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SUMMARY

Two aircraft turbine disk alloys, GATORIZED® AF2-1DA and INCO 718 were evaluated
for their low strain long life creep-fatigue behavior.

Static (tensile and creep rupture) and cyclic properties of both .itoys were characterized.
The controlled strain LCF tests were conducted at 760°C (1400°F) and 649°C (1200°F) for
AF2-1DA and INCO 718, respectively. Hold times were varied for tensile, compressive and
tensile/compressive strain hold (relaxation) tests. Stress (creep) hold behavior of AF2-1DA was
also evaluated.

Generally, INCO 718 exhibited more pronounced reduction in cyclic life due to hold than
AF2-1DA. The percent reduction in life for both alloys for strain hold tests was greater at low
strain ranges (loniger life regime). Changing hold time from 0 to 0.5, 2.0 and 15.0 min. resulted in
corresponding redu-tions in life. The continuous cycle and cyclic/hold initiation was predomi-
nantly transgranular for AF2-1DA and intergranular for INCO 718.

b



-
o™
O s A PRy

|y TR e e

INTRODUCTION

The use of advanced, high-strength materials and processing techniques has resulted in
reducod weight and increased performance for modern aircraft gas turbine engines. High-
strength, corrosion-resistant nicke!-based superalloys are generally used for turbire disk
applications in these engines. The cost of superalloy turhine disks has increased dramatically in
the last decade, due largely to the use of complex shapes ana ~dvanced materials and processing.
At the same time, increased performance requirements have resulted in decreased cyclic lives for
these components, and greatly increased engine life cyclc rosts. Since these disks are often low-
cycle fatigue (LCF) limited (References 1 through 4), ac  .ate prediction of component fatigue
life is essential to maximize reliability and safety, while simultaneously minimizing potentially
enormous component replacement costs resulting from overconservatism.

Aircraft gas turbine engine disks are frequently limited in service life due to LCF. Fatigue
life predicticns for high-strength nickel-based superalloy turbine disks are complicated by the
small cyclic inelastic strains exhibited by these allcys under the stress-temperature-time cycles
of interest. Consequently, a realistic approach to fatigue life predictions for these alloys is to
consider the relationship between total (inelastic plus elastic) cyclic strains and cyclic life. At
temperatures within the creep range, it is necessary to develop a model that considers
temperature, waveform, and time, in addition to cyclic strain range. It was felt that a model
cauld be developed for fatigue life prediction of aircraft turbine disk alloys which is compatible
with the n:ethod of Strainrange Partitioning. The accuracy of the life prediction system is partly
contingent upon experimental simulation of the true mechanical behavior of materials.

Typical engine disk-loading imposes low cyclic strains at critical locations and may yield
long LCF lives (10 ;o 10° cycles). Inelastic strains at these conditions are similarly quite low, yet
can have a large effect on LCF life. At .emperatures in the creep range of an alloy, time-
dependent inelastic strains may be induced which are important, yet difficult to handle
analytically in the design of aircraft gas turbine engine components.

The objective of the program was to generate the data base required for development of
the model. The alloys selected for evaluation were the high-strength nickel based turbine disk
alloys:

AF2-1DA, produced by the GATORIZING® isothermal forging process, and
INCO 718 in bar stock form.

This program included tensile, creep-rupture, and axially loaded strain-controlled LCF
tests for initiation under both cyclic and ¢yclic/hold conditions at 760°C (1400°F) for AF2-1DA
alloy and at 650°C (1200°F) for INCO 718. This data base is required to develop an LCF life
prediction model, which can analytically handle the effects of temperature, frequency, hold
time, and waveshape in the cyclic life regime required by the gas turbine industry.
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MATERIAL PROCUREMENT AND BAS.c MECHANICAL PROPERTIES
Material Description, Composition, Heat Treatment and Qualification

Two nickel-base superalloys for aircraft gas engine disks were evaluated for resistance to
cyclic crack initiation at low strain-range, long-life conditions. The alloys selected for evaluation
were GATCRIZED® AF2-1DA (produced from prealloyed powder) and INCO 718 (produced
from ingot and tested in bar stock form).

