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i. List of Symbols

SYMBOL MEANING

2
a (y2-Yl)

(Xl-X)_ + (yl-y)j + (Zl-Z)k m(ft)

A',A (x2_xl)2 + B2(y2_Yl)2

AR Aspect ratio

b Wing span m(ft)

(x2-x)_ + (y2-y)_ + (z2-z)_ m(ft)

bI -2 (y-yl)(y2-Yl)
Hr_

B _(_ )

B' [ (x2_xl) 2 (y_yl)_ (X_Xl) (x2_xl) (y2_Yl) ]

-2[ (x-xI)(x2-xI) + 82(y-yl)(y2-Yl)]

BW (I,II) Summation of Eq. 15 for control point I
M

c _(_
3n

2 2
Cl (Y-Yl) + z

cd Wing sectional profile drag coefficient

CD0 Friction drag coefficient

CDi Total induced drag coefficient

CL Total lift coefficient (Lift/q_S)

C Total pitching moment coefficient based on c0m

(Moment/(q Sc0))

c Wing or tail root chord length m(ft)r



2+ 2
C' (x2-x I) (y-yl) -2(X-Xl)(x2-xl)(y-yl ) (y2-Yl)

+(X_Xl )2(y2_yl)2+ 8ZzZ (y2_Yl)2

co Mean geometry chord m(ft)

(x-xI)2+B2 (y-yl)2+B2z2

Cp Pressure coefficient (P-P /q )

Cp_ _ 2+82 2D (x-_) (z-_)

D1 (x-_)2+B2z2

D'1 (x-_)2+82_2

DW(I,II) Summation of Eq. 14 for control point I

QP'i

f I Mi
RM

F Any assumed integration function

G (x-_) 2+82(z-_)2

G 1 (Xl-_) 2+82 (z-_)2

g hp'j

M
h 1 n

R M

i,j,k Unit vectors along X-, Y-, and Z- axes,

respectively

1 (x2-xl) i+ (y2-Yl) j+ (z2-zl) k m(ft)

M, M_ Free stream Mach number

M' First derivative of Mach number function

M" Second derivative of Mach number function

Uniform free stream Mach number

My Integration points away from the wing in
spanwise direction.

M a Integration points in the negative Z direction
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Mb Integration points in the positive Z direction

n Unit vector normal to wing surface

N1 Upstream integration points

N2 Total integration points on the wing inchordwise direction

N Downstream integration points
3 N

Np N2 = (NW(1)+NW(2)) p

Ns The number of vortex strips in each spanwise
section plus one

NW(1) Number of aerodynamic panels on the wing in
chordwise direction

NW(2) Number of aerodynamic panels on the flap in
chordwise direction

P' Perturbed pressure

Pt Any point in the flow field

Q (x2-xI)(y-Yl)-(x-xI)(Y2-Yl)

(M2 ._2)/R

q_ Free stream dynamic pressure (p_(y,z)V2(y,z)/2)

N/m2 (ib/ft2)
.-8 .ab ._h ._L

R Xi + Yj + Zk m(ft)

R [(x-_)2+82(y-_)2+82(z-_)2]½

_£ _ + nj + _ m(ft)

RI, R8 [(x-_ )2+82(y-_)2+B2z2]½

R'1 [Xl-_)2+B2(y-n)2+82z2]½

S Arbitrary body surface in a compressible flow
- 2

m (ft2)

S' A small sphere surface which surrounds a point
(_,_,¢) m2(ft2)
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Sw Wing area m2(ft 2)

V, V Free stream velocity

The whole flow field volume m3(ft 3)

V' The volume excluding from V the interior
of S' .-

v (y2-Yl) T-(y-yl)

vI _-Y

w Induced normal downwash velocity m/sec (ft/sec)

Zz
Normal downwash angle _Xc -

x,y,z Wing rectangular coordinates with positive
X-axis along axis of symmetry pointing
downstream, positive Y-axis pointing to the
right, and positive Z-axis pointing upward,
m (ft)

_i Integration dummy variable

x£ Wing leading edge coordinate in the X direction

xt Wing trailing edge coordinate in the X direction

X Upstream integration rec:ion m (ft)a

Xb Downstream integration region m (ft)

XNPG,XNPGH Wing and tail neutral point coordinate in
chordwise direction

Y Spanwise integration region away from the wings

Y (Y-n)2+ (z-_)2t

! i

Yt (Y-H)2 (z-_)2

Yz 82 (Y-n)2+62z2

y_ 62 (y-_)2-82z 2

Za Integration region in the negative Z direction

Zb Integration region in the positive Z direction

z (x,y) Ordinate of.camber surface measured from thec
X-Y plane m (ft)

4



Zd Vertical distance between wake center and
the X-Y plane m (ft)

Z Z coordinate in the flow regionv

GREEK MEANING.

_'_w Wing angle of attack

st Tail angle of attack

(I-M2)½

¥ Vortex density referred to free stream velocity

ACp Differential pressure coefficient (C_lower__ -
Cpupper )

Chordwise angular distance (rad)

A Sweep angle of wing leading edge

p Fluid density kg/m3 (slug/ft3)

Spanwise angular distance (rad)

Vertical angular distance (rad)

IiR

_,q,_ Integration variables in Cartesian system
m (ft)

g Radius of S'
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2. Introduction

When the freestream is nonuniform, the assumption of

flow irrotationality becomes inapplicable so that the

conventional potential flow theory must be revised (ref. i).

Practical examples of nonuniform freestream include the wing

behind a canard wake, a wing or tail situated in the propeller ~

slipstream and airplanes in a wind shear.

