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ABS.__ TRACT

Fluid signatures in the MHD approximatio .r at rotational discontinuities
(RD) of finite YAdth called rotational shear layers (RSL) are examined for

`	 general flow and magnetic geometries.	 This is necessary to obtain an overview

of the fluid signatures of RSL's as well as their frequency of occurrence at

general locations on a curved magnetopause. 	 RSL's at the magnetopause are

necessary for the MHD description of an open magnetosphere.	 Analytical and

geometrical arguments illustrate that the fluid speed can either go up or down

across an RSL for a fixed normal mass flux. 	 The speed profile may or may not

be monotonic depending on the boundary conditions. 	 The flow velocity may or

may not he field aligned or "jetting" (V • B u 1) as a result of traversing the
RSL. In general, significant "convection" is expected in the layer. 	 The

observable signatures of (MHD) RSL's depend on 7 (boundary condition)

parameters:	 (1) the mass density, (2-5): the incident normal and transverse

components of the magnetic field and fluid velocity, ( h):	 the angle a between

:the incident tangential flow velocity and tangential magnetic field., and M:
the size of the magnetic angular rotation implemented by the layer A^.	 The

geometry Petschek, Levy and Siscoe (PLS) have considered is a special case of

this general study when the tangential fluid velocity vanishes and the Is

magnetic rotation is maximal.	 This general survey illustrates the singuLpar

character of the PLS geometry and that the predictions of "jetting" and
monotonic speed increases through the layer may not be used as general

signatures of RSL's at general places along the magnetopause mere the fluid ^t

flow, A^ and a are generally all different from the PLS regime.	 Accordingly,
the lack of observed speed increases across the magnetopause can no longer be

used by itself to infer that the magnetopause is Locally closed.	 Of the
F

spectrum of MHD RSL's that are possible the	 'accelerating" ones require x

special boundary conditions most generally occurring near the nose of the

magnetopause, the "decelerating" RSL's become increasingly more probable at s

magnetopause crossin s removed' g	 From the sub.-solar point.	 Documented RSL's
144

have been located within the spectrum of possible signatures; the rareness of F°

reported RSL's is attributed to an overly narrow view of their definitive

signatures. "'''l {
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1. INTRODUCTION

For many years searches have been conducted at the earth's magnetopause

to determine the topological nature of the boundar y--whether it was open or

closed. The question was initiall y investigated with high resolution magnetic
field data; the approach attempted to determine whether the temporal records

provided by spaceborne magnetometers were consistent with having traversed a
rotational or tangential discontinuity (Sonnerup and Cahill 1968, Sonnerup and
Ledley 1974, 1979)• These tests were motivated by the theoretical model of
Levy et al. (1464) which requires rotational discontinuity surfaces to stand
at the magnetopause on either side of the reconnector/separator line.

Penetration of these surfaces was considered more likely than traversals of

the reconnection line. The existence of rotational discontinuities at the

magnetopause would permit directed normal mass fluxes to enter an "open"

magnetosphere without the benefit of diffusion mechanisms. The difficulties

in identifying rotational discontinuities (RD I s) from magnetic records alone
is well known; however, this method did find swe defensible RD magnetopause

crossings. In recent years plasma. magnetic Sind electric field data have been
examined to answer this fundamental question abou% the nature of the interface

between the earth's magnetic cavity and the magnetosheath. In a survey of two

years of ISEE data Paschmann et al. (1979) and Sonnerup et al. (1981) reported
the detection of 12 magnetopause crossings that were consistent with RD

signatures of the reconnection models of Levy et al. (1964). These events
occurred primarily near the nose of the magnetopause and had speed increases

across them. Recently, Aggson et al. (1983a) have confirmed the rotational
character of the Sonnerup et al. (1981) events using electric and magnetic

field data. Using this same technique Agg son et al. (1983b) have also
reported a rotational magnetopause traversal in which the observed fluid speed

decreased; they pointed out that this behavior was permitted for the

geometrical circumstances encountered under the MHD description of RD's as

outlined, for example, by de Hoffman and Teller (1950) and mentioned by
Roederer (1977) .

It is a well known property (Walen, 1944) for a rotational discontinuity
(RD) , rotational shear layer (RSL) , or a sharply crested finite amplitude

Alfven wave that the fluctuation vector of the fluid, AV, is proportional to

3
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the fluctuation vector of the magnetic field, AB,

AV _ aAB.	 0 )

The constant of proportionality is defined as a = VN/ BN where VN and B N are

the normal flow velocity and magnetic field in the frame of the RD. This is a
deceptively simple relationship. Because (1) is a vector difference equation

it is difficult to foresee the general relationship between the directly
observable velocity and magnetic field that its quadrature permits in the

presence of shear layers that satisfy (1) ,

4,

i` if the curved magnetopause were generally an RSL the plasma velocity on
the magnetosheath side of the RSL would be oblique to the normal of the RSL.
This geometry is significantly different from the situation at the nose where

the sheath flow velocity is very nearly along the RSL normal as assumed in the
Levy et al. model. In the past it has been tacitly assumed that the
signatures of an RSL away from the nose do not differ significantly from those

expected at the nose where the Levy et al. model predicts field aligned speed
enhancements relative to the magretosheath across relational discontinuities

