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PROCESSING/MICROSTRUCTURE/PROPlRTY 
RELATIONSHIPS IN 2024 ALUMlNUM 

ALLOY PLATES 

ABSTRACT 

Nondestructive evaluation (NDE) using eddy-current conductivity 
and hardness measurements form an essential part of the quality co~tro1 
of aluminum alloy plates used for aerospace vehicles. The relationships 
between the NDE measurements and the important mechanical properties 
are affected by a large number of variables including: chemical compo­
sition, cast structure, ingot scalping, solution heal treatment a~d 
quenching, mechanical working, and aging treatment. At the request of 
the National Aeronautics and Space Administration, a number of these 
relationships has been explored for 2024 aluminum alloy. This work is 
a continuation of our previous efforts on 2219 aluminum alloy and is 
motivated by a concern that a number of improperly treated plates with 
IIsoft spots II may have been incorporated into aerospace structures. A 
major result or our research has been a delineation of which alloy 
tempers and plate thicknesses are most likely to contain IIsoft spotsll 
due to specific p'ocessing errors. 

The investi~dtion included the following: 

• Studies on as-received material. This included a 15.24 cm \S in.) 
thic~ plate of 2024-T851, an 0.635 cm (~/4 in.) thick plate of 
2024-F, and a direct chill cast ingot for 2024, all obtained from 
industry. 

Investigation of the phases and inclusions present in cast 2024 
aluminum alloy with the aim of determining the degree of micro­
and macro-segregation and identifying the inclusions present in 
the as-cast ingots. 

• Determination of a set of C-curves which can predict the mechanical 
and NDE properties for any type of quench following the solution 
heat treatment. Two tempers, T851 and T351, were investigated. 

• Transmission electron microscope studies of the stable and meta­
stable phases present and an attempt to re1at~ the observed micro­
structural changes to the measured changes in mechanical properties 
and NDE measurements. 

• A study of the ultrasonic wave propagation as a fur~tion of thermo­
mechanical treatment of the alloy with the objet~ive of establishing 
~ correlation between ultrasonic data and mechanical properties 
and of providing an additional NDE method to improve the characteri­
zation of the material. 

• A nondestructive evaluation of the age hardening sequence by means 
of dynamic eddy-current conductivity measurements. 
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• Use of a heal flow model lo calculate almost all conceivable heat 
flow conditions anlicipated during the qllench of 2024 aluminum 
alloy plate from the solution heat treatment temperature of 495°C. 
The calculated time-temperature data were then coupled to the 
C-curves and the variations in properties acrOS3 different thickness 
plates for' the "worst case" heat flow conditions were predicted. 

Predictable macrosegregation was obtained in laboratory ingots 
of 2024 aluwinum alloy. It was found that macros~gregation of copper 
and other alloying additions in direct chill cast ingots 0f 2024 
aluminum alloy cannot be completely eliminated by t~ill face scalping 
and subsequent thermomechanical treatment. Although good scalping 
practice should maintain compositions within specified limits with no 
deteriorat;on in mechanical properties, the macrosegregation remaining 
in the finished plate product will contribute to the scatter observed 
in NDE measurements. Further, because of the large copper content 
variation near the chill face, surface hardness and eddy-current 
conductivity measurements are necessarily very sensitive to scalping 
depth in their ability to evaluate the condition of finished alloy 
plat.es. 

A large number of samples were taken from a 0.635 cm thick 
plate of 2024 aluminum alloy in the F temper and processed to the 
T851, T351 or T4 temper. During processing to these tempers, the 
quench following solution heat treatment was varied, giving a series 
of samples with a wide range of microstructures and hence mechanical 
properties. Two types of lipre-aging" treatment, labeled sequence A 
and sequence B. wet~e used. The hardness, eddy-current cond Ictivity, 
yield strength, ultimate tensile strength, elongation, and area 
reduction of these samples were measured. The accumulated data were 
usad to establish a set of approxiruate C-curves from which the alloy 
properties can be established for any time-temperature cycle of the 
quench following heat tr~atment. The C-curvej can also be used to 
generate correlation3 between mechanical and NDE properties. It was 
found t.hat ed~y-current conductivity alone cannot be used as a reliable 
predictor of the mechanical properties of 2024-T351 or 2024-T851. It 
must be combined with other information such as hardness dnd yield 
strength measurements on the same lot (same in! t or plate) of material. 

The C-curves were combined with time-temperature data from a 
computerized heat flow model to predict the variations in properties 
across plates of different thicknesses for both sequence A and 
sequence B type IIpre-agingll heat treatments. It was found that the 
T851 temper is quite "quench sensitiv€'" in the sense that the 
ultimate tensile strength falls below specification for the "worst 
~ase" quench conditions for rather thin plates (~ 1 cm thick). 

TEM studies were carried out on a large number of specimens 
in an 120 kV in~trument equipped to 0perate in th~ scanning 
transmission (STEM) mode as well as in the cunventional t~ansmission 
mode. The instrument was equipped with an x-ray energy dispersive 
spectrometer. A major objective was to identify those microstructural 
changes that were responsible for the mechdnical and physical propel'ties 
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delineated in the C-curve representations. Although the microstructure 
as a function of "pre-aging" t)'eatment is complex, it appears that 
"pre-aging" induced precipitates can contribute to the strength and are 
subject to overaging during further heat treatment. This provides a 
mechan~sl' for the loss of streng~h which can account for the fp~t that 
the str •. igth of the T851 temper is actually reduced below that of the 
1351 temper given the same "pre-aging" heat treatment (rather than 
being raised as occurs for properly qu~nched material). 

The oLjective of the ultrasonic studies was to determine the extent 
to which a correlatfon exists between the mech~nical and ultrasonic 
properties. For this purpose, the absolute, rather than the relative, 
values of the sound velocity and ultrasonic attenuation ar~ req~ired. 
The absolute values of sound velocity and ultrasonic attenuation were 
determined to within ± 1 ms 1 and ± 0.02 dB, respectively. A parabolic 
relationship was found between hardness and sound-wave velocity, whereas 
ultrasonic attenuation decreases with increasing hardness. 

iv 
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I. INTRODUCTION 

This is a comprehensive technical report of our investigations In 

the past two years r~ :J24 ~luminum alloy. The overall aim of this 

work was to develop specific relationships bptween process variables 

during casting, working and heat treatment of the alloy and the resulting 

microstructures, mechanical properties and v~rious nondestructive 

evaluations (NOE), eddy-current (electrical) conductivity. hardness. 

and ultrasonic measurements. 

This work is a follow-'Jp to a similar study on 2219 aluminum alloy 

(1). Both investigation~ were carried out at the request of th~ National 

Aeronautics and Space Administration. The initial motivation was 

government and industry concerns that substrength aluminum alloys may 

have been used in aircr~ft and space vehicle structures l . The concerns 

originated from the discovery of "soft" spots2 in an anodized 2124-T851 

aluminum alloy mac~1ined part in July 1979. The "soft" spots were 

apparently due to improper processing of the plate (1). Furthermore, 

it was established that the same plant had produced a variety of other 

aluminum plates including 2024 and 2219 aluminum alloys. Serious 

concerns were also expressed about the variability of test techniques 

used for quality assurance or fi~ding the suspect plates l . 

In our earlier work (I), we determined the effect of improper 

quenching on the Mechanical properties and NOE (eddY-Current conductivity. 

and hardness) measurements of 2219 alu~inum alloy. The kinetics of 

precipitation for two types of coo'ing s~quences from the solution heat 

2 

Aviation Week and Space Technology, August 1980, p. 14, and 
August 13, 1980, p. 17. 
"Soft" spots denote areas of a plate with mechanical properties 
below federal specifications. 
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tl'pc1lml:'l1! lempt",ltLJr't' w(>re Investigat@d. EmphasIs was placed on the 

relIabIlIty of I:'ddy-uH"ent (ondur.tivity and hardness as NlJE tOflls to 

o@tect variatlon!) in microstructure, h@ncc in mec:hani-:-al properties, 

Introduced tJy the vdrlous ,I :ng sequ.n_es. An important result from 

this work was that under I,orst cau" quench conditions plates of 

2219 aluminum alloy WIth th;c)(r.ess@s less than about 5 CIII (2 In.) will 

not sutfer yield str@ngth d@gradatlol below levels in federal specifica­

tion QQ-A-2~0!30 Qualitatively speaking, th& results showed that 2219 

aiuminuffl dl loy I' milch le!)s sensitive to Improper heat treatment than 

art> cth", ctluminu". alloyS This is largely the result of the high 

copper content in this alloy that gi\''!s a "C curve" with a "nose" at a 

rt>ldtively hiqh t~mp€rature. 

Vt>ry evident from the results of this work (1) was the need to 

alwayt doubie check eddy-current conductivity Measurements by periodic 

hardness measurements or better, by direct Mechanical property _easure­

lllents when possible. F~rthert~~e, a need also exists for better NOE 

techniques which can scan alUllinUII plates rapidly and obset'Ve the 

entire plate thickness rather than a thin surface layer. Because of 

this, in the ~urk described in the present report, the feasibility ot 

using ultrasonic techniques were also inv~stigated as a corollary 

method to availabie NOE tools for Quality assurance. 

The specific dims of the investigations carri~d out on 2024 alUMinum 

alloy included the following: 

• To establish p~ocessing conditions and mechanisms responsible for 

the occurrence of "soft" spots; 



• To ··.tablt!>h cor'relations between p"oce~~ variables durlr~ solidi­

fication and thermomechanical treatm!nt and the composition and 

microstructures of the plates; 

• To identify the constituent phlses in the alloy and to determlnti 

the kinetics of precipitation and relate the microstructures to 

mechanical properties and HOE measurements; 

• To develop correlations between heat flow during quench from 

solution heat treatment temperature and time-temperature precipita­

tiop model~ in order to determine the ranges of possible 

degradation in mechanical properties due to improper heat treatment. 

In this report we descri~e the details of our work on the 2024 

aluminum ai loy under the following subheadings: 

• Studies on as-receiv~d plates of 2024 alumin~ alloy; 

• Solidification-segregation studies, .icroseg~egation and 

.. locrosegregation in 'aboratory and cOlllHrcially cast ingots.; 

• C-curves and nondestructive evaluation, tiMe-teMper~ture 

precipitation di~graMs and the relationships between ~chanical 

properties and HOE measureMents; 

• Transmissio~ electron MicroscorY studies, and the relationship 

between microstructure and properties; 

• Ultrasonic characterization; 

• Eddy-current conductivity characterization, the study of aging 

proces~ by Means of dynaMic eddy curr~nt Measure.ents, and 

• Heat flow--property ptedictions, property degradations due to 

improper 'l'Jench from the solution heat treatllent tellperature. 
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II 'jIUDIlC, uN A~-RfCllV[O PLAItS Of 2024 ALUMINUM ALLOY 

Two plater, of 2024 aluminum alloy were used in this invest~IJ I' .':-;-.. 

They were: 

1. A 15.24 em (6 in.) thick plate of 2024 in the T851 temper 

obtained from the Reynold~ Metals Corp. Average composition 

of this platea was determined to be 3.95 wt.% Cu, 1.47 wt.% Mg, 

0.57 wt.% Mn, 0.20 wt.% Fe, 0.05 wt.% Si, a~d 0.025 wt.% In. 

2. A 0.635 em (1/4 In.) thick plate of 2024 in the F temper also 

obtained from the Reynolds Metals Corp. The c~emical composition 

of this plate3 was determined to be 4.3 wt % Cu, 144 wt.% Mg, 

0.57 wt.1 Mn, 0.28 wt.1 Fe, 0.11 wt.1 51 and 0.1 wt.% In. 

In addition, segregation in a direct chill (DC) cast ingot of 

2024, obtain~d from the Reynolds Metals McCook plant, was studied The 

av~fag~ composition of this ingot was determined to be 4.54 wt.% Cu, 

1.5 wt.1 Mg, 0.52 wt.1 Mn, 0.32 wt.1 Fe, 0.11 wt.1 5i and 0.1 wt.1 In. 

Note lhat there is some variation in the compition of the three 

pieces of 2024 alum num alloy used in this study. In particular, the 

two 2024 plates ap~ear to meet the composition specification for 2124 

(with respect to the Fe and Si contents), whereas for the DC cast ingot 

the Fe content exceeds the 2124 specificaticn by a small amount. The 

The composition of 2024 uluminum alloy according to ASTM Spec. B209 
is 3.8 to 4.9 wt.1 Cu, 1.2 to 1.8 wt.1 Mg, 0.3 to 0.9 wt.% Mn, 
0.50 wt.1 fe max, 0.50 ~t.% Si max, 0.25 wt.1 Zn max, 0.10 wt.% Cr 
max, 0.15 wt.% Ti max (0.20 wt.1 Ti + Zr max), each other 0.)5 max 
(total other 0.15 wt.% max). The composition 0f 2124 aluminum alloy 
according to ASTM Spec. B209 is 3.8 to 4.9 wt.1 Cu, 1.2 . l.~ wt.1 Mg, 
0.3 to 0.9 wt.% Mn, 0.30 wt.1 Fe max, 0.20 wt.1 5i max, u.25 wt'l Zn 
max, 0.10 wt.1 Cr ma~, U. 15 wt.1 Ti max (0.20 wt.1 Ti + Zr max), each 
other 0.05 wt'l max (total other 0.15 wt.1 max). The Cu, Fe, Mg, Jnd 
Mn contents of t~~ 0.635 cm plate and the Cu r.ontents of the 15.24 cm 
plate and the DC ingot were determined by atomic absorption spectrometry. 

4 
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effect of thes~ compositional differences is not determined herein and 

would requlr~ a more extensive study. Because of '.ron's ability to tie 

UP large amounts of Cu anJ Mn u~uer certain conditions, resu1ts could 

be expected to be affected by the iron content. 

It was expected that across the thickness variations in properties 

due to macrosegregation in the original DC cast inyot or due to a 

cooling rate gradient, because cf no~mal thermal resistance' f the 

plate during quench from the SO;'lt'!n~ temperature, would be most pro-

nounced in very thick plates. Therefore, the 15.24 cm th'~k plate in 

the T851 temper was carefully examined for chemical, microstructural 

al.d property variation across its thickness. 

The data obtained for the composition, hardness, and electrical 

conductivity of the 15.24 cm thick plate are shown in Figure 1. These 

data esse~tially establish the variations in properties due to the 

nOlmal variation in cooling rati experienced during quench from the 

solution heat treatment temperature, and the macrosegregation remaining 

in the plate from the original DC cast ingo~. The first plot in 

Figur~ 1 shows that there is arproximately 0.2 wt.% variation in copper 

content across t~e plate. This was determined by molecular absorption 

spectrometry (wet chemistry). The abrupt changes in copper content at 

the edges of the plate are due to the depleted region (negatively 

segregated region) next to the chill face in the original DC cast 

ingot4. The scalping apparently removed the positive chill face segrega­

tion leaving some of the depleted region intact which ended up in the 

plate. The negative segregation at the plate centerline is due to the 

4 Macrosegregation across the DC cast ingot of 2024 aluminum alloy pro­
duced at the Reynolds McCook pla~t is shown in a subsequent section. 

'. 
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5ame ty~P of seqn:'4dt iar) floted in the DC ca5t ingot4. Rockwell B hard-

nes5 measurements were made according to ASTM E-l8 on a Wilson bench 

model ~ockwel 1 hardness tester5. Eddy-current conductivity measurem2nts 

were made using a Verimet M4900B (onductivity meter. This conductivity 

meter was checked before edch use with three standards ~ith nominal 

conductivities of 30, 40, and 50 percent lACS (International Annealed 

Copper Standard). These ~landards had in turn been calibrated at a 

temperature of 23.0 ± 0.2 °c using the NBS conductivity bridge with the 

sta~dards. During use, the standards and the sample t~ be measured were 

placed on a large aluminum block at room temperature (20 to 25°C) and 

allowed to equilibrate to the same temperature within better than ± 0.5 °c. 

All conductivity measurements herein refer to the value at 23°C. Repeat-

ability at any location on a given specimen was ± O. 1 percent lACS. 

Although no detailed statistical analysis was made, spot checks indicate 

that they were accurate to f 0.5 percent lACS. 

5 All references to commercial equipment in this report are for 
identificatioll purposes only and in no way constitute any 
endorsement or evaluation of the relative merits of such 
equipment. 
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III. SOLIDIFICATION-SEGREGATION STUDIES 

A series of calculations and experiments have been perfor~ed to 

determine the phases present in cast 2024 aluminum alloy with the 

ultimate a'm of determinino the degree of micro- and macro~egregation 

and identifying the inclusions present in the as-cast ingots. Such 

segregation could have effects on the heat treatment response of this 

alloy and its properties, including nondestructive measurements made 

for quality control. 

l. Microsegregation in Cast 2024 AJuminum A~ 

(a) Calculation of Microseg~~gation for Al-Cu-Mg-Mn-Fe-S; Alloy 

System 

~alculatlon of expected microsegregation for the n-component alloy 

was performed using the assumption of local equilibrium at the interiace, 

complete diffusion il1 tne liquid phase, no diffusion in the solid phase 

and no fluid flow in the interdendritic "mushy" r'egion. During solidi-

fication of primary a-aluminum. the situation is governed by (n-l) 

differential equations (2) 

dfL 
= 1 fl 

I. n-l [ 1] ---- = ... 
deli l-k~ CLi 1 

where fL is the weight fraction liquid. Cli is the liquid concentration 

of the i-th alloying element. and k~ is the 'j-th equilibrium partition 

coefficient for the solidification of the a-aluminum phase. In general, 

k~ is a function of Cll' Cl2 ' ... Cl(n-l)' but because the tie lines of 

the phase diagram are not known we have assumed th~t k~ are constant 

and are determined from the bi~ary diagrams of aluminum with each 

alloying addition. 

7 



Sulutioll to eqlldtiull [IJ in this case is: 

c . 
01 

- (1- f ) IY 1 s k. 
1 

where C . is the original compos:tion of the i··th component and fs is 
01 

the weight fraction solid (l;f l ). We calculate the solidification 

[2] 

"path" (C li vs fs) to determine at what fract.ion solid the interdendritic 

liquid becomes saturated with respect to a second solid phase, i.e., 

when the solidifi.;>tion "path" encounters a multivariant eutectic (or 

peritectic). After this point, the solidification is governed by a 

different set of differential equations. 

Segregation studies in 2024 aluminum ~lloy requires the examination 

of the :11-Cu-Mg-Mn-Fe-Si senary system. Other alloying additions are 

present in small quantities or act as grain refiners and have been 

neglected. Values of the k~ used are given in Table I. A~ an example, 
1 

Table II shows the calculated solidification "path" (concentration of 

the interdendritic liquid as a function of f ) for an alloy Al-4.0 wt.% s 

Cu-l.4 wt.% Mg-0.65 wt.% Mn-0.2 wt.% Fe-O. 1 wt.% Si. The maximum levels 

in 2024 for Fe and Si are 0.5 wt.%. The relatively low values for Si 

and Fe used her~ are close to the ingots and plates characterized in 

this study, and are more typical of a 2124 alloy. 

DeterminatIon of the solidification "path" in the six component 

phase ciagram is extremely difficult ar.d can only be done approximately. 

In general, many possibilities exist, depending on the initial alloy com-

position, for the formation of second phases in the interdendritic region. 

If we examine the solidification "path" (Table II) in various ternary 

system combinations of these different components the possibilities become 

8 



apparent. Figures 2 and 3 show the solidification IIpathsll plotted in 

the Al-Cu-Mg, and Al-Cu-Fe ternary systems. 

In the Al-Cu-Mg system, the solidification "path" intersects the 

monovariant eutectic through L ~ a-Al+CuMgAl z at fs = 0.91 at about 

513°C. Hence, in this ternary system CuMgAl z is the second phase to 

form and the third phase to form would be CUA1 Z by way of the ternary 

eutectic L ~ a-A~CuA1Z+ CuMgA1 Z at 508°C. 

In t.he Al-Cu-Fe ternary system, the solidification "path ll would 

intersect t~e monovariant eutectic through L ~ a-Al+(Fe,Cu)(Al,Cu)6 at 

fs =- 0.83 at about 600°C. Hence, in this case (Fe,Cu)(Al,Cu)6 is the 

second phase to form. The third phase to form would be CUZFeA1 7 by way 

of the ternary peritectic L + (Fe,Cu)(Al,Cu)6 ~ a-Al + CUZFeA1 7 at 

590°C. During dendritic solidification it is unlikely that this 

ternary peritectic occurs to any extent an1 hence, (Fe,ClI)(Al,C'J)e 

would probably remain in the microstructure. The interdendritic liquid 

composition would continue on the monovariant eutectic through 

l ~ a-Al+Cu2FeA1 7 until complete solid':fication at the ternary eutectic 

point L ~ a-Al+Cu2FeA1 7+CuA1 Z at 548 cc. It ~hould be noted that a 

slight reductf')n in the initial Fe conte1lt or small increases in the 

equilibrium partition coefficient used for Fe will cause the solidifi­

cation IIpath" to first inter-sect the monovariant eutectic L ~ a-Al+CuleA17 

and hence the phase (Fe,Cu)(~l,Cu)6 will not form. 

EXbmination of the Al-Fe-Si ternary system indicates that the 

solidification IIpath" would intersect the binary eutectic through L ~ 

a-Al+FeA1 3. Between 629 and 611°C, solidification would continue as 

l ~ a-Al+~e3S1ZAl12' This phase is often designated a-Al(Fe)Si or 

a-Al(Fe,Mn)Si when Mn is present. 

9 



From these ternaries, we note the eutectics illVolving FeA1 3, 

a-Al(re)Si and (Fe,Cu)(Al ,Cu)6 occur at te~perature~ above 6aO °c, 

This fact makes one of these phases a likely candidate for the second 

phase to solidify in the six component alloy, Such an analysis is 

consistent with the microstructural ob:ervations of Sperry (3) on cast 

2024 aluminum alloy, 

An examination of the quaternary phase diagram data of Phragmen (4) 

was performed to attempt to make the above predictions more specific, 

Figure 4 shows a projection of the quaternary tetrahedron Al-Cu-Mg-Fe 

into tIle Al-rich corner (2), The coordinates of this diagram are b]sed 

on the relative percentages of Mg, Fe, and Cu, In this figure a' .. uminum 

is always present and hence regions represent the solidification of two 

solid phases and lines represent the solidification of three solid 

phases (ternary eutectic, single arrow and ternary per;+.ectic, double 

~rrow), Examination of the compositions reached in the interdendritic 

liquid shows that (Fe,Cu)(Al,Cu)6 is the second phase to form followed 

by Cu2FeA1 7, During the subsequent freezing of a-aluminum and Cu2FeA1 7, 

the liquid composition moves toward the line representing the ternary 

eutectic I • a-Al Cu2FeAl 7+CuMgAl 2' Solidification will be completed 

at the quaternary eutectic point D L • a-Al+Cu2FeA1 7 + CuMgA1 2+CuA1 2, 

In the Al-Cu-Mg-Si system shown in Figure 5, after the solidifica­

tion of a-Al, freezing continues with the binary eutectic L • a-Al+CuMgA1 2, 

Subsequently, the liquid composition encounters the ternary eutectic 

L • a-Al+CuMgA1 2+CIJA1 2, Solidification is completed at the quarternary 

eutectic point C, L • a-Al+CuMgA1 2+ CuA1 2+M92Si, 

In the Al-Cu-Fe-Si system, the solidification "path", Figure 6, is 

far removed from the phase Fe3Si 2Al 12 also designated a-Al(Fe)Si, 
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However, as will b~ se~n in the next section, this phase is commonly 

found in both cast and solution heat treated 2024 al!lminum alloy. 

(b) Second Phase Particles Formed During Solidification of 2024 

Aluminum Alloy 

Two ingots of 2024 aluminum alloy were examined by optical, SEM 

and TEM microscopy to determine the phases present in the as-ca~t 

condition. The first ingot was laboratory cast from alloy taken from 

the lS.24 cm plate. It was solidified in a graphite crucible wit~ a 

.. orling rate of approximately O.IS K/s. Yhe second ingot was a section 

of the DC (direct chill) cast 2024 aluminum alloy obtained from the 

Reynold'. McCook plant. 

The determination of the phases present in as-cast 2024 alumin~m 

alloy and related multi-component aluminum based alloy systems has been 

the subject of numerous studies. The most relevant work to this study 

is that of Sperry (3) and more recently of Munitz et al. tS) which deal 

specifically with phases present in as-cast 2024 aluminum alloy. 