The literature on the subject is not extensive. Von

Karman and Tsien (ref. 2) developed a lifting line theory for

an incompressible nonuniform stream in 1945. Homentcovschi

and Barsony (ref. 3) formulated a lifting-surface integral

equation for nonuniform incompressible flow with a general

stream velocity profile. Hanin and Barsony-Nagy (ref. 4)

developed a slender wing theory for a subsonic or low-

supersonic nonuniform stream. Later, a lifting line theory

(ref. 5) for wings in a subsonic nonuniform stream was

presented. Recently, a lifting surface theory for nonuniform

supersonic parallel stream (ref. 6) was also developed by them.

More recently, experimental investigation of wind shear effect

on airfoil aerodynamic characteristics has also been conducted

(ref. 7). K. Gersten and D. Gluck (ref. 8) investigated the

effect of wing wake on tail characteristics theoretically and

experimentally.

In the present investigation, the small,disturbance steady

subsonic flow equation for rotational flow is to be solved.

The resulting equation is a partial differential equation

6



with non-constant coefficients. It is transformed into an

integral equation through Green's theorem. It is assumed

that (i) the Mach number profile M(y,z) or the velocity

profile has a nonzero value M(y,o) on the wing plane; (2)

there exists a finite second order derivative M"(y,o) on the

wing plane, and (3) M' (y,z) is integrable across the stream.

7



3. Theoretical Development

3.1 Mathematical Formulation

The partial differential equation for small-disturbance

subsonic steady rotational flow may be written as (ref. I)

My(y, z) Mz(y,z ) ,.
[I-M_2(y,z)]P ' -2 '-2 P' + P' + P' = 0 (i)

xx M(y,z) Py M(y,z) z yy zz

where M(y,z) is the undisturbed free stream Mach number and P°

is the perturbation pressure. Here, the flow is assumed to be

steady, invicid, and compressible past a thin wing at a small

angle of attack.

The wing lies in the x-y plane with the positive x axis

being streamwise along the wing center line. The origin of

the rectangular coordinate system is assumed to be at the

wing moment reference point. Let

x = x, y = 6y, z = 8z, 62 --_= I-M (2)

After the coordinate transformation, equation (i) becomes

+ P_, + p,Px'x' _ y' z'z'

M Mz ,
= 2 y' P' + 2 P' + I----(M2-M2)p'

M y' z'M B2 x'x' (3)

where M = constant and is assumed to be a reference uniform

Mach number. To use Green's formula:

_- _ )dS (4)
V S

let

= p' (5)
1

-- 1

(x-_)z._(y_D) z+6z (z-_)z (6)
Consider an arbitrary body with boundary surface S in a

compressible flow. Outside the body, the whole flow field

has the volume V. Now, let Pt(x,y,z) be any point in V.



Then _ is a solution of Laplace's equation:

_2-- _2-- _2-

However, the basic solution becomes infinite at Pt so that

Green's reciprocal formula can not be applied. To avoid

this difficulty, surround Pt with a small sphere S' with

radius a. Let V' be the volume which is obtained by excluding

from V the interior of S' V' is bounded by S and S'

Applying Green's reciprocal formula to equation (3), it is

obtained that (see Appendix A)

P(x',y',z')

i { If 1 3P' 3 !4_ [R 3n P' -- (R)]d_dN-2;Ifp'd_dn=-- 3n
S w S w

+211 f 3f p'dgdnd_+2fl]3h p'dgdnd_
v,

_ ;I; 1 2) . d_dnd_} (8)
V' RBr (M2-M P $_

The boundary condition (the flow tangency condition) is given

by (ref. I)

w(x,y,z) = 3Zc - e (9)
V(y,z) 3x

Following the linear theory, the boundary condition is satisfied

on Z = 0 plane.

From reference i, the linearized momentum equation in Z

component is

3w 3P _ 0 (I0)p_(y,z)V (y,z) 7x + _z

It follows that the downwash in equation (9) can be written as
X

w(x,y,z)= -I ; 3__PP(xl,Y,z)dxI (Ii)
p_(y,z)V_ (y,z) -_ 3z

where the lower limit is chosen in such a way that w(-_,y,z)=O.



Using equations (8)-(ll),after lengthy manipulation, the

following final integral equations and boundary conditions

for two-dimensional and three-dimensional flows can be

obtained (see Appendix A and Appendix B).

(a) Two-Dimensional Flow

The integral equation is given by

I
Cp(X,Z v) =- B I Zv&CP d_

2--_0 [(x-_)z+BZZvZ ]

i 82 _Z _- 1 MM--z(0);0£n[ CD (_)d_2_B (x-_) z+B "v

Me

+ 1 IS {282_-- (Zv-_) +
2_8 [(X-_)z+Sz (Zv-_) 2]

+ B(_) £n[ 82 ]}Cp(<,_)d_d_(x-_)_+B_(Zv-¢)_

+ 1 ;; Cp_,_)(x-S)(M2-M 2) d_d¢ (12)
2_8r [(x__) +Sz (Zv_¢) z]

The boundary condition is

- _z
w (x,0) = c -

3x

= -BI_ACP(_)4_x-_ d_+ l_iI[-_2_ B(_) (tan-l_x-_ +_/2)
Mr

+ 8_ (x-_) ] CD(_,_)d_d¢(x-_)_+_
c

+ 1 ;; (M2(_)-M2)-}- P_(_'¢).... d_d_ (13)
4_8 [(x-_) z+Sz¢ ]