(RSL's) standing in the flow on either side of the separator. The absence of
these signatures led Heikkila (1975) to question the importance of

reconnection at the magnetopause. On the basis of these unfulfilled

expectations it has been concluded by Haerendel et al. (1978) that large

portions of the magnetopause are "closed" to the direct normal mass flux

permitted by an RD/RSL. The properties of an RSL for general incident flows

tangential to the magnetopause must be explored before we can confidently
outline the expected plasma signatures of an RSL at an arbitrary position
along the magnetopause and accept Haerendel et al's, conclusion.

In addition, the maximal rotation of the magnetic field (^ -n) assumed in

the Levy et al. model can only occur at restricted locations on the

magnetopause as outlined by Crooker ( 1979). Contrary to the assumption of
Levy et al, -(1:964), even these 1'bcales will always have substantial tangential
sheath velocities, VT ► RSL signatures for finite VT should be anticipated

there. If RSL's are present at other places on the magnetopause we must

expect the more general signatures that accompany ^<n and VT>0.

4

a

4	 }

1

i;
I	 E	 —.

^s

i

I
}



In this paper the general fluid signatures for a rotational shear layer

with assumed isotropic pressure are examined. We assume these layers are

locally planar and of sufficient thickness to ignore finite Larmor corrections

to MHD which are nec^qssary for very thin layers. This approach is similar in

spirit to the level of tests described by Sonnerup et al. (1981). Of interest

are: 1) the characteristic .signatures of RSL's if resolved in the fluid flow

in terms of characteristic angles between B and V through the layer, 2) the

speed profiles that are compatible with traversing a rotational shear layer,

and 3) the physical parameters that determine the RSL characteristics. Does,

for example, a decrease in the fluid speed contradict the rotational character

(i.e. openess) of the layer? Must the speed profile by monotonic? Is jetting

a diagnostic of an RSL? What would be the signatures of a partial passage in

and out of a shear layer? Are flux transfer events (FTE's, Russell and Elphic

(1979)) compatible with such behavior?

2. GEOMETRICAL CONSTRUCTIONS

If a time stationary locally planar shear layer is rotational then the

normal components of the magnetic field and flow, B  and V N , respectively, as

well as the mass density P are non-zero and conserved under the assumption of

isotropic pressure. Further V  = 1BN/Y' 5 _vP . Equation 1 in this geometry

merely restates the boundary condition that the electric field tangential to

the wave front is conserved through the layer. The geometric content of (1)

is that the changes to the initial Bo and Vo are always parallel or

anti-parallel through the layer. Given the conserved quantities, equation (1)

is equivalent to a similar relationship between the transverse components

(subscript T) of B and V which are perpendicular to the wave normal:

AVT = aABT .
	 (2)

Equation (2) applies only to planar RSL's, since the general MHD result (1)

admits solutions that are not rotations confined to a plane (cf. Whang 1973,

Goldstein et al. 1974, Barnes and Hollweg , ( 1 974) and Behannon and Burlaga 1978

(1981)).

i
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1'^ is well known in an isotropic plasma that a = t1&"47rp. If we absorb the
mr,Wulus of alpha into a newly defined vector 6 defined by

K e ^ ^Br
	

(3)
V 4irp

which has the units of velocity, the magnetic and velocity changes of equation

(2) may be examined graphically in terms of the equivalent statemer;t

AV T = tAS T .	 (3b)

All of the essential geometry of equations (2) or (3b) can be viewed in

the plane perpendicular to the normal, n. In Figure 1 the general content of

this relation is constructed as follows. The incident sT is placed along the
X axis, OA; a semi-circle ABD (dotted) is constructed with sT on a bounding
diameter (the sense of the polarization of the rotation starting at sT is

dictated by either electrons (for B N<0 clockwise-downward) or protons (for

BB <O counter clockwise-upward). According to Sonnerur, and Cahill (1953) the
electron polarization, ador .ed here, pppeaYs to be preferred at the earth's
magnetopause. From the origin the vector V T° defined by

Al	 A ^
O 

VT	 V . (1-nn) = V - (V • n) n,

is constructed which is generally non-zero at the magnetopause and oriented at

a counter-clockwise angle e = sin
-1 [(ST x V T°) n] to sT Thr ough VT° is

constructed a line A I D ? parallel to S T , A portiGjn of this line is used as a

diameter of another semi-circle A r B I D r of radius IsT 1 with its center at Of

displaced opposite to (along) ST by a distance IS T0 1 and having the same (or

opposite) concavity depending on whether AV is +( - )As in equation (3b).VT°
is related to the frame velocity U° necessary to achieve the de Hoffman-Teller