GATORIZED® AF2-1DA. — The AF2-1DA alloy was produced using prealloyed powdes and was
vacuum atomized by Homogenous Metals, Inc., from a vacuum induction melted ingot. The
starting powder conforming to AMS-5833 both .n chemistry and particle size was filled into
eight 15.2 cm (6 in.) cans with a 0.64 cm (0.25 in.) wall thickness. After an 8-hnur sosk at 1093°C
{2000°F) each can was extruded at Reactive Metals, Inc., through a 5.46 cm (2.150 in.) extrusion
die. After decanning all extrusions th:y were machined into wnults, s~proximately 19.0 cm
(7.5 in.) long. Mults were then isothenually, superplasticallv, forged usirg the GATORIZING®
procese into pancakes at 1121°C (2050°F) at a strain rate of 0.05 mm/mm/min, and fuliy heat
treated in four lots. Ten of the GATORIZED® AF2-1DA forgings approximately 15.2 cm (6.0 in.)
X 1.58 cm (0.625 in.) high were received from NASA. This material was processe-l and forged
earlier by Pratt & Whitney under contract NAS3-20947. The pertinent processing, composition,
heat treatment, and material qualification details are as follc ws.

Based on gradient bar studies, the solution heat-treatment was devised as follows:

1133°C (2075°F) — Vacuum and hold for 45 min.
1204°C (22C0°F) — heat at rate of 1 deg per min; hold for 1 hr fol-
lowed by an argon quench.

The AMS 5856 stabilization and precipitation heat-treat cycle congisting of the following:

1121°C (2050°F) — 2 hr — Air Cool
704°C (1300°F) — 12 hr — Air Cool
815°C (1500°F) — 8 hr — Air Cool

Typical microstructure following solution heat treatment for all four lots are shown in
Figure 1. No preferential directionality of grain structure was .cen in 100X photomicrographs.

A total of four pancakes, one from each heat treat lot, were selected for mechanical
properties evaluation under Contract NAS3-20947 (Reference 5). The chemical composition and
material qualification 1 st data are presented in Tables 1 and 2. Overall, the material did not
meet specification requirements. it was however, considered suitable for the purposes of this
program. Creep and Stress rupture were below specification parameters. The tensile data had

excellent ductilily, but was marginal in Room Temperature 0.2% yield strength and 816°C
{1500°F) tensile strength.

Inconel 718. — Inconel 718 is a nickel-based superalioy widely used in current production gas
turbine engines. This alloy is used in comgpreseor and turbine disk applications with maximum
operating temperatures approaching 649°C (1200°F). This material was furnished by NASA in
the form of 25.4 mm (1.0 in) OD centerless ground bar stock. The material was originally
supplied by ATEK Metals Company, Woodlawn, Ohio, for use under 2 separate contract
“NASA Benchmark Notch Tes . for Life Prediction” (Reference 6) program. The material was
from Teledyne ALLVac Heat No. 5108. Vendor Supplied composition and certification test
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results are listed in Tables 3 and 4 along with specification minimum and typical average
F % propertie: The material met all minimum specification requirements.

Mag: 100X

i Heat Treat Lot 1 Heat Treat Lot 2
=

ASTM Grain Size 1-3

Mag: 100X Mag: 100X

Heat Treat Lot 3

Heat Treat Lot 4

FD 144891
Figure 1. — Typical AF2-1DA Pancake Microstructure Following Solution Heat
Treatment

|
1
b
:E
( The INCO 718 as received (annealed) bar stock was fully heat treated to a solution cycle.

The heat treatment details are as follows:

968°C (1775°F) — 1 hr — He Quench
718°C (1325°F) — 8 hr — Furnace Cool 38°C (100°F/hr)
to 612°C (1150°F) — 8 hr — Air Cool to Room Temperature
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TABLE 2. — CHEMICAL COMPOSITION OF NICKEL BASE ALLOY
AF2-1DA-100 MESH POWDER