(MM--q_)_M = Mach number M_ _ (M) andWhere B(¢) = _ , , = _--_ ,

Cp_ = _-_Cp(_,¢). Cp is the pressure coefficient.
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(b) Three-Dimensional Flow

The integral equation is given by

Cp (x,Y,Zv)

1 82Zv•ACp (_,n)
- 4_ ;1

Sw [(x-G)2+ 82(Y-O)2 + 82Zv213/2 d_dn

M_
1 _(n,O)ACp(_,n)

Sw [(x-_)2 + 82(Y-0)2 + 82Zv2]i/2 d_d0

B2.ME
+ _ If; -M-(_'_)'(Zv-_) 3/2 " Cp(_,q,_)d_dod_

V' [(x-_)2+ B2(Y-n)2+ B2(Zv__)2]

+ _ If; B(n,_)
V' [(x-_)2+ 82(Y-n)2+ 82(Zv-_)2]I/2 " Cp(_,n,_)d<dnd_

1 111 8 • (n,_)"(y-n)

+ 2_ v' [(x_<)2+B2(y_n)2+82(Zv__)213/2 • Cp(_,n,_)d_dod_

I If; C(n,_)

+ 2--_V' [(x-_)2+ B2(Y-O)2+ 82(Zv__)2]l/2 • Cp(_,O,c)d_d_d_
/

2

+ --_-i;f; (x-G)•(M2-M)
3/2 Cp (_,q,_)d_dod_4_8 V' [(x-_)2+ 82(y-n)2+ B2(Zv__)2]

(14)
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The boundary condition is

aZc
W(x,y,z) - ax

132 f 82 2 2Z2 x-- 8z If ACp(G,n) (y-q) - B (i+
S w % [_2 (y-I]) 2+82Z2] 2 [ (X-G) 2+_2 (y-n) 2+82Z2] 1/2)

-- 132Z2 (X-G) 1

[82 (Y-q) 2+82Z2 ] [ (X-G) 2+82 (Y-n) 2+132z2 ]3/2 IdGdn
m

M_

132;I M (0)"Z'ACp(G,n) _ 1 + x- G I d<dn
4_ 2 2 2Z 2 _ 1/2Sw 13 (y-n) +13 [ (x-G) 2+82 (y-n) 2+132Z 2 ]

M_
4_iII_ Cp(G, n, C)" I -_[ (y-n) 2-(z-C) 2] - B(Z-_) [(Y-_) 2+(Z-C) 2]

V' I [(Y-n)2+ (Z-C)2] 2

Ci+ x-G
[(X-G)2+82(y-D)2+82(Z-C)2]i/2 )

8 2 (Z-_) 2 M_ ?_ -K (x-G)
[(y_q)2+(Z_C)2][(x-G)2482(y-q)2+82(Z-C)2]3/2 I d_dndc

-C(Z-C) [ (y-r]) 2+(Z_C) 2 ] _ 2 _ (y-n) (z-c)
i ir_ Cp(G n C)4_ ' '

V' [ (y_q)2 + _Z-_)2] 2

(i+ x- G )
[ (X-G) 2+13 2 (Y-n) 2+82 (Z-2 ) 2] 1/2

MT]
82 (x-G)-_ (y-n)(Z-C) 1

[(y__) 2+(Z__) 2] [(X__) 2+132(y__) 2+82 (Z_C) 2]3/2 d_dDdcI
I I;f (Z-C) (M2-M2)
8_ Cp (G,D,C) "

V' _ [(X_G)2+82(y_n)2+82(Z__)2]3/2 dGdndc (15)

where

a M C a M
= -- (--M--) and C(n,C) = -_(L_M)B(n,_) a

12



3.2 The assumed functional form for Cp

3.2.1 Two-Dimensional Flow

The unknown pressure coefficient Cp is assumed to have

a functional form which can be derived by retaining only the

first term on the right hand side (R.H.S.) of equation (12).

It follows that

K

Z -_ [tan-I _2j- _ -1 _lJ- _]Cp(_,_) = Aj Icl IBcl - tan IBcl
j=l
K

Cp (_,C) = Z Aj IC] 82 2+ j__)2 82C2+1_Ij__12j=l _ (_2

where _lj and _2j are chordwise control point locations given

by a cosine law distribution as illustrated in Figure I.

3.2.2 Three-Dimensional Flow

In this case, the assumed functional form for Cp is

derived by retaining the first term on the R.H.S. of equation

(14) with _i, _2' etc., defined in Figure 2.

Cp(_,n,_)

2z _ I Ai3 _ _2i-_ -i
- . tan

I _-_ 2i I I _14(_-_ i) 2+82 (n-n2j) 2+82_2j=l i=l 2

_2i-_ (tan-I (q-qlJ)I_-_2il I]
l_-_i{ {clJ(_-_2 i) 2+B2 (q-qzj) 2+_2_2

ij

- tan

.l -a[il IJ(a-a:i) 2+82 (q-n2j) 2+_2_2

_ii-_ ( (q-n )I_-_ I
tan-1 ij ii

2+ 2 2
l_-$_iI lc $($-$_i)_+S_(n-n_j) S c

(18)

13



Cp_ (_,q, _)

- 2z Aij _ L[I+DI 2 _(___2i) 2+BI [ (___i) 2+B11 3/2j=l i=l

n-n_i( I _ (_-_i)_ )]4(_-_I+D2 i) 2+B2 [ (_-_2i) 2+B2] 3/2 "

n-n2j ( 1 (_-_i)2 )
I+Da 'i) 2+BI [ (_-_i) 2+B2] 3/2

I+D4 i) 2+B2 [(_-_zi) 2+B2] 3/2

where (19 )

('_-n_i) I_-_ilD 1 =

l_{ $(_-_i )2 + B2 (q_q2j) 2 + 82_2

(n-qz j)]_-_2jl
D2 =

{_[ 4(___2i) 2 + 132(q_q].j) 2 + B2_2

D3 =
!