(1950) description (E = 0)of the rotation exploited by Aggson et al. (1983a,b)

by the relation Uo =^V T° - RN.T = V_°- R Ns °, where R N_ VN ABN34rp) which is t1

for an RSL. For clarity the U° vector has been omitted but would be given by
t;

the ray 00 1 in Figures 1-3. By this construction all chords AVTi(ASTi)

;passing through a T0 ,(V T0 ) subtend equal angles of the respective semi-circles,

are either parallel (anti-parallel) and of equal length, and thus implement

equations 1, Db.
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The concrete example of Figure 1 illustrate4 the important dimensionless

variables that affect the geometry and the signature of an RSL in the general

situation: the magnetic rotation angle ^, the angle E between RT and V T o,

and the ratio of speeds defined as RT = (V^,°^/^s^ ^. Physically, this ratio
t

is very nearly the Alfven Mach number of the tangential flow provided

( SNP "141.	 We loosely refer to this ratio as the "tangential Mach number".
If the magnetic rotation A^ is not maximal (7r), consider	 -^ 1 <^*, for the

choice of a and R 	 of Figure 1 the fluid speed will go down across an RSL in
the presence of a normal mass flux. 	 We will show below that this
non-monotonic speed property with angle ^ is a general property of R 1,VO RSLrs.

` Figure .2 illustrates the same type construction but with RT exactly zero,

which cot-responds to the usually studied normal incident geometry of Levy et

al. (1964) and	 Petschek (1966).	 In this example, Al	 (^) a V T (¢)	 and it is

clear that, for any finite magnetic rotation, the fluid speed increases. Also
^,	 I clear from this construction is that 1,j,(7r) is parallel to s T(Tr), a property

often referred to as "Jetting." 	 We will show below that this speed and
fjetting behavior represents a singular regime in parameter space when R T is

;f precisely zero, the rotation is maximal and the layers have zero thickness.
fti

We will show below that if R T is none-zero there always exists e,^ combinations

ii
for which the speed jump across the RSL is negative. 	 To prove this assertion

we need some analysis.

tf

i
3. ANALYSIS

'	 E

r To achieve a general predictive capability of an RSL in general flow
E

geometry we define a :artesian system in the plane orthogonal to the current

shut normal.	 There is no loss in generality to place the incident scaled
transverse magnetic vector, 0 

T 
°, along the x axis and I

T 
° displaced in a— 

J counter-clockwise manner to it by an angle a about the (sheath sensed)
magnetopause normal n, which is taken as the z axis. 	 Assuming a local
one-dimensional shear layer, all the functions depend on z only. 	 Therefore,

i the magnetic and flow fields may be written as

7
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/BT° cos O{ z)`	 rVT° cos e + AV X (z)

B( z)	 B o sin(	 V(z) =	 Vn^o sirs	 + AVy ( z)
rTr

Bz	 Vz

while the initial vectors outside the shear layer prior to traversal of the

rotation of B are given by

BTo	 f1V T 0 cos e

Bo = 0	 and	 V  = VT sin ew

B 	 VN

A	 A	 AA	 AA

where B N a Bo n; VN = VO. n;BT	 ;PT : (T-nn) •B; VTo = (I-nn 	 and VTo

The scaled speed ratio v is defined as IywI /)V(¢=0)I. Its functional

dependence on e, O, R T, R N , and Y can easily be shown to be
A

RT2+2R NRT {cos(e -^)-cos e) + RN2(2-2cos^+y2)1
 1/2

v(e,^,RT,RN,Y) =	 2	 2 2	 ,	 (4)
R T + Y RN

where y	 B /B,^ , RT ,^VT°/(BT0/ 34,rp), RN = V No/( BN /, 4 7rp) and a is the

included angle between Br and VT  defined by a right-handed coordinate system

with z along the outward pointing magnetopause normal, and ^ is the signed
A

sense of rotation of BT , being positive for counter-clockwise rotations

looking down on magnetopause from the sheath. The angle d(^) defined by

64) = cos-1 MO.B(o))

can also be reduced to its essential functional dependence in the form of

R eos(e-^ )+R (1-cos ^ + Y2)
8(e,^,RT,RN,Y) = cos-1	 2 1/2	 2 T

	 N	
2	 2 1/2 (5)

( 1 +y )	 ( R T +2RNRT{cos(e-^)-cos O+R N (2-2cos^+Y ))

Neither (4) nor (5) is very transparent except in the normal incidence limit

(R fl-0) or infinite Mach number regime R T -► _,

8
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In the normal incidence limit they become

(2-2 cos ^+y2)1/2

V (C O^ V	 R N I Y)	 .._......_......_...._...