Sperry (3) in particular has identified phases in their order of appear­

ance during solidification by means of optical and x-ray methods. The 

reported composition of Sperry's alloy was 4.90 wt.% Cu, 1.40 wt.% Mg, 

0.70 wt.% Mn, 0.30 wt.% Fe, and 0.15 wt.% Si which compares closely 

with the compositions studied here. Sperry (3) investigated cooling 

rates in the range 0.06 to 0.92 K/s. A list of the phases he observed 

together with their crystal structures is given in Table III. An 

important observation made by Sperry concerned the fact that the major 

Fe bearing phase at the slower cooling rates was Cu2FeA1 7 while at the 

higher cooling rates cubic a-Al(Fe,Mn)Si w~s the predominant Fe bearing 

phase. The phases present in the slow cooled laboratory and DC cast 
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irl~lut'> ~/er'e determined by optical and scanning electron micro5coPY 

using the known etching response and morphologies of the phases. TEM 

(transmission elec~ron microscopy) was used to sonilrm the identification 

of phases by means of electron diffraction and EDS (x-ray energy disper-

sive spectrometry) and to study submicrometer sized structures. 

l . .lboratory Cast Ingot. As previously noted, the t\/'!rage cooling 

rate during solidification of this ingot was ~ 0.15 K/s. The measured 

segregate spacings, i.e. I secondary dendrite arm spacings, were in the 

rang~ between 70 and 90 ~m. Optical and SEM examinations indicated the 

presence of small second phase particles within the primary a-Al dendrites 

concentrated ar~und the border. A TEM micrograph6 of these particles 

is shown in Figure 7. They are readily identified as the S' phase? by 

means of electron diffraction. These precipitates develop through a 

solid state reaction during cooling. The higher concentration of 

precipitates at the dendrite borders is a consequence of microsegregation. 

The interdendritic regions in this ingot consisted typically of a 

fine coupled eutectic structure along with other coarser phases. 

Examples are shown in Figures 8 and 9. Three phases are present in the 

coupled eutectic and are identified as a-Al, e-CuA1 2 and S-CuMgA1 2 in 

Figure a. A tentative ide~tiftcation was first made by EDS and then 

confirmed by electron diffraction. In addHion to this ternary eutectic, 

a blade shaped phase was also fr~quently observed, Figure 9. The shape 

immediately suggests that it is Cu2FeA1 7 and, indeed, this was found to 

be correct by means of electron diffraction and EDS. The three secondary 

6 

7 

Details describing TE~ specimen preparation are given in Section V. 

The S' phase has approximately the Fame composition and structure 
as S-CuMgA1 2 . A more detailed discussion of this phase is presented 
in the description of "pre-aging" microstructures in Section V. 
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phases, e-CuA1 2 , S-C~MgA12 and Cu2FeA1 7 together with the primary a-AI 

phase were the major constituents in this relatively slow cooled ingot. 

Observation of these ~hases is in accord wit.h Sperryls (3) results. In 

particular, the presence of Cu2FeA1 7 is consistent with Sperryls finding 

that this phase is promoted by a slow cooling rate. Other phases 

listed in Table III may have been present but with a much 10wer frequency. 

An exhaustive search for them was not made. 

DC Cast Ingot Samples for detailed microstrJctural characteriza-

tion were taken from the one-quarter position across the short transverse 

direction. The measured secondary dendrite arm spacings in this location 

were in the range between 30 and 50 ~m. This indicates a substantially 

higher average coo'ing rate during solidification than that measured in 

the laboratory cast ingot. Pri~ary a-AI dendrites in the UC cast ingot 

contained SI precipitates as was found i~ the 1aboratory ingot. In 

contras t to the 1 aboratory ingot, tne preci pi ti:ltes were present at a 

higher density and were distributed more uniformly throughout the 

dend"ites rath~r than being locat~d primarily at the borders. An 

example of the SI precipitates in an a-AI dendrite is shown in Figure 10. 

The interdendritic structures in the DC ingot shown in Figure 11 

were predominantly of two types: d fine multi-phase eutectic structure 

and a single pha~e constituent sometimes with a polyhedral shape that 

often ent ire ly fi 11 ed the i nterdendri tic gap. An exa,np 1 e of the eutectic 

structure is shown in Figure 12. Four phases were present. They were 

identified as a-AI, e-CuA1 2 , S-CuMgA1 2 and Mg2Si. According to the 

analysis of the solidi(: 'tion "path" in this report and also in Spc"ry 

(3), this comprises the quarternary eutectic which is expe~ted to be 

the last structure to solidify. In many instances, the Mg2Si phase was 
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not found, possibly because it was present at a lower concentration 

than t.he other phases. The eutectic would then be identified as the 

ternary structure which was found in the more slowly cooled iaboratory 

ingot. Occasionally, a blad~ of the Cu2FeA1 7 phase was also noted in 

he structure, Figure ll(b). 

An e~ample of the polyhedrally shaped single phase interdendritic 

structure is shown in Figure 13(a). Apparently thl~ phase forms a 

divorceo eutectic with a-Al. Electrun diffraction patterns from the 

phase could be indexed in a ~ay that was consistent with a bcc unit 

cell having a lattice paramet~r of ao 1.25 nm. On this basis and with 

composition information obtained by ED~, Figure l3(b), th~ ~hase was 

identified as cubic a-Al(Fe,M)S1 where M in this c~se d~signates Cu and 

Mn. With the exception of a somewhat lower Si concentration in the 

present samples, the compositio'l agrees closely with results obtained 

by Munitz et al. (5). The presence of a-Al(Fe,M)Si and not Cu2FeA1 7 
agrees with Sperry's (3) find;ng that the former phase is favored by 

higher cooling rates. None of the other phases li~ted in Table III 

appeare( to be present to a significant extent at this location in the 

DC cast ingot. 

2. Macrosegregation in Cast 2024 Aluminum Alloy 

A series of ~~periments and me~surements were performed to determine 

the degree of macrosegregati~~ in semi-continuous DC cast and laboratory 

cast ingots of 2024 aluminum alloy. The former gives an indication of 

the ma~imum composition variations expected in the final plate product 

while the 1atter will be used in the preparation of control specimens 

to establish the effect of composition on properties including the NDE 

measurements. 
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(a) DC Cast Ingot 

A sketch of the section of DC cast 2024 alumimum alloy ingot 

uS9d in this study is shown in Figure 14. It extends from chill face 

to chill face of the ca'ting in the short trdnsve:se direction and from 

chill face to centerline in t.le long transverse direction. Meetsurement 

of macrosegregation was performed initially in a direction perpendicular 

to the chill face in the short transverse directioh (position 81) shown 

in Figure 14. Chemical analysis was performed by the Center for 

Analytical Chemistry at NBS by spectrophotometric measurement at 435 nm 

of a coppe" complex. The chemistry data should be cCJnsidered accuratf 

to .t O. 04 wt. t. 

As seen in Figure 15, vel'y high positive copper segregation 

is noted at the chill face (~ 12 wt.' Cu) followed Dy a region of 

rapidly varying composition that exl~nds almost 3 cm into the in~ot. 

Two minimums in composition (~ 4.25 wt.' Cu) occur at ~ O.l cm and 2 cm 

from the chill ~ace. A relatively uniform composition region (~ 4.6 wt.' 

Cu) e~tends from ~ 3 cm to 15 ~m from the chill face followed by a 

region of negative segregation at the ingot centerline where ~he compo­

sition drops to ~ 4.1 wt.' Cu. The~e variations are caused by interden­

dritic fluid flow during solidification (6). The inset in Figure 15 

shows the drastic reduction in the volume fraction of eutectic which 

octurs about 0.2 cm from the chill face. This reduction is the origin 

of the rapid drop in copper content near the chill face. Figures 16 

and 17 show optical and SEM views respectively, of the relative change 

in the volume fraction of the eutectic present at various distances 

from the chill face. These photos can be qualitatively correlated to 

the measured copper contents at these positions shown in figure 15. 
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Ihe occurrence of the two minimums in copper content n~ar the 

chill face was considered to be rather unusual. In the previous study 

of macro~egregation in DC cast 2219 aluminum alloy (1) only a single 

minimum in copper content was observ~d ne4r the chill face. Although 

for the 2024 ingot these cumposition excursions faileJ to take ~he 

ingot outside of the specification for copper, the second minimum at 

2 cm is substantially further from the chill facp. than is the comparable 

minimum for copper (0.8 cm) observed in the previous studies of 2219 

aluminum alloy. To establish whether this behavior was an exception to 

normal in this ingot, furttler macrosegregation profiles were performed 

at different positions in the ingot sG~tion shown in Figure 14. Data 

near the chill face for sections Al and A2 along with Bl are shown in 

Figure 18. Note that the magnitude of the minima have changed but 

their existence is quite evident. rigure 19 shows data in the long 

transverse direction labeled LT in Figure 14. Here it ~ight be argued 

that t.he first minimum is not significant, however, the second minimlJl!' 

is ~re5ent and exists at the 2 cm position. 

One can only speculate about the origins of this unusual 

macrosegregation profile. Depressions in average co~per content are 

caused by sudren air gap formations and sub~cquent reheating of the 

ingot surf~ce during solidification. For example, it may be postulated 

that after the initial air gap formation, adequate cooling was 

re-established and interrupted for a second time. It is expected, 

huwever, that in most ingots a single "dip" in copper content near the 

chill face will be observed. 

(b) Laboratory Cast Ingot 

t= 011 owi ng the work of Mehrab i an and FI eMi ngs on ",,,crosegregat ion 

in multicomponent systems (6), a special geo_t.ry unidirectional ingot 
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was cast with the 2024 aluminUlft alloy to Jemonstrate the Mcholnislll!. 

responsible for the positive and the n-gative macrosegreglti~n noted in 

the DC cast ingot and to obtain control12d composition siMples differing 

from the nominal. These saMples were used for therltOlr:ecll .. nicll treltMnh 

and nondestructive evaluation. 

The geometry of the casting is shown in the inset of Figure 

20 and employs a redu( tion in area of approximately 10 to 1 to cause 

macrosegregation. The bottom section of the casting is 9.2 cm squa,e 

and 9.0 cm high while the top section of the casting is 2.7 cm sq~~re 

and 21 cm high. An investment mold of plaster was pr€heated to 500°C 

and placed directly on a water cooled chill block. The .old has an 

open bottom so that molten metal comes into direct conta:t with the 

chill. This, coupled willi the preheated mold, guaranteed directional 

solidification of the ingot. The mold was filled with molten 2024 

aluminum alloy (obtained from the full cross section of the DC Ingot) 

at about 720°C after being degassed with chlorine. Th( casting was 

analyzed for avel'age ctJmpos1tion variation (macrosegregation) in the 

direction perpendicular to the chill. The variation in copper ~nd 

magnesium content d~termined by atomic absorption spectr~metry as a 

function of distance from the bottor. chill in the as-cast ingot is 

shown in Figure 20. As expected from previous studies of ftlacrosegrega­

tion noted above, high positive sJgregation (5.35 wt.% Cu) is observed 

at the chill face while negative segregation (~ 3. 1 wt.1 Cu) occurs in 

the region of the cross ~ection change, To a lesser extent, magnesium 

also shows a high level at the chHl facp., drops to a minimum near the 

cross section change and rises again i~ the rest of the ingot. This 

similarity of shapes of the cOMPosition profiles is an indication that 
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th~ equj I Ibrium partition coefficients for Cu and Mg (0.17, and 0.30 

respectively) ~re less than one. Because the partitlon coefficient for 

Mg is larger, Macrosegregation of Mg is less than Cu. The relative 

I eve 15 of Cu and Mg are iMportant beca~lSv they are the major coftiponents 

in the hardening phase, CuMgA1 2, in he ... t ;reat,qj 2024 allJminum alloy. 

Chi II face and cross-nection-c;'~:-tl': ~I;iii·.·,; .. tion both result 

frOM the flow of segregated interdendrit1c liqui~ to feed solidification 

shrinkage. It should be noted that the laboratory ingot exhibits a 

lower positive chi~l face segregation and no adjacent negative segrega­

tion compared to ,ne DC ~attlngot. The occurrence of these phenomena 

near the chill face of the DC cast ingot can be red~ily ascriberl to the 

formation of an extensive air gap which results in the abrupt reheating 

of the lngot surface during solidffict~ion and the exudation of the 

solute rich interdendritic liquid from the adjacent region. On the 

other hand, th~ negative segregation at the DC ingot center line and at 

the section reduction of t~- laboratory ingot are due to the extensive 

flow of interdendritic liquid from the hotter to the cooler re~ions of 

the ingots at these locations. 

A second laboratory ingot of 2024 aluminum alloy with a 10 to 

reduction in cross section was also cast in a manner identical with 

the first ingot with eight thermocouples inserted through the mold at 

different distances from the bottom chill face. Figure 21 shows the 

temperature-lime curves for the eight thermocouples and the ~istance 

from the chi 11 face to each. The liquidus and solidus +.C!mo"'!,'atures ~or 

this alloy are approximately 638 (t 5) and 502 (t 5) °C r0spectively and 

hence, from these curves the local soliditication time as a function of 

posHion has been t'etermined. Additiona11y, secondary dendrite arm 
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spacings were obtained from metallographic sect~ons at various distances 

from the chill face. These spacings are correlated with the local 

solidification time in Figure 22. 

3. Thermomechanical Treatment and Evaluation of Laboratory Ingot 

The effect of varia~ions in alloy composition due to macrosegregati~n 

on the heat treatment response of 2024 aluminuli' i;illoy and its properties 

including nondestructive measurements used for quality assurance has 

been evaluated using samples taken from the reduced-cross-section 

laboratory ingot. 

Samples, ~ 2.7 cm square and ~ 2 cm thick in the sclidification 

direction, Were c:!t fron: U'P. ing.:>t at different distances from the 

bottom chill face to o~tal~ s~ecimens with differing compositions. The 

samples, of ccurse, contained composition gradients through their 

thickness, but were relatively uniform in perpendicular directions dy~ 

to the unidirectional solidification. As a reference point, eddy-current 

measurements were cond~cted on as-cast samples. Measurements were made 

with the coil on the surfaces which ~dre perpendicular to the solidifi­

cation direction. The conductivity along with the previously determined 

copper content is shown in Figure ?3. These data indicate that wide 

variations in the conductivity can exist depending on composit.ion and 

structure unrelated to subsequen~ thermomechanical treatment. 

The samples were then thermomechanically treated to the T851 

condition as follows: 

(a) homogenization heat treated for 48 hours at 495°C, 

(b) hot rolled at 495 °C to 1/6 of their initial t~ickness (0.32 

cm, ~ 1/8"), 

(c.) solution heat treat~d at 495°C for 75 minutes, 

(d) stretched 2.5% and aged at 190 °C for 12 hours. 
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Hardne5S measurements were carried out on both surfaces of these 

0.3 em thick samples. In figure 24 hardness is plotted as a function 

of the original distance of these surfaces from the bottom chill face 

along with the copper content. 

The hardness levels obtained in the bottom section of the casting 

are relatively insensitive to changes in Cu and Mg content between 4.4 

to 5.3 wt.% Cu and 1.3 to 1.5 wt.% Mg. The nardness level of 77 HRB is 

typical of correctly processed commercially cast 2024 aluminum alloy in 

the T85l condition. Near the cross section change of the ingot, the 

hardness drops to below 64 HRB, a value normally considered below 

specification. The composition at this point in the casting was 3.1 

wt.% Cu, and 1.1 wt.% Mg, values which are below the minimum specifica-

tion for these alloying additions (3.8 wt.% Cu and 1.2 wt.% Mg). After 

top cross section change, the hardness rises to ~ 78 HRB as the composi-

tions rise to normal levels. The low hardnesses obtained at the very 

top of the ingot are due to excess porosity which occurred therr due to 

shrinkage. Although the limited number of samples obt~ined preclude 

precise conclusions, the ranges of compositions seen in the as-received 

plate ;3.85 to 4.00 wt.% Cu) should not be the major cause of the 

hardness variation across that plate. 
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IV C-CURVES AND tlONOESTRUCTIVE EVALUATION 

A large number of sample5 takerl from the 0.635 cm (1/4 in.) thick 

plate of 2024 aluminum alloy in the F temper condition were processed 

to the T851 and T351 tempers. During the processing to these tempers, 

the quench following solution heat treatment was varied. This gave a 

series of samples with a wide range of microstructures and hence 

mechanical properties. The hardness, eddy-current conductivity, yield 

strength, ultimate tensile strength, elongation, a'lj area reduction of 

these samples were measured. The data accumulated were used t~ establish 

a set of approAimate C-curves from which the alloy properties can be 

estimated for any time-temperature cycle of the quench following solution 

heat treatment. The data are also presented in a number of correlation 

plots to fhow the relationship between the mechanical properties and 

the nondestructive evaluation (NDE) parameters. The measured changes 

in physical and mechanical properties are related to microstructural 

observations in the next section. 

Some comparisons are also made with data from other sources and 

with our previous study of 2219-T87* all'minum alloy (1). In particular, 

it appears that 2024 aluminum alloy is a more "complex" system than the 

2219 aluminum alloy. This complexity has a number of consequences. In 

particular, it is seen that the simple C-curve ~hapes used in the 

analysis, which worked well for the case of 2219-T87* aluminum alloy, 

give much more approximate results for VIe case of 2024-T851 and 

2024-T351 aluminum alloys. Further, relati~nships betwe~n mechanical 

pro~~rties and NDE measurements (i.e. hardness and eddy-current conduc­

tivity) have considerably m~~e scatter, making the task of testing the 

2024 aluminum alloys more difficult. This is especially true for the 
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case of the naturally aged T351 material, and should be taken into 

account in the specifications for this ~aterial. 

1. Thermomechani ca 1 Treatment 

Specimens 0.635 cm thick and measuring 2.5 cm by 18 cm were cut 

from the plate, supplied by the Reynolds Aluminum Company, such that 

the long dimension was a.igned in the rolling direction. The plate was 

received in an F temper condition. As previously noted, the chemical 

composition of the plate represfnts approximately the middle of the 

specified range for Cu, Mg and Mn contents for both 2024 and 2124 

aluminum alloys (3.8 to 4.9 wt.% Cu, 1.2 to 1.8 wt.% Mg, and 0.3 to 0.9 

wt.% Mn). The amount of Si and Fe are also within specification of 

both alloys (0.5 max. wt.% Fe and 0.5 max. wt.% Si for 2024 aluminum 

alloy; 0.3 max. wt.% Fe and 0.2 max. wt.% Si for 2124 aluminum alloy) 

with the Fe content being, however, only slightly below the maximum 

specified for the 2124 aluminum alloy. Since the presence of iron is 

expected to have a deleterious effect on the yield and ultimate tensile 

strengths of these alloys, the results obtained here might be considered 

applicable in the sense of a lower bound for 2124 aluminum alloys with 

mid-range Cu, Mg, and Mn contents and with similar other elemental 

contents. The effect of compositional variations on the C-curves was 

not investigated and the degree to which such variations would alter 

the C-curve p~rameters and contribute to interlaboratory disagreement 

on the effect of heat treatment on alloy properties is not fully known 

at present. 

The 0.635 by 2.5 by 18 cm specim€ns were subjec~ed to a systematic 

thermomechanical processing schedule involving a 75 minute solution 

heat treatment at 495°C followed by a specially designed "pre-aging" 

heat treatment using a salt bath. The term "pre-aging" heat treatment 
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is being used in this report. in place of "interrupted quellch" or "slack 

quench" '>ecause the defi na ion of the: latter two terms does not appear 

to be fully established. We use "pre!-aging sequence A" or simply "sequence 

A" to refer to a monotonic quench from solution heat treatment and 

"pre-aging sequence B" or ~imply "sequence B" to refer to a quench wHh 

reheating to an intermediate temperature. 

During the "pre-aging" treatment, thermal data were continuously 

acquired and manipulated by an automated high speed data acquisition 

system for later use in C-curve determination. Following the solution 

heat treatment at 495 °C fOI 75 minutes and "pre-aging", the specimens 

were stretched from 2.25% to 2.5% p~rmanent strain and either artifica11y 

ageo at 190 °C for 12 hours (T851) or aged at room temperature (T351). 

A schematic of this thermomechanica1 treatment is given in Figure 25. 

The alloys thus produced consist of four sets: 2024-T351 sequence A; 

2024-T351 se~uence B; 2024-T851 sequence A; and 2024-T85'1 sequence B. 

2. Mechanical and Electrical Measurements 

Following final aging, the hardness and eddy-current conductivity 

were measured for each sample. Approximately one-half the samples were 

machined into tensile specimens of the shape shown in Figure 26. The 

Yleld strength (0.2% offset), ultimate tensile strength, elongation, 

and reduction in area, as well as hardness and eddy-current conductivity, 

were determined for each of these machined specimens. 

Hardness measurements were made on the Rockwell B scale according 

to ASTM E-18 on a Wilson bench model Rockw~11 hardness tester. Each 

time hardness was meas~red, two measurements were taken on the sample 

surface at a random location, excluding 5 cm from the sample ends where 

the s~mp1e was gripped during the stretching operation and, for the 
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tensile te5t specimens, excluding the gage. The yield strength (0.2% 

offset) and ultimate tensile strength were determined on a calibrated 

Satec System Inc. Bald~in Model 60 CG Universal Testing System. Eddy-

current conductivity measurements wer~ made using the instrument and 

procedure described in the previous section. 

Hardness and conductivity measurements were made both before and 

after machining the samples into tensile test specimens. Approximately 

0.5 mm was m;',led from each sample surfilce during t~e machining opera'tion. 

Comparison of these mea~urements gives an indication of any possible 

eft'ect of a machining operati'>n on these measurements, as well as an 

indication of the measurement scatter that might be expected due to the 

combined influences of measurement precision and "normal" sample varia-

tions. The variations obtained for hardness and conductivity were 

± 0.57% lACS (two sigma level) and ± 3.7 HRB (two sigma level), respec-

tively. This comparison is illustrated in Figures 27 and 28. 

The time-temperature quench history and the measured properties 

for the thermomechanically processed samples are summ~rized in Table IV 

for both tempers and both "pre-aging" sequences. These data are used 

below to calculate C-curves and compare the mechanical properties with 

the hardness anJ electrical conductivity. 

3. Calculation of C-curves 

The cfata on haldncss, eddy-current conductivity, yield strength, 

ultimate tensile strength and time-temperature history have been used 

to determine a set of C-curves for both sequence A and sequence B 

alloys and for tempers T851 and T351. 

The C-curves are a family of C-shaped curves used to characterize 

the effects of quench rate on the final properties of the finished 

material. Their use for aluminum alloys was pioneered by W L. Fink 
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and L. A. Wi lley (7). These curves represent the effect of IIpl'e-agi ngll 

time at a given temperature (int~rmediate between the solution heat 

treatment temperature and the quench water temperature) on the final 

properties of the material. In using these curves to determine the 

effect of an ay'bitrary time-temperature history duri ng the quench from 

solution heat treatment temperature, a "rule of additivity" developed 

by Cahn (8) is used. Basically, this rule states that the degradation 

in. for example. yield strength that occurs in a given temperature 

interval is independent of that which occurred during previous tempera­

ture intervals passed through during the quench. The total degradation 

is taken as the simple sum of the degradations occurring in each tempera­

ture interval during the quench. This rule is also used in determination 

of the C-curve but is much less important there because the "pre-aging" 

is made as nearly isothermal as possible. 

The extent to which the "rule of additivity" is applicable to 

aluminum alloys has not bp.en established. However, previous experience 

by Staley (9) indicates that it can be applied with good approximation 

at least to some aluminum alloys. One might expect the rule to apply 

approximately when the degradation in properties is small and when the 

temperature decreases monotonically. The differences we find in the 

present study between the sequence A and sequence B heat treatments 

gives some indication as to how closely this rule is followed. As in 

the previous study (1), we use the results from these two sequences in 

section VIII to calculate limits on what pr'operties mig~t be obtained 

under "best" and "worst" quenching conditions 1n 2024-T35l and 2024-T85l 

aluminum alloy plates. 
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following Evancho and Staley (10) and Cahn (8,11), we assume that 

the resulting value of a property, u, can be represented as 

G = (u - a ) ~xp(-Kl t ) + a m 0 x x 0 
[3] 

where am is the maximum achievable ~ t'operty, ao is the mi nimum or 

"intrinsic" value of the property aChieved under given conditions, and 

tx is given by 

dt [4] 

with ts being the time at which the quench from solution heat treatment 

temperatu:e is started, to the time to achieve a temperature less than 

about 120°C, let) the temperature as a function of time, and Cx(T) the 

C-curve. The C-curvr is represented by the equation 

where K2, K3, K4, and KS are constdnts to be determined, T is the 

absolute temperature, and Klx ' is a constant given the value 

[5] 

[6] 

This value of Klx is chos~n so that for IX > 1, a < ax' Thus IX becomes 

a critical parameter for achieving some given value, ax' of the property 

in question. The curve Cx(T) has the dimensions of time and, when 

plotted as a function of temperature (normally with the temperature as 

the vertical axis and Cx{T) as the horizontal axis), represents the 
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isothermal :',~lding time (or critical time) at any tempenture ne~ded to 

degrade the property to the value of ox' with am > a~ > ~o' 

To determine thE parameters am' Co' ~2' K3• K". and KS th~ following 

procedure was used: 

(i) The temperature from 110°C to 496.5 °C (1.5 °c above the solution 

h~at treatment temperature) was divided into 32 temperature 

intervals. 

