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1. List of Symbols

SYMBOL MEANING
2
a (Yz—yl)
Fy (x-x)T + (y-9)F + (zl—z)'fE m(£t)
" 3 - 2 2 _ 2
A',A (X5=%4) " + B (¥y-yy)
AR Aspect ratio
b Wing span m(ft)
b (x2-x)i + (y2—y)j + (zz—z)k m(ft)
b, -2&y-yl)(y2—y1)
C
B B(M')
LS
B' [(x,-%;) 2 (y=y ) = (x=%) (x,=%,) (y,=y )]
2 71 1 1 2 71 2 11
-— 2 .
B =2[(x=%7) (x,=-%7) + BT {y-y ) (y,-¥,)]
BW (I,II) Summation of Eg. 15 for control point I
M
_n
c ol )
an
2 2
Cy | (y-y,) " + 2
cq Wing sectional profile drag coefficient
CDO Friction drag coefficient
CDi Total induced drag coefficient
C Total 1lift coefficient (Lift/q.S)
Ch Total pitching moment coefficient based on co

(Moment/ (g Sco))

c Wing or tail root chord length m(ft)



]
Dy

DW(I,ITI)

E

£

2 2
(x5-%x7) "+(y-y,) —2(x—x1)(xz—x})(y—yl)(yz-yl)
+(x-%,) 2y -y,) 2+ 8222y, -y.)
1! WY, Yy7Yq
Mean geometry chord m(ft)
(x—x1)2+82(Y'Y1)2+8222
Pressure coefficient (P—Pm/qm)

3C,
2§

(x-£) 2+82 (z-1)
(x-£) 248252
(x-£) 2+82¢2
Summation of Eqg. 14 for control point I
opP'i
1M
R M
Any assumed integration function
2 2
(x-£) 2487 (z-1)
(k,-€) 2+8% (z-0) 2
-
hp'j

M
n

1

R M
Unit vectors along X-, Y-, and Z- axes,
respectively

Free stream Mach number

First derivative of Mach number function
Second derivative of Mach number function

Uniform free stream Mach number

Integration points away from the wing in
spanwise direction.

Integration points in the negative 2 direction




=

S

NW (1)

NW (2)

PI

)

Wi

Sl

Integration points in the positive Z direction
Unit vector normal to wing surface
Upstream integration points

Total integration points on the wing in
chordwise direction

Downstream integration points
N
N, = (NW (1) +NW (2)) P

The number of vortex strips in each spanwise
section plus one

Number of aerodynamic panels on the wing in
chordwise direction

Number of aerodynamic panels on the flap in
chordwise direction

Perturbed pressure

Any point in the flow field
(x,=%1) (y=y,) = (x-%1) (¥,-y,)
M2 §°) /R

Free stream dynamic pressure (pw(y,z)vz(y,z)/Z)
N/m?  (1b/ft?)

Xi + Y3 + 2k m(ft)
[(x-E)2+Bz(y—n)2+62(z-c)2]%

£T + n§'+ tk  m(ft)

[(x-t ) 2+82 (y-n) 2482277

(x,-6) 2482 (y-n) 248222 2

Arbitrary body surface in a compressible flow
m? (££2)

A small sphere surface which surrounds a point
(&,n,2) m2(£t?)




X,¥,2

rf

Wing area . mz(ftz)
Free stream velocity
The whole flow field volume m3(ft3)

The volume excluding from V the interior
of §'

(Yy-yq) T-(y-y,)

n-y

Induced normal downwash velocity M/ sec (ft/sec)
Normal downwash angle 3€c-—a

X

Wing rectangular coordinates with positive
X-axis along axis of symmetry pointing
downstream, positive Y-axis pointing to the
right, and positive Z-axis pointing upward,
m (ft)

Integration dummy variable

Wing leading edge coordinate in the X direction
Wing trailing edge coordinate in the X direction
Upstream integration recion m (£t)

Downstream integration region m (ft)

Wing and tail neutral point coordinate in
chordwise direction

Spanwise integration region away from the wing

(y—n)2+(z—c)2

(y-n)z-(z—c)2
Bz(y-n)2+8222
82 (y-n) *-p22?
Integration region in the negative Z diréction

Integration region in the positive Z direction

Ordinate of. camber surface measured from the
X-Y plane m (ft)




o

m € € © D

Vertical distance between wake center and
the X-Y plane m (ft)

Z coordinate in the flow region

MEANING:

Wing angle of attack

Tail angle of attack

(1-11%)

Vortex density referred to free stream velocity

Differential pressure coefficient (Cp
C ) lower
Pupper

Chordwise angular distance (rad)

Sweep angle of wing leading edge

Fluid density kg/m3 (slug/ft3)

Spanwise angular distance (rad)

Vertical angular distance (rad)

1/R

Integration variables in Cartesian syst7? )
m t

Radius of S'



2. Introduction

When the freestream is nonuniform, the assumption of
flow irrotationality becomes inapplicable so that the
conventional potential flow theory must be revised (ref. 1).
Practical examples of nonuniform freestream include the wing
behind a canard wake, a wing or tail situated in the propeller
slipstream and airplanes in a wind shear.

The literature on the subject is not extensive. Von
Karman and Tsien (ref. 2) developed a lifting line theory for
an incompressible nonuniform stream in 1945. Homentcovschi
and Barsony (ref. 3) formulated a lifting-surface integral
equation for nonuniform incompressible flow with a general
stream velocity profile. Hanin and Barsony-Nagy (ref. 4)
developed a slender wing theory for a subsonic or low-
supersonic nonuniform stream. Later, a lifting line theory
(ref. 5) for wings in a subsonic nonuni.orm stream was
presented. Recently, a lifting surface theory for nonuniform
supersonic parallel stream (ref. 6) was also developed by them.
More recently, experimental investigation of wind shear effect
on airfoil aerodynamic characteristics has also been conducted
(ref. 7). K. Gersten and D. Gluck (ref. 8) investigated the
effect of wing wake on tail characteristics theoretically and
experimentally.

In the present investigation, the small-disturbance steady
subsonic flow equation for rotational flow is to be solved.

The resulting equation is a partial differential equation




with non-constant coefficients. It is transformed into an
integral equation through Green's theorem. It is assumed
that (1) the Mach number profile M(y,z) or the velocity
profile has a nonzero value M(y,0) on the wing plane; (2)
there exists a finite second order derivative M" (y,o0) on the

wing plane, and (3) M'(y,z) is integrable across the stream.



