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EIGENMODE ANALYSIS OF UNSTEADY ONE-DIMENSIONAL EULER EQUATIONS 

Michael Giles 
Massachusetts Institute of Technology 

Abstract 

The initial boundary value problem describing the evolution of unsteady 

linearized perturbations of a steady, uniform subsonic flow is analyzed. The 

eigenmodes and eigenfrequenices of the system are derived and several examples 

are presented to illustrate the effect of different boundary conditions on the 

exponential decay rate of the eigenmodes. The resultant implications for the 

stability and convergence rates of finite difference computations are 

discussed. 

Research was supported in part by the National Aeronautics and Space 
Administration under NASA Contract No. NASl-17130 and NASA Grant No. NAG3-9 
while the author was in residence at the Institute for Computer Applications 
in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665. 
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INTRODUCTION 

In finite difference calculations of steady-state subsonic solutions of 

quasi-'one-dimensional and two-dimensional Euler equations using time marching 

methods, it is often observed that when the solution has almost converged to 

steady-state the remaining residual is due to the propagation of low frequency 

waves up and down the domain. These waves are largely unaffected by numerical 

viscosity and are dissipated through the interaction with the inflow and 

outflow boundary conditions. The purpose of this paper is to examine this 

process by analyzing the unsteady linearized perturbations of a one

dimensional, steady', uniform, subsonic flow. For this linear problem with 

constant coefficients it is possible to derive the exact eigenmodes and 

eigenfrequenc:ies of the initial boundary value problem. This is the classical 

techn:lque used to analyze physical and acoustical vibrations in a finite 

domain [5] and more recently used in numerical analysis to examine the 

P-stahility of finite difference approximations to scalar equations [2,3]. 

The exponential decay rate of the physical eigenmodes is computed for several 

different sets of boundary conditions commonly used in finite difference 

calculations and the implications for the stability and convergence rates of 

these calculations are discussed. 

The weUposedness of both the initial boundary value problem (Lb.v.p.) 

and the steady-state boundary value problem (b.v.p.) is discussed briefly. 

The definit:lve analysis of the 1. b.v.p. for multi-dimensional hyperbolic 

systems is given by Kreiss in [4]. Oliger and Sundstr~m [7], use an energy 

method to establish sufficient conditions for the wellposedness of the Euler 

Lb.v.p. Finally, the wellposedness of the steady-state solution to the 

nonli.near quasi -one-dimensional and two-dimensional Euler equations will be 

discussed in a forthcoming paper by Wornom and Hafez [8]. 
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2. ANALYSIS 

The equation for the unsteady linearized perturbation of a steady, uniform 

one-dimensional flow is, 

p 

u o , (1) 

yp 

where P, u, p are the perturbation density, velocity and pressure and 

p, u, p are the steady, uniform values. 

The analysis is greatly simplified by defining the following non-

dimensional variables 

p pip (2 ) 

u ~/c (3) 

~ --2 
(4) p = pip c 

x = X/L (5) 

t = TelL, (6) 

- -'- _. 1/2 
where c = [yp/p] is the speed of sound. L is the physical length of the 

domain considered, so in the non-dimensional domain the subsonic inflow is 

at x = 0 and the outflow is at x = 1. 

The resultant non-dimensional equation is 

(7) 
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where 

A (8) 

and M is the Mach number of the unperturbed flow. 

Equation (7) has wave-like solutions 

C) ~ exp[ i(kx - wt) lu (9) 

provided 

(kA - wI)U 0, (10) 

so w/k is an eigenvalue of A and U is the corresponding eigenvector. 

The three eigenvalues of A and their corresponding eigenvectors are 

M (lla, b) 

(12a,b) 

M - 1 (13a, b) 

A general eigenmode of the initial boundary value problem can be written 

as a sum of the three eigenwaves, 

U (14) 
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The eigenfrequency w and the values of the constants are 

determined by the three boundary conditions. 

At the inflow boundary at x = 0 there are two boundary conditions which 

when linearized and non-dimensionalized have the form, 

0, (15) 

where ein is a 2 x 3 matrix. Substitution of (14) into (15) yields the 

equation, 

o (16) 

where 

(17) 

A necessary condition for the initial boundary value problem to be 

wellposed is that the 2 x 2 matrix 

is nonsingular and so can be inverted to obtain a 1 and a 2, the values of 

the incoming characteristics, as a function of a 3 , the value of the outgoing 

characteristic. 