(ii) The time. ti' spent in each of the temperdture intervals during 

the "pre-aging" treatment was stJred in a datalogger. 

( iii) These time data were used to numerically calculate the integral 

of Equation [4] according to 

[7] 

where Ti is the average temperature in the interval. and 

(iv) Using an iterative. non-'inear fitting routine. values of the 

parameters which minimize the least squares deviation between 

measured and calculated values were obtained. 

The computt r program used in the least squares fitting has been 

listed and described in a previous report (1). For lach iteration in 

the fitting procedure, an "estimated standard deviat.ion ll
• defined by 

~
---~. 

l(o. - a .) 
d = 1 C1_ e. s .. 

N - 6 
[8] 

where a i is the measured value of the prope,·ty in question for the ith 

sample. 0ci is the calculated value of that property. and N is the total 

number of samples. is determin~d. The program allows one or more param-

eters to be fixed while the remainder vary to establish a constrained 
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minimum value of the estimated standard deviation. This is useful 

because the values of KS' K4, and K3 can often be varied over a consider­

able range without significant changes in the estimated standard devia­

tion. A "significant c:hange" in the 6.s.d. was considered to be a 

change greater than 10 percent of the "normal scatter" as \Jetermined 

previously for the hardness and conduct1vity. It wa~ fauna that the 

value of KS was indeterminate over a range of about 20,000 to 40,000 

cal/mol in the sense that, for any value of K5 in this range, the other 

parameters could be adjusted to give an essentially equivalent value of 

the estimated standard deviation. A value of 32,000 cal/mol was selected 

for this parameter on the grounds that it 1S close tG the known activa­

tion energy for thp diffusion of copper iro aluminum. Having chosen K5, 

va 1 ues of K4 and K3 were sel ect.ed for each temper and "pre-agi ng" 

sequence in a similar manner. Giv~n these values of K5, K4, and K3, 

the remaining parameters were varied for each property to arrive at a 

final set of parameters with the constraint that the am of p.ach property 

must be identical for the A and B sequences of each temper. The final 

set of parameters is listed in T~~le V. For the T351 alloys, samples 

"pre-aged" below 250°C were not included in the tit. "Pre-aging" 

below 250 °C is in some ways equivalent t.o an artifkial aging and, for 

T351, increased the values of yield strength and hardness above those 

obtained for a direct quench. 

The C-curves obtained from these parameters are displayed in 

Figures 29-44. With each C-curve is a plot of the measured property 

versus the value of that property calculated from the C-cur'Je parameters 

using the rule of additivity and the data of Table IV. In these plots, 

the data have been divided into six groups: (1) those alloys given a 

direct quench (no "pre-aging"); (2) those alloys "pre-aged" at an average 
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te.~erature between 200 and 250°C; (J) between 250 and 300°C; (4) bet.een 

30u and 350°C; (5) between 350 and 400 °C; and (6) between ~OO and 450 ~C, 

Th~le groups are given the symbols, respectively, of asterisk, plus sipn, x, 

circle, square, and triangle, 

" Discussion and Comparison of C-curves 

The C-curves presented in Figures 29-44 represent the isother •• l 

holding time for a property to degrade to a given value. The most 

critical temperature, i.e, the temp@rature at which the most rapid 

degradation occurs, is represented by the mininlull or "nose" of the 

C-curves. Thp parameterization ot Equations 3-6 gives a curve of 

approximately the correct shap~ fo~ a single pre~1pitation process. 

However, as exp 1 a i ned in more deta i1 insect i on V. there are severa 1 

precipitation processes, with each process probably requiring a separate 

and different C-curve. 

The justification for using a single C-curve to describe what in 

reality is a much more compl iLated process lies in the fact that this 

empirical approach appears to give a fairly good approximation of t,'e 

effect of "pre-aging ll en the properties of the material after it has 

been fully processed. The estimated standard dev1ations for the hard­

nes~~s, see Table V, are only slightly greater than the single sample 

deviation of 1.85 HRB (one-sigma level) determined on the machined 

samples as discus~ed above. Much more ddta would be required to 

sensibly utilize a model wit~ two or more individual C-curves (and 

hence a larger numbpr of adjustable parameters). Inspection of the 

measured vs calculated plots of Figures 29-44 shows the predictive 

value of the single C-curve approach fails most noticeably in two 

areas. First, the large degradation that occurs for long "pre-aging" 

• 
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time~ around 350°C and .bove ere not suit.bly predict.d. In thIs 

c,s', the C-curves h.ve b •• n .dj~'t.d to slightly ov.rpr.dicl the 

d.gr.dation t'l.t do.!. occur. S.cond, fQr the T351 .Ilojl, "pr'-.ging" 

in the t'Mper.ture rang. of .b~ut 200 to 250 or .ctu.lly incr •• I.s the 

yi.ld ~tr.ngth, ulti .. te t.ns11. str.ngth .nd h.rdn ••• , r.th.r th.n 

d • .:reasing these prop.rti.s •• pr.dict.d tty the C-curv.t. Thh is b.c.us. 

"pre-aging" these alloys, which l.t.r r.c.iv. only. n.tural 'ging, in 

this temperature range acca.plishes so.e artlfic;.l .ging which .nh.ncer. 

the hardness of the final product.. Thul, in fitting the IIOde', C-curves 

for the T351 alloys, data on "pre-aging" in the tellp.r.ture range of 200 

to 275°C was ignored. For both c. s.s, pr~diction of tht .. chanical 

properties which result fro. ~ particular quench following soiution 

heat treatment made using the C-curves pr.sent.d here should tend to 

slightly underestimate thE~e properties. Further, the predicted values 

are expected to have their greatest validity at the upper end of the 

property value range, i.e. uetween aM and about (a. + ao)/2. 

Figure 45 gives a comparison of the yiel~ strength C-curves of 

2024-T851, 2024-T351 and 2219-T878 aluminUM alloys for both sequence A 

and sequence B "pre-aging" treatments. The curves are drawn to represent 

isothermal times required for a reduction to 901 of the maximulIl attainable 

yield strength. During t~e quench from solution heat treatment, degrada-

tion of properties occurs most rapidly at temperatures nellr the "nose" 

of the C-curve. During normal quenching, the time spent reaching a 

given temperature increases with decreasing temperatures. Hence, for 

two C-cur-ves identical except for the nose temperature, the one with 

the nose at higher temperature will be less "quench sensitive". 

8 This is a modified ~d7 treatment practiced at the Reynolds McCoo~ 
plant (1). 

30 



'lin th.t the 8 siquence nose is at • higher t.-plr.turl. Th. 8 slqulncl 

i" howevlr, ,lightly shiftld tow4rd, short~r ti .. ,. Thi, givls thl A 

.nd 8 .Iquincis of T351 nl.rly thl s ... yinld strlngth q~lnch 'Insitivi­

till (co.p.rl thl siction bllow on hl.t flow proplrty prldictions). 

Co.p.rtng thl 2024-T851 .1u.inu. .110y 'Iquinci A .nd 8 C-curve, it is 

'lin th&t, at .11 temperatures, thl8 slqulnCI C-clJrvl 1ils .t $hortlr 

t'-.$ than the A sequence curve Ind hinci the 8 seql~nce h.s g.l.tlr 

quench sensitivity. Complring thl 2024-T851 and 2024-T351 C-curv., it 

is seen th.t in 11!1Ost 111 CISIS T851 is !10ft quencl', 'Inlitivl. Fu,.t.hlr, 

c~lring 2219-T87* with 2'0~4 it c.n bl sten th.t, unllss large I~"nts 

of ti .. are spent .hove 400°C during thl quench, 2219-T87* 11UMinUM 

alloy is generally less "quench ~ensitive" th.~ lithlr 2024-T851 or 

2024-T351 alUMinUM alloy. 

5. Correlation Plots 

Plots showing the correlation of ulti.ate tensile strength and 

yield strength with the HOE properties of hardness ~nd eddy-current 

conductivity are displayed in Figures 46-57. The solid and dotted 

11 nes in each figure, denot i ng sequence A alld sequellCe 8, respect ive 1 y , 

were calculated from their appropriate C-curves. It is seen that the 

correlation predicted by the C-curves fit~ the data w~ll. Inspection 

of the scatter bands (which were drawn independently of the C-curves 

using only the rlata itself) shows the difficulty in using conductivity 

as an independent HOE tool. The scatter bands are very broad, especially 

for (.he T351 alloys. 

In Figures 53 and 55, which plot ultimate tensile strength a~d 

yield strength, respectively, vs hardness for 2024-T351 aluminum alloy, 

it can be seen that many yield strengths and hardnesses lie above the , 
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ter.inus ot the C-curve correlltion. These repr.l~nt sam~les which 

were "pre-aged" at t@lIperaturet Iround 250°C and below. The scatter 

in the yield strengt~ vs hlrdness for T351 (Figure 55) 15 very large. 

Much of this sCltter represents I rell riffferenc. b.tw •• n the sequ.nce 

A Ind sequence B s~.ci .. ns. wfth the i.qu.nc. B sp.ciMens g.neral1y 

lying higher in yield strength Ind havfng consid.rably Mer. scatter. 

This diff.rence can be relat.d to the diff.rence in precipitation 

.. chanism lor the naturally ag.d 2024-T4 alloy as discussed in section 

V. For eKaK Ie, the e phase found in s.quence A spectmens W~5 net 

found in sequence B ~petj .. ns of 2024-T4. 

6. Co!!!parison With Other Data 

~ large amount of data on the ultfmate tensile strength, yield 

strength, hardness, and eddy-current conductivity has been presented by 

Petlak and Gundarson (12). These data were taker. from specimens cut 

from a (5-1/2 in.) thick plate of 2124-T851. from a (2-3/4 in.) thick 

plate of 2124-T851. and from a (2 tn.) thick plate of 2024-T351 which 

had been found to have or were sU5~ected of having improperly quenched 

regions. Petrak and Gunderson (12) plotted the ultimatp. tensile and 

yield strength~ vs hardnesses and conductivities for both the 2124-T851 

and 2024-T351 data. For each plot, they have least squares fitted the 

data to provide a mean line and a lower 90' confider,ce line for each 

data s£~ In Figures 58-65 we have superimposed their lines (heavy 

so 11 d and dashed. representing the 1 east squares mean and t:le lower 90% 

confidence. respectively) on our own data. 

Inspection of Figures 58-61 shows generally good agreement between 

the data of this report and the data of Petrak and Gunderson (12) for 

strength vs hardness of 2024-T851. There is also some agreement, over 
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at least a portion of the conductivity range, in the strength vs conduc-

tivity of 2024-T851. For 2024-T351 (Figures 62-65) the agreement is 

l~ss satisfactory. In every case, the strength vs hardness plots of 

Petrak and Gunderson (12) lie lower than our ow~ data, with a truly 

large difference in the yield strength vs hardness data for 2024-T351 

(Figure 64). This large difference is difficult to rationalize. 

Considering the much closer agreement on the 1851 temper. it could not 

be simply a measuring Instrument calibration problem. It may be due to 

a diffel'enc~ in composition of the materials represented. For example. 

as previously mentioned, the Fe and Si content of the 2024 alloy we 

used met the specifications for 2124. However, no compositional analysis 

is given by Petrak and Gunderson (12). Further investigation of the 

reasons for these differences would undoubtedly be useful. 
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V. TRANSmSSION ELECTRON MICROSCOPY STUDIES AND THE 
RELATIONSHIP BETWEEN MICROSTRUCTURE AND PROPERTIES 

1. Introd~ction 

Changes in physical And mechanical properties of 2:24 aluminum 

alloy brought about by an improper quench or a :. pre-agi ng" treatment 

subsequent to solution heat treatment are related to the development of 

stable and metastable phases. These phases either do not form or do so 

to a negligible pxten t, during a "proper" quench from the solution heat 

treatment temperature. The main objective of the TEM (transmission 

electron microscopy) investigation was to reveal the nature of the 

"pre-aging" induced phases. The r~sults of that investigation will be 

presented in this section. As a natural corollary to the TEM inve~tiga-

tion, a~ attempt has been made to relate the observed microstructural 

changes to the measured chang£s in physical and mechanical properties. 

Part of this discussion, particularly as it relates to mechanical 

properties, will be included in the present section. Some additional 

consiuerations will be presented in the following sections de~cribing 

NDE eva1uatiol'ls. 

rEM studies ~ere carried out on a large number of specimens from 

the 0.635 cm (1/4 in.) thick plate. Some of these specimens were 

"pre-aged" and processed to T351 and ;851 conditions as described in 

Section IV. The majority of the specimens, however, were prepared 

specifically for the TEM in~estigation. These specimens were subjected 

to "pre-aging" treatments which in many cases wer~ identical to those 

given s~ecimens p~~r(red for physical and mechanical property measurements, 

but subsequent processing to T351 and T851 conditions was not carried 

out. In this way, microstructural changes associated with stretching 
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and final aging operation5 which might change or confu~e the observation 

of "pre-aging" induced phases was avoided. 

Strictly speaking, the microstructure was not necessarily identical 

to that immediately after "pre-aging". The 2024 aluminum alloy, especi­

ally whp.n quenched directly into ice water from the solution treatment 

temperature or when "pre-aging" does not result in a significant reduction 

in solute supersaturation, is subject to fairly rapid aging at room 

temperature. Therefore, examination was carried out after room tempp.ra­

ture aging to an essentially stable condition, i.e. after what may be 

referred to as a T4 temper treatment. The so-called natural aging 

response in this alloy is believed to be a direct result of the formation 

of G.P. zones, or G.P.B. zones as they are frequently referred to in 

Al-Mg-Cu alloys (13). In principle, valuable information with respect 

to the level of solute supersaturation and th~ effect of solute segrega­

tion could be obtained by studying G.P.B. zones, however, as will be 

pointed out later, zones exhibiting the expected characteristics were 

not imaged in the TEM. In any case, the pl'esence of G. P. B. zones has 

no effect on the observation in the TEM of the variou5 precipitates 

formed during thermal processing. Indirect evidence of G.P.B. zones 

and, more importantly, the concentration af available solute can be 

obtained from room temperature aging experiments. Such experiments were 

carried out on many of the specimens used for TEM examination. The 

results are presented in this section in connection with the discussion 

of the relationship between microstructure and properties. 

~fter a brief description of the experimental procedure, the major 

portion of this section will be concerned with the identification in 

the TEM of various precipitates and constituent phases found in the 
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IIpre-agedll specimens. A discussion of the influence of "pre-aging ll 

induced precipitation on mechanical and physical properties will be 

presented at the end of this section. 

2. Experimental Procedure 

Specimens for TEM examination were prepared by cutting with a low 

speed diamond saw a thin slice approximately 0.25 mm thick from bulk 

material. Disks 3 mm in diameter were then punched from the slice 

and electropolished with a dual jet polishing device to obtain electron 

transparent areas. The electropolishing solution consisted of 70% 

methyl alcohol and 30% concentrated nitric acid. Satisfactory results 

were obtained when the solution was maintained in the temperature range 

18 to 20°C and the applied cell voltage was approximately 20 V. The 

presence of relatively large constituent phase particles in all materials 

and porosity in the as-cast materials described earlier had an adverse 

effect on the quality of the foils obtained. Preferential attack at 

these features often led to foils that were thicker than was desirable 

so that several attempts were sometimes required before a satisfactory 

specimen was obtained. For the as-cast ingot, where the principal 

objective was the identification of constituent phases, preferential 

chemical attack and the possibility of a systematic loss of a particular 

phase species was most undesirable. Therefore, some specimens were 

thinned by argon ion milling. With this method, it is often possible 

to achieve the simultaneous thinning of specimen areas which differ 

widely in composition and crystal structure. Ion milling was also 

carried out on some specimens subsequent to electropolishing to remove 

or minimize the presence of an electrochemically induced corrosion film 

or otherwise chemically depleted or enriched layer (14) that might 
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interf~~e with the accuracy of energy dispersivJ x-ray analyses in the 

electron microscope. 

Most 01 ~he TEM studies were conducted at 120 kV in an instrument 

equipped to operate ;n the scanning transmission (STEM) mode as well as 

in the conventional transmission mode. The instrument was also equipped 

with an x-ray energy dispersive spectrometer (EOS). With this system 

it is, in principle, possible to determine the chemical composition of 

a column of material as small as 10 nm in diameter traversed by the 

electron beam. The analysis is limited to elements with atomic numbers 

~ 11 (Na). In general, an accurate analysis requires a knowledge of 

the foil thickness, lack of an interfering layer of material having a 

different composition and an appropriate calibration of the EOS system. 

In this investigation, the analyses were primarily qualitative or 

semi-quantitative in nature for the purpose of identifying the phases 

present. Identification of a particular phase generally involved the 

us~ of both electron diffraction and elemental composition determination 

by EOS. 

3. ~icrostructure of 0.635 cm Thick Plate Specimens 

A chart showing the "pre-aged" specimens that were studied by 

means of TEM is presented in Figure 66. The "pre-aging" times and 

temperatures indicated al'e nominal values in each case. Because of the 

finite heating and cooling rates, some of the "pre-aging" time interval 

was spent at temperatures other than those shown. Typical "pre-aging" 

temperature vs time curves are shown in Figure 26. A departure from 

the ideal lisotherma1" cycle would probably have the most significant 

effect on the microstructures observed in specimens given short "pre­

aging" treatments, particularly 20 s, where a considerable fract;on of 
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the time shown was spent at higher than indicated temperature~' in the 

case of sequence A specimens and at lower temperatures for the sequence 

B specimens. Even with the longer "pre-aging" treatments any time 

spent at a temperature which might be critical to a nucleation process 

has the potential of producing a microstructure that is different from 

that which would occur for a strictly isothermal treatment at the 

designated target temperature. The specimens in Figure 66 were selected 

to provide a survey of the microstructural changes that occurred over 

the range of "pre-aging" treatments covered in this investigation. A 

major objective was to identify those microstructural changes that were 

responsible for the mechanical and physical properties delineated in 

the C-curve representations. In addition to the specimens shown in 

Figure 66, several others were examined. These are listed in Table VI. 

They include a specimen quenched directly into ice water from the 

solution treatment temperature and aged at room temperature to provide 

a reference micro!:t.ructure against which "pre-aged" specimens could be 

compared. Directly quenched specimens processed to the T351 and T851 

tempers were also included to provide examples of "properly" quenched 

and processed microstructures with those tempers. The remaining two 

specimens included in Table VI were "pre-aged" and then processed to 

the T8S1 temper. 

The TEM specim~ns in each case were prepared from thin slices cu~ 

perpendicular to the 101lgitudinal plate direction. Thl' specimen plane 

was therefore perpendicular to the longitudinal directiuio. Since it 

was usually necessary tC' tilt the specimen in the electron ~'-'~roscope 

to obtain the desired crystallographic orientation with respect to the 

electron beam, the normal to the electron micrographs shown in this 
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report may deviate from the longitudinal direction by up to 30°. The 

region e~amined was always approximately 1.6 mm in from the plate 

surface. Variations iFt the number densities, both relative and absolute, 

of different precipitate types were also observed on the scale of a few 

tenths of micrometers in a given speciMen. This was taken as evidence 

for composition fluctuations on the same scale, indicating that homogeni-

zation of the intially segregated ingot structure had not been completely 

achieved. In the following two subsections, the nature of the constituent 

phases and of the "pre-aglng" induced precipitates in the plate specimens 

will be described. 

(a) Constituent Phases 

Constituent phases found in wrought 2024 aluminum alloy 

materials can generally be classified into two size ranges, large 

particles having a major dimension> 1 ~m in length and small particles 

whose major dimension is less than 1 ~m. The large particles are in 

general from the as-cast ingot structures. They may be broken up and 

redistributed during mechanical stages of processing and perhaps suffer 

a phase change or diffusion related compositional modification during 

thermal processing steps following casting. In contrast, the majority 

of the small constituent partitles are not present in the as-cast 

structure and probably develop during thermomechanical orocessing as a 

result of dissolution of interdendritic phases and subsequent precipita­

tion. The small particles, so formed, are stable at the solution 

treatment temperature and are usually referred to as ~ispersoids. They 

playa major role in reducing grain growth during processing but also 

have a critical effect on the nucleation of other phases during quenching 

and aging treatments as will be discussed later. 
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The permissjble concentrations of the various elements in 

2024 aluminum alloy cover a sufficiently wide range that a rather large 

variety of constituent phases are possible. Many of the i"t~rdendritic 

phases listed by Sperry (3) (see Table III) will be retained even if 

complete homogenization and equilibration are achieved at ~he solution 

treatment temperature, 495 or.. This is especially true with respect to 

phases containing Fe and 5i because of the low solubillties of these 

elements. Whether or not e-CuA1 2 or S-CuMgA1 2 are presert as constituent 

phases will depend on the available concentrations of Cu and ~~ at the 

solution treatment temperature. With reference to the pha~e diagram 

shown in Figure 67 it can be seen that if the concentration of Cu 

exceeds approximately 4.0 wt.% and Mg is < 1.5 wt.% the excess Cu will 

be taken up by the e phase. As the concentration of Mg is raise~ above 

1.5 wt.% an increasing amount of the excess Cu will appear in the 5 

phase. The level of available Cu is particularly sensitive to the 

concentrations of Fe and Mn, mainly because of the formation of Cu2FeA1 7 

and Mn 3Cu2A1 20 and to some extent because of the solubility of Cu in 

the phases a-Al(Fe,M)5i and MnA1 6 (3,5). 

During the course of examining a great many specimens listed 

in Figure 66 and Table VI, large constituent phase particles were 

frequently encountered. Most often, these were found to be the a-Al(Fe,M)5i 

phase. It may be recalled that this was also determined to be the 

predominant Fe bearing phase in the DC cast ingot. An example 01 one 

of these particles is shown in Figure 68(a) together with its d4ffraction 

pattern in Figure 68(b). ED5 analyses of several particles gave an 

average composition of about 70% Al, 12% Fe, 5% ~n, 5% Cu, and 4% 5i 

(atomic percent) similar to that obtained for this phase in the DC cast 

40 

. i 

: I 

n 



r : 
ingot. There was no evidence to indicate decomposition of the a-Al{Fe,M)Si 

phase. Sperry (3) reported that a-Al(Fe,M)Si and Cu2FeA1 7 might serve 

as a rough index to the degree of homogenization. Since there was no 

evidence of decomposition of a-Al(Fe,M)Si and the phase, Cu2FeA1 7, was not 

found, it is apparent that other factors must b@ important. While large 

constituent particles of the e phase were occasionally seen, particles 

of the S phase were not found in directly quenched specimens studied in 

the TEM. As will be describtd later, these phases were pre~ent after 

certain "pre-aging ll experiments. It should be emphasized, of course, 

that due to the relatively small volume studied in the TEM, low concen­

trations of widely dispersed particles might not have been detected. 

Dispersoid particles were observed in all the 0.635 cm thick 

plate spec';mens examined. They were typically equi-axed in shape with 

faceted sides, a1though rod shaped particles were frequently present. 

The equi-axed particles ranged in size from approximately 30 to 80 nm; 

however, much larger particles about 500 nm in diameter were often 

observed at grain boundaries. Particle spacing was of the order of 10 

nm. Typical distributions of dispersoid particles from a directly 

quenched specimen are shown in Figure 69. In Figure 69(a) at low 

magnification it can be seen thflt the particles are arranged in bands 

with particle free regions between bands. This effect 1s almost certainly 

associated with segregation in the original as-cast ingot. Particle 

free zones were also present at some grain boundaries. No reference 

was found in the literature giving a detailed identification of the 

dispersoid phase. The fact that Mn does contribute to the formation of 

dispersoid par-ticles has been mentioned by several investigators in 

connection with corrosion and mechanical prop~rties stUdies of 2024 
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aluminum alloy (15-21). That Mn can be ilmllicated in the! formation of 

dispersoid particles is demonstrated by the investigations of Robinson 

and Hunter (18) and Stolz and Pelloux (19). Both examined Al-'Cu-Mg 

alloys with no measurable Mn or at a concentration of Mn below t.he 

solubility limit and found that dispersoids were not pr·esent. Robin!:» .. " 

and Hunter mention the Cu2Mn3A1 20 phase but do not indicate that the 

dispersoid particles ar~ Ghat phase. Kaufman and low (20) referred to 

rod shaped precipitates C.l to 0.2 ~m in size at grain boundaries in 

2124 a 1 umi num alloy as Cu2Mn3A 120 but d1 d not i ndi cate how the i dent i t-i­

cation of that phase was made. Van Stone et a1. (21) indicate that 

oispersoid particles fn 2000 series alloys have been identified as 

Al12(FeMn)3Si. Petri (22) and others (23,24) have determined that the 

solid solubility of Mn in A1=Cu-Mn alloys is approximately 0.2 wt.% at 

500°C. At a composition of Al-4wt.% Cu-0.6wt.% Mn according to Petri's 

phase diagram, which is confirmed by Day and Phillips (23) and Hof~~nn 

(25), the two phases a-A1 and Cu2Mn3A1 20 (referred to as IIT I
• by Petri) 

are present. The work of Ph ragman (26) indicates that the additional 

presence of 1.5 wt.% Mg in 2024 aluminum alloy probably does not change 

this rAsult. It might also be noted that Robinson and Hunter (18) show 

qualitatively similar electron micrographs of dispersoid particles in 

Al-Cu-Mn and Al-Cu-Mg-Mn alloys. 