]cl 4(_-_i ) _+ s_(n-n_j)_ + B_ _

(q-q1 j) [_-_zi ]D_ :

{ _1_(___1i ) 2 + B2 (q_q_j) 2 + B2_2

Bz = {32 (q-q2j) 2 + 82_2

B2 = B2('Q-TIlj) 2 + _2C2
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4. Numerical Calculation

4.1 Solution procedures

For airfoil problems, equations (12) and (13) are to be

solved simultaneously. Similarly, for three-dimensional

cases, equations (14) and (15) are to be solved.

To simplify the equations, those double integral terms

in equation (15) are reduced to finite sums following the

quasi-vortex lattice method (ref. 9). To satisfy the wing

boundary condition, the continuous vortex distribution over

the wing is replaced by a quasi-continuous one, being

continuous chordwise but stepwise constant in the spanwise

direction. Thus, the wing surface can be divided into a number

of vortex strips with the associated trailing vortices (Figure

3). In any strip, consider a vortex element _ dx with an

arbitrary direction £ (Figure 4). The integrals are then

reduced to finite sums through the mid-point trapezoidal rule

(ref. 9 and Appendix B). Similarly, those double integral

terms in equations (14) can be simplified in the same way

(see Appendix B).

4.2 Singularities and integration regions

Before proceeding with the numerical integration of

integrals, singularities of integrands must be examined.

From the definition of _ in equation (6), it is expected

that all integrands will have a singularity at the observation

point x=_, y = _, z = _. To account for this singularity

properly, rectangular coordinates are transformed into polar

15



coordinates by using a cosine law relation (i.e., half circle

relation) with separated control and vortex points (ref. 9).

Outside the wing, a quarter-circle transformation is used

which creates smaller mesh-size near the airfoil or wing.

The mesh size is small enough to represent better the rapid

change in the pressure coefficient. The detailed integration

regions and coordinates transformation are presented in Appendix

C.

4.3 Numerical Convergence

The convergence of numerical integration is checked in

two ways. One is by comparing integrated results of each

term in equations (12), (13), (14), and (15), and the other

is by comparing calculated aerodynamic characteristics.

4.3.1 Two-dimensional Flow

The integration schemes for an airfoil are illustrated in

Figure 5. Calculated ACp's for different integration schemes

are presented in Table i. It is seen from Table 1 that

satisfying equation (12) at 100 points of Zv through the

least square method produces results for ACp which can be

obtained by satisfying equation (12) only at Zv = 0.05 (Case

No. 8 in Table I). Note that the airfoil chord length is

taken to be unity. Therefore, to save computing time, equation

(12) will be satisfied only at Zv = 0.05 from now on. For °

a wing, this is revised to be Zv = 0.05 Co, where Go is the

mean geometric chord.

It should be noted that the so-called least square method

for satisfying equation (12) is based on the following concept.



By choosing N points of (x, Zv) in the x - z plane, equation

(12) can be integrated to result in N values of differences

between both sides of equation (12). Let these values be

denoted by Fk. Let Fk = Z bik. AC + Z C.A. (20)
i Pi i _k l

where K = 1,2....N.

If the sum of Fk2 is differentiated with respect to Aj, and the

results are set to zero, it is obtained that

N _FK2 = 0, j = i, J (21)

K=l _ Aj

This results in a set of simultaneous homogeneous equations for

C 's and A's:
P

_C AC + _C A.
k jkbik Pi k jkCik l = 0 (22)

4.3.2 Three-dimensional flow

The spanwise integration regions are illustrated in Figure

6. Using an elliptic wing of AR = 10.91, convergence of

numerical integration of integrals in equation (15) has also

been investigated. Note that all integrations are performed

through the midpoint trapezoidal rule after the coordinate

transformation described in Section 4.2. From this study, it

is determined that the following values for integration para-

N1 = N3 = 5 M1 = 2meters are appropriate" = 6, Np 0, = 5, My ,

Xa =2.5 x Cr, Xb = 0.8 x Cr, Ys = 0.5 x b/2, and Za = Zb =

3.0 x b/2.

17



4.4 Freestream profiles

In the present investigation, the freestream velocity

profiles are of three types only--jet, wake, and linear shear

profiles. These are illustrated in Figures 7 and 8. The

jet or wake stream profiles are described by

M(Z) = M 1 + (M0 - MI) exp (-(Z-Zd)2/H2) (23)

On the other hand, the linear shear profile is given by

M = M 1 for z! H

= 1/2 (MI+M2) + 1/2 (MI-M2) (Z-Zd)/H for -H < z < H

= M2 for z_H (24)



5. Numerical Results and Discussions

In this section, some numerical results by the present

method will be presented. Comparison with theoretical

results from references 5 and i0 will be made first.

5.1 Two-dimensional Joukowski Airfoil in a Jet Stream

Results of the present thin airfoil theory for a 2-D

Joukowski airfoil as shown in Table 1 are compared with

those obtained by a finite difference method (reference I0)

in Figure 9. It is seen that the present predicted pressure

peak is more aft and the peak magnitude is slightly less than

those given by reference ii. Thickness effect may be

responsible for the discrepancy between these two methods.