Producer: Homogeneous Metals, Inc.
NMI Heat X 3229/30R

Required wt % Actual®
Chemical Composition min max wt %
Carbon 030 0356 0.31
Manganese — 0.10 0.01
Silicon — 0.10 0.002
Phosghorus — 0.016 0.005
Sulphur — 0.016 0.04
Chromium 1160 - 1250 1245
Cobalt 950 - 1050 10.36
Molybdenum 250 - 350 3.13
Tungsten 650 - 6.50 —_
Titanium 27 - 325 2.84
Tantalum 1.00 - 200 —
Aluminum 420 - 480 4.42
Boron 001 - 0.02 0.015
Zirconium 005 - 015 0.10
Ozxygen —_ 0.010 (100 ppm) 0.0041 (41 ppm)
Nitrogen — 0.005 (50 ppm) 0.0006 (6 ppm)
Iron — 1.00 0.10
Lead — 0.0002 (2 ppm) 0.0001 {1 ppm)
Bismuth —_ 0.00005 (0.5 ppm) 0.00001 (0.1 ppm)
Nickel Remainder Remainder

* N,O, taken in powder states, —100 mesh

An optical micrograph taken after heat treatment is shown in Figure 2. The resulting
microstructure was fine grained and uniform with average ASTM grain size of 7 or 8.

Tensile And Creep-Rupture Properties

Tensile Testing. — Tensile tests were conducted for GATORIZED® AF2-1DA and INCO 718 to
establish the average values for the mechanical properties listed below:

Modulus of elasticity
Poisson’s ratio

0.2% offset yield

Ultimate strength

True fracture strength
Strain-hardening exponent
Reduction of area
Elongation.

PNo oA

All tensile tests were conducted per ASTM E8-69, “Tension Testing of Metallic Materials”
using smooth round specimens with a 0.640 cm (0.252 in.) gage diameter and a 5.08 ¢cm
(2.220 in.) reduced section gage length as shown in Figure 3. The strain rate was maintained at
0.005 mm/mm/min (0.005 in./in./min) to the yield point and at a crosshead speed of
0.64 mm/min (0.025 in./min) from the yield point to the fracture point.
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TABLE 4. —CHEMICAL COMPOSITION CF

INCO 718*
Chemical Weight Percent
Composition Required Actual
Al 0.3-0.7 0.49
i/ B 0.006 Max 0.004
Cc 0.02-0.08 0.042
Cb+Ta 4.75-5.50 5.14
Co 1.0 Max 1.53
f Cr 17.0-21.0 17.42
| Cu 0.30 Max 0.05
§ Fe 15.0-21.0 Bal
R Mn 0.35 Max 0.16
. Mo 2.80-3.30 2.93
Ni 50.0-55.0 52.08
P 0.015 Max 0.004
3 S 0.015 Max 0.002
Si 0.35 Max 0.10
Ti 0.75-1.15 1.05

* Inconel 718, £5.4 mm (1.0 in.) diameter centerless ground bar

stock Teledyne Allvac heat No. S108, Spec. B50TFISAS-10,
ATEK No. AT802370 (Reference 6)

L s

Mag: 120x ASTM Grain Size 7-8

FD 258490

Figure 2. — Typical Inconel 718 Microstructure Following Solution Heat Treatment
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Tensile testing was performed on a Tinius Olsen 266.8-kN (60,000 1b) capacity tensile
machine. To measure specimen strain for elevated temperature tests, an averaging-type linear
variable displacement transducer (LVDT) extensometer system was used. A correction factor
based on prior strain gage data was applied to displacement measured by this extensometer
output. This allowed strain determination over the actual gage length of the specimen.
Specimen load was determined by the tensile machine load measuring system. For determining
Poisson’s ratio, a diametric extensometer was used in conjunction with the axial extensometer
(Figures 4 and 5). For each specimen, the Poisson’s ratio was established by relating the elastic
diametric and axial strain.

The modulus of elasticity was determined according to ASTM E231, “Static Determina-
tion of Young’s Modulus at Low and Elevated Temperatures,” from the stress-strain curves
generated during each tensile test.

The strain hardening exponent (n) was established in this program from the tensile tests
using the method developed by Avery and Findley (Reference 7). Strain hardening is expressed
by the relationships:

a = Ke
where:
a = true stress

true inelastic strain
constant equal to the true stress at unit true strain.