Y

and

d(e4+0+R0) =cos
-1 (1 -cos ¢ + Y 2 )R N /I RNA

(1 +,y2)1/2(2-2 oos 0 + Y2)1/2

Equation 6a shows that at normal incidence the speed ratio increases

moni)tonically with 0<7r and inversely with normal B N strength. In the Levy et

al. regime of 0 = it 7a)reduces to a = cos -1 CR N/(NO' + Y2 /4) 1/2 3 which

implies d (Y + 0)	 (1 - RN/)RN;),r/2, which is the "Jetting" behavior. Because

the argument of the are cosine never vanishes equation 7a implies that dean

never be n/2. Accordingly, pure plasma convection (d -- Tr/2, is not present in

an RSL at strict normal incidence.

In the infinite tangential, Mach number limit (6a) and (7a) become

V(ar^rR T+°*t R Nt Y) = 1
	 (6b)

and
r

6(e4,Rj&r0f n ,Y) = cos-1 Ceos(e-^)/{1h a2 11/2)1	 (7b)
I

which in the limit of small magnetic normal component approaches

V(e,y R 7++m, R N , Y+0)	 1
	

(6e)

d (e^^aR T ^ R N' Y +O) = e - d-
	 (7c)

These asymptotic trends should be compared with graphical presentations below

in Figures 4F, L, 6F, L for equations (6a) , (7a) and Figures 4A, G, 6A, G for

equations (6b) , (7b) .'

9
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4.	 GRAPHICAL SUMMARY OF. NSL w 11IMPHOLOGY FORLYI 	 __ ,,20 32

'S

To explore the more general behavior of equations (4) and (5) as functions

of 5 variables we have assumed a single value for Y w BN / BT0 - 1/(20 32),

noted that R N can only take on the discrete values of i 1, have examined a
spectrum of 6 values of R T = (0.01,	 0.1,	 0.5,	 1.,	 1.5 1	10) for all possible
values of c and 0.	 Depending on the actual value of B T°, Y determines the BN
value being considered; 

BNo 
together with the mass density and the value of RN

determine the V N	being discussed.	 Similarly the choice of HT 
o 

and p, together

with the value of RT determines the actual values of tangential flo g being
considered.	 Exploring (4) and (5) at even this depth requires 24 isocontours

t

(Figures 4,6).	 Our purpose is to illustrate the diversity of the possible RSL
signatures that would be anticipated for fixed Y rather than to provide an

{ exhaustive glossary of the content of (4), (5), which are general and can be

r[
adapted to Y regimes not selected here.

FolloW.,n 	 the results of Sonnerup and Cahill (1968), we consider only the
electron ov,'L icizatior, of the RD, namely, that B T rotates according to the

right-hand rule if the thumb is placed along B Nn. Since by (1 )

V
AV .. N A B,

BN

and since above (below) the separator at the earth's magnetopause B N <M 0 and
V  <(<) 0, AV and AB are parallel ( antiparallel) above ( below) the separator as

B T rotates through A^ _Amax (of. Figure 3a,b) . This implies that R N ^ -

/I;(. To the extent that V T/VN and BT/BN are large numbers the angle d
between V and B through the layer is nearly the angle 6 1 (^)
003-1 (VT(^)°BTW) indicated in Figure 3.

In Figure 4(A-L) we consider the spectrum of possible speed ratios, v,
that would be seen across a rotational discontinuity standing in the flow (as

at the magnetopause) as a function of R T , c r Amax and R N with Y fixed) . The

left column corresponds to RN = -1 and would apply to an RSL encounter below

:v

ii
i^

I	 Y

^'	 b

10
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ROTATIONAL DISCONTINUITIES STANDING IN FLOW

(ELECTRON POLARIZATION)
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the magnetic separator; the right column corresponds to R N = +1 and being above

the separator. Rath row of boxes is for a fixed value of R T indicated in th-

central; portion of the figure with the horizontal axis of each graph being the

angle of magnetic rotation (0 < Amax <0 and the vertical axis being the angle

e between B ° and V
To 

as viewed from the sheath side of the magneto pause which

ranges between (0,21r). From the top the six separate graphs in each column

correspond to decreasing tangential Mach numbers (10, 1.5 1 1.0 9 0.5, 0. 1, 0.01)

of the incident flow.

Every finite tangential Mach number regime of Figure 4 contains dynamo

regions (v<1) (of varying size) in which the RD decreases the incident flow

speed relative to the magnetosheath. The larger the tangential Mach number,

R T. the larger the dynamo region. The largest percentage decreases in scaled

plasma speed, v, are accomplished for R  s 1 flows and are preferentially

located below e = 7r. As normal incidence is approached the dynamo region has

vanishing area, consistent with equation (6a) . Notice as R  > 1 that there are

even RSL regimes with maximal magnetic rotation 	 across which the fluid

speed will still decrease significantly (of. Figure 4B, H) .

•

The speed ratios are most dramatic (notice change in contour Labels! for

low tangential Mach numbers which approximate the Petschek normal incidence

geometry. Ebwever, because the incident flows are so weak in this regime,

large speed ratios, v, need not imply large flow speeds in an absolute sense.