5.2 Elliptic Wing in the Jet and Wake

Elliptic wings of various aspect ratios have been

extensively investigated in reference 5 by the lifting-line

approach. The present results for a wing of AR =I0.D/_I._Mo2"

compared with those from reference 5 in Figure I0, in jet and

wake flow. It is seen from Figure 10 that the agreement between

two theories is good except when Mo is large in the wake

flow. From the general linearized partial differential

equation for the rotational flow (eqs. 3 and 23), it is

known that not only (l-Mo)I/2 AR and Mo/M1 are important

similarity parameters, but also is Mo. The theory of reference

5 does not show the dependence of results on M° independently.

The ordinate in Figure I0 is CL/CL , where CL is the lifto

coefficient in nonuniform flow based on the local velocity

19



V(o) and density p(o). CL is the lift coefficient of the
o

same wing at the same angle of attack e in uniform stream.

The results also show that the effect of a nonuniform

stream on the lift and induced drag becomes stronger with

increasing ratio of maximum to minimum Mach numbers of the

stream.

5.3 Effect of Wing Wake on Tail Characteristics

As shown in Fig. Ii, a tail surface is frequently

situated in a non-uniform flow field caused by the wake of

a wing. The experimental results for a wing-tail configura-

tion shown in Fig. 12 were obtained by W. Siegler (ref.13).

In the present calculation, the wing-section drag coefficient

is needed. Its assumed values are shown in Fig. 13 by extra-

polating available data for NACA 0012 airfoil which was used

in the experiment. The relation between wing and tail angles

of attack is shown in Fig. 14 and the wake location in Fig. 15.

(See Appendix D for a detailed calculation of the wing wake).

The results by the present method for this configuration are

shown in Fig. 16 together with experimental data.

In Fig. 16(a), it is seen that with the wing at low

angles of attack, the wing wake is far below the tail and

has no effect on the tail. With increasing angles of

attack, the lift of tail increases until a certain angle

of attack (24 ° ) is reached. Then the tail enters the wake

center of the wing and the tail lift decreases as the

angle of attack is increased further.

Fig. 16(b) shows that the predicted pitching moment

exhibits the same trend ms the experimental data from reference ]3.
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However, the predicted magnitude is too negative, even in the uniform

flow. At a certain angle of attack, the tail enters the wing wake, and the

nose-down contribution of the tail to the total moment is reduced, resulting

in unstable pitching moment characteristics.

5.4 Rectangular Wing of AR = 3.3 in the Wake

Theoretical longitudinal aerodynamic characteristics of

a rectangular wing of AR = 3.3 in the wake stream are

shown in Figure 17. In Figure 17(a), it shows that as the wake

center is far away below the wing, the effect of reduced

dynamic pressure is small. Due to the positive velocity

gradient, the vorticity is in the same sense as the circulation

around the wing. As a result, there is a gain of lift. When

the wake center moves closer to the wing, the effect of

reduced dynamic pressure becomes more important and the lift

is reduced. After the wake center moves up and away from the

wing plane, the negative velocity gradient contributes a loss

in lift compared to the lift gain when the wake center is at

the same distance below the wing. As the wake center moves

further away, the lift will get close to results of the

uniform flow.

In Figure 17(b), it is seen that as the wake center stays

below the wing, the positive velocity gradient makes a significant

contribution to the leading edge thrust. At Zd=-0.7071, the

induced drag is calculated to be negative due to large positive

velocity gradient. Whether this is possible in reality requires

further study. On the contrary, the leading edge thrust is re-

duced when the wake center is above the wing.

In Figure 17(c), the aerodynamic center is shown to shift

forward (i.e., more negative 3Cm/_CL) when the wake center is
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below the wing and moves backward when the wake center is

abovethe wing. Again, the velocity gradient effect is res-

ponsible for this difference.

Figure 17(d) indicates that the pitching moment becomes

less negative as the wing moves into the wake. This trend is

consistent with the results presented in reference 8. Within

a certain range of angles of attack, as the wake moves toward

the wing, _Cm/_ becomes positive, contributing to pitch insta-

bility of the airplane.

5.5 Rectangular Wing (AR = 7.2) in the Linear Sheared Flow

Theoretical longitudinal aerodynamic characteristics

of a rectangular wing of AR =7.2in the linear sheared flow

are shown in Figure 18.

In Figure 18(a), it is seen that the lift is decreased

due to the local dynamic pressure effect. However, the

positive velocity gradient makes a positive contribution to

lift as mentioned earlier. With Zd = 0.0 and M° = 0.15, the

lift is slightly greater than those in uniform flow (M_ = 0.15)

due to this positive velocity gradient effect. For the sheared

flow, since the second derivative of the Mach number profile,

M"(_), is zero, the change of lift and induced drag coefficients

is much lower than those in the wake or jet.

In Figure 18(b), since the velocity gradient effect is

almost the same for each case, the difference in lift-drag

ratio is mostly due to the local dynamic pressure effect.
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As shown in Figure 18(c), the aerodynamic center is

not much changed in the linear sheared flow from that in the

uniform flow. This is because nonuniform flow effect makes

the same contribution to both the lift and pitching moment•

5.6 Plane Delta Wing (AR = 1.4559, A= 70°) in the Jet

It is assumed that the suction analogy of Polhamus (ref.