3. Theoretical Development

3.1 Mathematical Formulation

The partial differential equation for small-disturbance
subsonic steady rotational flow may be written as (ref. 1)

2 M (y,2) M,(y,z)

- L PR S LI, e ' U ' =
[1-Me (y,z)]PXX 2 M(y,z) Py 2 M(y.z) Pz + Pyy + Pzz 0 (1)
where M(y,z) is the undisturbed free stream Mach number and P’
is the perturbation pressure. Here, the flow is assumed to be
steady, invicid, and compressible past a thin wing at a small
angle of attack.

The wing lies in the x-y plane with the positive x axis
being streamwise along the wing center line. The origin of
the rectangular coordinate system is assumed to be at the
wing moment reference point. Let

] ' 1 2 -2

X =X,y =By, z = Bz, B =1-M (2)
After the coordinate transformation, equation (1) becomes

P;{IXI + P§lyl + Pé'zl

M, Mg
= 4 ' _— ' l_ 2__2 '
2 = Py‘ + 2 Ty Po. 82(M M )Px,x, (3)

where M = constant and is assumed to be a reference uniform

Mach number. To use Green's formula:
151 (§V20-0V2T)dy =ff($%9-93i)ds | (4)
n an
v S
let
Q =p' (5)
T=23= !
R V0 & y-n) “+B82 (z-0) 2 (6)

Consider an arbitrary body with boundary surface S in a
compressible flow. - Outside the body, the whole flow field

has the volume V. Now, let P, (x,y,z) be any point in v.




Then § is a solution of Laplace's equation:

7 + v Tt l{)z:c) (7)

However, the basic solution becomes infinite at Pt so that

Green's reciprocal formula can not be applied. To avoid

this difficulty, surround P, with a small sphere S' with

t
radius €. Let V' be the volume which is obtained by excluding
from V the interior of S'. V' is bounded by S and S'.
Applying Green's reciprocal formula to equation (3), it is
obtained that (see Appendix A)

P(x',y',z")

1 3P' ) 1
I o (= 211 '
[R N n (R)]didn 2S fP'dEdn
w w
4011 3f p'dedndz+2/)Joh p'dEdnds
dC Visn
yr 9% n

_ 1
=z {

- 119 _17 (Mz_ﬁ 2) PlE dgdndz} (8)

v RE £

The boundary condition (the flow tangency condition) is given

by (ref. 1)
wix,y,z) = aZc - o (9)
V(Y,Z) 90X

Following the linear theory, the boundary condition is satisfied

on Z = 0 plane.

From reference 1, the linearized momentum equation in 2

component is

ow P

P (¥,2)V (v,2) 57+ 57 =0 (10)

It follows that the downwash in equation (9) can be written as
w(x,y,z)= -1 IX 9P (il,y,z)dil (11)
P (¥,2)V(Y,2) - 32

where the lower limit is chosen in such a way that w(-«,y,z)=0.



Using equations (8)-(11) ,after lengthy manipulation, the
following final integral equations and boundary conditions
for two-dimensional and three-dimensional flows can be
obtained (see Appendix A and Appendix B).

(a) Two-Dimensional Flow

The integral equation is given by

C (x,2.) =-_B  Z4,ACp ac
Py 27 I°[(x-g>2+sizvz]
- L My 0 B* e, (£)dg
Zig w0 [(x-—E)‘+BZszl P
Mg
+ _1 gy {282M (Zy-t) +
27B [(X—E)2+82(ZV—C)2]
+ B(z) ,Qn[ B2 ]}Cp(EIC)dEdi;
(x-€) “+B8° (2 -C)°
+ _1 1s Cpﬁ(ng) (x-¢) (MZ—I‘—’IZ) dgdg (12)

2mR°> [(x—€)2+82(zv—c)2]

The boundary condition is
v (x,0) =% -«
ax

= -ByIACP(§) dE. l_II[T%T . B(z) (tan™! x-E +7/5)

4T x-£ 2T [-B8¢]

L

2

+ PR x-E) c, (£,z)dEdz
(x-E) “+B7¢?

_ o
v 1 gy M2 -i?) - P88 gpqg (13)
41RB [(x-&)%+B°C”°]
Where B(z) = 3—(§5) M = Mach number, M. = 9—(M), and
aa M 14 14 C BC 14
_ 3 . .
Cpg = agCp(ii,g). Cp is the pressure coefficient.

10




(b) Three-Dimensional Flow

The integral equation is given by

Cp(x,y.Zv)

1 B2Zy*ACL(E,m)
- Tan ! 372 454N
5., [(x-8)*+B2(y-n)?+822,%]
w

. 3((n,0)ACp(£,n)

g [(x=£)2+B2(y-n)?+B%2,%]
w

d&dn

N
ﬁIH

1/2

2, Mz
B% o5 (ne2) * (Z24-7)
y' [(x=8)2+B%(y-n)* + 8% (24-2) *]

N
le

vt Lx=E) 2+ B2 (y-n)2 + B2 (2,-0) 2]

2Mn
1 r1s B 'Tr(n,a)-(y-n)

* Cp(&,n,z)dEdndg
gt [x=8)2 482 (y-n) 2 482 (2y-0) 21°/2  F

R SN C(n,z)

+ Cx(E,n,z)dEdndg
ot [x=8) 2+ 8% (y-n) 2 + 82 (zy-0) 21 /2 P

2
L gyy (x=g) « (M2~ )
4B v [(x=E)2 + B2 (y-n) 2 + B2 (Zy-T) ?]

3/2 * Cpg(grn:C)dEdndC

(14)
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The boundary condition is

_ 3%

Wix,y,z) = 5%~ ©

= 8® Iy AC,(E,n)
81TS pt=y

B2 (y-n)? -B%z2 x - &
E[ e 177)

w B2 (y-n) 2+B2%z22%]? [(x-£)2+B? (y-n) 2+B227?]

BZZZ(X"E) f
[Bz(y—n)2+8222][(X-€)2+Bz(y-n)2+8222]3/2 dtdn

Mc(o) 2 +ACH (£,1)
82 IN] M p 2l §1+ X—E

Sy B2 (y-n) ?+p?%2? [(x=-8)2+B2 (y-n) 2+B?27?]