With respect to the material studied here, an average Mn 

concentration of 0.6 wt.% was determined by chemical analyses. However, 

some of the available Mn (0.4 wt.%) 1s lost through the formation of 

the insoluble a-Al(Fe,M)Si phase formed during solidific~tit. It is 

therefore reasonable to assume that a large fraction of the dispersoid 

particles in 2024 aluminum alloy are the CU2Hn~A120 phase. Analyses-~ 
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the Cu2Mn3A1 20 phas~ have determined that it may differ from the ideal 

composition, 80 at.~ Al, 8 a~.~ Cu, and 12 at.~ Mn. Petri obtained a 

variable composition ranging from 80. 1 at.~ Al, 7.8 at.~ Cu, and 12.1 

at.~ Mn to 78. 1 at.~ Al, 6.9 at.~ Cu, and 15.0 at.~ Mn. Day and Philips 

(23) found a single composition, 11 at.~ Cu and 15 at.~ Mn. 

EDS analyses were carried out on a number of dispersoid 

pa~ticles in the directly quenched specimen as well as i" ~everal 

"pre-aged" specimens. A composition of about 80 to 90 wt.~ Al and 5 to 

10 wt.% each of Cu and Mn was obtained in each case. The un~ertainty 

in this analysis ~as due to the different thicknesses of the particles 

examined an~ to the fact that some th'tkness of the a-Al matrix probably 

covered many of the particles. Electron diffraction stUdies of the 

particle~ were also carried out. Petri det6rmined that Cu2Mn3A1 20 has 

an orthorhombic unit cell. A detailed x-ray crystallographic study by 
o 0 

Robinson (27) gave unit cell dimensions of ao = 24.2A, bo = 12.SA and 
o 

Co = 7.72A, quite consistent with results obtained by Petri. Robinson 

also determined on the basis of systematically absent reflections that 

the space group was either Bbmm, Bbm2 or Bb2m. Several characteristics 

of the dispersoid particles and of the Cu2Mn3A1 20 crystal structure 

complicate its identification by means of electror. diffraction. They 

are the small particle size, t~i~ning within individual particles, a 

large unit cell size and the fact that most of the strongly reflecting 

planes have very nearly the same spacings (27). These factors may 

explain why previous investigators have not offered a spe~ific identifi­

cation of this phase. It was possible in this investigation, however, 

to obtain microdiffraction patterns from individual particles and to 

index these patterns consistent with the Cu2Mn3A1 20 structure. An 

example is shown ill Figure 70. 
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(b) T4, T351 and T851 Microstructures 

It is widely accepted that Ige har~en1ng at roa. te~erlture 

of supersaturated Al-Cu-Mg alloys having a Cu:Mg ratio of Ipproxi .. tely 

2.2: 1 occurs by the fOrMation of so called G.P.B. zone. (13) which 

presUtllably are clusters rich in Cu and Mg. Age hardening ." 

temperature of the more c0M9lic~ted 2024 alu.inu. alloy if "J to 

occur by the same ~~ans. Silcock (13) on the bl.i. of x-rlY Measurements 

has proposed that the G.P.B. zones are rod. parallel to the <100> 
o 

matrix direction with an esti.ated length of 40 A and dia .. ter of 10 to 
o 

20 A. Although TEM has proved to be very valuable for the direct observa-

tion of zo~es in a nUtllber of systems (Al-Cu is an especially good 

example (28», no rp.ference was found providing a detailed study of 

G.P.B. zones formed at room temperature in Al-Cu-Mg alloys. In fact, 

it was noted in several cases that G.P.B. zones could not be resolved 

(29-31). G.P. zones in general can be revealed in the TEM by diffraction 

contrast as a result of surrounding strain fields (coh.re~r~. strains) 

in the ma~rix, in dark field due to non-matrix diffraction 1..\;,.I!'ibutions, 

by strUt.ture factor contrast, or through lattice imaging (32). During 

the normal course of examining a number of specimens in this investiga-

tion, conclusive evidence of G.P.B. lones, consistent with the descript;on 

of Silcock (13), was not obtained despite a marked room temperature age 

hardening response. This was true both with respect to images obtained 

under a variety of diffraction conditions, and particularly in diffraction 

patterns. There was no obvious contritution in additin~ to the a-Al 

matrix pattern to suggest the presence of zones which one might expect 

on the basis of the x-ray diffraction results. It must be concluded 

that zon~s in Al-Cu-Mg alloys differ significantly from those in the 
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binary Al-Cu Syst~M. especially with respect to the develop .. nt of 

coherency strains. 

The Microstructure of £ directly quenched speci .. n in the T4 

condition shown in Figure 69 ha. already been discussed. An additional 

Mtcrugraph of this speci .. n is shown 1n Figure 71 with dislocat.ons in 

contrast. The dislocations were .ither retained after solution treatMent 

or were 1 nt roduced duri ng the quench. Hi grat 1 on ot' exran vacanc 1l1ts to 

dh locat ions and subsequent c11Mb of screw segMnts has led to the 

formation of helices (31). As will be seen later. these dislocations 

can ~-: a~ ,1te~ for tha heterogeneous nucleation of pr8cipitat~s. 

The T351 temper is similar to T4 with the exception of an 

int&rmediate plastic deformation step after quenching in which the 

mater1~1 is stretched to a strain of ~ 2.5'. The resulting Microstructure 

is shown in Figure 72. The relatively high dislocation density is a 

consequence of the stretch;ng operatif)n. otherwise. the microstructure 

does not appear to diffrr from the T4 condition. 

The effect of artifical ag1ng of 2024 al~minum alloys and 

similar Al-Cu-Mg alloys has been extensively studieci (34.35). Three 

different stages of precipitation are recognized. They are generally 

represented by the sc,lIme. 

supersaturated a-A} • G.P.B. zones. S' • S. 

It does not follow however that G.?B. zones necessarily preceed the 

formation of S' or that 5 is preceeded by 5'. 

Th& 5' phase is thought to be nearly identical tl! 5 in con,posi-
o 

tion (CuMgA1 2) and structure (orthorhombic with ao = 4.04 A. bo = 9.25 
o 0 

A. and Co = 7.l8A) (36). The two phases differ mainly in that 5' is 

45 



semi-coherent and S is incoherent. Both 5' and 5 have the same orienta-

tion relationship with the matrix: 

Individual 5' precipitates grow in the form of laths on {210}a planes 

with their long axi~ parallel to <001>0; thus there are 12 different 

orientation variants in the a-Al matrix. Adjacent 5' precipitates are 

often arranged to form corrigated sheets. 

The effect of aging time and temperature on the developmc~~~ 

of the various precipitate species has been studied by 5ilcock (13) in 

the ternary alloy Al-3. 15 wt.1 Cu-l.52 wt.1 Mg which closely corresponds 

to 2024 aluminum alloy. At temperatures between 1~0 and 260°C, G.P.B. 

zones were the first species to be observed. After approximately 10 

days at 130°C and in much shorter times at higher temperatures, 5' 

precipitates wen also detected. At 260°C only the 5' phase was 

found. 

The T851 temper is achiev~d by exposing T351 material to 

artifi~ia1 aging at 195°C for 12 hrs. The resulting precipitates are 

pr~dominantly 5'. Grain boundary precipitates form also and these are 

considered to be the 5 phase on account of their non-lath like shape. 

An example of the T851 microstructure is shown in Figure 73(a). The 

diffraction pattern from this area is shown in Figure 73(b) and the 

corresponding indexed pattern is shown schematically in ~igure 73(c). 

That the majority of the 5' precipitates probably nucleate heterogeneously 

at d;spersoid particles and dislccations will be demonstrated later. 

(c) "Pre~aged" Microstructures 

Our; ng quenchi ng from so lt~t i on treatment it has been found 

that a cooling rate of less than ~~~roximate1y 550 °Cls through a 
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critical t.elllperatlJl'I:: range extenaing ft'om about 400°C to 290 °C is 

detrimenta, to many of the properties of 2024 aluminum alloy (37). 

Corrosion is one of the most sensitive properties to quench rate, and 

degradation in corrosion behavior is the first effect to be noted when 

the rate if reduced below 550 ae/s. Mechanical propert;es are not 

affpcted until the quench rate )s red~ced below about ';0 °C/s--corresponding 

to a dwell time of 8 r i, t~e critical temperature range. Note that 

the nose of the yield strp.ngth C-curve, Figure 30(a), occurs at about 

8 s. Materials in the naturally ag~d condition are in general .nore 

susceptible to corrosion than those subjected to artific,a1 a~ing. The 

major microstructural consequence of a reduced quench rate is to permit 

the nucleation and growth of precipit3tes that not only do not ~mprove 

the mechanical properties but consume solute elements that othe~is~ 

would contribute to the desired age-hardening G.P.B. zones dnd precipi­

tates. Furthermore prec'ipitates formed during a slow quench may produce 

sites for enhanced corrosion activity. 

As already described two diff£rent "pre-aging" treatme"lts 

w~re employed to develop C-curves which can serve to predict the effect 

of an improper quench on properties. Because two separate processes 

are invo1v~d, one bei~g nucleation and the other growth, a single 

"pre-aging" sequence ;5 not adequate to exp~ore behavior ur.der conditions 

where an improper quench troatment may result in a n'.)n-monotonic cooling 

curve. Thus the sequence A "pre-agi n~" treatment com: i sts of rapi dly 

cooling from the solution temp£ra~ure to an intermediate "pre-aging" 

temperature where the specimen is held for a prescribed length of time 

before quenching into ice water. Nucleation and growth is then confined 

to temperatures above or at the "pre-aging" temperature. In the sequence 
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B, "pre-aging" treatment, the specimen is first quenched to ice water 

and then rapidly reheated to the "pre-aging" temperature. Here nuclea­

tion and growth occur mainly below or at the "pre-aging" temperature. 

In what follows, the results of TEM studies of sequence A "~re-aged" 

specimans will be described first followed by the presentation of 

sequence B results. 

Seguenc_e A Microstructures. Representative ex?~ples of sequence A 

mi crostruct",'es from specimens "pre-aged" at 400°C, 350 °C, and 300°C 

are shown in Figure 74 at a relatively low mag~ificati~n and in Figure 

75 at a higher mag~ification. In each case, ~tructures corresponding 

to "pre-agingll times of 20 sand 500 s are included. Specimens were 

examined after 100 s and the ~icrostructures were found to he intermediate 

between those at 20 sand 500 s. Consider first the series at 400 °C. 

After 20 s of "pre-agingll, Figures 74(a) and 75(a), the only detectable 

change from the directly quen~hed structure was the presence of slightly 

larger, and perhaps more frequent, grain boundary precipitates. 'Pre­

aging" for 100 sand 500 s led to a substantia1 change. Not only were 

the grain boundary precipitates very large but large precipitates were 

also present in the grain interiors. An electron diffraction analysis 

of tha grain boundary precipitates indicated that they were S-CuMgA1 2. 

An example of one of these precipitates with its electron diffractioll 

pattern is shown in Figure 76. This and other S phase grain boundary 

precipitates examined exhiLited the reported orientation relationship, 

with at least one adjacent grain at the boundary. 
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Precipitates present within graln interiors were of two types. 

One type had an irregular but more-or-less equi-axed sh •• pe. The other 

was disk shaped. An example of an irregular shaped precipitate is 

shown in Figure 77. From its diffraction pattern it was determined to 

be the S phase obeying the orientation relationship noted above. That 

is, these precipitates were essentially i~entica1 to the grain boundary 

precipitates. 

The disk shaped precipitates were determined by electron diffraction 

to be the a phase. Analysis of diffraction patterns indicated the 

orientation relationship, 

[oii] . a 

Furthermore, the face of the precipitate disks was (110)a and was 

parallel to (111). An example of a a precipitate with important a 

matrix and precipitate crystallographic directions indicated is shown 

in Figure 78(a). The corresponding diffraction pattern is presented 

in Figure 78(b). It is interesting that the orientation relationship 

rletermined here was not one of the several re1ation~~ips that have been 

reported for the e phase in A1-Cu alloys. The latter relationships 

have been summarized by Lorimer (36), All have a common feature in 

that [OOl]a is either parallel to [OOlJa (within ± 40 in one case) or 

parallel to [llOJa , The a phase observed in these "pre-aged" specimens 

was oriented with [OOlJa parallel to [211Ja , 

It might be hypothesized that the presence of both a and S phases 

after "pre-aging" at 400 o~ is a manifestation of the approach to 

equilibrium, The equi1ibr'~um conditions under which both a and S may 

coexist in a t~r~ary A1-Cu-Mg alloy comparable to 2024 aluminum alloy 
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are lndi 'atr::d in the phase diagram shown in Figure 67. On cooling, the 

path indicated in Figure 67 is followed and is approximately coincident 

with a 2.2:1 ratio ~f Cu to Mg. If Cu is available in excess of this 

ratio the e phase will form until the excess Cu is consumed and thereafter 

the alloy will behave as a pseudobinary of a + S. Observing both the e 

and S phases after "pre-aging" suggests there may in f&ct have been an 

overbalance of Cu. To test this hypothesis, a specimen was "pre-aged" 

at 400°C for 7200 min. to allow time for equilibrium to be reached. 

Examination of this specimen revealed only the S phase. It may be 

concluded, therefore, that the presence of the e phase at short "pre­

ag1ngll times ~Ias not the result of the suggested equilibrium reaction 

and that the e phase is metastable. 

The series of specimens IIpre-agedll at 350°C were similar in many 

respects to those exposed at 400 °C. For short IIpre-agingll times, e 

was the major precipitate phase with increasing amounts of the S phase 

appearing as the duration of IIpre-agingll was increased. Some S' precipi­

tates were also observed. The distinction between 5 and 5' is based on 

the shape of the precipitates. Thin rod or lath shaped precipitates 

parallel to <100> directions are considered to be 5' while the much a 

thicker precipitates without this characteristic shape are referred to 

as 5. A relatively high concentration of precipitates was already 

present after 20 s as is shown in Figure 74(c). Most of the precipitates 

in Figure 74(c) are e. 

The S phase precipitates here and in other examples can often be 

recognized by the region of light contrast that surrounds them. The 

light contrast is the result of a local reduction in thickness caused 

by preferential attack du~ing electro-chemical thinning in preparation 
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of the specimen. Figure 75(c) clearly demonstrates that the e precioi­

tates are heterogeneously L:Jcleated at dhpersoid particles. Here the 

precipitates have a distinct hexagonal shape with straight sides parallel 

to <112>a' An example is shown in Figure 79 where the (lll)a plsne and 

a e precipitatQ in that plane are approximately parallel to the viewing 

plane. The relationship between the S phase and the other precipit~tes 

was not obvious although it appeared that they developed in aSiociation 

with the dispersoid pI.-ticles and perhaps the e phase precipitates. 

As Cu is consumed by the e phase, the relative proportion of Mg increases 

and, according to the phase diagram, the tendency for the formation of 

the S phase should be enhanced. Nucleation of the 5' precipitates was 

at dislocations and possibly at dispersoid particles. After "pre-aging" 

for 500 5, e was no longer the predominant precipitate p~ase. The 

major; ty of the precipitates were found to be the 5 phase. "Pre-agi ng" 

at 350°C for 1000 min led almost entirely to the loss of the e phase 

with only 5 ~nd possibly 5' being present. Therefore, it must be 

concluded that the e phase is not an equilibrium phase at 350°C. 

"Pre-aging" at 300 °c also led to the formation of e phase precipi­

tates at dispersoid particles. The dispersoid particles were also 

identified as the sites for the formation of 5' precipitates. After 

"pre-aging" for 20 5, Figure 75(e), the precipitates have grown out 

only a short distance from the dispersoid particles. When the duration 

of "pre-aging" was extended to 500 s the precipitates were distributed 

uniformly throughout the matrix, Figure 75(f). Prolonged "pre-aging" 

for 1000 min as at 400 °c and 350°C again led to the disappearance of 

the e phase with or.ly Sand 5' remaining. As a further observation it 

was noted that 5' was increasingly present at dispersoid particles as 

the "pre-aging" temperatLre was reduced. 
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A .ingle .pecimen "pre-aged" at 250°C WII .tudied. The duration 

of "pre-ag1ng" WII 400.. ~oth e and 5' precip1tatll were ob,erved a~ 

d1tper.o1d particle., .1m11ar to .pec1men. "pre-aged" at 300°C. In 

addition, however, much ,maller 5' precipitate. were d1,tr1buted homogene­

ou,ly in the matrix, with precipitate free zone. in the vicinity of the 

larger 5' and e prer.ip1tate. at d1.per.oid particle •. The,e different 

type, of precipitate. are ,hown in Figure 80. The ob.ervat1on of 

homogeneou.ly d1ltributed precipitate. i. important here becau.e it is 

In indication that the "pre-aging" temperature, 250°C, 11 in the 

temperature range where G.P.B. zone. may form. The a •• umption is made 

that G.P.B. zone. mu.t pr.ce~d the development of homogeneou.ly di.tri­

buted 5' precipitlte.. aeton and Rolla.on (38) have determined the 

G.P.B. zont .olvu. for Al-Cu-Mg alloy. by maan. of a rever.ion method. 

At a compo.ition corre.pond1ng to the 2024 aluminum alloy, they obtained 

a dil.olution ~,emperature of about 260°C for G.P.B. zone. which tends 

to support the observation mad, here. 

The precipitation process .. rllulting from the .. quence A "pre-aging" 

treatments can be conveniently summarized by means of a nucleation or 

transformation diagram. 5uch a diagram has been drawn in Figure 81. 

Each curve represents the estimated time and temperature dependences 

for the onset of a particular transformation. The representation shown 

in Figure 81 should be regarded as largely schematic, since in no clse 

was an exact determination made to fix the position of a curve. The 

first phase observed at elevated temperatures was 5 at grain boundaries. 

In time, this was followed by e and then 5'. Both e and 5' nucleated 

heterogeneoufly at dispersoid particles, and in addition, 5' nucleated 

at dislocations. One might speculate th~t in the absence of dispersoid 
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particl.s and dislocation. n.ith.r of th ••• ph •••• would have form.d. 

At low t.mplr:tur •• , G.P.B. zon •• , po •• ibly pr.c •• d.d by .pinod.l 

d.compo.ition, occur fir.t and th.n tr.nlforM to homog.n.oully di.tribut.d 

5' pr.cipitat... For long.r "pu-aging" time. the e ph ... dis.pp •• r. 

to be r.placed by .qui11br1um 5. Th. pr.ci.e nature of that tran.forma­

tion is not und.r.tood. Prolong.d aging also r.sults in the disapp.arance 

of S' and an accompanying increase in the amount of S. Observations 

also indicate that the homogen.ous 5' precipitates disappear in the 

presence of larger heterogeneou~ly nucleated S' precipitates. Whether 

the latter trallsformation is simply a consequence of Ost~ald ripening 

or represents a more fundamental difference between homogeneous S' and 

heterogeneous S' is not known. 

The C-curves presented in Section IV can, of course, be related to 

the nucleation curves. If a singh time and temperature dependent 

transformation process is involved and the property (hardness, elect~ical 

conductivity, etc.) for which the C-curve is drawn is sufficiently 

sensitive to that transformation process, then the first C-curve, 

indicating an initial change in the property, should coincide with the 

nucleation curve. When several interdependent processes are involved, 

the determination of C-curves is essentially a curve fitting exercise. 

If the processes are well separated in time and t~mperature, a single 

family of C-curves will probably fit the data poorly. If the orocesses 

overlap and are interdependent as is apparently the case here, a better 

fit may be achieved. 

Sequence B Microstructures. The microstructures of specimens 

subjected to sequence B "pre-aging" treatments at 400°C, 350 °C, and 

300°C for 20 sand 500 s are shown in Figures 82 and 83. In each 
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caSl, S' was thl only precipitatl pha.1 that formld within the grains. 

Prlcipitate. of thl S phasl were ob.lrvld at grain boundaries under all 

conditions, much as was found in the sequence A specimens. The change 

in precipitate size and concentration can be followed in Figures 82 and 

83 as a function of "pre-aging ll time and temperature. In general, the 

rfze of the prlcipitat.s increases with increasing time at each tempera­

ture. After only 20 s of IIpre-aging" at 400°C, Figures 82(a} and 

82(a), precipitates are uniformly distributed throughout the matrix. 

Here and in all examples shown in Figures 82 and 83 the direction 

ncrmal to the micrograph is within a few degrees of [001]0' Therefore, 

eight orientation variants of the rod shaped S' precipitates are present 

having their long axis parallel to the plane of the micrograph and four 

variants are present with their long axis perpendicular to the plane of 

the microgr~ph. When viewed end-on, it was evident that many of the 

rods were nearly circular in cross-sectional shape. Other rods were 

elongated with an aspect ratio nf about 2:1 or less. At 400°C, the 

diameter of the rods determined in the end-on orientation is approximately 

10 to 30 nm after 20 sand 20 to 90 nm after 500 s of IIpre-aging". 

Thus, the growth rate of the average precipitate varies approximately 

as d « t~ where d is the precipitate diameter and t is the time. This 

~uggests that the process is diffusion controlled. Undoubtedly, !actcrs 

other than volume diffusion were involved in determ~ning the growth 

rate; for example, impingemlnt of precipitates has certainly occurred 

in many instances in Figures 82 and 83. Although the precipitate 

concentrations were not measured, it was apparent that fewer precipitates 

were present at 500 s than at 20 s, indicating that coarsening had 

~ccurred. As the precipitates become larger and fewer in number with 

54 

r 1 
I 



longer "pre-aging" times due to coarllning, the obvioul relationship 

between precipitates an~tlperloid particlel il 101t. For exa~le, 

the $' precipitates after "pre-aging" at 400°C for 500 I, Figure 

83(b). appear to be relatively indlplndent of dilplrloid partic111. 

"Pre-aging" at 350°C lid to a prlcipitute morphology which a"'plars 

similar to that at 400°C. $ pha .. precipitatel are formed at grtill 

boundaries and $' within grains. Typical microstructurel art shown in 

Figu,'es 82(c). 82(d). 83(c) and 83(d). Thl prlcipitates formtld at 

3SC rJC are small er than those at 4(10 °c for the same "pre-agi ng" times. 

After "pre-aging" .'or 20 sand 500 s. the end-on diameters of the $' 

precipitates are 3 to 10 nm and 20 to 75 nm, respectively. Comparing 

Figures 83(c) and 83(d) at 20 sand 500 s. respectively. the number 

density of precipitates doesn't appear to be significantly different. 

although the precipitates are considerably larger at 500 s. The increase 

in size is probably due to growth from solution rather than coarsening 

due to the dissolution of smaller precipit~tes as observed at 400°C. 

The heterogeneous nature of the precipitation process is very 

cl early demonstrated by the specimen "pre-aged" for 20 5 at 350 °e. 

The rod shaped $' prec·; pi tates all seem to radi ate out f ,·om each di sper­

soid particle along <200> directions. Precipitates clustered along 

short dislocation lines can also be seen. 

The trend in the precipitation process observed at 350 -IC and 

400°C was also found at 300 °C. After "pre-aging" fo!' 20 s the precipi~' 

tates at disptrsoid particles are very small. Figure 83(e). With 500 s 

of "pre-aging" the precipitates have grown substantially. Figure 83(f). 

In addition to precipitates at dispersoid particles, some very small 

homogeneously distributed 5' precipitates are present in the matrix. 
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The.e a. well a. prec1p1tat" at d1.per.o1d par':1cle. and d1.locat1on. 

are .hown in the dark field image in Figure eM. The ~re .. nce of homogene­

ously di.tributed precipitates at 300 ~C ~eems not to be con.i.tent with 

the reaction G.P.B. zones + S' sinea 300°C is probably abov~ the 

G.P.B. zone solvus. However, the reaction may have taken place during 

the temperature rise to 300°C from the ice water quench. To suppor~ 

this suggestion, it may be noted that homogeneously distributed S' 

precipitatll were not obatrved after the .. quence A "pre-aging" treatment 

at 300°C. 