12) is still applicable in a nonuniform flow. The vortex lift

calculation through the method of suction analogy described

in reference II is applied to a wing in the nonuniform free

stream• The longitudinal aerodynamic characteristics of a plane

delta wing of 70-degree sweep by the attached flow theory and

by the vortex lift theory are shown in Figure 19. It is seen

from Figure 19(a)the vortex lift increase is slightly larger

in the jet stream than that in the uniform stream• Figure

19(b) shows that the lift-drag ratio is increased in the jet

either in the attached flow or in the vortex flow as compared

with that in the uniform flow. This is because the wing is at

the jet center, so that the local dynamic pressure effect

plays the main role In Figure 19(c) it is seen that _Cm
• , _CL

is not much affected by the nonuniform flow effect at low lift

coefficients At high lift coefficients, 3Cm is slightly
• 8CL

reduced by the jet flow.
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6. Conclusions

A lifting-surface theory for the subsonic compressible

nonuniform flow has been developed. The theory not only

accounts for different local dynamic pressures, but also the

effect of velocity gradient. Comparison with limited known

results show that the present theory is reasonably accurate.

Numerical results indicate that there is a gain in lift if

the wing is in a region with a positive velocity gradient.

Based on the assumption that the suction analogy is

still applicable in a nonuniform flow, results for a 70°-

delta wing show that the vortex lift is enhanced by a jet flow.

The present theory can be applied to any type of free

stream profiles with variations in both spanwise and vertical

directions.
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APPENDIX A

Integral equations for the 2-D Small-Disturbance

Subsonic Nonuniform Flow

The detailed derivation for equations (12) and (13)

is given below.

A.I A General Integral Equation

Applying Green's reciprocal formula to equation (3) , it

is obtained that

#_ ' ' '_I _d5.%+#( a%% _dW'

s
Now, on S' (a small spherical surface),

The direction of normal differential of S' points away from

V', i.e., towards the interior of sphere. It follows that the

second integral on the right-hand-side of equation (A.I) becomes
!

I! 'IcT __- -_)ds=--K -%-_ds _,
g

as s . 0, s . 0, and S'. 0. Hence, the first term in equation

! f!_'@$ is the arithematic mean value ofNote that 4_*

p' on S' and tends to p' (x,y,z) as a_O. Therefore,

'!IP' p'

Equation A.I now becomes

n_, , M'- ' _3J7.'5
l/

S 9.7



w_ereR--_-_,_+/,_-p'+/r_'_,_

Let I Ni

Therefore,

V'

where g = _fp'.

From the divergence theorem, the above equation can be written

as

V' SiS

Similarly, let

RM

VI

--55I__-_-__"_'____ \!_,,_,'d___;TZ-,r,a4_Z_ _A._
-a jhp'where g =

Substituting equations (A.3) and (A.4) into equation (A.I) ,

equation (A.I) becomes
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Equation (A.5) is the general integral equation for the

small-disturbance subsonic nonuniform flow.

Now, apply the boundary condition equation (equation ii)

to each term (except the first term) on the righ t hand side

of equation (A.5) and perform the integration from q=-_ to

n = _ for the two-dimensional case. Let

Several terms in equation (A.5) will be simplified separately

in the following:

A._ P,=-4_ _(_,)
3w

Remember, q is positive outward away from the flow field, so

that Q = -Z for the upper surface. It follows that

( ) =-_-_ C ) = C4.?)

Substituting equation (A.7) into equation (A.6), it is

obtained that

f

p, 21 cA.8)=- _

The boundary condition requires that the flow be tangent

to the camber surface in the thin airfoil theory. This condition

can be written as

_{:x,0) _z_ (_._)o<

where zc is the camber. To find the downwash w(x,z), equation (I0)
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is integrated to give

v _"_ _ _t_, (A Io)_', (x z) -- _(z)V(z,) _---'_-
where the lower limit is chosen in such a way that w(-m,Z)=0.

Substituting equation (A.8) into equation (A.10) , the following

equation can be obtained

V=oCo)- _ = - 4n ?(

;L "R,-_-&42

I

__ _ P, ( A,3)
Substituting equation (A.13) into equation (A.12), it is

obtained that

Similarly, applying the boundary condition equations Eq. (9)

and equation (II) to equation (A.14), it can be shown that
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since --_P_ O.
"az (X,0) =

_0 _-_SIIV
Integrating from q=-m to n=m for equation (A.15), it is

obtained that

I

After applying equation{9)and equation _ll)to equation (A.16),

the following integrals are needed:

i_ _ (A.17)

f2€: :_l,>,
,._d_, , _,1__ (A.,,)

It follows that

where

?' (A.2O)Cp(3,_)-
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Applying the divergence theorem to equation (A.21), it is

obtained that

-_ _ ,

Y'

S o

It follows that

From the boundary conditions (eq. (9) and eq. (11)), it is

finally obtained that
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Note:

(co ..!.L _ 2-

J-oo ~3 - fP'

17< x, dX, =5X" (~~t(Z-5)\J t 5 fX dx,
.t::,:l ~ ~ ~ ~ 00;,:-

_~ '-f 2!(Z-S)-D 2.f(Z"5)"00 '"i'

(I( <li, = ' [ p( .. ~ + I (taJ,-' x- ~ t ~ ) 1
).CD ~,2 1Z(Z-S>\ 9' fIZ-5' f'~-51 :J

S.
;X (~I" 5) d~, =~

-0 ~r2. 2g.
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APPENDIX B

Integral Equations for the 3-D Small-Disturbance

Subsonic Nonuniform Flow

To derive the wing boundary condition (eq. 15), equation

(A.1S) will be used again. Several terms in equation (A.S) are

simplified below.