Similarly the outflow boundary condition yields one equation of the form 

c u 
out 

and substitution of (14) produces 

(b31 b32 b33) 

where 

(b 31 b33 ) 
i(w/A1) 

b32 C (e U1 out 

o (18) 

CD 0, (19) 

i(w/A 2) 
e U2 

i(w/A 3) 
e U3). (20) 

The secQ1nd necessary condition for the wellposedness of the initial 

boundary value problem is that is nonzero so that the value of the 

incomIng characteristic can be determined as a function of and the 

values of thE! outgoing characteristics. 

Equations (16) and (19) can be written jOintly as 

B{w) (:D = o. (21) 

To obtain a nontrivial eigenmode B(w) must be singular and the vector 

a
3

)T must be a corresponding null vector. Thus the eigen-

frequenices c.an be calculated from the following determinant equation 

det B(w) = o. (22) 

5 
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The matrix B can also be used to examine whether the steady-state 

boundary value problem is wellposed. The three requirements for wellposedness 

are that a solution exists, is unique, and small perturbations in the boundary 

data produce small perturbations in the solution. 

The linearized steady-state boundary value problem has a zero solution and 

this solution is unique provided there are no nonzero solutions to 

(23) 

i.e., provided that B(O) is non-singular. 

A perturbation of the boundary data leads to an equation of the form 

(24) 

which, provided B(O) is nonsingular, can be solved to obtain 

T a 3) which define the characteristic perturbations of the steady-

state solution. 

Thus the linearized steady-state boundary value problem is wellposed if, 

and only if, det B(O) is nonzero, or alternatively the initial boundary value 

problem does not have a zero eigenfrequency. 

3. EXAMPLES 

(a) Entropy, Enthalpy Specified at Inflow, Pressure at Outflow 

The physical boundary conditions are 



f p'/p" 
= pIp Y (25a) 

X 0 
y-1 ,2 yp' y-1-2 + yp (25b) -2- u + 7 = -2- u 

p 

X L P 
, = p, (25c) 

where p', u', p' are the unsteady physical variables which are a sum of the 

steady-state and unsteady perturbation variables. The corresponding 

linearized non-dimensio~alized equations are 

x = 0 
(

-1 

-1 

o 
(26a) 

(y-1)M 

x = 1 ( 0 o 1) 
(:)- O. 

(26b) 

At x = 0 substitution of the eigenvector definitions (lIb), (12b), and (13b) 

into the eigenmode definition (14) yields 

-iwt 
e (~

1 1 

1 

1 

(27) 

7 

Subst:ttution of this equation into (26a) produces the characteristic inflow 

boundary condition 
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(29) 

and substitution into (26b) produces the characteristic outflow boundary 

condition 

G 
1 

1) C exp(iw/A1) ) 
(0 0 1) 1 -1 Ct exp(iw/A Z) 2 

1 1 Ct
3 

exp(iw/A 3) 

(0 exp(iw/A 2) exp(iW/A3 ») CD · 0 • 

Together equations (28) and (30) define the matrix B 

B(w) - (=~ 
o 

(y-l) (1+M) 

exp(iw/A2) 

(30) 

(31) 



The eigenfrequenciesare given by 

det B (y-l)[(l-M) exp(iw/A 2) - (l+M) exp(iw/A 3)] = 0, (32) 

==) eXP(l 2iW) = 1 + M 
2 1 - M ' - M 

(33) 

==) W (34) 

where n is an integer. 

Thus there is an infinite set of discrete eigenfrequencies. It is useful 

to define a decay rate 

For this example 

a 
n 

a 
n 

(35) 

1 - M2 (1 + M) 
2 log r-=JM' (36) 

The amplitude of the eigenmode grows, or decays, as exp(-at), so the 

requ:irement for all eigenmodes to decay is a ) 0 for every 
n 

n. In this 

example thE! requirement is satisfied and so any initial disturbance at 

t = 0 will dec~y exponentially. 

(b) MaBS Flux, Enthalpy Specified at Inflow, Pressure at Outflow 

Thle physical boundary conditions are 

(37a) 

x = 0 

(37b) 

X L (37c) 

9 
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Omitting the algebraic details the resultant matrix B is 

B = (-~ 
1 + M 

(y-l) (l+M) 

exp(iw!A 2) 

M - 1 ) 
(y-l)(I-M) 

exp(iw!A 3) 

The eigenfrequencies are 

W 
n 

1 - M2 [_ i 1'0 ((1 + M)[1 + M(y - 1) ]) 2( 1/) ] 
2 g (1 - M) [1 - M(y 1)] + n + 2 "IT • 

The decay rates are 

= 1 - M2 ((1 + M)[1 +M(y - 1)]) 
an 2 log (1 - M)[1 - M(y - 1)] • 

(c) Density, Pressure Specified at Inflow, Pressure at Outflow 

The physical boundary conditions are 

x = 0 {:: = p 

= p 

X L p'" = p • 

The matrix B is 

B = C 

(38) 

(39) 

(40) 

(41a) 

(41b) 

(41c) 

(42) 



The eigenfrequenices are 

and the decay rates are zero. 

w 
n 

2 
(1 - M )mr , (43) 

Since one of the eigenfrequenices is zero the steady-state boundary value 

problem is ill-posed, as discussed earlier. 