One specimen was "pre-aged" at 250 °C for 400.. Thh t1mperature 

is below the G.P.B .• olvu. bourdary and homogeneously di.tributed S' 

precipitates were present in the matrix a. might be expected. Much 

larger S' precipitates were observed at dispersoid particles and disloca­

tions. The microstructure 'wlS similar to that observed in tile specimen 

"pre-aged" at 300°C for 20 5, Figures 83(e) and 84. 

Specimens were also examined after prolonged "pre-aging" treatments. 

At 400°C after 7200 min large S J:hase prec1pitates were pi'esent along 

grain boundaries. A few very large preCipitates ~f either the S or S' 

phase were observed within grains. Because of their rod-like shape 

with their long axis parallel to [lOOla' they ·,re assumed to be S'. 

The corresponding sequence A specimen exhib1ted a h1gher concentration 

of S precipitates without the rod-like bhape. Optical micrographs of 

these two specimens are shown for comparison in Figure 85. 

Nucleation cu,ves can be drawn for reactions occurring d~ring the 

sequence 8 t~eatment as was done for the sequence A treatment. The 

representation, shown in Figure 86, is mllch simpler than for the sequence 

A case since the e phase was not detected. In common with the sequence 
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A treatment. the first phase to be oburved Ifter "pre-aging" at elevated 

temperatures WIS the S phl.e It grlin boundarie.. A1MOIt liMultlneoully. 

however. the S' phase wal found It dilperloid particle. and dillocations. 

Continued "pr.-ag1ng" led to the transformation. 5' .. 5. How.v.r. the 

process Wa. relativ.ly slow ev.n at 400°C and wal appar.ntly a relult 

of the dislolution of 5' precipitatll within g,·oln. and the diffulion 

of solute to S precipitates at grain bQundaries. At lower temperatures. 

the formation of G.P.B. zones and homogeneously distributed 5' was 

similar to that after sequence A treatments. 

As might be expected on the basis of the different transformation 

processes. the sequence B C-curves differ from those for the sequence A 

"pre-aging" t.reatments. While the sequence A treatment resulted in the 

nucleation of e. 5 and 5' ~hases within grains. only the 5' phase was 

observed after a sequence B treatment. Differences in the nucleation. 

growth. coarsening and transformation kinetics of the various phases 

explain the diff@rences in the C-curves. 

Effect of "Pre-agi ng" on T8Sl Mi crost)'ucture. Two sequence A 

specimens "pre-aged" at 350°C were examined after being subjected to a 

T8S1 temper treatment. The "pre-aging" treatments were carried out for 

20 sand 109 s each; the microstructures are shown in Figures 87(a) and 

(b). respectively. Large precipitates at dispersoid particles are 

readily identified as being produ~ed during the "pre-aging" treatment 

by comparison with Figure 73 given a T8S1 treatment without "pre-aging" 

and Figure 7S(c) which was subject to "pre-aging" and not processed to 

the TSSl condition. The "pre-aging" induced precipitates were determined 

to be the e and 5 phases. The small needle shaped precipitates are, of 

course, the 5' phase which was formed during final aging at 190°C. 
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The low density of S' precipitates around "pre-agin~" induced precipitates 

11 indicative of the extent to which solute WI. 10lt during "pre-aging". 

4. Disculsion: Relationlhip aetween Microltructure an~ Propertiel 

Property changes allodated wi th "pre-agirlg" Ire a r.lult CJf the 

nucleation, growth, and coarsening of pr.cipitates during the "pre-aginq" 

treatment. TEM stUdies have demonstrlt.d that the precipitate •• ay 

differ significantly in type, size, concentration, distribution and 

coherence dependinQ on the nature of the "pre-aging" treat.ltent. The 

changes in properties are strongly time depend~nt indic!ting that 

transformation kinetics are of critical importance. "Pre-aging" induced 

precipitates may have both a direct effect on properties and ~n indirect 

effect. The indirect effect is a r.~ult of the consumption of solute 

elements (Cu and Mg) by the "pre-aging" inducftd precipitates, This 

reduces or in the worst case precludes the formation of G.p.a. zones 

and precipitates which normally develop during the final natural or 

artific';al aging treatl~ent. 

Although no attempt will be made to develop quantitative relation­

ships between properties and microstructural quantities such as precipi­

tate type, size and concentration, an effort will be made to provide a 

qualitative explanation of the effect that "pre-aging" has on properties. 

In addition to the TEM studies, the discus~ion will depend strongly on 

the results of the room temperature aging experiments presented below, 

on measurements of the age hardening oehavior of Al-Cu-Mg alloys from 

Hardy (35) and Beton and Rollason (38). and on phase diagram information, 

~lso from Hardy. A major part of the discussion is concerned with the 

T4 condition since most of the TEM specimens examined were in that 

condition. Also, in the T4 condition, the effects of "pre-aging" can 
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be related di rect 'jy to property chang .. without the need to Iccour,t for 

add1t10nal modification. brought about by deformation and elevated 

t~mperature aging which accamp,nie. p~ote •• 'ng to the T351 and T851 

condition •. ne effect of "pre-Iging ll on the.e temper' condition. will, 

however, be considered in the final part of thi •• ection. 

(!) !i£g,ndi t 1 oIl 

In gen.ral, the T4 condit'lon refers to materials that have 

been allowed to age at room temperature after the quench from solution 

treatment without intervening or subsequent treatments. In the present 

investigation, the T4 appellation is also applied to specimens given a 

"pre-aging" treatment prior to room temperature aging. The room tempera­

ture age hardening responses of many of the specimens prepared for TEM 

&tudy (Figure 66) are shown in Figure 88. For reference, the age 

hardening behavior of a specimen quenched directly into ice water from 

the solution treatment temperature is shown in Figure 89. The data 

plotted in Figures 88 and 89 were obtained as follows. After quenching 

in ice water at the end of the "pre-aging" cycle for Figure 88 or after 

the direct quench for Fi~ure 89, the specimen was immediately immersed 

in liquid nitrogen for storage until room temperature aging was commenced. 

The specimen was brought quickly to room temperature by agitating in a 

bath of water. Hardness measureme lts were made acc~rding to the Rockwell 

"B" method noted earlier. The first determination was obtained at 1 to 

2 mins after the speci~en had reached room temperature. H~rdness measure­

ments were made periodically thereafter until no further change was 

observed. In many cases, an initial increase in hardness was observed 

during the first 2 or 3 mins followed by an incubation period and then 

hardening to the final value. The initial change 1n hardness will not 
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bl conl1dlrld furthlr hlrl. howlvlr it 11 thought that it .ay bl alloc1-

atld W', Ipinodal dlcOMPolition. Thl Ifflct would be blttlr Itudild 

at lowlr tl~lraturll. 

Considlr first. thl Iffttct on hardnl" of thl .. quinci A 

"prl-ag1ng" trlat.lntl. Final hardnl ... pOlt qUlnch incubation hardnlss 

and the difflrlnce bltwlln 11n41 and incubation hardnlll valuis IrQ 

plotted in Figurel 90(a). (b) and (c) rlsplct1voly. Thl plotted results 

'IIlrl take", from roo.n tiliperaturl aging curvI' in Figur .. 88 and 89 

ilft6r converting from R«lckwell "8" to thl V1ckftrl hardnl" Icall by 

utilizing a tdble from Mondolfo (3Y). Thl Vicklr, Icale blarl a more 

nearly 11 near relit ionlh1p to Itrength than thl Roc It···,. 11 "B" scali. To 

explain the variation in h~rdneli Ihown 1" Figurl 90 the follo\ 1 .,USt 

be considered: 

1. Hardln1ng by G. P. B. zon .. 

2. Solid 101ut1on hardlning 

3. Prlc1pitation hardln1ng 

4. Grain s~le ~r'lcts 

Age hardening of Al-Cu-Mg alloys with a Cu:Mg ratio of 2.2:1 

occurs at. room temperature by the formation of G.P.B ...... nes. A maximum 

increase in hardness for a given Cu anti Mg composition is obtained when 

the concentration of G.P.B. zones is maximized. This is achieved by 

solution heat treatment above the S+a boundary and quenching at a 

suff1tiently high cooling rate to retain all the Cu and Mg in solution. 

A reduced qUlnch rate. or "prl-ag1ng" tre'!tment as was done in thh 

investigatior. at a tlmperature below the S+a boundary can lead to a 

reduct ion 1 n the sol utI conclntratlon thrcugh the prlc1 pi tat ion of t,he 

S. S'. and e phases and a diminished conclntrati~n of G.P.B. zone! upon 
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subsequent aging. The "ff.ct of "pr.-aging" on tne incremental incrtall 

in hardness associated with G.P.B. zone formation after room temperature 

aging to a stabl. condition is clearly demonstrated in Figure 90(c). 

0" "pre-aging" at 400 °C, the hardne .. increment falls until a con.tant 

value is reached lfter 100 s. !h8 b~hav10r is similar for SSO °C but 

the constant level which is obtained after 500 • is only about 10 N/mm2. 

At 300 °C, exten";;>d Ipre-aGing" eventually eliminate. any observable 

room temperature age hardening eftect. Since G.P.B. zone formation 

probably requires some minimal level of solute supersaturation, Figure 

'" 90(c) demonstrates that aging for a sufficient time (> 500 s) at a 

temperature between 300 and 350 °c reduces the supersat~latio~ below 

the minimum value. The TEM studies determined that the loss of solute 

was primarily a result of the formation of the e and S phases ~/i'c.hin 

~rains and the S phase at grain b~undaries. In effect, ~h~ material 

behaves like an alloy with a lower solute concentratio'l. For the Al-Cu-Mg 

system according to Hardy (35) the a/(a+S) boundary is given by 10910 

[Cu][Mg] = 5.603-3975/T, ~nere [Cu] and [Mg] are concentrations i~ 

atomic percent an~ T is the absolute temperature. Using this equation 

the equilibrium concentration of Cu+Mg at 400°C is approximately 2.2 

wt.% while at 300 aC it is only 0.6 wt.%. The relationship between the 

hardness change produced by G.P.~. zone formation and solute concentra-

tion for the Al-Cu-Mg system plotted from the data of Beton and Rollason 

is shown in Figure 91. The relationship is not linear, particularly at 

concentrations above ~ 3.5 wt.% (Cu+Mg). Between 1 wt.% (the minimum 

value for which data was reported and 3.5 wt.% the change in ha~dness 

is approximately proportional to the concentration. remperatures 

corresponding to the a/(a+S) phase boundary location are also indicated 
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in Figure 91. It can be seen that the hardness increment at concentra­

tions below wt.~ (Cu+Mg) attained by equilibration at temperatures 

< 326 "c is very small. Thus, it may be inferreJ that by "pre-aging" 

2024 aluminum anoy for a sufficir,ntly lor.g period of time at temperatures 

close to 300°C the concentration of solute rt,lmaining in solution would 

be reduced to a point where few G.P.B. zondS would form. A direct 

comparison between 2024 aluminum alloy and ternary Al-Cu-Mg alloys, of 

course suffers froIT, t.le fact that 2024 aluminum alloy contains additional 

e1qments that c~n effect its aging behavior. 

r.,gur~ 90(c) also provides information on the rate at which 

equil ibration ... ccurs. The rate is determined by the nucleation a,nd 

growth kinetics of "pre-aging" induced precipitates. At 40C °C where 

nucleation is comparatively difficult as is demonstrated by the absence 

of precipitates after "pre-aging" for 20 s, there is little change in 

solute supersaturation. After 100 s large precipitates were observed 

throughout the matrix and according t~ Figure 90(c) an equilibrium 

concentration of solute had been reached. There is a complication 

here, of course, because the a phase, the major phase within grains, 

consumes mainly Cu leaving a surplus of Mg. What effect this may have 

on G.P.B. zone formations is not kno~n, although it is not expected ~o 

be large. 

At 300°C nucleation occurs more rapidly as evidenced by a 

high conc~ntration of a precipitates. The initial rate of approach to 

equilibrium was also the most rapid for the temperatures studied. 

The final hardness shown in Figure 90(a) can be regarded as 

the sum of the increment~l increase associated with G.P.B. zone formation 

and a.l incubation hardness value that varies with "pre-aging" time and 
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temperature. At 400°C there is no chanr~ in hardness before 20 5 and 

a logarithmic decrease thereafter. Initiall~ I rapid drop in incubation 

hardness is observed at 350°C and 300 °C which is followed by a slower 

logarithmic decay at about the same rate as at 400°C. The differen~e 

between the initial behavior at 400°C and that at the two lower tempera-

tures is consistent with differences in the microstructures. After 

aging for 20 s at 400°C there was no evidence that precipitation had 

occurred except at grain boundaries where very small S precipitates 

were observed. In contrast relatively large precipitates were present 

after "pre"aging" for 20 s at 350 and 300°C. The initial large rate 

of der.rease in incubation hardness can be aLtributed to a decrease in 

solid solution hard,..:,in{l as a result of the nucleation and growth of 

the e and S phases. A measure of the extent to which Cu and Mg in 

solution c~~. clTect hardness is indicated hy the as-quenched hardness 

vs (Cu + Mg) concentration curve obtained by Hardy (35), Figure 92. 

The period during which the rapid loss of solute from the matrix takes 

plac~ corresp~nds to the portion of the curves in Figure 90(c) showing 

a rapid chanye in hardness increment due to G.P.B. zone form~tion. The 

e and S phdse precipitates may increase the hardness but apparently not 

nearly enough to offset the effect associated with the loss of solute. 

The continued decay in hardness with increasing time at all temperatures 

can be attributed in part to a further loss of solute from the matrix 

due to the gradual approach to equilibrium. Eventually, this involves 

the slow dissolution of e and the growth of S, where it will be recalled 

that the S phase consumes both Cu and Mg and the e phase only Cu, i.e. 

the change would mainly be associated with the loss of Mg froiR solution. 

Loss of other elements in solution, for example Mn and Cu to the 
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Cu2Mn3A1 20 dispersoid phase ~ay allo contribute to the reduction in 

plateau hardness. Part of the decay in hardnels can allo be attributed 

to precipitate coarsening, a reduction in the number denlity of precipi­

tat.s due to Ostwald ripening, and transformation of 5' to 5. 

Finally, prolonged "pre-aging" especially at temperatures 

close to the solution treatment temperature could '.ead to grain growth 

and a reduction in hardness. However, grain growth was not observed 

lfter 7200 min at 400°C and is made unlikely by the closely spaced 5 

precipitates at the grain boundaries. 

Turning to the sequence B treatment, a similar approach can 

be taken to relate the effects of "pre-agi ng" induced phase transforn .• t i on 

to property changes. Figure 93(a), (b), and (c) summary the room 

temperature age hardening response of spec1mens "pre-at;id" at 300°C, 

350 °c and 400°C. Figure 93(a) presents the final hardness values, 

Figure 93(b) gives the incubation values and Figure 93(c) shows the 

incremental changa in hardness. The room temperature age hardening 

response after sequence B treatment at 400 and 350°C differs from that 

observed for a sequence A treatment. Aftc'" "I")re-aging" for 20 s at 

400°C, the incremental change in hardne~s. Figure 93(c), has dropped 
2 2 to ~ 200 N/mm- from 330 N/mm , the directly qU4nched value. No 

change was observed af~er a sequ@nce A treatment for the same period of 

"pre-aging". The initial rapid decrease in hardneu increment after 

the sequence B treatment is consistent with the presence of a high 

concentration of 5' precipitates within grains and 5 at grain boundaries 

observed in the TEM. It may be recalled that precipitation was just 

beginning at grain boundaries after the sequence A treatments at 400°C 

for 20 s. The low rate of nucleation at 400°C is overcome in the 

sequence B treatment during the quench-reheat portion of the cycle. 
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"Pre-aging" at 400 ac for 100 5 and SOO 5 resulted in increas­

ingly larger 5' precipitates with little change in hardness increment. 

Thus the proc~ss during this period was mainly one of coarsening and 

did not involv~ a change in the volum~ fraction of the 5' phase. i.e. 

the concentration of solute in solwtion did not change appreciably. 

"Pre-aging" for 7200 min led to an increase in the hardness increment 

and resulted in a microstructure that consisted of only a few large 5' 

~,~~ipitates within grains and very large 5 precipitates at grain 

boundaries. Thus, prolonged aging apparently resulted in the dissolution 

o. much of the 5' phase within grains and a corresponding growth of the 

5 ~lhase at grain boundaries. The reason for the increase in hardness 

ir.:ren,ent after 7200 min at 400 ac is not understood. The same effect 

~.;s not observed for the correspondi ng sequence A treatment. The 

difference may be associated with the much lower incubation hardness 

after the sequence B treatment. 

The hardness increment vs "pre-aging" time curves at 350 aC 

and 300 °C, Figure 93(c), are similar t~ the companion sequence A 

curv~s, Figure 90(c), although the decrease occurs more rapidly at 

350 aC than was obtained for the sequence A treatment. 

The inCUbation hardness curves, Figure 93(b) for the sequence 

B treatments at 400 aC and 300°C show an approximate decrease in 

hardness with logarithmic time from the onset of "pre-4\ging". At 

300 °c, however, there is an initial rise during approximately the 

fi rst 100 fo 11 owed by a decr,~ase at about the same rate as for 350 °c 

and 400 QC. The inCUbation hi'.rdness over the range of "pre-aging" 

times studied is greatest at 300 aC and smallest at 400 Qe. This 

differs from the sequence A treatment results where the highe~t hardness 
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wa. found at 400 °c Ind the low •• t at 350 DC. On the bl.1. of the TEM 

.tud1,., it app.ar. that the 1ncub.t1on hardn, •• b,hav1or of the .equen,e 

~ ,plc1men. 1 •• trongly dlpendent on the formation and lub.equent 

coar.en1ng of hlterogenlou.ly nucllated 5' precipitate', The initial 

ri •• in hardne •• ob.erved It 300 °C cln b. attributed to thl pre.ence 

of very .mall, homogeneou.ly distributed 5' precipitate •. Since the 

hardne.s increment curv •• , particularly at 300 DC and 350 DC, indirectly 

indicate a decr.asing concentration of (Cu and Mg) in Jlution until 

"pre-agingll times of 500 5 and 100 s, resp.ctively, have been reached, 

.olid so'~t~on hard.ning mu.t also contribute during that period to the 

obs.rved incubation hardn.... Comparing .equence A and B final and 

incubation hardness curves, Figure. 90 and 93, at 350°C and 300 °c, it 

11 se.n that after a IIpre-agingll tim. of 500 • the .. quence A curves 

fall more rapidly to considerably low.r hardne •• valve.. Thi. is 

apparently a result ot the con.iderable stabil1t~· of the S' ph .. e in 

the sequence B specimens against coarsening and transformation to the S 

phase. 

(b) T351 and T851 Conditions 

The foregoing discussion of the influence of IIprl-agingll on 

T4 microstructuro and properties is directly applicable to the T351 

condition. It is only necessary to include the effect on properties of 

an incremental increase in the dislocation density. To a first approxi­

mation, the difference between T4 and T351 propertieb should be constant, 

independent of the IIpre-agingll treatment. This does not necessarily 

hold true for the T851 condition. The microstructure of a specimen 

that has been directly quenched to ice water from the solution treatment 

temperature and processed according to T851 specifications consists of 
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a uniform distribution of heteregeneously nucleated S' precipitates. 

To obtain this structure, it is neceuary that .olute be available for 

th6 nucleation and growth of the S' precipitate. at dislocations during 

final aging. The solute may be supplied either directly from I super­

saturated solid solution or by G.P.B. zones and possibly from subsequently 

formed hom~geneous1y distributod S' ~recipitates. Because of the high 

rate et which G.P.B. zones form, its unlikely that much solute is 

supplied directly from the supersaturated solid solution. 

Solute that has been consumed by the relatively stable "pre­

aging" induced precipitates is no longerlvailable for the formation of 

5' precipitates during subsequent aging treatments. Moreover, the 

"pre-aging" induced precipitates may continue to consume solute during 

the final aging treatment. Finally, the "pre-aging" induced precipitates, 

as already discussed, contribute to strength and are subje~t to overaging 

during further heat treatment and provide an additional mechanism for 

the loss of strength. It is ther~fore not surprising that the strength 

of s~ecimens given a T851 treatment was actually reduced below that of 

the T351 condition as opposed to the properly quenched material. 
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VI. ULTRASONIC CHARACTERIZATION 

Correlation of Ultrasonic Data with Hardness after 
Aging to T4, T351, and T851 Conditions 

1. Introduction 

The study 01 ultrasonic wave propagation Cin provide informatior, 

about the elastic properties ~nd absorption characteristics of the 

material in which the wave propagates. These properties arp, intimately 

related to microstructure, hence the thermomechanical treatment that 

the material underwent prior to the ultrasonic measurements, thus 

enabling a nondestructive evaluation and characterization of the materials 

propert ies. 

Th. speed of sound ina so 11 d is most often used in nondes truct,i ve 

testing as a constant programmed into an ultrasonic thickness gauge. 

However, in the realm of nondestructive characterization of r"aterial~, 

the absolute measurement of longitudinal and shear wave velocities can 

be used to calculate many useful mat~rial parameters, e.g., Young's 

modulus (E), shear modu1us (G), bulk modulus (8), and Poisson's ratio 

(u). The determination of these effective moduli is based on the 

assumptior. that the material is isotropic. The calculation of the 

moduli requires knowledQe of the value for the density of the material. 

The energy loss, or ultrasonic attenuation, of elastic waves propa­

gating in a solid, may be divided into contributions from geometrical and 

intrinsic effects. Geometrical effects include reflection and refraction 

at a free surface, grain or phase boundary, beam divergence due to dif-

fraction, as well as waveguide effects dup. to multiple boundary surfaces. 

Intrinsic effects in~lude scattering of the ultra~Jnic wave at inhomogene­

ities, interaction with thermal phonons, dislocation damping, and conver­

sion of sound energy to heat as a result of elastic deformation. 
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Unlike geometric effects. intrinsic effects m~ change in time if 

the internal cryst.al lattice or defect structure undergoes change. 

Ourin~ precip11.ation hardening of 2024 aluminum alloy the main contribu· 

tion to the attenuation .s believed to be scattering of the ultrasonic 

wave by newly precipitating phases. The magnitude of the absorption 

will be determined by the magnitude of the stress field at the boundary 

between the precipitate and the matrix which. in turn. is determined by 

the precipitate size and the degree of coherency of the precipitate 

with the matrix (41). An attenuation peak should be observed when the 

size of the precipitate and associated stress field around it reach a 

magnitude that produces the maximal interaction with the ultrasonic 

wave. This value of att@.nuation will also depend on the wavelength of 

the ultrasonic wave relative to the size of the scattering center. As 

frequency ircreases. the wavelength decrt!ases. and hence the size of an 

effective scattering center will a, ) decrease. 

With continuous monitoring. the relationship between agin~ time 

and change in ~ound velocity and ultrasonic attenuation can be determined. 

The information may provide an insight into the kinetics and mechanism 

of precipitate formation a;ld growth in the age-hardening aluminum 

alloys. Several investigations (41-43) have demonstrated that the 

ultrasonic method is operationally feasible f0r monitoring the precipita­

tion process in aluminum alloys in real time, over a wide temperature 

interval. The calculated activation energies and characteristic kinetic 

parameters could be related to the mechanism of the formation and 

growth of the precipitates, and their ~ffect on the ultimate mechanical 

propert 1 es of the alloy. The extens i on of techni ques for ultras"ni c 

NDE to industrial applications requiring on-line, real-time monitoring 
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during thermoMechanical treatMent wOI,ld necessitate Modificatfons of 

the experfmental approach for the s"lIcific technological applfcation. 

The objective of the present study was to establish the existence 

of a correlation between ultrasonic data and mechanical properties 

(e.g. hardness, yield strength) of 2024 aluminum alloy specimens after 

they had been subjected to carefully controlled thermomechanical treat­

ments. For this purpose, the absolute, rather than the relatiJe, 

values of the .ound velocity and ultrasonic attenuation are required. 

The data have to be determined, consistently, to a high degree of 

accuracy so as to enable a comparison to be made between specimens of 

unknown thermal history, and to correlate these data with the ultimate 

mechanical properties of the material. Ideally, as an HOE technique 

t.he uhrasonic measurement should provide the necessary information in 

Dld~r to specify, nondestructively, the mechanical properties of the 

alloy. 