For simplicity, the following symbols are introduced:

B .1

2 z 2

;> D= (X - 5) +f3 (Z - S)
, :a. z. 2-

;> 1),= (X-s) t/J)

, :2 .2. 2;L

) Yz = f (1- '() - f Z

_ ~.2. ~

? 6,::: (XI - :5) tf (z- 5)
, ~ z

) )t::: ( t - 7.) - (z- 5)

( B.l)

After applying (eq.9) and (eq. 11), the following equations

can be obtained:

( B.2)

Jx dx, = -'- ( , T
-00 R,3 Yz

x- > )
R. ( 8.3)

dx, _ X - ~ ( , +~) + ~
R: 5

- 3 Yz·R. R,~ Yz 3
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It follows that

B.2

p~=-2~ff-fpdS
s

where
(_~.!3.
j- R M

( B.b)

Applying equation (11) to equation (B. G), it is obtained that

W I f'X o~ - ) 1-~=: - -( X, 7 'I.) z aX,
~ Voo -~ oZ'

It follows that

( 8.?)

( B.S)

B.3

(8.1)

where

~=
0)"

Applying.equation (11) to equation (B.9), the following

integral is obtained:
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It follows that

M

where

"_{- R3 R (B.I_4)

Applying equation (Ii) to equation (B.13), it is obtained that

_.v. _z (B.15)
It follows that

By the divergence theorem

#v. a"4v-_I__" as (_._)
V .SuYfaCe
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R3 } cl_J'_ _ (B.lq)R

Applying equation (B.18) to the first term on the right

hand side of equation (B.19), it obtained that

t r

-jIT. =If o
Therefore, equation (B.17) becomes

m !

From equation (ii), it can be shown that

I __x_b dx'

It follows that

W/,V_(_.,/v,z)(Y, z) - _l]l Jjj i' z-_)( M_-M_R3 C__.p_;ljSdl d_ (B. 1 z)

B.6 Surface integrals in equations (14) and (15).

Following the quasi-vortex-lattice method (ref. 9), it

is assumed that the velocity is constant for each spanwise

vortex strip on the wing. Performing the integration along

the bound element of each strip (Figure 4), the double integrals

can be reduced to finite sums through the mid-point

trapezoidal rule. Let
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X-_= x-×,-C (x_-x,)

7-_= y-/,-_ (y_-y,)

= +

where
2 2

g =-2[_X-X,)(Xz-X,)+#_(y-Y,>(y,-y,)3
1 a 2 2

# = (x-x,)-_# (/-y,)+i_z

(y-7) tz = _:a 4 _b, + c,
_. 2 a

O_=(Y_-/,) , g,_--2(y-y,)(y,-y,)_ c,=(y-y,)+z

The second term on the right hand side of equation 15 can

be written as

W2( X, y,z) - 4. _'J" Yz R,,Sw

Now, integrating equation (B..23)along the bound element of

each vortex strip and assuming the Mach number is constant for

each spanwise strip, it can be shown that

W2( x, y, z)

{_o' z_y_,-y,)J'c4 _T aT b,?:4 c,

I

a_ + b,-c4c,(_z_+_r+?)_r (B.2_4)
3R



where

I_ z(Y2-Z)d_at=4 b,T + C,

_ cy_-y,)z -, 2a+_, __o' F, ) (82s)
- i Y_ _ /?]lzl ( -(:ah al(y_-y,)zl _I_Y_-Y,)zl

To integrate the second integral in equation (B.24), let

(Y_-Y,)T-(V-Z)=

x=o ? =-:y-y,)

-- a 2

6t_fJ_,{+C,= V + Z

+_T +c - c;/,_z.)_.( v% _ _, c') (13.=6)
It follows that

V_f z a (A'V24 zB V+C') _

[ C4V-(X2-X')z ] -_=_-y

Using equations (B.25) and (B.27), equation (B.24) becomes

t = l:/_-7,)zl =lCy,-y,)zl
where

A'= ( X_- x,)_'.[3_( Y:_-Y') a

B'= [ _x, -x,)_ z-_ )- _x-x,) (x_-x,) _y,-;',_
2

C'=(X_-x,)(y-Y,)- _(_-N,)(2(_-x,)(Y-Y,)(/_-Z)

-I (x-X,) _(y_-Y,)_t/3_(7 '_-/'/
&= ( _-x,) r y-/, )- ( ×- x,) fy_-N)

a = (/_- y,> , b, = .-2 (y-y,)_Y:,-y,)
$9



Finally, equation (B.28) becomes

t_J ) + F (B.2f)

The first term of equation (14) can be written as

Sw

Following the steps used above, let

x- _ = ,x- x,--c _×_.-xO

y-_ = y- ,_-c_-z,)

Hence,

_, (x, y, z)

where

_= I X_.-X,;'ktS_'( ,Yz_y,)a

The second term on the right hand side of equation (14)

is

Cf, (x,y,z)

: 4L""
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APPENDIX C

Integration Regions and Coordinate Transformation

C.I Integration regions and coordinate transformation in

the _ direction are indicated in Figures 6 and 7. For

simplicity, denote the integrand by F(_). Then,

Note that the infinite regions are actually approximated by

appropriate finite regions in numerical calculations. The

upstream integral becomes
0

g_
=-Xa (f-cose)+Xt{3) O=_ , K=l,_,..... &

The second integral of equation (C.l) can be written as

25_=_- ( I- cos&) 0_= =_/_ k'--I,_,..... N=
where

n/_= 2_e.( Nw_,_+_/t_)
and

NW(1)+NW(2) = total aerodynamic panels on the wing in
chordwise sections

Similarly, the downstream integral is reduced to

f2
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C.2 Coordinate transformation in the spanwise direction

The integration regions and coordinate transformation

are illustrated in Figure 6. If F(q) represents the integrand,

then,

Again, infinite integration regions are approximated by finite

regions in the numerical calculation.