At hyper-Alfv6nic tangential flows (Figure 4A,G) (such as on the flanks of the

magnetopause or in typical solar wind geometries, Burlaga et al. (1977)) the

speed contrasts become very small whether or not motor— or dynamo like behavior

is present.

The transition between 01 and v<1 is the boundary between motor and

dynamo behavior of the RSL. The conserved tangential electric field is given

by

— VT sin a B 

ET = 1 3 0	 VT° cos a B  — BTVN

0
11
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The Current density is given by

- dBy/dz	 -cos ¢ do/dz

	J 	 c /4,r	 d Bx/d z	 =cBT	 .-sin ^ d^/d z..
0	 4,r	 0

and the energy per square centimeter per second available to. the fluid as a

result of traversing the RSL with angular shear of Amax is given by

-1	 RT	 RT

	

AE •
J = 47rBT2Un 

{ R sin a sin A
max 

+ (R cose 	 - 1)(cos mmax - 1)).	 (8)
	N 	 N

For the normal incidence geometry (R T+O) of Levy et al. (1964) A E-J reduces to

limo E ,-J = -1/47r B T 2 V  (1 - Cos Amax )	(9)Y-0_ `

which is -aitiv2 definite avr- 0 < Amax <2n (recall that Vn < 0) ► By being
positive definite regardless of 

Amax 
this result implies that the fluid on

traversing the rotational ]„ayer (at normal incidence) is strictly energized at
the expense of the electromagnetic field (of. Figure 4F,L and discussion and

equation (6a)) . This behavior is often referred to as "motor-like.” 'Ihe
opposite behavior is often referred to as "dynamo-like."

Figure 5 (left and right) synthesizes Figure 4 left and right columns by

superimposing the B8-J	 0 ( vo = 1) contours of equation (8) of the different

RT regimes onto one figure. The curves have been labeled by their R T value.
The shaded regions indicate Certain E, ¢max ^hgle combinations that only permit
"motor"-like transitions regardless of the tangential Mach number. The

compliment to these regions contains varying subdomains of "dynamo"-like layers
with sizes that depend on the tangential Mach number.

The sign of QE-J determines whether net work .r ;s been given to or
extracted from the fluid 'in traversing the rotational discontinuity. It is,
therefore, interesting to identify the Conditions, if physical, when dE°J

changes sign. From equation (8) it is clear that the leading coefficients are

r

12
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non-zero, if the layer remains ro

term in parentheses changes`,sign,,

H
T

 , such that	 ` . .,I,„14 `

R T0 (QE +J = 0, ^ max , C)

tational. The work done changes sign when the
This transition takes place for the ratio

R N ( corq 
max-1)

(20)
(cos4 

max- 
e)-cos ^)

Equation (10) shows that, RT will flip sign at the poles of this expression.
This condition implies that on either side of

C = ^max/2 + (O,ir)

i! there will be a transition between motor and dynamo behavior , for the same sense

of mass flux.	 These boundaries in the e,	 space are indicated w;,th heavy
dotted lines and all dynamo-motor transitions for finite R T do not cross these
dotted lines.	 The shaded regions of Figure 5 denote the a-^ domain where RSL's
are always motor-like regardless of tangential Mach number, Rm. 	 Outside the r
shaded regions motor-4ynamo behavior depends on RT.

r This important result shows that for a general a there are some ranges of
angles of the magnetic rotation which depend on R	 for which the layer speeds

Tup the plasma, and there are complimentary ranges which implement a slowing
down of the plasma, while still permitting a constant sense of mass flux across

the layer.
l	 s

t

Figure 6 shows the variation of the angle d between VW and B(¢) as a
(^

function of a and of ¢ = 	 of the magnetic rotation in the same format as
max

4
;

Figure 4.	 For low tangential Mach numbers the RA quickly reorients the full
e

velocity vector in a monotonic way toward being quasi-anti-parallel (below the
separa",or) and quasi-parallel (above the separator) - regardless of the initial
e angle as implied by (7a).	 This "Jetting" tendency is not general for
different tangential Mach numbers nor for arbitrary magnetic rotations. 	 In the
hyper-Alfvenic domain the perturbation AVT cannot significantly alter Vg	 (^)	 from 1 

its value at ^=0.	 Therefore the angle d(^,RT+	 approaches (cf. equation 70

M I R T+m) P e - ^,

13
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which says that the oontour of constant 6 	 xo , is given by

e = X 	 (..) Above

Separator.
oX	 + W	 Below

'hick closely resembles the curves in Figures 6A,G which clearly do not show

jetting even formmax " it .

By contrast the trans—Alfvenic cases illustrate that the angle 6 can be a

non.-monotonic function of ^, the magnetic rotation, partioularly for a<7r.	 Note

i that "Jetting", while a property ofAmax+'r for RT < 1, is not a general
j	 f

signature of traversal of an RD for which the magnetic rotation is not maximal. ;	 s	 l
In addition, if the RSL is resolved, significant convective electric fields

will be present because 0<6(¢)< ,r until ^+wp consistent with the measurements
l reported by Aggson et al. (i 983a) .	 Surveys keying on the presence of "Jetting"

are biased against the snore general RD's of submaximal angular rotations,
t.

especially in the presence of finite RT.