1/25 dgdn

M
“Li(y-n) 2-(2-1) 2] - - - -
_ f% 15 Cp(E,m,T) - L (y=n) #=(2-2) ] = B(Z-¢) [(y-n) *+ (2 g)zl.

v' [(y-n)2+ (2-7)2]2
- £
(1 + X -
[(x—’r;)2+Bz(y—n)2+82(Z-C)Z]l/2 )
2 MC
B2 (2-7) 2 3£ (x-E)
- _ 577 { d&dnde
[(y-n) 24+(2-2) 2] [ (x-§) 24B2% (y-n) 2+B% (2-1) ?]
2 .
) ~C(2-7) [ (y=n) 24 (2=2)" 1 = 22 (y=n) (2-¢)
- i 11y Cp(g,n,C)
v [(y-n)?+ (Z2-g)2]°2
1 + X - &
( [(x—a)2+62(y-n)2+62(z-2)211/2)
2 Mn
B2 (x-E) 5 (y-n) (3-0)
- 375 (dEdnde
[(y-n) 2+ (Z-7) 2] [ (x-&) 2482 (y-n) *+B? (2-1) ?]
1 _ 2_2
T8 e, (g (Zoe) (M -%) 575 dEdnde
\Y E [(X—g) 2+82(Y—H)Z+BZ(Z-C)2] (15)
where
3 M 3 M
B(n,z) = = (5¢) and cn,z) =55

12
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3.2 The assumed functional form for Cp
3.2.1 Two-Dimensional Flow

The unknown pressure coefficient Cp is assumed to have
a functional form which can be derived by retaining only the

first term on the right hand side (R.H.S.) of equation (12).

It follows that

K
E,.-8& £ . -§&
= _-.E_- -1 2 - -1 1! ]
Cplése) Zl 5 T2 [tan “Teer Tt B3 (16)
]:
> 4 [ [8z] |8z
Cp, (£,2) = A - } (17)
g jé‘l J ICI 82C2+(€2j_£)2 82C2+(£1j_£)2

where glj and gzj are chordwise control point locations given

by a cosine law distribution as illustrated in Figure 1.

3.2.2 Three-Dimensional Flow
In this case, the assumed functional form for Cp is
derived by retaining the first term on the R.H.S. of equation

(14) with &, 62, etc., defined in Figure 2.

c (Ern:C)
P
N N . .
_ L a 2 A l(:L Ezi‘g (tan_l (ﬂ-nzj)lg’gzll
o ;21 & 0P8 | Ue-eyyl |zl (g-g, ;) 2+8% (n-n, ) "+B%c*
EZi_g -1 (n—nlj)l€-€2i|
e T e
21 cIJ(E=E, ;) "+ (n=n, ;) "+B7L
E;;l-g ( -1 (n-nzj)lg"ﬁiil
AN e |z | J(E=E1 ) 2482 (n=n, ) 2+B%¢?
- 13 g 14 n nzj g
_ Eli_g (tan_l . (n_nlj) Ig_glll
|e-€,5 1 |z J(g-g ;) 2+8% (n-n ) 2+8%c?

13

(18)

)

)]

)

|



C, (&,n,7)
Pg

1

2T

J

where

D1=

D2=

D3=

o]
-
it

os)
™
1l

(n-n, ) [E-€} ;|

el J(E-E; ) 2 + 82 (n-n, ) 2 + B7c?

(n-n, ) [E-¢, ]

leld(E=g, )2 + 82 (n-n )7+ 87¢

(n—nzj)IE-E;iI

2] Jte=g;;) % + 82 (n=n_ ) * + 82C7

(n_nlj) lg-gli]

lelJ(e-g, )% + 8% (n-n 2+ 877
B®(n-n, ;) * + B%¢?

Bz(n—nlj)2 + B?g?

14

N '

2 K%A_,l [n_nzj ( ! (E-874)° )

c LB )14p,2 W iemgr ) 2By [(E-g) ) 24813 2
i T]‘ﬂlj ( 1 (g_gzi)z )

140, 2 \J(E<E, ) 4B, [(E-E,,) %+B,1%/?
i ln-nzj ( 1 (E-£1.)° )

1405 %\ J(E-E! ) %¥By [(E-£],) 24B,1°/?
_ n-n lj ( 1 (E;_gli)z )

14D, VJ{E-E ) 7+B,  [(£-E ) ?+B,)>/?

(19)




4. Numerical Calculation
4.1 Solution procedures

For airfoil problems, equations (12) and (13) are to be
solved simultaneously. Similarly, for three~dimensional
cases, equations (14) and (15) are to be solved.

To simplify the equations, those double integral terms
in equation (15) are reduced to finite sums following the
quasi-vortex lattice method (ref. 9). To satisfy the wing
boundary condition, the continuous vortex distribution over
the wing is replaced by a quasi-continuous one, being
continuous chordwise but stepwise constant in the spanwise
direction. Thus, the wing surface can be divided into a number
of vortex strips with the associated trailing vortices (Figure
3). In any strip, consider a vortex element y dx with an
arbitrary direction & (Figure 4). The integrals are then
reduced to finite sums through the mid-point trapezoidal rule
(ref. 9 and Appendix B). Similarly, those double integral
terms in equations (14) can be simplified in the same way
(see Appendix B).
4.2 Singularities and integration regions

Before proceeding with the numerical integration of
integrals, singularities of integrands must be examined.

From the definition of ¥ in equation (6), it is expected
that all integrands will have a singularity at the observation
point x=£, y=n, z = ¢. To account for this singularity

properly, rectangular coordinates are transformed into polar

15



coordinates by using a cosine law relation (i.e., half circle
relation) with separated control and vortex points (ref. 9).
Outside the wing, a quarter-circle transformation is used
which creates smaller mesh-size near the airfoil or wing.
The mesh size is small enough to represent better the rapid
change in the pressure coefficient. The detailed integration
regions and coordinates transformation are presented in Appendix
C.
4.3 Numerical Convergence

The convergence of numerical integration is checked in
two ways. One is by comparing integrated results of each
term in equations (12), (13), (14), and (15), and the other
is by comparing calculated aerodynamic characteristics.
4,3.1 Two-dimensional Flow

The integration schemes for an airfoil are illustrated in
Figure 5. Calculated ACp's for different integration schemes
are presented in Table 1. It is seen from Table 1 that
satisfying equation (12) at 100 points of Z, through the
least square method produces results for ACP which can be
obtained by satisfying equation (12) only at 2y = 0.05 (Case
No. 8 in Table 1). Note that the airfoil chord length is
taken to be unity. Therefore, to save computing time, equation
(12) will be satisfied only at Zv = 0.05 from now on. For
a wing, this is revised to be Zv = 0.05 Eo' where Eo is the
mean geometric chord.