The integration from -coto the left wing tip can be

reduced to

7=
_= [--_M..K-,, =, ..... Mz

"7

Note that My is the number of integration points outside the

wing in the spanwise direction.

Integration points for the integration perfomed over the

wing in the spanwise direction coincide with the ends point

of the vortex strips. Therefore,

= )
On the other hand, the integration from the right wing

tip to _ can be reduced to

_q)d7 = _o F(_>d¢ cc7)
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KIT

C.3 Integration in the vertical direction

Assume the integrand is F(_). Then

The integration from _=-_ to _= 0 is reduced to

where Ma is the number of integration points in the z direction.

On the other hand, the integration from _=0 to _=

becomes

I _.c___)d+ c_.,o>0 20

k_ k'= L,_..,.... M==% <l-_o_s_k>, Y= =M_,'

ff,=o _=o , _,= % [ =z!,

where Mb is the number of integration points in the positive

Z direction.
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APPENDIX D

Calculation of Wing Wake

Silversteinand Katzoff(ref.14 and ref. 15)obtainedempirical

equationsfor calculatingthewingwake.qhemaxirmmnlossof dynamic

pressurein thewake qm can be expressedas followingequation.

__= (D-v)

where Cd isthewing sectionprofile-dragcoefficient,and x is the

distancebetweenwing trailingedge to the aerodynamiccenterof the

tail. qu representsthedynamicpressureof the uniformportionof

thewake flowprofile. The distributionof the dynamicpressureloss

withinthewake is q :

The halfwidthb of thewake is givenby

°._ o.___-0.68 ( o.r )• C

FrcrnEquations(D-l),(D-2), a functionof the Mach number profile

of the wing wake can be shown as the followingexpression.

' ___x+ o._
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The wake locationcan be determinedby using the method of Chapter 7

of reference 16. A_,_umingellipticcirculationdistributionfor wing

in the spanwisedirection,then the inducedangle of attack is given as:

(]>-5)

where experifnental data for _ are to be used (ref. 16).

The downwash angle Ei can be obtained from figure 7-14 (ref.16) by using

ei. Finally, the downward displacer_nt of the wake can be approximated by

the following equation:

whereZ=0.75sin_for angleof attackwithoutflowseperation.

Z=0.75sin(e-£i) for angleof attackwith flowseperation.
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Table i. Convergence Check of Numerical Integration for
Joukowski Airfoil

CASE IGP Xa Xb Za Zb NI N2 N3 Ma Mb
NO.

i 5 9.0 8.0 3.0 3.0 20 I0 10 10 I0

2 5 9.0 8.0 3.0 3.0 15 I0 i0 10 i0

3 5 9.0 8.0 3.0 3.0 10 I0 10 I0 i0

4 5 9.0 8.0 3.0 3.0 5 I0 5 5 5

5 5 9.0 8.0 2.0 2.0 15 i0 I0 5 5

6 5 9.0 8.0 2.0 2.0 i0 i0 10 5 5

7 5 12.0 11.0 2.0 2.0 20 i0 20 5 5
...............................

8 i 9.0 8.0 3.0 3.0 20 I0 10 10 i0

9 I 9.0 8.0 3.0 2.0 10 10 I0 5 5

_iJ 1 2 3 4 5 6 7 8 9 I0

i 0.7259 1.3235 2.0064 2.5672 2.9164 2.9887 2.7457 2.182 1.3123 0.1090

2 0.7488 1.3310 2.0108 2.5702 2.9185 2.9902 2.7468 2.1830 1.3128 0.1091

3 0.8061 1.3498 2.0217 2.5777 2.9239 2.9942 2.7496 2.1850 1.3139 0.1095

4 1.7472 1.6748 2.2311 2.7397 3.0578 3.1057 2.8391 2.2491 1.3509 0.1214

5 0.6686 1.3113 2.0082 2.5768 2.9309 3.0042 2.7613 2.1940 1.3186 0.1109

6 0.7253 1.3302 2.0196 2.5845!2.9365 3.0083 2.7643 2.1960 1.3198 0.1127

7 0.8506 1.3701 2.0413 2.5982 2.9456 3.0144 2.7683 2.1985 1.3212 0.1190

8 0.7294 1.3249 2.0075 2.5683 2.9174 2.9896 2.7465 2.1863 1.3126 0.1091

9 0.7363 1.3345 2.0228 2.5875 2.9392 13.0110 2.7664 2.1976 1.3207 0.1116

Notes. I indicates the pressure point locations given by Eq. (C.3a).

Case i is judged to be the best solution.

IGP=5:by least square method with i00 points of Z in equation (12)v

IGP=I: with Z =0.05 only in equation (12)v

Airfoil chord length=l.O
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Figure 4. - Vortex Segment Ceometry
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Figure 7. Mach number profile for jet and wake streams
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(a)

(b)

Figure ii. Wake of the Wing at High Angles of Attack
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Reference Dynamic Pressure = 0.5 P VI
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Figure 17. Continue
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Figure 17. Continued
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Figure 18. Longitudinal Aerodynamic Characteristics of

Flat Rectangular Wing (AR=7.2) in Shear Flow.

Reference Dynamic Pressure= 0.5 OlVl
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Figure 18 Continued
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