^S
4

The regions of these graphs associated with southward IMF in the forward

mognetopause are regions with
«max»7r/2.	 If the separator is localized near

^r

i
the nose then ev+rtA above the separator and ss0*A below the separator. 	 If flux
transfer events are partial passes through an RD magnetopa 'use layer (Scudder et,
al. 0 983)) the observed

obs	 MP
angular excursion Amax in a 	 is by definition less than the total Amax of the I,	 t	 a

entire traversal of the magnefopause.	 Therefore if the IMF is southward by the

a
angle ^, then

}

obs	 MPS

<	 <	 7r /2 + r

max	 max t

obs
pp	 A

If 	 : ,rz the other hand	 must be-"significant" in order to define the events
max

.9
4

obs
(Russell and Elphic 1979)	 should not be small either. 	 Therefore, FTE's

max ,f,e

14



as a class (if they are partial RD traversals) must pertain to the regime 0 <
^C n/24. By virtue of the flow geometry and a requirements it is clear that
there is a broad regime of convection 0 s 7r/2) near 0 57r/6 below the
separator (and near eft/6 above the separator) towards Omax s 7r/2'

As the tangential Mach number approaches the normal incidence limit the
isocontours of Figure 6F O and 6L become increasingly vertical (independent of
0. This is in accord with equation (7a) . Notice that the sequen .-e of R T+0 in

Figure 6 shows the decreasing probability of encountering 6 sir/2 for general
rotations, consistent with vanishing probability of pure convcution at normal
incidence argued from equation (7a) .

.	 i
By construction of Figure 6 either: (1) the angle 	 ( may be interpreted

as the internal structure of a given rotational layer with total magnetic
rotationJ^max1>^; or (2), there diagrams can be looked at as restating the

?f	 4ump conditions across different RD°s for given R l,, e,	 in the graphs. In the
{ ( I	 first view the existence of 91 m,7sor-+ dynamo $' transitions atm0 W0 O < 7r for

fixed e, RT) implies that the speed through the layer as scaled by the initial

f
speed is unity at both ¢=0, ¢=0 0 ; the scaled speed is therefore non-monotonic

with increasing magnetic rotation. For R T < 1 the dynamo region precedes the

motor regime with increasing magnitude of the angle of magnetic rotation.

Above R T the motor or dynamo regime may occur first of. figure u(b) e s0, AT.
f

Depending on the total magnitude of the magnetic rotation 14 	 , the initial
max

e, and R T the speed profile at an RSL can, in general, increase or decrease

monotonically with ^, or have net increases or decreases with non-monotonic

speed profiles through the layer, or not change at all (cf. Figure 40.

r

5. SUMMARY AND IMPLICATIONS

5.1 General RSL t s

A general analysis has been performed for planar rotational shear layers
(RSL) (broad rotational discontinuities) in the MHD (isotropic pressure;

approximation to determine what variations of the flow speed and direction are
expected through them. Analytic and graphical results imply that these

i
15
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variations depend on: 1) the ratio y of normal to tangential magnetic field

strengths in the layer (B N0/BT°); 2) the transverse Alfven Mach number, RT

defined by JV {/( BT (/Awp), where VT0 is the incident transverse flow 	 o

	

E	 velocity and p is the fluid mass density); 3) the incident angle a between BT

and VTO ; 4) the magnitude and sense of the magnetic rotation, A^, implemented

by the layer; as well as 5) the location of the observer relative to the

separator which defines the sign of R N . 'these general results show that the

total plasma fluid speed may either go up, down or even remain the some as a
result of traversing the RSL depending on the initial conditions a and RT and

the boundary conditions in the form of A^. It 'has also been shown that the

E
speed profile through the RSL need not even be monotonic when viewed as a

function of the magnetic angle of rotation, ¢. Simple geometric constructions

;F have been presented to corroborate the analysis.

	

t	 a
k4

	

	
The Levy-Petschek -Siscoe normal incidence model of reconnection requires

an RSL, assumed to be a rotational discontinuity ( characterized by R
T 

=0 and

A^ =7r) in the MHD flow surrounding the reconnecting line. The general analysis
presented above shows that "jetting' and large speed increases at the

rotational layer, which are properties of the Petschek geometry, are not
universal properties of these layers, but specialized properties for A^=ir, and
RTs<1. If the magnetic rotation is less than 1800 , jetting is less prominent.

As the transverse Mach number increases the percentage speed change across an

RSL gets smaller and the likelihood that the rotation implements a net speed
decrease increases. Speed decreases are most likely when 0000 and A^ << 7r/2
for RT<1, but this domain can extend over the regime n/2<e <3ir/2 as RT increases
as shown in Figure 4B, H. Conversely, speed increases and jetting are the
expected signatures for all a when A¢ > -ff/2 and RT < 1 (cf. Figures
4D,E,F,J,K,L, 6D,E,F,J,K,L).