It should be noted that the so-called least square method

for satisfying equation (12) is based on the following concept.

1A




By choosing N points of (x, Zy) in the x - z plane, equation

(12) can be integrated to result in N values of differences

between both sides of equation (12). Let these values be

denoted by F,. Let Fy = X by,. ACp. + LC, A, (20)
i i i "k

where K = 1,2....N.

If the sum of sz is differentiated with respect to Aj’ and the
results are set to zero, it is obtained that
Y k2 =0, 3=1,4 (21)
K=1 3
This results in a set of simultaneous homogeneous equations for

C_'s and A's:
P

ECykPik 8.t Iy Cix Ay = 0 (22)

4.3.2 Three-dimensional flow

The spanwise integration regions are illustrated in Figure
6. Using an elliptic wing of AR = 10.91, convergence of
numerical integration of integrals in equation (15) has also
been investigated. Note that all integrations are performed
through the midpoint trapezoidal rule after the coordinate
transformation described in Section 4.2. From this study, it

is determined that the following values for integration para-

meters are appropriate: N1 = 6, Np = 0, N3 = 5, My= 5, M1 = 2,
Xa =2.5 x Cr’ Xb = 0.8 x Cr’ YS = 0.5 x b/2, and Za = Zb =
3.0 x b/2.

17



4.4 Freestream profiles

In the present investigation, the freestream velocity
profiles are of three types only--jet, wake, and linear shear
profiles. These are illustrated in Figures 7 and 8. The
jet or wake stream profiles are described by

M(2) = M1 + (MO

On the other hand, the linear shear profile is given by

- M) exp (-(z-z4) °/H%) (23)

M= M1 for z>H

1/2 (M1+M2) + 1/2 (Ml—M2) (z—zd)/H for ~-H< z<H

= M2 for z<H (24)

1R



5. Numerical Results and Discussions

In this section, some numerical results by the present
method will be presented. Comparison with theoretical
results from references 5 and 10 will be made first.
5.1 Two-dimensional Joukowski Airfoil in a Jet Stream

Results of the present thin airfoil theory for a 2-D
Joukowski airfoil as shown in Table 1 are compared with
those obtained by a finite difference method (reference 10)
in Figure 9. It is seen that the present predicted pressure
peak is more aft and the peak magnitude is slightly less than
those given by reference 11. Thickness effect may be
responsible for the discrepancy between these two methods.
5.2 Elliptic Wing in the Jet and Wake

Elliptic wings of various aspect ratios have been
extensively investigated in reference 5 by the lifting-line
approach. The present results for a wing of AR =10.0/ l.—Moz-
compared with those from reference 5 in Figure 10, in jet and
wake flow. It is seen from Figure 10 that the agreement between
two theories is good except when MO is large in the wake
flow. From the general linearized partial differential
equation for the rotational flow (egs. 3 and 23), it is

known that not only (l-Mo)ll2

AR and Mo/Ml are important
similarity parameters, but also is Mo' The theory of reference
5 does not show the dependence of results on MO independently.

The ordinate in Figure 10 is CL/CL , Where CL is the 1lift
o)

coefficient in nonuniform flow based on the local velocity

19




V(o) and density p(0). CL is the 1ift coefficient of the
o
same wing at the same angle of attack a in uniform stream.

The results also show that the effect of a nonuniform
stream on the 1lift and induced drag becomes stronger with
increasing ratio of maximum to minimum Mach numbers of the
stream.

5.3 Effect of Wing Wake on Tail Characteristics

As shown in Fig. 11, a tail surface is frequently
situated in a non-uniform flow field caused by the wake of
a wing. The experimental results for a wing-tail configura-
tion shown in Fig. 12 were obtained by W. Siegler (ref.13).
In the present calcﬁlation, the wing-section drag coefficient
is needed. Its assumed values are shown in Fig. 13 by extra-
polating available data for NACA 0012 airfoil which was used
in the experiment. The relation between wing and tail angles
of attack is shown in Fig. 14 and the wake location in Fig. 15.
(See Appendix D for a detailed calculation of the wing wake).

The results by the present method for this configuration are

shown in Fig. 16 together with experimental data.

In Fig. 16(a), it is seen that with the wing at low
ﬁngles of attack, the wing wake is far below the tail and
has no effect on the tail. With increasing angles of
attack, the lift of tail increases until a certain angle
of attack (240) is reached. Then the tail enters the wake
center of the wing and the tail 1ift decreases as the
angle of attack is increased further.

Fig. 16(b) shows that the predicted pitching moment:

exhibits the same trend as the experimental data from reference 13.

20




However, the predicted magnitude is too negative, even in the uniform
flow. At a certain angle of attack, the tail enters the wing wake, and the
nose—-down gontribution of the tail to the total moment is reduced, reSulting

in unstable pitching moment characteristics.

5.4 Rectangular Wing of AR = 3.3 in the Wake

Theoretical longitudinal aerodynamic characteristics of
a rectangular wing of AR = 3.3 in the wake stream are
shown in Figure 17. In Figure 17(a), it shows that as the wake
center is far away below the wing, the effect of reduced
dynamic pressure is small. Due to the positive velocity
gradient, the vorticity is in the same sense as the circulation
around the wing. As a result, there is a gain of lift. When
the wake center moves closer to the wing, the effect of
reduced dynamic pressure becomes more important and the 1lift
is reduced. After the wake center moves up and away from the
wing plane, the negative velocity gradient contributes a loss
in lift compared to the lift gain when the wake center is at
the same distance below the wing. As the wake center moves
further away, the 1lift will get close to results of the
uniform flow.

In Figure 17(b), it is seen that as the wake center stays
below the wing, the positive velocity gradient makes a significant
contribution to the leading edge thrust.At Z;=-0.7071, the
induced drag is calculated to be negative'due to large positive
velocity gradient. Whether this is possible in reality requires
further study. On the contrary, the leading edge thrust is re-

duced when the wake center is above the wing.