As will be shown, a correlation between the absolute values of the 

sound velocity and ultrasonic attenuation, and the hardness data was 

found. Regardless of the thermal sequence ~f the aging process, maximal 

hardness (and strength) of the 2024 aluminum alloy was found to be 

related to a definite range in the values of the sound velocity. A 

consistent differen:e between the sequence A and B IIpre-agingll heat 

ti~eatments was reVl a 1 ed. Furtherml>re, a di fference was a 150 noted in 

the values of the sound velocity between th~ rSS1 and T351 tempers of 

2024 aluminum alloy. 

2. Experimental Pr2.s:~:dur:! 

A systematic ultrasonic examination was ~arried out on a total of 

about 140 specimens that underwent the variety of controlled IIpre-agingll 
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heat treatments reported in earlier sections of thii r.port. Th. 

umpl .. were iubje,ted to "pr.-aging" .. quenc .. A and B. after solution 

treatm.nt at 495 °c, an~ prior to T4 or the .tretching op.ration that 

precede. the aging to T351 and T851. Th •• p.cim.n. were flat and 

parallel and had the following dimension.: 150 x 25.4 x 6.35 mm (in 

thickness). The measur".m.nts were performed by means of conventional 

ultrasonic equipment (MATEC pulse ger.erator and receiver and delta-time 

HEWLETT-PACKARD oscilloscope). 

Speci~ens and ultrasonic sensors were immersed in a distilled-water 

tank to avoid complications caused by variations in couplant thickness. 

Constant separation between the transducer and the specimen surface was 

maintained. The specimen mounting stage was designed to allow adjustment 

of the parallelism between the surface of the transducer and the insonated 

surface of the sample. Before making velocity add attenuation measure­

ments the ultrasonic pulse train was adjusted to obtain an exponential 

decay of the successive echoes combined with a maximal number of echoes 

in the pulse train. The pulse superpo5ition tech~ique was employed for 

sound wave velocity determil\ation. Attenuation was monitored by means 

of a MATEC Automatic Attenuation Recorder which provides analog proc~s­

sing of the video output of the MATEC pulser/receiver. 

The absolute values of t.ne sound velocity and ultrasonic attenuation 

were determined to within ± 1 m.s·' a~d ± 0.02 dB, respectively, It 

should be pointed out, in this context, that both the precision and 

accuracy of velocity and attenuation determination can be markedly 

improved by incre~~ing commensurately, the specimen thickness since the 

accuracy in velocity and attenuation depends also on the accuracy of 

the thickness measurement. 
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3. R .. ultl and DhculSion 

Figure 94 shows the variation of the ultimate sound velocity in 

2024-T4 aluminum alloy as a function of "pre-aging" time for var10ul 

"pre-aging" temperatures, between 300 and 400°C, for both sequences A 

and B. 

For long "pre-aging" times, exceeding 2000 min the sound velocitier 

converge at the same value. Apparently, the "pre-aging" tamparatures 

are sufficiently elevated to allow the operation of a diffusioral 

process for the formation of a precip1tate morphology that yields a 

similar average sound velocity. 

Figure 94 shows that sequence A yields lower initial sound-wave 

velocities than sequence B. The main reason for this behavior is the 

fact that the sequence B samples exposed to low temperatures contain a 

high concentration of 5' precipitates. TEM evidence for 20 s "pre-aging" 

at 400°C following sequences A and B are shown in Figures 75(a) and 

83(a), respectively. In the sequence A treatment, there is essentially 

no difference in microstructure compared with the direct quench from 

the solutionizing temperature. In contrast, sequence B trealment 

results in relatively high concentration of 5' precipitates throughout 

the matrix (Figure 83(a». This difference in microstructure appears to 

be the cause of the significant change in the initial sound-wave 

ve'locity, Figure 94. 

Figure 95 exhibits the change in ult)mate hardness of 2024-T4 

aluminum alloy as a function of "pre-aging" time for various "pre-aging" 

temperatures, between 300 and 400°C, for both A and B sequences. 

"Pre-aging" at the temperatures indicated, for bot:, sequences, 

reduces the ultimate hardness values determined after completion of the 

aging pr~:ess at room temperature. In general, sequence A leads to a 
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, , 
.rourd pr.c1p1tat ••• th.t have lo.t :on~~.ney with the .1u.in~1 .atrfx 

(41). i,t.ract ~elt .ff.cti~.,y with the propaglt1ng ultrl.onie W.VI., 

thu. yi.,d1nG a h~g~ :~t.nu.tion valu.. As pr.viou.'y not.d (41) t~i. 

b.h,"~or of the ultrl,oni, att.nuation i. cOMP.tibl. with the .ub.t.nti., 

d.cr •••• in h.rdn •••• shown in Figur. 95. 

Th. lowllt absolute v.'ul. II w.ll II the 5.all •• t cl~angll of 

.tt.nuation. w-r. obllrv.d in 'p.eiNn, th.t were "pr.-ag.d" .t 400 ·C. 

for both A anu 8 .equ.nc... Th. b.h.vior of the ultra,onic .tt.nultion 

i. in agr •••• nt with the b.h.vior of the .ou~d v.'oeity .nd hardne., 

(Figur., 94 .nd 95) i~ the •• n •• that .t 400 ·C only • '~Ill volu~1 

fr.ction of 8 Inc 5 .nd 5' i. fOrll'~. Thl f1n.l fully ,g.d .tcro,truc­

turl for thh sp.cific "pr.-.ging" ,.0ld1r'G t •• pGraturl con.ht, ",.inl)/ 

of G.~.8. lon~. th.t w.rt fOrMed upon .ubalqulnt .ging .t rooll t.llplr.­

tur. . Thl.1 low tl.p.rlturl ~rlc1p1t.t ••• rl .pparlntly too .mlll in 

aitl to ,1gn1fic.ntly contr1butl to thl ob.lrv.d ultrl,0~1c .tt.nult10n. 

For IIro "pr.-.g1rlg" t1ml. thl Itt.nuI+1on curVh ... m to .xtrapol.tt 

to I COMon low value. F ... r prolongld "prl-Ig1ng" tim". the att.nuat10n 

vilule Ire .1gnif1crnt1y difflr.nt du. to tht dlff.ring .1cro.tructur.~ 

Ind .il. d1.tribution of the pr.cipit.tli. 

Figur. 97 .xhibits thf.l 1,1Ic;t of "pr.-.ging" (lIqulnc. A .nd B) on 

thl v.'ocity •• tt.nuat1oll. h.rdn •••• nd .llctrical conductivity wh.n 

Ip.ci.lnl w.re held for 60 m1nut. ... t differ.nt "prl-'ging" tlmp.r&itur ... 

prior to the n.tur.l 'ginv proc •••. 

Slqu.nc, A yi.ldl • low.r hardn ... for •• ch of the "prl-'ging" 

tl~plrltur ••. bltw'ln 3DO Ind 4:~ ·r. Thl lo~." h.rdn ••• v.'u" .rl 
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found at 300 and 350°C. Thl rlalon that the B lequinci y1eldl conlil­

tlntly h1ghlr hardnisl valull than A Ilquencl 11 blcaulI ~hl 5' prlcip1-

tatl' formld during IIqulncl B "prl-ag1ng" makl an Ifflct1vl contribution 

to hardnl ... 

Thl lound vlloc1ty. for both A at'd B IIqulncl., Ixh1b1t. a max1m~m 

for the 350°C "prl-ag1ng" tQmplraturl. '1":,11 blhav10r 11 in agrllmlnt 

with the fact that at 350°C, a sUbstantial volume fraction ~. e, 5' 

and S is observed, Figures 82 and 83 thus contributing to the obsorved 

increase in the sound velocity. The 400°C "pre-aging" temperature is 

too close to the so'lution temp.:rature of 495°C to form an appreciable 

vo 1 lime fract i on of incoherent prec i pl +,ates that may contri bute to an 

increase in the sound velocity. Therefl're, the velocity values for the 

400°C "pre'-aging" temperature ai2 more typical of the low temperature 

preci pi tates (G. P. zones) formed at rOC';/l temperature agi ng, after 

"pre-aging," since they constitut~ the major volume f':"actiol'l of the 

prec.ipitated phase. 

Thp. differenc~ in t~e obsrrv~d sound velocities between B and A 

sequences is ~onsistent with ~he high concentration of 5' precipitltes 

that a.,:: ilucleated dlring the quench and reheat r:ycle in the B sequence 

treatment. Thl nucleation process is less efficient in the A sequence. 

The behavior of the ultrasonic attenuation is compatible with the 

behavior of th~ hardness. Higher attenuaticn v1lues are indicative of 

low~r hardness (Figures 98 and 99). The atte~uation behavior confirms 

the model that at this temperature the majority of the precipitates are 

apparently of the semi-coherent and i.lcoherent character surrounded by 

dislocation loops that strongly interact with the pr~pagating sound 
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wave, thul yielding high attenuation valuel. The higher attenuation 

valuel of B ,equence, rGlative to A lequenca, al .een in Figure 98, may 

again be exp~lined by tt" larger amount of low temperature precipitate. 

that cau.e ,cattering 01 the ultralonic waves. 

The electrical conductivity (Fig. 97), as obta1ned from eddy 

current measurements after complet10n of aging, showl that A sequence 

treatment leads to higher electr1cal conductivity than the corresponding 

B sequence treatment. Moreovar, conduct1vity increases, for both A and 

B, w1th increasing "pre-aging" t£Jmperature. 

In se: en VII of this rtport, it w1l1 be shown that the electr1cal 

conductivity increaslS with the "purif1cation" of the aluminum matrix 

by mean of segregation of the solute atoms (mainly Cu andMg) and 

formation of solute-rich prec1pitates. Also, the electrical conductivity 

decreases by the presence of small precipitates (e.g. G.P.B. zones) that 

arn quite eff&ctive scatterers ,·f electrons. However, this negative 

contribution to the conductivity is offset by the "purification" process, 

particularly at temperatures where an enhanced d1ffus10n of the solute 

species from the supersaturated alum1num matr1x 1s poss1ble. 

Tha conductivities of A and R sequences converge at a value of 

about 41.0% lACS, at 400 °C "pre-aging" s1milar to non "preaged" 2024 Al 

alloy (~1). Th1s experimente) nbservation may be explained in terms of 

the equal amount of Cu ar1 :!'t ,i .. oms that left the aluminum matrix. This 

doe$ not necessarily imply that the m1crostructure of the precipitation 

must also be similar or identical. In fact, TEM observLtions (Section V) 

point quite to the contrary, as do sound velocity, attenuation, and 

hardness measurem~nts. The effect of microstructure on the measured 

electrical conductivity 1~ complex, and depends quite insignificantly 

on the morphology. 
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Figur. 98 ~how. the 1nflu.nc. of the IIpr .... g1ngll .. quenc. (A and 

B) on the r.l.t1onsh1p b.tw •• n h.rdn •• s .nd ultr.son1c att.nu.t1on in 

T4 h.at tr •• t.d 2024 .t •• l. For .ach •• qu.nc., •• parat.ly, a good 

correlation was ob •• rv.d: high hardn.s& 15 d1r.ctly r.lat.d with low 

attenuation values. 

The correlation between hardness and attenuation is very important 

from ar. NOE point of view. This correlation suggests that within a 

limited range of thermomechanical treatments the hardness can be uniquely 

determined by means of ultrasonic attenuation. This correlation could 

be quite useful for in-process monitoring where small deviations from the 

norm of a well-specified thermomechanical treatment is encounteren. On 

the cortrary, Figure 98 indicates that substantial deviations from the 

norm, as obtained for examp'ie for sequence A relative to B, renders such 

p'.~edictive capability rather difficult. 

Figure 98 indicates that sequence B exhibits consistently higher 

hardness values, than sequence A for a given value of attenuation. 

Consequently, sequence B should cnntain a highe~ volume fraction of the 

low temperature GP zones an intermediate (51) precipitates that are known 

to contribute substantially to hardness and enhance the attenuation 

of ultrasonic waves. 

figure 99 shows hardness versus ultrasonic attenuation for' 2024-T351 

temper, "pre-aged" by the sequence A scheme, for various "pre-aging" 

temperatures between 300 and 400°C. The observed change in hardn~ss 

'is between 65 and 80 HRB. The ultrasonic attenuation varies 1inedrly 

and inversely ~tth hardness. For this range of hardness (between 65 

and 80 HRB) an approximately linear decrease in attenuation was also 

observed for 2024-T4 (Figure 98). 
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Figurl 99, .imilar to Figurl 98, dOl. not difflrlntiatl bltwlln 

"prl-aging" timl. and "prl-aging" tlmplratUrtl. Thh figyre rtpre.lnt. 

L..trictlY HOE corrllatio,n giving a qualitat1vI chMnAI bltwlln two proplr­

till, hardnl •• Ind ultra.onic attlnu.tion. Thl blhavior of thl.1 two 

proplrtil' il I conllquinci of d1fflring microltructurl., prlcipitatl 

sizes. stltl' of cohlrency ItC .• but the integral Ifflct yillds a linlar 

correlation that mlY be utilized in qualitat1ve HOE characterization. 

Figures 100-102 depict the correlation between sound ve10clty and 

hardness for 2024 Al alloy of different tempers. namely; T4, T351. and 

T851. 

Analogous with Figures 98 and 99. Figures 100~102 present an NOE 

correlation. Neither "pre-aging" times nor "pre-aging" temperatures, 

nor heat treatment sequences are &pecified. This emphasizes the potency 

of the correlation between sound-wave velocity and hardness of the 

completely aged alloy. The correlation (Figures 100-102) is parabolic, 

whe~e the maximal hardness (or yield strength) is attained for a narrow 

window of sound-wave velocities. When maximal strength 1, required, 

the NOE technique employing ultrasonic sound velocity measurements 

would probe and monitor for i definite predetermined range of sound-wave 

velocities. The absolute values of the$e velocities may ctlange slightly 

with the selected temper or state of plastic deformation prior to 

aging. Plastic deformation prior to aging (e.g. T351 compared with T4 

temper) increases the absolute value of the ultimate sound velocity, at 

the peak hardness, 6369 versus 6363 m.s- l , respectively. Larger volume 

fractions of precipitated phases will also contribute to an increase in 

the abs~lute value of the sound velocity. 

78 

, I 



I, 

VII. EDDY-CURRENT CONDUCTIVITY VERSUS HARDNESS DURING AGING 

1. !!!!!:.Qduct ion 

Th. Kin.tics and m.chanism of the pr.cipitation hardening proc.ss 

in ps.udo-binary aluminum alloys has b •• n .xt.nsiv.ly inv.stigat.d 

(43). A discussion of the nature of the nucl.ation and growth of 

pr.cipitat.s in binary aluminum alloys was d.v.lop.d by Lorimer and 

Nicholson (44). However, relatively little work has b •• n reported on 

studies involving nondestructive characterization of the technologically 

important 2024 aluminum alloy during the aging process. This alloy 

acquirp.s high strength and hardness when subjected to controlled thermo­

mechanical treatments involving natural or artificial age hardening. 

Electrical conductivity ,~asurements» e."ploying a.c., d.c., and 

eddy currents are often utilized to determine the kinetic behavior of 

the precipitation process, or to evaluate nondestructively the progress 

of the age hardening sequence (46-46). The variation of electrical 

conductivity as a tunction of aging is complex and results from a 

number of factors (49), a major contribution is associated with changes 

in the scattering of conduction electrons. Such scattering can ~e 

caused by: 

a. vacancies queilched-in during rapid cooling following solution 

heat treatment 

b. alloying atoms present in the matrix 

c. G.P. zones with dimensions comparable with the electron 

'Jave 1 ength 

d. coherency strains and dislocations at boundaries of the zones 

or clusters. 
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During .g~~g .t 10 t.mp.ratur •• ," for .x.mpl., b.low 50°C, two 

comp.ting proc •••••• r. op.rativ.. Th.r. i. a d.cr •••• in the numb.r 

of qu.nched-in vacanci .. , .nd • clu.t.ring of Cu .nd Mg, which .rt the 

m.jor addition. to Al in the 2024 alloy. Th ••• proc ••••• t.nd to 

incrta •• the mla.ured Illctrical conductivity but .imult.n.ou.ly thlrl 

is a more .ignificant decrease in the electrical conductivity due to 

the appearance of newly formed precipitates which are small enough to 

be effective as scatterers of ele~trons. At higher temperatures, 

precipitates of larger size are formed, which are not as effective 

scatter&rs resulting in an increase of conductivity to an ultimate 

value determined by the solubility of impurity atoms at the specifi: 

aging temperature. The absolute value of electrical conductivity 

achieved after any given aging time is dependent on the aging tempera­

ture due to the fact that the geometry and size distribution, and type 

of the precipitates are governed by a thermall~-act1vated process (35). 

Addition of trace elements t~ the Al-Cu-Mg system may have a 

profound effect on the kinetics and mechanism of the prer.ipitation 

process. Some 9lements may suppress one stage of the aging process 

while stimulating another'. At low aging tamperatures, zone formation 

may be retarded, apparently due to a strong vacancy-trace element 

interaction which prevents vacancies from enhancing the diffusion of Cu 

atoms in the a-Al matrix. At higher aging temperatures these elemer.ts 

may accelerate the formation of intermediate precipitates (e l
, 51) by 

reducing interfacial energies. 

The influence of precipitation kinetics on eddy-current con~uctivity 

and hardn9ss during the aging of 2024 aluminum alloy was investigated 

by means of dynami c eddy-current conduct i vi ty I'/leasurements. Agi ng 
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t.mp.rltur.s b.tw •• n 21 Ind 190°C w.r. us.d, Ind m.lsur.ments w.r. 

mid. on both unstr.tch.d Ind plisticilly d.form.d sampl •• (thr •• p.rc.nt 

p.rmln.nt .trlin). Th. two m.l.ur.m.nt t.chn1.qu •••• lectricil conduc· 

tivi~y Ind h~rdn.ss. r.spond in I comp'.m.ntlry mlnn.r to the vlrying 

",icr~structur.s thlt form durin, diff.r.nt stlg's of the Iging proc •••. 

2. Exp.rim.n~l Proc.dur. 

The sp.cimens us.d in this inv.stigation w.r. prepar.d from the 

0.63S cm thick 2024 aluminum alloy plat~ suppli.d in the F condition. 

Res~lts of the chemical analysis were given in an earlier section. 

Prior to the thermomechanical treatment, the specimens were machined 

into rectangular bars 170 x 25.4 x 6.35 mm. Solution heat treatment at 

495°C for 75 minutes was followed by ice-water quenching. The specimens 

were then stored in liquid nitrogen to protect them against changes in 

microstructure. Hardness measurements, carried out at subzero temp~ra­

tures, before and after storage, verified no natural aging had occurred 

duri n9 storage. 

Some of the specimens were plastically deformed to 3 percent 

elongation in a tensile testing machine. This stretching process was 

used to simulate the T351 and T851 tempers. The stretching was performed 

while the specimens were kept at subzero temperatures in order to avoid 

natural aging during the plastic deformation procedure. 

The specimens were then aged in a thermostatic bath containing 

heated oil kept in continuous circulation. The bath could be maintained 

within 0.05 °C at any temperature between ambient and 200°C. 

Electrical conductivity measurements were performed on the specimens 

by means of ~UPERHALEC (England) and VERIMET (USA) eddy current monitors 

and probes. 
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Each .ddy-curr.nt conductivity .. '.asur.m.nt was pr.c.d.d and follow.d 

by calibration of ~h •• ddy curr.nt monitors against NBS s.condary 

standards. Th.s. standards ar. calibrat.d at 20°C; h.nc. all r'portld 

conductivity v~lues herein ref.r to the conductivity value at 20 ftC. 

Th. m~asur.d values were consid.red accuratt to within ± 0.05 p.rc.nt 

IACSa. 

Hardness measurements w.re mad. using d WILSON h~rdnass tester. 

Th. precision of the hardness valuos on the Rockwall B scale was approxi­

mately ± 1 units. 

Room temperature measurements of hardness w&re made at prescribed 

intervals throughout the aging treatment. The specimens were removed 

from the isothermal bath, cooled rapidly to roam temperature, and 

subjected to electrical conductivity and hardness measurements. Whenever 

necessary due to the time delays 1n making a measurement, the specimens 

were tempora~ily stored in liquid nitrogen. 

3. Experimental Results 

Figure 103 shows the variation of the electrical conductivity as a 

function of aging time of 2024 aluminum alloy at different is\ thermal 

holding temperatur,1s. This series of specimens did not undergo plastic 

deformation (stretching) prior to aging. The value of elactrica1 

conductivity, before aging, was found to be 31.5% lACS. The salient 

features in Figure 103 are: 

9 

a. An initial decrease in conductivity at each of the isothermal 

aging temperatures in the range between 21 and 190°C. The 

rate of initial decrease in conductivity depends on the aging 

International Annealed Copper Standard 
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I. 
t.mp.r.tur., incr ••• ing with incr •••• d .g1ng t.mp.r.tur.. In 

the t.mp.ratur. rar,g' b.tw •• n 150 and 190°C, the r.t. of 

initial d.cr •••• in conductivity 1. r.lat1v.ly l.rg. and 

virtually id.ntical within thi ••• t. 

b. A .igmoidal d.cr •••• in conductivity with .ging tim. WI. 

ob •• rv.d for the 21,35, and 50°C i.oth.rm •• For th ••• 

aging t.mp.ratur •• , the ultimate value of the fully ag.d 

alloy was found to be 29.51 lACS. 

c. In contrast to the variation of electrical conductivity as a 

function of aging time at low temperature (below 50°C), the 

conductivity above 150°C increases with increasing isothermal 

aging temperature, after the initial decrease during the 

first five minutes of th~ aging process. The change in 

conductivity with aging time is extremely sluggish at 1~0 °c, 

exhibiting a nearly constant value for about 30 hours of 

aging. 

d. For unstret ... h3d specimens aged "t 170, 180, and 190°C, the 

most pronounced rate of increase in electric~l conductivity 

occurs at the highest aging temperature. The ultimate value 

of the electrical conductivity, ~ 40% lACS, ~dS attained after 

about ~O hours at 190°C, and after somewhat longer times at 

the lower isothermal holding temperatures. 

Figure 104 exhibits the variation of hardness as a function of 

aging time for the unstretched specimens at aging temperatures within 

the range of 150 and 190°C. In general, the rate of increase of 

hardness wi~h aging time increases as aging t9mperature increases. 

Overaging was observed at aging tempe'atures of 180 and 190°C, in the 

former case occurring at about 1,000 min and at approximLtely half t~at 
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v.~u •• t tAt high.r t.mp.r.tur.. With d.cr ••• ing .ging t •• p.r.tur ••• 

the p •• k v,lu. of h.rdn ••• tncr ••••••• nd occur. ~ft.r • long.r .gtng 

tim •. 

Figur •• lOS In~ 10& compa,·. the v.ri.tion of h.rdn •••• nd .1~ctr1c.l 

conductivity of un.tr.tch.d and .tr.tch.d .p.cim.n. at 190°C (Ftgur. 

lOS) and 1S0 °C (Ftgur. 1P6). Th. initi.l hardn ••• of the .tr.tch.d 

sp.cim~:. 1. ht~~'r by about 5 unit. of ~h. Rockw.ll B .c.l.. Th. 

chang. 111 hardn ••• with aging time 1. quit •• im1lar for both •• t •• and 

the initial diff.r.nc~ in herd~ ••• i. 'l~ent1ally pr ••• rv.d. In Figur. 

105, the .tr.tch.d sp.cimen •• how the lame r.spons. to ov.raging al the 

unstretched on.s. 

The initial electrical conductivity. before aging. of the 3 percent 

stretched specimens is lower by about 0.4% lACS than that of the 

unstretched specimens. However, at 190°C, (Figure 105). the rate of 

change of conductivity with aging time after about 100 hours is higher 

in the stretched specimens but the two curves begin to converge after 

an aging period of about 100 hours. 

At 150 °C (Figure 106), the initial shape of the conductivity 

curves for stretched and unstretched specimens is in oeneral accord 

with the curves shown in Figure 105, but at the lower tempereture the 

electrical conductivity values remain about the same over an aging span 

of 1000 fuinutes. 

The hardness values. before aging of the 3 percent stretchad and 

unstretched specimens, were 60 and 5S units on t~e Rockwell B scale, 

respectively. Thus, while higher initial values for hardness were 

obtained on stretched s~ecimens prior to aging, as ~omp~red to 

unstretched specimens, the opposite relationship was observed in elec­

tl'ical condijctiv1ty measurements. Table VII gives the hardness values 
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I" , attain.d .ft.r IUing It diff.r.nt t'MP.r.tur... It .hould b. not.d 

thlt cont1nuou. Ig1ng, .o •• what b.yond 6 hour., .t teMP.r.ture. o~ 150, 

170, and 180°C yi.,d.d high.r valu •• th.n tho •• t.bulat.d. Aft.r 16 

hour. of .ging at 150, 170, Ind 180°C, the av.r.g. h.rdn •••• v.'u •• of 

the un.tr.tch.d Ip.cim.n. w.r. found to b. 76, 78.5, .nd 82 HRS, r •• p.c· 

tiv.1y, indicating .n incr •• ling tr.nd in h.rdnftli y&lu •• with tim •. 