Away from the nose of the magnetopause when R 
T 
0 there exist appreciable e,

A@ regimes where the signatures of RSL's allow the speed to decrease; in these

locales Petschek's geometry is too specialized for its predictions to be
observable even if an RSL were traversed.

16
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{

" 5.2	 implications for Entry/.Boundary Layers

Accordingly, fluid speed decreases across the magnetopause boundary or

substantial convection within the boundary must no longer be considered as

valid arguments against the rotational ("open") nature of the magnetopause.
The survey of the HEOS data of the low latitude boundary layer by raschmann et
al. (1976) and Haerendel et al. (1978) need not imply that these regions are
necessarily closed, since the principal evidence set forth for this
interpretation was that the speed always decreased across the magnetopause.
However, Eastman and Hones (1979) concluded that the electron microstatcs
reveal both open and closed signatures at different energies.

j' The speed decreases across the magnetopause reported by the HEOS and IMP

surveys have been previously used to exclude coherent normal mass flux as the
I source of the boundary Layers sampled, these data are the extant experimental

evidence for various varianti5 of diffusive mass and momentum entry into the

y

..agne osolcc e. 	 Since 8pcev d ecreases are possible resulzg ofan RSL With a

f directed normal mass flux, the entire question of the observational evidence
for a closed magnetosphere must be completely reexamined. 	 It is possible that
the extant data are consistent with the magnetopause being an RSL everywhere

with spatially varying mass fluxes, which, if small, make the local
14 magnetopause appear degenerate with, but not topologically equivalent to, a
r tangential discontinuity.	 In this circumstance the similarities of the plasmar:

I boundary layer and magnetosheath plasma distribution functions would naturally
k

result from the magnetic connection of the two regimes.

5.3	 Implications for Reported RSL Magnetopause Crossings

Thirteen RSL's have been reported at the earth's magnetopause using ISEE
data. Twelve of the episodes had speed increases (Paschmann et al. (1979),
Sonnerup et a1. (1981) and Gosling et al. (1982)); recently an RSL with a net
speed decrease has been documented by A^ggson et al. ( 1983b). To date no

systematic search has been conducted to determine the relative frequency of
occurrence or location of these two classes of RSL's; the

Paschman-Sonnerup-Go.pling (PSG) events have all keyed on the speed increase to
define events (Pasehmann, 1983 private communication) .

z

'	 rk

^z

I'

c;
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Figure 7 illustrates the distribution of the above cited RSLts in terms of
the observed tangential A) fvan Mach number, R T , of the magnetosheath flow which
plays a pivotal role in the RSL v profile. All of the speed increase events

of PSG occur with RT < 1.1 with a mean of 0.5 i - 5. The Aggson et al.
v

event in which the speed decreased occurred at a much higher tangential Masi

number (2.8) than any of the PSG events. Figure 8 illustrates the .angular

location of these everts relative to noon; this graph together with Figure 7

illustrates that RT < 1 clearly orders the conditions of PSG v > 1 events
better than does subsolar angular location. When the solar wind/magnetosheath
Alfven Mach number is very low the tangential Mach number, R T , can be quite low
at appreciable angular distances from the nose as in the Gosling et al. event.

Under more typical solar wind conditions the angular location of the Gosling
events would ordinarily correspond to R T >> 1 such as sewn in the Aggson et al.
event. This spectrum of behavior is ex pected on the h yni.a of V4cr tire 4

especially when it is recalled that most of these events have AQ$ 180° so that

the e dependence for RT < 1 events does not seriously compromise the high

expectatiork of v > 1. As can be seen in Figure 4 the precise ma$n tPde of
v even in this regime depends on e. Also expected in this regime is that v is

larger for smaller R T. The minimum value of the PS events was 0.3 and it

produced v ^ 4.5; the Gosling et al. event had R T s 0.04-0.08 and v ; 2-3

whereas the largest RT of Sonnerup (1.1) gave the smallest v = 1.3 of the

events with full data presented.

The deceleration event of August 12, 1978, reported by Aggson et al. (1983)

occurred at u'70 0 of the subsolar point with dimensionless boundary conditions
of RT 2.8, e = 25° and -A^ s 165 0 , which were estimated from ambient data
assuming 

$T 
sB; VT s V. Figure 9 illustrates v contours for y-1 B T/BR _20

,/2 for an RSL crossing above the separator. The choice of Y,, for Figures 4, 5, 9

is consistent with the geometrical upper bound on Y possible at a rotational

discontinuity with ^ B, B2 < 175 0 , given by

is
Y <V"(1 	o so /1 - Cosa )

18
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derived by Scudder and Aggson (1983) . 'Ibis bound equals 0,011, for 	 1750.
These observed parameters suggest (at location of circled "x°) that „ U, 0.4
which corresponds very nearly to the observed deceleration of v ob	 130/300

.43. The placement of this event in the framework of the present work
represents a cross check since the current analysis is a generalization of

Aggson's specific quadrature of (1). This analysis does indicate what

parameters control the v change across the RSL layer. An upper bound of the

normal mass flux across the magnetopause can be made by virtue of the following
identity:

n V  E ny * R N VT/R T ,n » n I Y) (^ o ^ /RT.