In Figure 17(c), the aerodynamic center is shown to shift

forward (i.e., more negative BCm/BCL) when the wake center is
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below the wing and moves backward when the wake center is
above the wing. Again, the velocity gradient effect is res-
ponsible for this difference.

Figure 17(d) indicates that the pitching moment becomes
less negative as the wing moves into the wake. This trend is
consistent with the results presented in reference 8. Within
a certain range of angles of attack, as the wake moves toward
the wing, BCm/aa becomes positive, contributing to pitch insta-
bility of the airplane.

5.5 Rectangular Wing (AR = 7.2) in the Linear Sheared Flow

Theoretical longitudinal aerodynamic characteristics
of a rectangular wing of AR =7.2in the linear sheared flow
are shown in Figure 18.

In Figure 18(a), it is seen that the 1lift is decreased
due to the local dynamic pressure effect. However, the
positive velocity gradient makes a positive contribution to
lift as mentioned earlier. With Zd = 0.0 and MO = 0.15, the
1lift is slightly greater than those in uniform flow (M, = 0.15)
due to this positive velocity gradient effect. For the sheared
flow, since the second derivative of the Mach number profile,
M"(z), is zero, the change of 1lift and induced drag coefficients
is much lower than those in the wake or jet.

In Figure 18 (b), since the velocity gradient effect is
almost the same for each case, the difference in lift-drag

ratio is mostly due to the local dynamic pressure effect.
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As shown in Figure 18(c), the aerodynamic center is
not much changed in the linear sheared flow from that in the
uniform flow. This is because nonuniform flow effect makes
the same contribution to both the 1lift and pitching moment.
5.6 Plane Delta Wing (AR = 1.4559, A= 70°) in the Jet

It is assumed that the suction analogy of Polhamus (ref.
12) is still applicable in a nonuniform flow. The vortex 1lift
calculation through the method of suction analogy described
in reference 11 is applied to a wing in the nonuniform free
stream. The longitudinal aerodynamic characteristics of a plane
delta wing of 70-degree sweep by the attached flow theory and
by the vortex 1ift theory are shown in Figure 19. It is seen
from Figure 19(a). the vortex 1lift increase is slightly larger
in the jet stream than that in the uniform stream. Figure
19(b) shows that the lift-drag ratio is increased in the jet
either in the attached flow or in the vortex flow as compared
with that in the uniform flow. This is because the wing is at
the jet center, so that the local dynamic pressﬁre effect

plays the main role. 1In Figure 19(c), it is seen that %%m
L

is not much affected by the nonuniform flow effect at low 1lift

oCm

coefficients. At high lift coefficients, IEE— is slightly
L

reduced by the jet flow.
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6. Conclusions

A lifting-surface theory for the subsonic compressible
nonuniform flow has been developed. The theory not only
accounts for different local dynamic pressures, but also the
effect of velocity gradient. Comparison with limited known
results show that the present theory is reasonably accurate.
Numerical results indicate that there is a gain in 1lift if
the wing is in a region with a positive velocity gradient.

Based on the assumption that the suction analogy is |
still applicable in a nonuniform flow, results for a 70°-
delta wing show that the vortex lift is enhanced by a jet flow.

The present theory can be applied to any type of free
stream profiles with variations in both spanwise and vertical

directions.
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APPENDIX A

Integral equations for the 2-D Small-Disturbance
Subsonic Nonuniform Flow
The detailed derivation for equations (12) and (13)
is given. below.
A.1 A General Integral Equation
Applying Green's reciprocal formula to equation (3), it

is obtained that

=g 2gg s g5 Rgl s
= J (k2 -Pay (s + [ (% 35 -P4s (A-)
)

Now, on S' (a small spherical surface),
_ 1
—an(R):l == 'aE( )Rzaq £*
The direction of normal differential of S' points away from

V', i.e., towards the interior of sphere. It follows that the

second integral on the right-hand-side of equation (A.l) becomes

fordt - vaods= £ Fis - 4 fras

5l
as -0, ez+ 0, and S'» 0. Hence, the first term in equation
L =P
! ! . ) .
4z£‘f$PdS is the arithematic mean value of

p' on S' and tends to p'(x,y,z) aseg—-»0. Therefore,
—é—z ISP'JS = 4P
Sl

Equation A.l1 now becomes

M / M | a2 =2 t
{Jf—é'[zﬁlﬁﬁznlps +F'-;(M-M)P§§JJSJ'Zc{5

=55l%3—5-P'%(-R'—>JJ§dz~ amp’ (A-2)
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where R= ,,/ (X-S >1+/@’(3-’()‘+(5‘(2 '5 >

ffi4 K43 = fff ¢ V;‘?-}‘Si P'ydg dydy
¢

where g = kfp',
From the divergence theorem, the above equation can be written

as

51“’;"5‘41" gj {pK-nds jj 2f pdjdo(JS (A-3)

stS'

Similarly, let

_L_@.’L=h(§,‘(,5),

JUhPidsdzds
_ﬁS(VEI P)djds ”thSJB H 2h ded’(d; (A-4)

Substituting equations (A.3) and (A.4) into equation (A.1),

equation (A.1l) becomes

P( ,2)
J (#3-patqlds -2 fFes rafglpor

Sw

+2f55 7 P - Jﬂ RE (M- M)@sdvj (A-5

:I-—
’—‘“u
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Equation (A.5) is the gencral integral equation for the
small-disturbance subsonic nonuniform flow.