How.vlr, aft.r 30 houri of 'ging, w.ll b.yond tr,,, ov.raging point on 

thl 1DO and 190°C hoth.rml, the hardn ... vial U.I for the U!'"t~·.tch.d 

specimens aged at 150, 170, 180, and 190°C were found to b. 79, 80, 

77, and 71 HRB, respectively. The incr.ased values at 150 and 170°C 

reveal that overaging has not yet set in at these temperatures in the 

specified time period. Furthermore, it is noteworthy that the overaging 

phenomenon at 180 and 190°C present on the hardness isotherms was not 

at all apparent in t~e electrical conductivity. 

4. Discuss ion 

The initial decrease in conductivity of the alloy, during the 

first few minutes of the aging process at all isothermal holding tempera­

tures between 21 and 190°C (Figure 103) is apparently due to the 

formation of G.P.B. zones. The kinetics of their formation 1s governed 

by the mobility of Cu and Mg atoms which may be enhanced by the presence 

of quenched-in vacancies. The interaction is particularly strong with 

Mg atoms (47). Under favorable nucleation conditions, these zones 

rapid~y n~~leate in a homogeneous fashion throughout the lattice. The 

formation of zones is a thermally activated process; therefore, their 

rate of formation increases with increasing temperature and the hardness 

of the lattice increases accordingly (48). However ttle zones rapidly 

formed at temperatures above 100°C cannot persist in the presence of 
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More .tlble precipitlte. (35). Con.equently, they di •• olve blck into 

the .. trix by I diffulionll proce •• or becOMe nuclei for the fOMiltion 

of inteMildilte, ",.i-coherent, precipitlte. of well-defined cry.tlllo­

grlphic identity. 

The initill decrel.e I" the electricil c~nductfvity of the Illoy 

11 ,;."e IItlinly to the Ippelrlnce of zone. which Ire effective .cIUerer. 

0 1 electron •. The zone formltion proce ••• egreglte. the Cu and Mg 

I,toM', I. well .~ the frozen-in vlcancie., thus puri fying the Ilulltinum 

mltrix of potentill s~lttlrlr. of Illctrons. Howlvlr, the purification 

achievld by the formation of zone, i, not Gufficilnt to compensltl for 

the oppositl efflct, namely thl Iffictivi scattlring of Ilectrons by 

zones. This very mlchanism continul' to oplrate at 21, 35, and 50°C 

(Figure 103) thUS contributing to thl decrlase in maalurld ellctrical 

conductivity. The sigmoi~al behavior is suggestivi of I therffially 

acti\lated prociss. The logarithmic aging-timl dependence of the conduc­

tivity is qualitatively similar to thl kinlt'lcs in other terna"y aluminum 

alloys (35), except for the absence of I conductivity minimum in 2024 

aluminum alloy. The minimum is generally related to the appearance of 

critical-size precipitates (44). Noteworthy is the tact that the 

sigmoids (Figure 103) for 21, 35, and 50°C achieve an identical e1e~­

tricel conductivity val~e at long times. From the isothermal reaction 

kinetics, using these three isotherms, the activation energy of the 

procesr, can be calculated. The time to achieve 50 percent of the aging 

process is indicated by the intersection of the tangent and each sigmoid 

curve at the inflection point. In this manner, the aging time for 50 

percent reaction at 21,35, 4nd 50°C, are 135,25, and 7.5 minutes, 

respectively. Plotting 1000/T, where T 1s the absolute temperature of 
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the.e i.otherm., as a function of the aging ti ... ·or ,0 perc6nt reaction, 

yields a .traight l1ne wt. II .lope 11 proportional to an activation 

energy for the diffu.ional proce •• governing the kinetic. of for.ation 

of b~th G.P. and G.P.B. zone. in 2024 aluminum alloy at relatively low 

temperature.. Tha activation energy obtained bj thi. procedure i. 20 

kcal/mol. Formation of both zone. require. th~ ~imultaneou. tran.port 

of Cu and Mg atem. a. Cu-Mg-vacancy group. by a re.huffling proce •• 

(47). 

At temperature. above 100 °c, 1n~ermed1ate precipitate., rather 

than zones, beyin to appear with the approximate composition CuMgA1 2. 

They are predominantly S' with S along the grain boundaries, Figure 75. 

The precipitation p,~ocess o! the S' particles is thermally activated. 

The process is rather sluggish at 150 aC (Figure 103). Since the 

hardness increases at 150°C, though more slowly than at the higher 

temperatures, (Figure 104) it is conjectured that the ~ontribution to 

hardness is due to G.P.B. zones, rather than nucleation and growtt, uf 

S'. As aging temperature increases, the rate of increase in both conduc­

tivity and hardness increases in accordance with the r&tp. of formation 

of S' particles. The conductivity at 180 and 190°C levels off (not 

shown in Figure 103) at a value of about 40% lACS. This ~symptotic 

value was achieved after isothermal holding fot' 60 nours at. 180°C. 

Hardness, Figure 104 1 increases at a higher rate as aging temperature 

increases. However, the !90 and 180 aC isotherms reveal overaging 

after 5.5 and 16 hours of aging, respectively. 

The increase in eiectrical conductivity, af:~r the initial decrease, 

at aging above 150°C, can be explained in terms of purification of the 

alumi~um matrix. Above 150°C, G.P.B. zones desolve while S' and S 
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pr.c1p1t.t •• nucl •• t •• nd grow. In contr •• •. to Ion •• , the r.l.tiv.ly 

l.rg. plrt1cl •• , 51 ."d 5 pr.cip1t.t •• , Gc.tt.r .l.ctron. to • le ••• r 

degr... Th. n.t .ff.ct i •• n 1ncr •••• in conductivity. 

Pl •• tic d.fon..tion, induc.d by str.tch1ng the 2024 .lu.inu. .lloy 

prior to .g. h.rd.ning, i .... nt to have • b8r.afici.l .ff.ct on the 

ulti •• t ... ch.nic.l prop.rti... Th •• tretching d.for.at1on 1nduc ••• 

high di.loc.tion d.n.ity, hOMOg.n.ou.ly diltribut.d. Con •• qu.ntly, 

nucl •• tion of 51 pr.cipit.t •• c.n b. controll.d .nd Mid. pr.do.in.ntly 

homog.n.ou ••• w •• d •• on.tr··t.d in the TEM Itudi... Figur •• 105 .nd 

106 .how the .ff.ct of pl •• tic ~.fcrMlt1on on h.rdn.si .nd .1.ctr1c.l 

condu~t1v1ty of 2024 .1uminUM .lloy ag.d .t 190 .nd 150°C, r •• p.ctiv.ly. 

Th. additional hardn ••• 0' the .tr.tch.d .p.cim.n., .bout 5 unit. on 

the Rockwell B .cal., i. ~r ••• rv.d during the .ntir. pr.cipitation 

hMrd.ning proc.... This ind1c.t •• that the di.location •• re r.tain.d 

during the .ging proc.·.. A •• xp.ct.d, the incre ••• d popul.tion of 

di.loc.tion. in the lattic. of the str.tch.d ap.cimen. cau ••• the 

initi.l conductivity to b. low.r than in the unstr.tch.d on... Th. 

dislocations in the .tr.tch.d matrix PI Jvid. nucl.ation sit •• for 5' 

pr.cipitat.s, thus .nhancir.g the pr.ci~itation proces •. Figur. 105 

d.picts thi~ b.havior wh.r. it is slen that the curv. for electrical 

,onductivity for the stretch.d specimen cros.e. over the curve for the 

unstretch.d specimen at a tim, period of less th.n 100 minut.s. 

The re.ults of the present .tudy illustrate that in 2024 aluminum 

alloy a given property, such as hardness, can be associated with a wide 

range of eddy current conductivit1a, in the fina1 ag.d condition. The 

differing conductivities are a reflection of difference. in the micro· 

structure of the material. Hence, a single nondestructive measurement, 
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VIII. HEAT FLOW-PROPERTY PREDICTIONS 

A heat flow model developed earlier for 2219 aluminum alloy (1) 

was used here to calculate almost all conceivable heat flow conditions 

anticipated during the quench of 2024 aluminum a110y plates from the 

solutionizing temperature of 495°C. The calculated time-temperature 

data was then coupled to the C-curves established in section IV. The 

variations in properties across differ(~nt thickness plates for the 

worst and the best heat flow conditions were thus predicted. 

1. :ieat Flow Model 

The heat flow calculations carr1ad out for the various "pre-aging" 

treatments during cooling of a flat plate from an initial temperature 

of To were identical to thos~ previously described (1). They included 

the fa 11 owi ng: 

(a) Asymmetri: cooling of plates, where heat is withdrawn from 

oniy th€ top surface for all times. 

(b) Symmetric cooling of plates from both top and bottom followed 

by an abrupt variation in the heat transfer coefficient on th~ bottom 

surface of the plate, at different times. 

Time-temper"ature data from the computer program was then combined 

with equations (3) to (5) for the determination of C-curves using the 

values of the constants reported in Table V. The numerical procedure 

for the determination of a given property, e.g., yield strength, was as 

follows. Equation (4) is integrated, using the calculated time­

temperature data and equation (5) for a given positio~ in the plate, 

and the quantity K1XtX is determined. Using the values of am and 00 

from Table V, the value of a, in this case yield strength, is estab1ish~d. 

These computations are carried out numerically and simultaneously with 

the heat flow calculations. 
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Finally, for a given sequence (A or B) and a given heat treatment, 

the values of the constants K3, K4 and K5 are identical for all pro~erties 

in question, while om' 00 and K2 differ according to Table V. Under 

tlcse conditions, it follows from equations (3) to (5) that the quantity 

K2ln[(0-00)/(om-oo)] remains the same for all properties, e.g. hardness, 

tensile strength, and conductivity, for a given sequence. Thus, from 

the yield strength results one can readily obtain all the other properties 

without further heat flow calculations. 

The thermophysical properties used in the calculations were: 

ln~tial temperature To = 495°C 

Water temperature Tf = 40°C 

Thermal conductivity k = 1.2 W/cm K 

Thermal diffusivity a = 0.5 cm2/s 

Heat transfer coefficient lO h = 0.8 W/cm2K 

It w~s found that minimum strength properties predicted were 

always 8' ;, .at ions near the tot tom surface (wharf:' quench interruptions 

were induced) for the cooling conditions descrihed under (b) above. 

The data for the worst properties (e.g. lowest yield strength), were 

establ'jshed using a computer model and the trial and error methodology 

described earlier (1). 

The predicted "worst possible ca!ie" yield "trength data for both 

"pre-aged!1 sequences in the T351 and T851 condi t ions are plotted versus 

plate thickness in Figure 107. Noted on the same plot are the ASTM 

B209 specification~ (which are the same as those given in Military 

10 As before (1), this heat transfer coefficient was deduced from 
simulation of temperature-time data on the computer and comparison 
of same with actual data obtained in laboratory and commercial 
practice. This value approximates the norm~l condition during 
water quench from the solution heat treatment temperature. 
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Specifications QQ-A-250/4E and QQ-A-250/29A} for 2024 and 2124 aluminum 

alloys, respectively. The 2124 specifications are listed because the 

iron and silicon contents of the 0.635 cm (1/4 in.) thick plote, 0.27 wt.~ 

Fe and O. 11 wt.~ Si, are within the 2124 composition specificatfon. 

The minimum ~pecification for yield strength in th. T351 condition i5 

quite low and is ~ot available for the 2124 alloy 'In the T351 conditio~ 

or for the complete range of plate thicknesses (up to 6 inches) considered. 

The predictions show that under the "worst" heat flow conditions, the 

T851 plates subjected to a sequence B "pre-aging" treatment suffer 

significant deterioration in yield strength. T851 plates as thin &s 

1.2 em (1/2 in.) thick can fallout of specification. This behavior might 

be expec' .. ed when one considers the relative location of the "nose" of 

the C-curves in Figures 30 and 34. Unlike the T851, the min~rnum yield 

strengths for the T351 do not differ significantly for the A and B 

sequences. It should be noted, however, t~at the precision of the 1351 

predictions (compare the least squares deviations shown in Table V) is 

less than the precision of the T851 predictions so that the T351 results 

are less reliable than the T851 results. 

FiguY'e 108 i£ similar to Figure 107 except that the "worst possible 

case" ultimate tensil~ strength is ~hown as a function of plate thickness. 

It is sean that the T3F'B curve can be slightly below the minimum 

specificdtion for 2024-T351. Thus a plate of 1351 might, according to 

Figure 107, meet the yield strength specification yet fail the ultimate 

tensile strength specification. As for the yield strength, T851 plates 

as thin as 1.2 cm (1/2 in.) can fallout of specifi;ation for the Ilworst 

case ll of one-sided quen~h water flow interruption considered here. 
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In Figures 109 1nd 110, the "worst case" hardness and eddy-current 

conductivity respectivel.y, are plotted as a functi~n Qf plate thickness. 

Typical minimum hardness and allowable eddy-current conductivity ranges 

from current industrial practice are indicated on these two plots. It 

can be seen that, for the T351 temper, these results predict that for 

tltin plates the hardness and conductivity fall out of range while the 

yield strength and ultimate tensile strength are ~ith1n specification. 
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IX. CONCLUSIO~S 

1. AI-received plate 

1.1 A 15.24 cm (6 inch) thick 2024-T851 aluminum plate war. found 

to contain moderate variations in composition, hardness and 

eddy-current conductivity across its thickness. Macrose~rega­

tion present in the original ingot is responsible for the 

com~osftion variations. The variations in hardness are 

mainly due to changes in cooling rate across the plate during 

the quench from solution heat treatment and are probably 

influenced to some extent by inhomogeneous mechanical deforma­

tion juring proc~ssing. 

2. Solidification-Segregation Studies 

2.1 The phases present in cast 2024 aluminum alloy due tu 

solidification-micrrsegregation, dettirmined by metallography, 

electron diffraction and x-ray energy disp~rsive spectroscopy, 

were a-Al solid solution, e-CuA1 2, S-CuMgA1 2, Cu2FeA1 7, Mg2Si, 

and a-Al(Fe,M)Si where M in this case designates Cu and Mn. 

The formation of the latter two phases is a function of alloy 

composition and it is favored by higher cooling rates during 

solidification. 

2.2 MacrosegY'egation of copper and other alloying additions in DC 

CRst ingots of 2024 aluminum all~y cannot be completely 

eliminated by chill face scalping and subseq~~ent thermomechan­

ical treatment. Macrosegregation does remain in the finished 

plate product. However, good scalping practice should maintain 

compositions to within specified limits for 2024 with no 

deterioration in mechanical properties. 
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2.3 Po~ftfve and negative macrosegr.g~tion was obtained in a 

unidirectionally cast ingot. The negative segregation was 

intentionally introduced by an abrupt c;'oss-r.ect10n change in 

the ingot which resulted in excessive flow of segregated 

interdendritic liquid. 

2.4 Eddy-current conductivity of cast 2024 aluminum alloy is 

approximately inversely related to copper content in a complex 

manner. rhis fact complicates the relationship of conductivity 

to mechanical properties used for nondestructive evaluation 

of the finishea plate product. 

2.5 Because of large copper content variation near the chill face 

of DC cast ingots, surface hardness and eddy-current conduc­

tivity measurements may be very sensitive tc scalping depth 

in their ability to evaluate the condition of finished alloy 

plate. 

2.6 Based on a limited number of samples obtained from the labora­

tory cast ingot designed to cause macrosegregation, the 

hardness of properly heat treated 2024-T85l is below specifica­

tion when the average composition is below 3.1 wt.%Cu and 1.1 

wt.%Mg. 

3. C-Curves and Nondestructive Evaluation 

3.1 The C-curves developed in this report provide a good description 

of the effect of time-temperature quench history on the 

mechanical and NDE properties of 2024-T35l and 2024-T85l. 

3.2 Eddy-c~rrent conductivity alone cannot be used as ~ reliable 

predictor of the mechanical properties of 2024-T351 or 2024-

T8Sl. It must be combined with other information such as 
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hardne •• a"d yield .trength mea.ureM~nt3 on the •• me lot 

(same ing~t or plate) of m~ter1al. 

3.3 For any given thermomechan1cal treatment of 2024 aluminum 

allo~, there will be a l~rge amount of .catter :n the final 

mec~anical properties and NOE measure~er.ts, both within a 

given lot of material ftnd between different 10tJ of materials. 

This scatter 1. much greater for 2024-T351 than for 2024-T851. 

3.4 Comparison of tho C-curve. for 2024-T351, 2024-T851, and 

221S-T87~ show. that: (1) 2024-T851 i. more quench .ensit1v. 

than 2024-T351, (2) 2024-T851 1. mar •• enlit1ve to a B-sequence 

Gl.~'nch (1. e. "pre-ag1ng" with rc'heating of the material) than 

to an A-sequance quench (i.e. one in which no reheating 

occurs), and (3) both tempers of 2024 are ~ore quench sensitive 

than 2219-T87~. 

4. TEM Studies: Rftlationship Between Microstructure and Properties 

4.1 Constituent phase part.·'ellS in the 0.635 em thick 2024 aluminulIl 

alloy plate, in agreement w'1th other invtltigations, consist 

of two typesj large particles> 1 ~m in size retained from 

the c~st structure and small disperso1d particles ( 1 ~m. 

4.2 The majority 01 the large particles retained from th~ cast 

structure wert found tQ be the cubic pha.e a-Al(FeCuMn)S1. 

Other constituent phau particles would probably be pruent 

in 2024 aluminum alloy plate material having a composition 

different from that stud10d h( 't. 

4.3 Oisp.~so1d particles are not present in the as-cast ingot and 

are formud during thermomechanical processing treatments 

su~sequent to casting. These particles were determined by 
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means of ':.lectron diffraction and energy dispersIve x-ray 

analysis to be the orthorhombic phlse CUZMn3A1 ZO ' They are 

insoluble at the solution treatment temperature of 495°C. 

4.4 Quenching from the solution helt treatment temper4ture (495 °e) 

and holding at an intermediate temperature above approximately 

300°C (sequence A "pre-aging" treatment) results in tne 

heterogeneous nucleation and growth of e-CuA1 Z' S~CuMgA12 and 

5' phases at dispersoid particles and 5-CuMgA'2 precipitates 

at grain boundaries. 

1.5 An ice water quench from the solution heat treatment tempera­

ture followed by aging at a temperature between 300°C and 

495 °C (sequence B "pre-aging" treatment) leads to the formation 

of the 5' phase het~rogeneously nucleated at dispersoid 

particles and dislocations and S phase prec1pitates at grain 

boundAries. 

4.6 Prolonged "pre-aging" results in the disappearance of all 

phases initially induced by "pre-aging" with the exception of 

S-CuMgA1 2 which was apparently the equilibrium phase in the 

2024 aluminum alloy plate studied 

4.7 Precipitate phases formed during "pre-aging" or alternatively 

as a result of an abnormal or slow quench from 501 Ition heat 

treatment consume Cu and Mg solute, required during final 

aging for the development of zones and precipita'es, rebJlting 

in the degradation of properties. 

4.8 C-curves which indicate the degradation of properties due to 

an abnormal quench are also a measure ~f the amount and type 

of second phase constituents formed during quench nQ. 
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5. U'itruon1 c Chlrlcterizlt ion 

5.1 A parlbolic relltionlhfp WIS found between hardn"1 Ind 

SOL; wive velocity in 2024 aluminum alloy for T4, T351, Ind 

T8S1 tempers. Maximum hardn~ss (or yield Itrength) value. 

are related to an intermediate, well determin~d, range of 

v6lues of sound velocity for each temper. 

5.2 Ultrasonic attenuation decreases as hardness increases. A 

linear relationshi~ was found for the range of hardness 

values between 60 and 80 HRB. 

5.3 lI;>re-aging ll at 350°C for bO minutes yielr:1s the greatest 

reduction in hardness, and corresponding maxima in sound 

velocity and ultrasonic attenuation. 

6. fddy-Current Conductivity vs Hardn",' During Aging 

6.1 Eddy-current conductivity alld hardnlSs measurements during 

aging of 2024 aluminum alloy show that the two measurements 

are not a single valued function of one another. 

7. Heat Flow--Property Predictiuns 

7.1 Yield strength, ten~ile strength, hardness, and eddy-current 

conductivity for 2024-1351 and 2024-T851 were calcula~ed from 

the appropriate t· curves for interrupted (abnormal) cooling, 

in which the heat transfer coefficient at the bottom plate 

surface changes from the same value as ~t the top surface to 

a zero va 1 ue. The IIwors t case ll p"op4!rt i es occur near the 

bot~om surface of the plate. These calculations are subject 

to the uncertainties found in the dete~mination of the C-curve 

parameters. 
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7 2 for t.h(l "fS!'1 alloy st.'quence B IIpre-aQ1ng" treltlllent. give' 

considerably poor~r "worst 'Case" properties than !.equenct A 

for 611 pt'npftrt1es (y';eld strength, tensile strength, hardness, 

and ~ddy-current conductivity;. For exalllple, for a 5.08 cm 

(I , .) thick plah, T851 w seql'ltnce A hIS a "worst CISI" yield 

H" "h of 58.4 ks i cottpared with 38.4 ks i for Ule siquence 

B "pre-aging" treatment. UndQr the "worst" heat flow condition!', 

T851 plates subjected to sequence B "pr~-ag~ng" treatment 

suffer significant deterioration in properties and fall below 

ASTM specifications. 

7,3 ror the T351 alloy. there is little difference in yield 

strength. tefls 11 e stlength. and hardness between sequence A 

and B "pre-agi ng" treatl~ents. The sequence B "pre-agi ng" 

treatment gives higher values of the "worst case" conductivity. 

F:ven the "worst case" yield strength lies above minimum 

specifications and the "worst case" tensile strength lies 

abo",~ or only slightly below the minimum specifications. 
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TABLE I 

Equilibrium Partition Coefficients for 
Solidification of Primary a-Aluminum Phase 

k~ 
1 

Al-Cu 0.17 

Al-Mg 0.30 

Al-Mn 0.95 

Al-Fe 0.02 

Al-Sl 0.13 

103 



TABLE II 

Sol idHication "Path" for Al-Cu-Mg-Mn-Fe-Si 

fs wt% Cu wt% Mr I "-
wt% Mn wt% Fe wt% :>1 

----f--

0.0 4.00 1.40 0.65 0.20 0.10 

0.1 4.36 1. 51 0.65 0.22 0.10 

0.2 4.80 1.64 0.66 0.25 0.12 

0.3 5.36 1. 79 0.66 o.n 0.14 

0.4 r. ,,, 
• I '" 2.00 0.67 0.33 0.16 

0.5 7.12 2.27 0.68 0.39 0.2~ 

0.6 8.52 2.66 0.68 0.49 0.22 

0.7 10.8 3.25 0.69 0.65 0.30 

0.8 15.2 4.33 0.70 0.97 0.40 

0.85 19.3 5.28 0.72 1. 28 0.52 

0.90 27.0 7.01 0.73 1. 91 0.74 

0.91 29.3 7.55 0.73 2.12 0.81 
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TABLE I II 

Ph~ses Identified in As-Cast 2024 Aluminum Alloy Ingot.s by Sperry (3) 

a-Al Face Centered Cubic 

Mg 2Si Cubic 

CuA1 2 Tetragonal 

CuMgA1 2 Orthorhombic 

MnA1 6 Orthorhombic 

FeA1 3 Orthorhombic 

a-Al (Fe,Mn)S 1 Body Centered Cubic 

CuleA17 Tetragonal 
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TABLE IV 

Data for sequ.nce A and s.quence B h.at trea~ne l ts are u~~J to det.rm1ne 
C-curves for 2024-T851 and 2024-T351 in this report. The rang. between 
the solution heat treatment temperature (495·C) and 110·C WlS divided 
into intervals . First given is the list of the brack't~ng temperatures 
for these intervals. Next, sample numbers are given followed, on the 
same line, by the Rockwell B hardness, the conductivity in I lACS, the 
yield strrngth (0.2~ offset) in ks1, the ultimate tensile strength in ks1. 
the I elongation and the I reduction in area, respectively for the fully 
proc~ss~d alloy. For each sample, the following four lines give a list of 
times, in seconds ( ± 0.1 second), spent between each of the temperatures 
listed. respectively. For sEquence A alloys, the cooling cycle from the 
solution heat t"eatment temperature was perfot'med by a direct transfer from 
th~ solution heat treatment furnace to a salt bath and then to an ice water 
quench. For sequence B alloys, a quench into ice water from the solution 
hp.at treatment temperature was followed by an lmmed1ate transfer to a salt 
bath at elevated temperature and then by another ice water quench . 
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Figure 2. Calculated solidification "patnlt (AS) shown on the liquidus sllrface of the alLlllinURl rich cor~cr of 

the Al-Cu-Mg system. The second phase to fonn is CiJMgA1 2 by way of the monovari ant Eutectic 

L -+ o.-Al+CuMgA'2 along BC and solidification is cornlpleted at the ternary ~'-'.lte~t.ic L -+ o.-Al+CuMgA1 2+CuAl2 

at point C. 



