes a cylindrical p, -. with an approximately constant

cross sectional area.

7he partial derivatives with respect to burn rate coefficient and mass

flow rate are

8PJ 	 3 A 2	 8P
[1 +^ 1 + 16xRT _ ( *t ) 1 as

	 (121)
8a	 V

p c Ab

A



and

	8PO
	 8P	

4RT
fit 2

H m	 { [1 +	 1	 I+	 p
VL  

o	 }	 (122)

	

8a5	 ^ 2	 8rtS	 ^ 2

	

1 + 4RT(V P )	 1 + 4RT(^_ P )

	p O	 p O

In equations 121 and 122 a cylindrical port has been assumed in determining

the port volumn Vp . Equation 122 was obtained from equation 120 by

replacing the term c r  pp t by A. 'the partial derivative of PO
H

with respect to cm is obviously zero. In using these analytical

partial derivatives, the basic performance measures of thrust, mass flow

rate, head and nozzle pressures, etc. are matched between this model and

the NASA SOBER internal ballistics routine results. 7h a burn area and

port volume are adjusted in the simple model to obtain the agreement.

'Then using the adjusted area and volume as a function of burn depth, the

partial derivatives are evalauted.

'The inclusion of solid propellant thickness, t, as a state variable

necessitates the development of the partial derivatives of t with respect

to the solid propulsion parameters and the partial derivative of the

measurement PO with raspect to T. These partial derivatives are given
H

as
n

c • p 
a 1 -n

8T _ _	 1	 b
8a	 1 --n ( At )

(123)
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and

BP OH	
f I 

At 2 OPO
8t • [ (1 +	 16x RT V ( * ) ] aT

p c Ab

3A
8s RT V - PO aT ( *t )

p	 c b	 (124)

1
3	 At 2

p c A 

y	 where

1

&8P
0

APa b F^8 
b	 *8c * c * a At

8T
a	

[ AAt 8T	 +	 A	 8T	 + c Pa b
t 8T	 ]	

(125)  

Here, the partial derivatives of	 , Ab , and At with respect to 	 T	 are

evaluated numerically.

Finally, the partial derivative of thrust with respect to	 T	 is

given by

8Af	 8P	 8A

	

8T T OT 8T 0 At + OTPO 8Tt

	
(126)
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3.3,3 Vehicle Miss

Zhe total rate of change of vehicle mass is given by

dt (m) - m	 + m	 +SSME	 SRB	 ^	 +SSME ^	 + mSRB	 NON-CONSUL	 (127)
nom	 nom

The first two terms in this equation are the apriori assumed nominal

values. The third and fourth terms were discussed earlier. The last

term should be zero; how--ver it can include a mass bias uncertainty Am b'

The equations, state and measurement, in which mass occurs are the

X(B) and am equations. Assuming equation 123 can be summarized as

m + dnb then the mass can be written as m + Am b* Replacing this

expression for the mass in the two indicated equations yields the

following partial derivatives with respect to the dnb.

(B)	 2
-	 1	 2 ( p v2 

A	 f( B) + 3Cq, f^^))
	 (128)

b	 (m + 6mb )	 i

and

(
aa

S)	 2
(	 _ _	 1	 S B Pvm A	 (B)	 B ^ (CL)C (	 c + f	 + C f	 )	 (129)

alb	 (m + Am  ) 2	
2	 -f -p	 -^Pi
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4.0 PROJECTED ACTIVITIES DURING UPCOMING MONTH

During the upcoming month the computer programs will be exercised

on the NASA computers, and documentation of the computer routines will

be developed.

Due to minor delays, SDI is requesting a one month extension at no

cost to the government to maximize the capabilities of the computer

routines developed.
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APPENDIX A

PARTIAL DERIVATIVE OF THE VECTOR 
I 
C B v wrt A

This partial derivative is one of several that occurs frequently in

the formulation of the linearized system state and measuremetn eqautions.