Now, apply the boundary condition equation (equation 11)
to each term (except the first term) on the right hand side
of equation (A.5) and perform the integration from n=-« to

n = » for the two-dimensional case. Let

Re x-S g PP ES |, RS p =
2 2
D= (“‘Sf*‘fgz(z"sf , D= x-§p2
te? 2,2 ey
- 2 2

G = (X-3)Y+p (F5)
Several terms in equation (A.5) will be simplified separately
in the following:

.2 P [ PRI (A-€)
Sw

Remember, n is positive outward away from the flow field, so

that n = -2 for the upper surface. It follows that
‘ | . . . ) , _
(R) =5z ( R’ R? A1)
Substituting equation (A.7) into equation (A.6), it 1is

obtained that
P=_ﬁ5£ﬂ’fd (A 8)
' am/) D S
The boundary condition requires that the flow be tangent
to the camber surface in the thin airfoil theory. This condition

can be written as

%> =2 -« (A.9)

where Zo is the camber. To find the downwash w(x,z), edquation (10)
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is integrated to give

x'a?
W, (x )= - —— '

dx (A.10)

where the lower limit is chosen in such a way that w(-«,2Z)=0

Substituting equation (A.8) into. equation (A.10), the following

equation can be obtained

W, (%,0) '?lc-o( _ ﬁf’ aG ) d (A1)
Vo (0) DX 47 Jo X~ § 5
where

'

ap
Alp = ——————
P P f(o) Vo

A.3 P, = - ()g Jsd’z (A-12)

Let 7-¢= 7

(- %Z' -/7'4412

- j""ﬂ /6’12.,4!
' o4 q’

1]

e Fj W f

:?—jﬂ—% (A-13)

Substituting equation (A.13) into equation (A.12), it 1is

obtained that

| L P

= - My aPe)d A 14

, M/M(,,)jm,,,) Pes)dy (A-1%)

Similarly, applying the boundary condition equations Eg. (9)

and equation (11) to equation (A.14), it can be shown that
=0

V\};(’X)o) >
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. I
since =~z (7(,0> =0
f o :
A.d 3= zln m 23 PJS&(JS (A-15)

Integrating from n=-«= to n=~ for equation (A.15), it is

obtained that

Ly BPERESD s I S P53 g
_ T ﬂ 2p Té(z S)Pd5d5 + ’Bﬂ B(5) L —é—dgds (A-16) |

After applying equation (9) and equation(ll) to equation (A.16),

the following integrals are needed:

o4 - j;fj;z (AIT)
-x d /312 ) (,ra,,";,zs, t /) CA-18)
It follows that
Wig,0 _ 2% _
V(4.0 ] ele;% B(5>(f‘"‘ ,s:gl s CP‘§ ;)4545
b oL (f B . (9\’ S)CP‘§ S)JSJS (A 19)
where
Cp(s.9)= P (A-20)

Vi 00 Veo €4, 0)
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A.5 P{, = _47?:51}/[ Mi-RM ESJSJZCIS (A-21)

e Quap= MR
] - ! 2@ p!
QRs=53(ARI~ 3¢ R

Applying the divergence theorem to equation (A.21), it is
obtained that

WQPSS&V _M(v E——Ps)dv

ﬁq@“ nd fjj’aadv

; Mg R (A-22)

o R(x-5)(M-MD ( A-23)
Pé“zrr/s‘ﬁ : /5,9 C{jdj

From the boundary conditions (eq

. (9) and eq. (11)), it 1is
finally obtained that

Werx0) _2z . _ 3 (M(K) M) % ded (A-24)
Vey.o) ToX 4"/5 /f SS
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Note:

g B (A. 257
o R5 - /spi

A KAk Ex-[5hpLy] 1 3 fx JG_X' (A.26)
S...co G,‘ a 2P‘(z- g)‘-D 2{5‘(2-.5)‘ o 4y

oL KB L e KR )] (A.2])

S—w g’ _?g'(z-sﬁ[ G {GIZ-S! (5!2-;!

X Go8) ggoo =l ( A-28)
S-ao <P 24
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APPENDIX B
Integral Equations for the 3-D small-Disturbance

Subsconic Nonuniform Flow

To derive the wing boundary condition (eg. 15), equation

(A.15) will be used again. Several terms in equation (A.S5) are

simplified below.

For simplicity, the following symbols are introduced:

R={ x5y + 4= 23 Rz Jox-54p - p27

R = ,f(x.-g)‘ﬂ&l(y—?)z*rp’z? , D= (x~5)2+/62(z—3)2
D= (X*S)Z‘hﬁi?z 5 D= x=) B
Ye=ploy-phpe Ve = Blypy- gz
G= (X-§+Blz-1) 5 G= (XK=F> +B(z-3>
%= (=H (20 , );’:Ey~z)‘- (z-75

B.1 Rz~;;%jjp'§;,—(—é-;)dsd7[ ( B-1)

After applying (eg.9) and (eg. 11), the following equations

can be obtained:

S * 2h 5 n, (B2
WXy, 2) = (aly,2) Vo 0, 2) L 5z (X:),2)d% )

Jxé&zﬁ!ﬂ(l+-—-—5——x“

o B3 ) (B.3)
x dx, _ X~ § I 2 2 |
o0 R,'sw 3R, ( R} + Yz )+ 3 Y (B.%)
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It follows that

W (Gy2) Jj (i,[ YZ(I‘I‘ X~ E) ézzz(x_s)]dg d? : (35)

Vw(Y,2) 8T Yz R?
B.2
(B.&)
{ t
where M
f= 7 W
Applying eqguation (1l) to egquation (B.6), it is obtained that
! X - vy
M&: - ‘BB'(X1;>G‘Z)<JX| (f8‘7)
@Vm - 0%

It follows that

e o 5) 1 %"—‘@Z"*Cf’{H X% fdgdy  (B8)

Veo Cy, 2) (4-7)%t Z?
B.3 J

B o ff 25 V9SS (B.9)
where M 2

of  mP(ZS) . B

agq R> R

Applying.equation {11) to equation (B.%), the following

integral is obtained:

I X 'BP
Wju_@% ( B, (B.[0)
where . ‘ /32[%45-8(2‘52{)’ 3ﬂ4(2_5; gjpf }d d dj
égzi: EﬁﬂﬂIf °E - RS S ? (Ei’{)
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It follows that

ﬂ5Y' -Bz-Hh
Walx,%2) - | 4mn X3
i/:(yiz) T 4m m CP(§’7’Z) f Ye* (h+ R )
2 2 M
_ B3 X -E) .
VERFE fd5drds (B12>
: R
B.4 %%ﬂﬁ% p'd¥dydy (B-13)
where

M 2
2R AU . LD
,a-)( - R3 + R (B'4>

Applying equation (11) to equation (B.13), it is obtained that

! (% =2k
WS(X) y)Z)—— @Vco J-oo 2Z ch, (B‘S)

It follows that

M
Ws (X, Y, 2) :__I_gJ'CP { ~C (Z"S)Yt‘iﬁl(}"?) (Z'S)( |+ 2(_—_2)
Voo (Y5 2) 4T Ye R

) lgz(X‘g) %4-7()/-?) (Z‘S)}Clsdzas (B'é)