Figare 3 .  Calculated s o l i d i f i c a t i o n  "pathn AB sl~own on the liqui'dus surface of 
the  aluminum r i c h  corner o f  the  AI-G[--Fe system. The second phase 
t o  form i s  ( F e . C u ) ( A l , ~ k ) ~  along BC 1~011owed by CuZFeA1, along CD. 

S o l i d i f i c a t i o n  i s  completed a t  point  i) by the ternary eutect ic  
L -+ a- A1 +Cu2FeA1 7+CuA1 2. 
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Figure 4. Aluminum rich alloys in the Al··Cu-Mg-Fe systE!JI showing relative percentages of Fe vs. Mg with the 

remainder coppel' (4). Regions represent solidifi~ation of a-Al in addition to the phase noted. 
After the formation of primary a-Al, the solidification continues along AS in Lhe region for 
(Fe,Cu)~Al,Cu)6 where L ~ a-Al+(Fe,Cu}(Al,Cu)6' At point B, the ternary peritectic reaction L + 

(Fe,Cu)(Al,Cu)6 ~ a-Al+Cu2FeA1 7 occurs thermodynamically but is kinetic,lly difficult. Fro. B to C 
with region for Cu2FeA1 7, solidification continues with L ~ a-Al+Cu7FeA1 7• Along CO solidification 
involves L ~ a-Al+Cu2FeA1 7+CuMgA1 2 and finally solidffication is completed at 0 by the quaternary 
eutectic L ~ a-Al+Cu7FeA1 7+CuMgA1 2+CuA1 2, 
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Figure 5. Aluminum rich alloys of the Al-Cu-Mg-Si systa.s showing relative 

percentages of Si vs. Ng with the remainder Cu (4). Regions r~present 
solidification of a-Al in addition to the phase noted. After 
solidification of primary a-Al, the solidification -path- AD 
lies in the region for L + a-Al+CuMgA1 2• 

Subsequently, the "path" BC moves along the tenary eutectic for 
L + a-Al~gA12+CuA12. Solidification is co.pleted at point C by 

the quarternary eutectic L -+ a-Al +CuMgA12+CuA12iMg~i . 
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Figure 6. Aluminum rich alloys of the Al-Cu-Fe-Si system showing relat;ve 
percentage of Fe vs. Si with the remainder copper (4). Regions 
represent solidification of a-Al in addition to the phase noted. 
After solidification of primary a-Al the solidification "pi!th" (AS) 
lies in the region for Cu 2FeA1 7 where L ~ a-Al+Cu 2FeA1 7. Solidification 

continues from B toward C along the ternary eutectic 
line L ~ a-Al+Cu 2FeA1 7+CuA1 2. Solidification may reach point 

C where L ~ a-Al+Cu 2FeA1 7+CuA1 2+Si. 



Figure 7. S' precipitates within borders of a-A1 dendrites in the laboratory 
cast ingot. 
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Figure 8. Interdendritic structure in laboratory cast ingot. The phases a-Al. 
e-CuA12 and S-CuMgA1 2 are identified. 
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Figure 9. Cu 2FeA1 7 interdendritic phase identified by electron diffraction 

and EOS in tne laboratory cast ingot. 
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Figure 10. S' precipitates within the a -A~ dendrites in the DC cast ingot. 
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Figure 11. 

a 

b 

Typical views of the interdendritic region of the DC cast ingot. 
(a) Optical view. The dark gray blade is Cu 2FeA1 7; the large 

rounded light gray phase is a-Al(Fe,M)Si and the fine ~utectic 
like structure consists of a.Al-CuMgAi 2+CuA1 2. (b) SEM view 

shows the Cu 2FeA1 7 phase. 
138 



Figure 12. Interdendritic eutectic structure iI, the IJC cast ingot. FOlJr phases 
are identified~ a -A1. O-r.uA1 2• S-CuMgA1 2 and M92Si. 
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(u) a -Al(Fe,M)Si phase in the indendritic region of the DC cast ingot. 
(b) X-ray ~ pectrum of -Al(Fe,M)Si polyhedrally shaped particle 
in Figure 13(a). 
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Figure 14. Location of various macrosegregation pr0fi1es taken from the 
trallsverse section of the DC cast ingot. 
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Figure 15. Hacr~segregation profile, average copper content versus distance fr~ the chill face in the short trlnsverse 

direction (position B1 in Figure 14) of the semi-continuous DC ca~t ingot 1f 2024 alumin~ alloy. The insert 
:;ho_c; the dustic:. change in, volllUlP fraction eutect1c which occurs near the chill face. 
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Figure 16. Optical micrographs showing microstructure of the DC cast 2024 
aluminum 4110y ingot at various distances (in cm) from the chill 
face. Keller's etch. 
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. Figu~e 17. SEM micrographs corresponding to Figure 16. 
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Figure 18. Macrosegregation profile, average copper content versus distance fruro the chill face in the short 

transverse direction (at threE different ~ositions Al, A2 and B1 in Figure 14) in the semi--continuo~ 
DC cast ingot of 2024 aluminum alloy. 
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Figure 19. Macrosegre~ation profile, average copper content versus distance from the ch;11 face 1n tne long transverse 
direction {posft10n LT in Figure 14} in the semi-contil'!luous DC cast in'1ot of 2024 ahlll1num alloy. 
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Figure 20. Macrosegregation profile, average copper and magnesium content versus 
distance from the bottom chill, in a unidirectionally solidifi~j 
reduced cross section laboratory ingot of 2024 aluminum alloy. 
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10 ~ I REDUCED CROSS SECTION LABORAliORY INGOT OF 2024 AL ALLOY 
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Figure 21. Measured temperature-time curves during solid'jfication of 10 to 1 
reduc~d cross-section ingot of 2024 a;luminum alloy obtained from 
thermocouples located at different distances from the bottom 
water-cooled chill. 
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Figure 22. Measured secondary dendrite arm spacings versus local solidification ,ime in unidirectionally solidified 
ingot of 2024 aluminum alloy. 
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Figure 23. Average copper content and electrical conductivity versus 
distance from the bottom chill. in the as-cast unid1rectionally 
solidified reduced cross-section laboratory ingot of 2024 
aluminllll alloy. 
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Figure 24. Hardness aft~r thermomechani~al treatment to the T851 condition 
and copper content verSU$ distance from the: Jtt(JII chill in the 
unidirectionally cast reduced cross-section laboratory ingot. 
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SOLJTION HEAT TREATMENT 
490-C (923-F) TO MlrJ 

SOLUTION HEAT TREATMENT 
495-C (923-F) 70 MIN 

ICE WATER 
QUENCH 

SALT BATH 
PRE -AGING 

ICE 
WAfER QUENCH 

TIME 

SALT BATH 
PRE-AGING 

ICE WATER 
QUENCH 

TIME 

SEQUENCE A 

AGINQ TREATMENT 
190-C (374-F) 12HR-T801 

ROOM TEMPERATURE - T301 

QUENCH 

SEQUE~CE B 

2 1/4 -I. 
STRETCH 

AGING TREATMENT 
190-C (374-F) 12 HR- T801 
ROOM TEMPERA'!'URE-' 301 

.----. 

QUENCH 

Figure ~5. Schematic representation of the thermomechanical treatment sequences 
given the 2024-T851 and 2024-T35l aluminum alloys. 
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Figure 26. Schematic of tensile test specimen. Dimensions are in mm. 
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Figur~ 27. Conductivity after machining ap,proxiaately 0.5 _ tro. each 

surface of the thenuomechanically processed 2024-1851 and 
2024-1351 samples vs. the conduct:vity .easured before the 
aachining operation. The solid line is a linear least squares 
fit and the dashed 1 ines rq>res,ent the scatter band 
(approxillc1tel) 95~ confidence ll~vel). 
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Figure 28. RocKwell B hardne~s measured after machining approxiaately u.5 III: 

from each surface of the thermome:hanical1y processed 2024-T251 and 
2024-T3S1 samples vs. the hardness measured before the acnining 
operation. The solid line is a linear leas~ sq~ares fit and the 
d~shed 1 ines represent the scattelr ba"d (approxillatcly 951 confidence 
level) . 
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Figure 29. (a) Ultllllate tensile strength (-curves for 2024-1'851 sequence A 
alloys. The curves give the critical ti.es for obtaining the 
indicated tensile strength for an isothermal sequence A type 
Hpre-agingH heat treatltetlt and a subsequent aging to the 1'851 taper. 
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Figure 29. (b) Measured values of the ultimate tensile strength plotted against 

the values calculated u~in~ the C-curve for 2024-T85l sequence A. The 
solid line -ls a line of ur .. - slope and the dashed H'Ie is the scatter 
band (approximately 95 pt>~c~rt confll:lence level). The s~bols indicate 
the average temperature aurir:~ the "Ipre-aging- tre4t.ent: a~~2risk­
direct quench, plus sign - 200 to 250°C, x - 250 to 300°C, circle -
300 to 350°C, square - 350 to 400°C, triangle - 400 to 450°C. 
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Figure 30. (a) Yield strength (0.2 percent offset) C-curves for 2024-T851 
~equence A alloy~. The curves give the critical times for Jbtaini"s 
the ir.d1cated yiel~ strengt~ for an isothermal seq~ence A type 
"pre-aging- heat trecttment and a s.ubsequent aging to the T851 tE!lllper. 
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FigUt'e 30. (0) MeaslJred values of the yield strength plotted versus values 
calculat~d using the yield strength C-curve for 2024-T851 sequence A. 
The solid line is a line of unit slope and the dashed lines are the 
scatter band (approximately 95 percent ~onf1dence lev~l). 
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Figu~e 31. (a) Hardness C-curves for 2024-T851 sequence A alloys. The curves 
give the critical times for obtaining the indicated Rockwell B 
hardness for an isothenna1 sequence A type "pre-aging" heat 
treatment and a subsequent aging to the T851 temper. 
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Figure 31. (b) Measured values of the RockweH B hardness plotted vs. val- <'s 
calculated u~ing the hardness C-cul-ve for 2024-T851 seGuence A. 
The solid line is a line of unit slope anQ the dashed lines are the 
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Figure 32. (a) Conductivity C-curves for 2024-T85l sequence A alloys. The 
curves give the critical times for obtaining the indicated conductivity 
for an i sothenna"1 sequence A type "pre-ag; ng" heat treatment and 
a subsequent aging to the T85l temper. 
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Figure 3£. (b) Measured ialues of the conductivity p10tted vs. values 
calculated using the 2024-T851 sequence A ~onductivity C-curve. 
The solid line is a line of unit slope and the aashed lines are 
the :catter band (approximately 95 percent confidence level). 
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Figure 33. (a) Ultimate tensile strength C-cl.lrves for 2024-T851 seque.lce B 
alloys. The curves give the critical times for obtaining the indicated 
tensile strength for an isothennal sequence B type "pre-aging" heat 
treatment and a subsequent aging to the T85l temper. 
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Figure 33. (~) Measured values of the ultimate tensile stren~th plotteo against 
the values calculated using the C-curve for 2024-T85l sequence B. 
Th~ solid line is a line of unit slope and the dashed line ;s the 
scatter band (approximately 95 percent confidence level). 
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Figure 34. (a) Yield strength (0.2 p::rceflt offset) C-c..urves for 2024-T851 
sequence B alloys. The curies g"ive the critical time~ for ob~in1ng 
the indicated yield strength for an isothermal sequence B type 
"pre-aging" heat treatment and a subsequent aging to the T851 temper. 



88 

" 
7. 

E 
A 
S S8 U 
R 
E - D 0\ 58 " 
K 
5 
I 

48 

38 

28 

* 
+ 
x 
0 

ftEASURED US CALCULATED YI[lD STRE"G'~ 2824-T851 SEQ 8 0 

. 
-1 ---- '-' '-' 

- ," 

~ '-' 

- ,. "III" ) 
- '-' ~ '-' - ,'-' 

" ~ . , 
- .)Ir"'~ 7 

, ... 
'" - ,1i 

,-,' " 

~ 
'" .. 

,-,' ,-,' .. , 
" '-'- , 

,.- ' 

~ 
, .. ,-,'-' , 

.. " 
,-,' 

'-' 
,-,' / 

, .. , 
,,~ .. " , 

-' 
f Y 

, 
~ 

, 
-1 " r " ... 

" -1 " 
" 

.' ... 
.. 
.. 
.. 

I I I 1 I 1 I I • I I I , , I r r T • 
38 35 45 58 55 65 78 

CALCULATED K51 
r~;~re 34. (b) Measured values of the yie'1 str'ength plotted vs. values 

calculated using the yield strength C-~urve for 2024-T85l sequence B. 
The solid line is a line of unit slopE~ and the dashed lines are th~ 
scatter band (approximately 95 percent. confidence level). 
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Figure 35. (a) Hardness C-curves for 2024-T85l sequence B alloys. The curves 
give the critical times for obtaining the indicated Rockwell B 
hardness for an isothennal sequence B type "pre-aging" heat treatment 
and a subsequent agi n9 to the T85l temper. 
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Figure 36. (a) Conductivity C-curves for 2024-TI351 seq~ .lce B alloys. The curves 
give the critical times for obtai~ing the indicated c01ductivlty for 
an isothennal sequence B type "pre-ag'lngtl heat treatrne~t and a 
subsequent aging to the TI351 tempe~. 
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Figure 36. (b) Measured values of the conductivity plotted vs. values calc 1-
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sequence B alloys. The curves give the critical times for obtaining 
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Figure 43. (a) Hardness C-curves for 2024-T351 sequence B alloys. The cu~ves give 
the critical times for obtaining the indicated Rockwe11 B hardness 
for an isothennal sequence B type "pre-aging" ~,.:at treatment and a 
subsequent aging to the T35l temper. 



-' 
CD 
U'I 

" E 
A 
S 
U 
R 
E 
D 

H 
R 
8 

"EASURED US C!\LCULATE') HARDHES~S 2824-T351 SEQ B 

88 jl------+---- -+-----.~---+~:..'-. H' ..... + ........ -~ , , .,' 
,,'. 

" 

" 

75 

.. 
..-
x 
0 
Q 

Figure 43. (b) Measured values of the Rockwell B ,ardness plotted vs. values 
calculated using the hardness C-cur've for 2024-T35l sequel1ce B. The 
sclid line 1S a line of unit slope .and the dashed lines are the 
scatter cand (approximately 95 percl~nt confidence lev€l). 

= 200 - 250°C 
= 250 - )OO°C 
= 300 - 350°C 
= 350 - 4OQO( 
-:: 400 - 450°C 



T 
E 
PI 
P 
E 
R 
A 
T 
U 

..... R 
co E m 

D 
E 
G 

C 

CONDUCTIVITY C-CURVES 2024-T351 SEQ B 

450 

400 

350 

300 

250 

200 

CRITICAL TIPlE_ SEC 

Figure 44. (a) Conductivity C-curves for 2024-1351 sequence B alloys. The curves 
give the critical times for obtaining the indicated conductivity 
for an is .. thermal sequence B type "pre-aging" heat treatment and a 
subsequent aging to the T351 temper. 
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figure 50. Comparison of yield strength vs. conductivity data for 2024-T85l with 
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Figure 51. Comparison of hardness vs. conductivity data for 2024-T85l with 
the correlations predicted by the C-curves. The dashed lines are 
the scatter band (~95% confidence l~vel) obtained from a least 
squares quadratic fit to the data. The solid and dotted lines were 
calculated from the C-curves. 
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Figure 53. Comparison uf ultimate tensile strength vs. hardness data for 
2024-T35l with the correlations predicted by the C-curves. The 
dashed lines are the scatter band (~95% confidence level} obtained 
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Figure 56. Co.:1parison of yield strength vs. conductivity data for 2024-T351 

with correlations predicted by the C-curves. The dashed lines are 
the scatter band (~95% confidence level) obtained from a least 
squares quadratic fit to the data. The solid and dotted lfnes 
were calculated from the C-curves. 
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Figure 57. Comparison of hardness vs. conductivity data for·2024-T35l with 
the correlations predicted by the C-curves. The dashed lines 
are the scatter band (~95% confidence level) oatained from a 
least squares quadratic fit to the data. The solid and dotted 
lines were calculated from the C-curves. 
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dashed lines, representing a least squares mean and the lower 
90 percent confidence level, respectively, from Ref. 12). 
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data generated with the data from soft 2124-T851 reported by Petrak 
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Figure 62. Comparison of the ultimate tensile strength vs. hardness data 
generated for 2024-T351 in this report with data from soft 
2024-T351 as r~ported by Petrak and Gunderson (heavy solid and 
dasned lines, representing a least squares mean and the lower 
90 percent confidence'level, respectively, from Ref. 12). 
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Figu.~ 63. Comparison of the ultimate tensile strength vs. conductivity 
data g~nerated for 2024-T351 in this report with data from 
soft 2024-T351 as reported by Petrak and Gunderson (heavy solid 
and dashed lines, representing a least squares mean and the lower 
90 percent confidence 1~ve1, respectively, from Ref. ·,2). 
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Figure 65. Comparison ~f yield strength (0.2~ offset) vs. conductivity 
data generated for 2024-T35l in this report with data from soft 
2024-T351 as reported by Petrak and Gunderson (heavy solid and 
dashed lines, representing a least squares mean and the lower 
90 percent confidence level, respectively, from Ref. 12). 
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figure 68. (a) ~-A1(Fe,M)Si pha~e in the 0.635 em thick plate. 
(b) Electron diffraction pattern from (a). [112] lone. 



N 

N 

'.' .. : . : .. .l~··o ,~..,..· ~ ! ... i ·1 :':..,.:r: " 'I 
; .,.. : - r It') .... • • ,,4'1 •. ' • ; -'.' . \ ,,~ . 

\ 

0 { - . ~ .. f ., . .. '! .. .. \ ' .-
« ... " '( '0. -., fI ,,: • ',. ,'. '),.. • ,:'" 

'IIIt. .... r:l·~ ..• .• . • ··/~ I . "'~ . .. .• '0 . ~ t -. . 0 

.. . . 
• 

••••• , ... 
•• • 

• • • • l-
....l t ' ~""f " 'r "" . , . t • . e e" . 

.. eI> ....... '~. "I. :. ...... . .. " r " ' . 
' • • t;oo ' ~ , ' ,,- .. " "'" • • •••• ' . .. • • 

. 1' 
~ if, 

:, ... ; .. ~ . 
.... I. .. " ."". .. -~. ". ' .. ~ , r.: ~· 'f '. . ..• .. ~ .. ~ .. 

1 • . ' .,. . ~ ..... . ~ .. 

•': '!','4\.- r.!. "~ 4I~~. : .... ~ ... ~ 
,_ ":. . ... . ,; - ,- ... A .... Y,\ . ..r" : . ~ ', .. - \ , f.. '. . .. :-..j': ...... - : .• 

: .... ~ " : • ,:.- ' .I~ .~.,' ;. l ... ·. _ 
''', '- . . _ ~~.;. : .... i.~.,,· ­
:'-' " .: .. ' . : :r· • ., . ' .. •• J ' ..". 
, - , \ ' ., .... \ ~ "" I • • ' ''' :J.~ 

I,' \ ~ • • ~.:" : .... ; .: ~~ .• 

.. 

' .. . . ~. ..' '4 
. , .. . . ':':','" /(/:'~: 

. ..' . ... 'i '. ,. 
• i ~ • . 

. ' .. .. ........ ,. 
' . . ~ .. ~. ':: .. : . t#~ . 

.. : ',f. ::r.,. . .. , ,: ~ ... '\/: 
' . .. ~: 

.. ". '.,;r-#,fItr . 
J < .. _: . .. 

-' 
'. 0 ' . 

• 

~ :-y. '~ I. , .. 

~ ~.~: "0: " . 
, '41 ' . , ," , ., '. ' 
. , .... ',~ .~' ...: .. 
•• • _ .J p • : ,. ., , : :, , : ., _. . , .. 

. : ... ~ .) .. ' 
.... , . ,' .. " ,-' 

. ~.''''''''' ''''.' ', .J.~ ' ., 
. :-.: ~:~ .. . , -' ... ~ . -.. -
•. ',. i'- ,,, 

.. " ~4';" " .-'i · .: 

A.. • ... - . • , • •• • , , 
• 

If'. ,. • • .. . 
" . • J: . • • • \ , 

. ~ • • • •• • t •• 
· i\. 

• • • • • 
• .. • • 
• • • . , .- • .- • , • • 

• • , ' . ~. • .. \ .' • 
11/1. • • 

V 

• • • • • • , 
• J . 

• Ir . ' 
4. 0' " ...... 

, 

• .0 •. 5 ... in- • ... . ··0 .. " .. . .. .. .. ... _' . :~~; . .... ·· ... 0 .. ..... " ." 
o .. U ' " '.~ . .. ~ ,- . 

Figure 69. Oispersoid p~rticles in directly quenched specimen (T4 condltion). 
(a) Note regions free of dispersoid particles in vicinity of 
larger constituent particles, (b) Also note very small precipitates 
present at grain boundaries. 
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Figure 70. (a) Cu 2Mn 3A1 20 disperso1d part1cle. 

(b) Microdiffraction pattern from (a). Dispersoid particle zone 
is [020J~ a-Al matrix zone is [llOJ. Matrix spots identified by 
arrows. 
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Figure 71. Helical dislocations in directly quenched specimen (T4 condition). 
All disiocations visible have same Burgers vector, 1/2[110]. 
Projection of Burgers vector is parallel to [200]. Weak beam 

dark field image, 9/39, 9 = 200. 
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Figure 72. Structure after processing to T351 condition. Direct quench. 
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Figure 73. (a) Structure after proces3ing to T851 condition. Direct quench. 
(b) Electron diffraction pattern [001] zone. 
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(c) Indexed pattern corresponding to (b). Reflections from eight 
S phase variants are present. Spots not shown arise from double 
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Figure 74. (a-f) Microstructures of specimens given sequence A "pre-aging" 
treatments (low magnification). Region of light contrast around 
precipitate helps identify it as the S phase. Light contrast is a 
result of preferential thinning during foil preparation. 
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F~gure 76. (a) S phase precipitate at grain boundary in specimen after 
sequence A "pre-aging" treatment at 4000( for SOOs. 
(b) Electron diffraction pattern from (a). Orienlat -:on 
relationship with one grain obeys [001] . 11[001] ~ [010] ' 11 [021] ~ s ~ S a 
[001] • II [012]. Precipitate and matrix zones are both [100]. s , 
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Figure 77. (a) S phase precipitate within grain. Same specimen as Figure 76. 
(b) Electron diffraction pattern from (a). Orientation 
relationship is [100]s, II [100] 1l ; [010]s' 1 1 [021] (l ; [OO1]s, I[0121 ;}. 
Precipitat~ and matrix zones are [100]. 



Figure 78. (a) B phase precipitate. Sequence A "pre-aged" 400°C for 500s. 
(b) Electron diffraction pattern from (a). Matrix zone is [211J 
and e zone is [001]. 
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Figure 79. o-phase precipitate with disrersoid particle at center. Precipitate 
lies on [111] plane which is parallel to piane of figure. Sequence A 

a 
"pre-aged" at 350°C for 20s. 
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Figure 80. Bright field (a) and Dark field (b) micrographs showing 0 and 5' 
precipitates at dispersoid particles and homogeneously distributed 
5' precipitates in matrix Note that regions surrounding dispersoid 
particle-precipitate clus ~ ers are free of homrgeneously distribu ted 
5'. 5equence A "pre-aged" 250°C for 4LII)S. 
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Figure 81. Schematic representation of nucleation curves for sequence A 
IIpre-agingll treatment. 
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(a-f) Microstructures of specimens given sequence B "!)re-aging" 
treatments (low mdgnification). 
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Figure 83. (a-f) Same as Figure 82 but at higher magnification. 
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Figure 84. Dark field micrograph showing large heterogeneously nucleated S' 
precipites at dispersoid particles and at dislocations (bands of 
adjacent precipitates). Homogeneously distributed precipitates 
are present in matrix e,:cept in vicinity of large heterogeneously 
nucleated precipitate5. Sequence B "pre-ilged" at 300°C for 20s. 
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