(d) Density, Velocity Specified at Inflow, Pressure at Outflow 

The physical boundary conditions are 

x o 

X L 

The matrix B is 

The eigenfrequenices are 

w 
n 

and the decay rates are zero. 

= p 

= u 

p' = p. 

(44a) 

(44b) 

( 4.4c) 

(45) 

(46) 

In this example the steady-state boundary value problem is wellposed but 

because of the zero decay rates unsteady oscillations will contlnue 

indefinitely without exponential growth or decay. 

11 
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(e) Non-reflecting Boundary Conditions 

The full nonlinear non-reflecting boundary conditions specify entropy 

and the appropriate Riemann invariant at the inflow, and the other Riemann 

invariant at the outflow [4] 

x o 

x L 
2 

u' - y-l c' 

The matrix B is 

o 

B 2 

o 

- 2-
u + -- c y-l 

2 
u - -- c 

y-l 

(47a) 

(47b) 

(47c) 

(48) 

Det B = 0 leads to C5 = + 00 which reflects the fact that with these 

boundary conditions the unsteady perturbations become zero after the finite 

time it takes for all three characteristic waves to cross the domain once. 

CONCLUSIONS 

The calculation of the exponential decay rates of physical eigenmodes has 

implications for the stability and convergence rates of time-marching finite 

difference computations. If the analytic problem has exponentially increasing 

eigenmodes then for sufficiently fine grid resolution a time-accurate 

numerical solution will exhibit corresponding exponentially increasing 



eigenmodes. In a forthcoming paper, Trefethen1 will prove that for a linear 

constant coefficient system such as this the three conditions: 

(i) Exponentially decaying physical eigenmodes, 

(ii) Dissipative interior numerical scheme, 

(iii) GKS-stable numerical boundary conditions, 

are sufficient to ensure the P-stability of a time-marching method for a 

sufficiently fine grid. P-stability was defined by Beam, Warming and Yee [2] 

and eorresponds to GKS-stability with the additional requirement that none of 

the numerical eigenmodes increases exponentially. The precise definition of 

the theorem and its proof are given by Trefethen1 , but in essence the argument 

is that condition (i) ensures that low frequency physical waves decay, while 

13 

conditions (ii) and (iii) ensure the decay of high frequency waves, both 

physical and non-physical. 

The exponential decay rates for the physical eigenmodes also provide a 

useful lower limit on the spectral radius of the finite difference time-

marching procedure. If a physical eigenmode decays as exp(-O't) with 

a > 0, then for a sufficiently fine grid the corresponding numerical 

eigenmode d,ecays approximately as exp(-O' n l'.t) where n is the iteration 

numbl~r and l'.t is the time-step_ As the grid is refined with l'.t/l'.x held 

constant, l'.t + ° and so the spectral radius is no less than 

If a = 0, as in example (d), the physical eigenmodes are 

neutrally stable and so the numerical convergence rate towards steady-state is 

due solely to numerical dissipation. If this dissipation is of nth order then 

the corresponding spectral radius is 1 - 0(l'.tn+1). Non-reflecting boundary 

Trefethen, L. N., 1983, Courant Institute, New York University, NY, personal 
communication. 
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conditions as in example (e) clearly give a much faster rate of convergence, 

but in two or three dimensions perfectly non-reflecting boundary conditions do 

not exist and in general the best that can be achieved is that there is zero 

reflection for locally plane waves propagating in a particular chosen 

direction [1]. 

It is not clear to what extent the conclusions for this model problem, 

with linearized perturbations and constant coefficients, are valid for more 

general flows such as transonic quasi-one-dimensional and two-dimensional 

flows. Nonlinear mechanisms at sonic lines and shocks are undoubtedly very 

important. However the decay to steady-state of low frequency waves will 

still depend on the physical boundary conditions and so this analysis should 

provide insight into the effect of the boundary conditions. 
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