. Ye R’
! Y !
8-> P":—zm/szm MRM s dsdzds (B. 1)
By the divergence theorem
ffomdv = A7ds (B.18)

Vv Surface
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' !

ff B agagdy = ff {78 By Ty

45195 (B.19)

Applying equation (B.18) to the first term on the right

hand side of equation (B.19), it obtained that

Jﬁ(‘“ —Pg-)cfv _.jfc n cls ﬂrfa_’iclzdjx 0
anisu- ce

Therefore, equatlon (B.17) becomes

2 5. ) (MZ- F]z /
b= 47r,F’M 201 WXR;; > B dS"?"S (8-20)

From equation (11), it can be shown that

| rx 2Pk
We =- (‘;waoo 'azsdx
l (Z-%) ( M=FD Pg’
It follows that
W 2/ ) = b 2
b (X, Y52 -‘-‘#ﬂj (2 5><RM3 M CPiadeJS (B.22)

v‘° (Y7 Z)

B.6 Surface integrals in equations (14) and (15).

Following the quasi-vortex-lattice method (ref. 9), it
is assumed that the velocity is constant for each spanwise
vortex strip on the wing. Performing the integration along
the bound element of each strip (Figure 4), the double integrals
can be reduced to finite sums through the mid-point

trapezoidal rule. Let
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X—=¥§=X-X-T (X27X)

Y=1=7Y"h=-T (Ya=))

R; _ (X_S)zhgz( Y_7)2+Fzzz
= TA+TB t¢

wh
ere 2

(Xa=% ) 4B (V2= %)

=y
1

B =-2((X~-X)(Xa=X) +f (V=YD (Y2=Y)]
1 2 2 2

T = (X=X 4B (y-Y)tpZ

(75t 2 =Ta+Th 4G

2 2
Q= (Y20  bi=-20y=YD(ya Y, G=(y=-X5+2

2

The second term on the right hand side of equation 15 can

be written as

2

WZ(X)Y)Z) :_a/%

_m_S.(o)Z-ACP@.?)( " X_‘§__>d5d7 (B-23)
Yo Ry

NN

Now,'integrating equation (B.23) along the bound element of
each vortex strip and assuming the Mach number is constant for

each spanwise strip, it can be shown that

W, (X, Y>2)
M ! N
:”ACP_L“’)Z{J z(ifz ¥y dt
4T ° at’+ bT+C
f’ Z (YY) [X=X =T (X2-X)] dr} (B.24)
o at*+ b T+G (AT + BT+O)
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where

f’ Z(Y2-%)dT
0

at*+bT +C
- -1 a+b ! b 5
= BTN Z g, 2AEE L) (B.25
| Y2 ‘YI“Z‘ ZI(YI‘Ya)ZI 2’()’2*}'1)2'
To integrate the second integral in equation (B.24), let
(Y2 =¥)T - (Y-Y%)=V
T=0 V:*()’*)’,)
T= \7= z-)’
2 2 2
atTthT+C = V + 2
FCHBT +C = (A v+ 2BV+C) - (B.26)
=Y )?
It follows that
= Z(amr) XX T X)) gy,
k= Vit 22 (A'Vi+ zBT+C )
_ V-(X-X)Z V=)~V
= [~ tar” QY - (Xa o X ] (B.2))
AJAT s 287t JU=yny
Using equations (B.25) and (B.27), equation (B.24) becomes
z ¢V 2a+b - b, r §
Xy zy= S§Z (ta —2a%b ¢ +F (B2

where

D= (X=X HBI(Yam V)T
B' = [(x1~xn>z(y->’.)—(x—x-) (X2= XD (Y2 ‘)/')J

C':(xz-x.)z(y—y.)z—2(x-Xu) (X2=X )Y~ D) (Y= )
t X=X O S BE (a2

Q= (X2 XD (Y=Y)— (X=X (Y= 1)

61=(}’:~Y,)2 b, = -2 (Y=%) (Y2=)

?
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Finally, equation (B.28) becomes
_ z SYesY N N =Y “f .2
Melx, v, =7 1 5 (tan 5=~ ten Tg) +F ) (B29)

The first term of equation (14) can be written as

| z 4G(8,)
G (X, y’z):_‘*_’"g., p e dsdo( ( B.30)

Following the steps used above, let
x~§¥x\x‘-r(xz~x.) |
Y= = Y= A=T (=)
(X= 83"+ piy-7)1 2 = AT+ BT+ C

Hence,
Cp, (X, ¥, 2) . _
2 B
:—E’i.cf- 2 - UA‘f'zB- - - 2 1 3'
a = % y)[(4AE-BB(‘+B+c)/§ (4Ac-~-B*)C*% (83D
where

A: ()(z*Xl)""ﬂ(}/z‘yl)
B==2 [(X-X) (xs “XO+L Y- 1) (fa=))]
2 2 = 2 2
C= (X=X 4p(y-X)tfpz
The second term on the right hand side of equation (14)
is

X (x,,2)
! %(@ACPWZ»/.)C,T

Mo (AT BUTE
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APPENDIX C
Integration Regions and Coordinate Transformation
C.1 Integration regions and coordinate transformation in
the £ direction are indicated in Figures 6 and 7. For

simplicity, denote the integrand by F(£). Then,

f_m F(5>JS f-w Fpdy +jxey:(5> 5+]ti(5>5
Note that £he infinite regions.are actuélly approximated by

appropriate finite regions in numerical calculations. The

upstream integral becomes

X (] de |
f F(S’dizf%’:(e) (C.2)
T =-xXa (1-cosO)FXe (D) 6= A Ksb2, N,

The second integral of equation (C.1l) can be written as

Xt T
Jx;; F3)dg :Jo F (00 dbk (C.3)
i = Xeo, + 68k e = Xoo+ G 3y (C.3a)
K~
%K=?’( I~ cosbk) Ok = (ZTN:)l K=I, 2, Nz
where
Na2= 2NP- ( NW() + NW(2))
and
NW(1)+NW(2) = total aerodynamic panels on the wing in

chordwise sections

Similarly, the downstream integral is reduced to

[ F@&yde = (% oy do e
m
T = Xet Xy (1= cos6) e=§ﬁj. Kl 2, - Al
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C.2 Coordinate transformation in the spanwise direction
The integration regions and coordinate transformation

are illustrated in Figure 6. If F(n) represents the integrand,

then,
* Eopdy = (% pepyd + () Fepdy+ L/ZFUC’ +, F)d c5
o PN L FOUY 4, PO ), A

Again, infinite integration regions are approximated by finite
regions in the numerical calculation.