For the current parameters the normal mass flux of C 6 x 10 6/ cm2/s is inferred

	

F	

which corresponds to V N '<' 3 km/ s which is of course not directly measurable.

	

!	 This local rate of particle entry represents < 1% of the incident solar flux

	

yF	 and is consistent with other (more global) estimates of the necessary solar

wind replenishment of the plasma sheet given by Hill ( 1974) of 0.1-0.5%. These
latter estimates are lower bounds for the efficiency of solar wind
replenishment to the magnetosphere since they are determined on the basis of

replenishing only the plasma sheet and not maintaining any other regions such
as entry layers against their known losses.

A systematic survey of documented RSL I s is required to further assess the
concept that the magnetopause as a whole is globally open to directed normal
mass flux. Thisy p	 ppossibility is certainly possible even with spatially 	 i
localized separator lines as has been advocated, for example, by Crocker 	 y

(1979)• Such a survey must not select RSL event eandiates based on parochial,f
features of the Levy -Pet schek -Si sooe normal incidence ( RT = 0) and maximum
rotation ( A1 = 70 geometries such as speed increases or plasma j etting.
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Figure, Captions

Figure 1 General geometrical construction of relationship of GVT to qT
appropriate for (electron polarization) Alfven wave, rotational
discontinuity (RD) or rotational shear layer (RSL) . 	 Where the
are A f f f	(centered at 0) intersects semi-circle AB fC fDf
defines the minimum angle, 0*, of magnetic rotation for the

speed to have a net increase across the shear layer.

Construction discussed extensively in the text. 	 Note that VT°

is related to the frame change velocity U° used by de Hoffman
V°and Teller (1950) by the relation U DHT = 	 ° - R	 s ° = V-o	 —T	 N —T

°,R N sand corresponds to the vector from 0 to O f which has
been omitted for clarity.

Figure 2 Petsohek-Normal Incidence geometrical construction of Alfven
shear layer.	 Note that VT = 0 and that oV(^) = VT (^) for all
d.	 The "Jetting" tendency is clarified by noting that

3t

1 im	 ..	 ,.

+n ^VT (0-0T (01- +1.

Figure 3 Geometry of RSL below (a) 	 and above (b) the separator (electron
polarization)	 standing in the flow as appropriate at the
magnetopause.	 Notice that if electron polarization is assumed

i

that the sign of	 implies location of observations re
separator since RN

1+

figure 4 Graphical survey of scaled speed v, as determined from egtiation
* ,4 for fixed constant normal mass flow, Y*, RN but considering

the spectrum, of possi`bilities as a function of R 	 (rows of
boxes) , as a function of below (a) or above (b) the separator
as a function of the incident flow-field geometry, e, and the
magnitude of the angle of magnetic rotations, 	 Dynamo

regimes correspond to v < 1 contours. is

r

4

i
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Figure 5	 Synthesis of v = 1 contours of Figure 4A-F in 5a (below) and
Figures SIC.-L in 5b above the separator. Contours are labeled
according to RT regime and are loci of v = 1. Notice by

definition that the left vertical axis is always an isocontour
for any R T . Dynamo regions in (a) are bounded by left vertical
axis and contours labeled according to value of R T. Dynamo
regions in 5(b) are similar to those in 5a except that these

regimes are disjoint; region above "motor only" are inside
t

domains defined by the right vertical axis, top horizontal axis

and contour curves. Motor regimes for specified R T. Shaded

regions denoted "motor-only" cannot have dynamo layers for an y 	 r

value of RT. See analysis starting with equation 10. Dashed

lines reflectt, the theoretical bound of the motor only regimes

as derived in the text.

Figure 6	 Survey in

a=4t
"Jetting"

very thin

Beg '' R 

the format of Figure 4 of the generality of "Jetting"

0, Tr and "convection" a v, Tr/2. Notice that

will not be a general property for resolved layers or

layers with ^<Tr, or for general Mach numbers (cf.

10).

Figure 7	 Tangential Mach number, R T , distribution of extant RSL layers

reported to date. Note that speed increasing layers v > 1 are

localized below unity, whereas the decelerating observation was

observed for large R  of 2 . 8. Compare with patterns expected

in Figure 4 for R  dependence with other things being equal.

Figure 8	 Subsolar angular distribution of events in Figure `T.

Figure 9	 lsocontours of v for R  = 2.8 above separator, R N = +1, and

Y	 BI/ BN = -20 ,>2 chosen for comparison with Aggson et al.

0 983b) , v < '1 event. Circled x is the location of --A^ = 165,

e = 25 0 appropriate to geometrical ( boundary) conditions of

observation.
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