The desired partial derivative is

(cosecos^)v + ( sinVsin0cos+	 + (cosrpsinecos4+) v
1	 -cosipsinQ.	 2	 +sin4psin^	 3

a	 (cosesin+ )v + 
( sinVsinesin4p	 + ( cosipsinesin4+ ) v

ae	 1	 +cosvcos+ 	v2	 -singcos yo 	3	 A-1

(-sine)v 1	+ (sinqicose)v2	+ (cosq)cose) v3

The resulting matrix is given in Table A-1.
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APPENDIX B

av

(B)'	8(B)'	 (is
	

av 
M

a ' ah and 
ah Expressions

av	 av	 av

These partial derivatives occur frequently and will be developed

in this appendix. The equation for 
-vr is

v _ v (B) - BALL v(LL)	
B-1

-s —	 -w

Since the wind velocity, v( LL) , is only a function of altitude then

a	 a
avvr -

 
av (B)

av

The first partial derivative,	 ^B), is
av

^-	 T

^ yr I1i

a m	 1

av 
(B)	

m y vr2

Iv
r3

The second,	
(3a	

isgiven by
av

B-2

B-3



-v
r3

2
v	 + v
r

1
	r3

as _

av(B)

v
r^

2
v	 + vr

1
	 r3

The equation for cis B)	 i
av

-v v
r1

v 
v 

v
m	 r^

0

-v v

r2 	 j	 1

ao

av (B) -

2

V
v	 +
r^

v
3

m

3	 2	 2v	 v	 + v
m r r^	 r3



The following equations define the last three required partial derivatives

8v(LL)
8a _ 8a	 B LL -w
8h - av(B)	 C	 8h

as	_ a6	 B LL av 
(LL)

8h - 8
	 Cv (B )	 8h

y

8 m __	 _ C38B	 B LL av 
(LL)

-w
8h	

8v (B)	
C	

8h

B-6

B-7

B-8



APPENDIX C

PARTIAL DERIVATIVE OF THE VECTOR 
B 
C I v wrt 8

The third of the frequently occurring required partial derivatives

11.'

is

cosecos^ v1

8	 ^singsinecos4p
8e	 -cosipsin¢	 1

cosTsinecos¢

L
+sinTsin cl 	 )v1

• cosesin4o v2	- sine v3

• (+coscpcos^ln^)v2	
+ sin^cose v3

+ (cosgscost
in

^ )v2	 + cos^pcose v3

C-1

The resulting matrix is given in Table C-1.
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APPENDIX D

AERODYNAMIC MODELING REGRESSION ANALYSIS AND RESULTS

The aerodynamic data tables provided as IVBC3 data has been incorporated

into an aerodynamic coefficient polynomial model. This modeling effort

reduces the dimensionality of the numerical tables to one and reduces the

storage requirements for the aerodynamic model.

The coefficient model used for the two stages difer slightly as a

result of the available data. 7he regression analysis led in the selection

of the form of the aerodynamic model. Terms with insignificant correlation

were eliminated from the model.

In equation form, the first stage static coefficients of axial force,

CA ; normal force, C N ; pitching moment, m; rolling moment, C f ; side force,

C Y ; and yawing moment, C n ; are given below

CA = CA + CA a + CA 2 a 2 + CA 2 as2 + CA 2 s2	 D-1
o	 a	 a	 as	 ^

C  = C  + C  a + C  2 as2
o	 a	 as

D-2

m = m+ m a+m
	
2

	

oa	 as

CI = C  + C  s + C^ as + C  2 a20
0	 0	 a$	 a 0
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Cy = Cy + Cy B + C
y 

as + C  2 a 20	 D-5
o	 B	 a6	 a B

C  = C  + C  B + C 	 a B + Cn 2 a2 B	 D-6
o	 B	 as

	
a B

The corresponding second stage model is given by the following equations

CA = CA + CA a + CA 2 a 2	 D-7
o	 a	 a

C  = C  + C  a + C  2 a 2	 D-8
o	 a	 a

m - C
m 

+ m a+ 	 Cm 
2 

a 2	 D-9
o	 a	 a

Cf = Cf +Cf B + Cf a6 + Cf 2 a 2 6	 D-10
^ B	 a6	 a B

Cy = Cy + Cy B + Cy a6 + C  2 a 2 0	 D- 1
o	 B	 as	 a B

C  = Cn + Cn B + Cn et a  + Cn 2 a 2 B	 D-12
o	 B	 a6	 a B

Fbr the first stage, data from an angle-of-attack range of -6 to +6 degrees

was used in the rearess":on analysis. Data from a range of -8 to +4 degrees

was used for the sec-id stage. The results, TCXX..., from the regression

analysis is presented below for each of the coef̂ ficients, CXX... , above.

0 a
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