The integration from -» to the left wing tip can be

reduced to

[Frply == Fpdy = - [ F e (.6

7= ~b — % (1-cos$)
¢ ﬂ. K: l) 2)_~-~. M)’

p=o U, F=K 7=k k

Note that MY is the number of integration points outside the

wing in the spanwise direction.
Integration points for the integration perfomed over the

wing in the spanwise direction coincide with the ends point

of the vortex strips. Therefore,
”Z: l%(l-cos %AZ_U) :
On the other hand, the integration from the right wing

tip to » can be reduced to

ﬁ; FOpdy = jz/z F()d¢ cc7)
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E b+ ¥s (1= cos$)

¢=0 7=bh A

M4

C.3 1Integration in the vertical direction

Assume the integrand is F(z). 'Then
jz F(S>d5 = L‘; F(5>d5 +L°°F(S)d5 (C.8)

The integration from>2;=—°° to = 0 is reduced to

[ F§ 85 [y Fprdy Cc. 9

where Ma is the number of integration points in the z direction.

On the other hand, the integration from ;=0 to z=

becomes

S: Fegydy = fz/z F(y)dy ¢C.10)

T=2z,(1-cos¥) , = 2’;’11 k=12, Ma

=72 §=3%

where Mb is the number of integration points in the positive

Z direction.
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APPENDIX D

Calculation of Wing Wake

Silverstein and Katzoff (ref. 14 and ref. 15) obtained empirical

equations for calculating the wing wake. The maximum loss of dynamic

pressure in the wake gy can be expressed as following equation.

L1y
i 2,42 (4 (D=-1)
Yu —-&"(— t o3
where Cq is the wing section profile-drag coefficient, and x is the

distance between wing trailing edge to the aerodynamic center of the

tail. q represents the dynamic pressure of the uniform portion of
the wake flow profile. The distribution of the dynamic pressure loss

within the wake is g .

7 = c_osz(-lzr-'-g—) ¢ D-2)
T

The half width b of the wake is given by

-
—

. 5
b oot T (EAorsy ¢ D-3)

C

Fram Equations (D-1), (D-2), a function of the Mach number profile

of the wing wake can be shown as the following expression.

0.5 !
. ¢ 2 g A
MIgy= M, (l- 27(("10;' cos” ( zb )J (D~-4)
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The wake location can be determined by using the method of Chapter 7
of reference 16. Assuming elliptic circulation distribution for wing

in the spanwise direction, then the induced angle of attack is given as:

K; = lCZnAQ (D-5)

where experimental data for CL are to be used (ref. 16).

The dowrwash angle €; can be obtained from figure 7-14 (ref.16) by using

a;j. Finally, the dowrward displacement of the wake can be approximated by

the following equation:

=

— f.?cosfe-o(){an f_d)(

> ° N (D-'é
Z(,\)'-"-Z'{‘ € Z+‘,247< fa-he )

where Z<0.75sin« for angle of attack without flow seperation.

2z0.75sin (a~ €;) for angle of attack with flow seperation.
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Table

1. Convergence Check of Numerical Integration for

Joukowski Airfoil

CASE | IGP Xa Xb Za Zb N1 N2 N3 Ma Mb
NO.
1 5 9. 8.0 3.0 3.0 20 10 10 10 10
| 2 5 9. 8.0 3.0 3.0 15 10 10 10 10
3 5 9. 8.0 3.0 3.0 10 10 10 10 10
z:h 5 9. 8.0 3.0 3.0 5 10 5 5 5
5 5 9. 8.0 2.0 2.0 13 | 10 10 5 5
6 5 9. 8.0 2.0 2.0 10 10 10 5 5
7 5 12, 11.0 2.0 2.0 20 10 20 5 5
8 1 9. 8.0 3.0 3.0 20 10 10 10 10
9 1 9. 8.0 3.0 2.0 10 10 10 5 5
32\1 1 2 3 4 | s 6 7 8 9 10
1 {0.7259|1.3235 | 2.0064 |2.5672 |2.9164 {2.9887 {2.7457{2.182 |1.3123/0.1090
210.748811.3310 | 2.01082.5702(2.9185|2.9902|2.7468(2.1830|1.3128 O.Id;z
310.8061|1.3498 | 2.0217(2.5777(2.9239{2.9942(2.7496]2.1850(1.3139 0.1095”
4 11.747211.6748 | 2.2311(2.7397(3.0578{3.1057{2.8391{2.2491{1.3509]0.1214
510.6686/1.3113 | 2.00822.5768(2.9309(3.0042{2.7613[2.1940{1.3186 O.libé—
610.725311.3302 | 2.0196]2.584512.9365(3.0083|2.7643[2.1960(1.3198{0.1127
7 10.8506{1.3701 | 2.0413}2.5982|2.9456(3.0144]2.7683{2.1985(1.3212{0.1190
8 10.729411.3249 | 2.0075[2.5683(2.9174|2.9896{2.7465[2.1863|1.3126]0.1091
910.7363|1.3345| 2.0228|2.5875(2.939213.0110{2.7664{2.1976]1.3207]0.1116
Notes. I indicates the pressure point locations given by Eq. (C.3a).
Case 1 is judged to be the best solution.
IGP=5:by least square method with 100 points of Zv in equation (12)

IGP=1:

with Zv=0'05 only in equation (12)

Airfoil chord length=1.0
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Figure 2. Parameters in the Assumed Pressure Function

for Three-Dimensional Flow
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Figure 3. Vortex Element and Control Point Distribution
Over the Wing
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Figure 7. Mach number profile for jet and wake streams
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Figure 8. Mach number profile for a
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SYMBOL  CONFIGURATION
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Figure 9. Pressure Difference Distribution on Joukowski Airfoil
at 0=0° jin Nonuniform Flow
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Uniform Flow. Reference Dynamic Pressure= 0.5p(0)V(0)
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Figure 11. Wake of the Wing at High Angles of Attack
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Figure 17. Longitudinal Aerodynamic Characteristics of

Flat Rectangular Wing (AR=3.3) in the Wake,
Reference Dynamic Pressure = 0.5 p Vj
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