€1

K

True stress (¢) and true strain (¢) were calculated using the relationships:

¢ =S (1 + e) and
¢ =1In( +e)
where:
S = engineering stress, load/initial area
e = engineering strain, change per unit length based on initial

gage length

The teasile properties established for three GATORIZED® AF2-1DA and two INCO 718
specimens iested at 760°C (1400°F) and 649°C (1200°F) are listed in Tables 5 and 6,
respectively. Stress-strain parameters, up to 2.5% plastic strain, were also established for each
specimen tested for both materials and are listod in Table 7 and 8. Average curves of stress vs
strain for the AF2-1DA and INCO 718 specimens tested are illustrated in Figures 6 and 7.

Creep Rupture Teating. — Creep rupture tests were conducted at 760°C (1400°F) for AF2-1DA
ar i 649°C (1200°F) for INCO 718 to define the stress rupture curve between 10 and 1000 hours
and to c:etermine the following parameters for each test:

1.  Strain on loading

2, Transient creep strain between initial loading and achievement of steady
state creep
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3.  Steady state creep rate

4.  Strain at onset of tertiary creep
5.  Reduction of area after rupture
6. Elongation after rupture.

Creep tests were conducted per ASTM E139-70, “Conducting Creep, Creep-Rupture, and
Stress-Rupture Tests of Metallic Materials,” where applicable, using round, smooth specimens.
A similar test specimen to that used for tensile test was used and is shown in Figure 3.

Tests were conducted on a 53.4-kN (12,000 lb) capacity Arcweld Model JE creep-rupture
machine.

Five tests for AF2-1DA and four tests for INCO 718 were conducted in an iterative
sequence to ensure time to rupture between 10 and 1000 hr. An LVDT extensometer was
attached to each test specimen, and the extensometer output was fed to a data logger. This unit
was coupled to a magnetic tape drive for data storage, and an IBM 3033 computer to allow
automatic recording and data reduction.

The stress rupture response of AF2-1DA at 760°C (1400°F) and INCO 718 at 649°C
(1200°F) is illustrated in Figures 8 and 9. Five creep rupture tests were required per contractual
requirements for AF2-1DA, however, three additional tests were conducted without extensiome-
try, to further define the stress rupture curve shown in Figure 8. The creep rupture curves for
both materials used to establish the various creep parameters are illustrated in Figures 10 and
11. The required creep parameters and all related data are listed in Tables 9 and 10.

; amm—— e~ =



Y

-

B Ll - i
-y

y wwamT™ B
ORIl FA e

OF POOR QUALITY

_Ijl

W
3:

1,

[}

Vvl

e
Badmsanaasns
-

tm@mﬂ
a1

FAE 177526

Figure 4. — Extensometer Systems Used for Determining Poisson's Ratio for AF2-1DA
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Figure 5. — Close-up of Axial and Diametric Extensometer Systems Use
Poisson's Ratio for GATORIZED" AF2- 1DA and INCO 718
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INCO 718 AT 649°C (1200°F»

S/N 4 S/N 5
Offset Stress Strain Stress Srrain
(PCT) MPa  (hsi) m/mx 10° MPa (ksi) m/m X
10°
PL 664.0 (96.3) 4.34 708.1 (102.7) 4.25
0.025 7754 (112.8) 531 8143 (118.1) 5.13
0.250 8184 (118.7) 5.84 846.7 (122.8) 5.02
0.100 8460 (122.7) 6.59 8717 (121.3) 6.33
0.150 867.4 (125.8) 7.30 899.1 (130.4) 6.99
0.200 881.2 (127.8) 7.63 937  (151.8) 7.62
0.500 $23.2 (133.9) 11.28 9556 (138.6) 10.97
1.000 957.7 (138.9) 16.86 989.4 (143.5) 16.50
1.500 979.1 (142.0) 22.35 1012.2 (146.8) 21.99
2.000 992.9 {144.0) 27.61 1026.6 (148.9) 27.26
] 1 J
25 30 35
Strain — m/m X 1073
FD 258438

Average Monotonic Tensile Stress-Strain for AF2-1DA at 760°C (1400°F)
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Figure 8. — Creep Rupture Characterization of AF2-1DA at 760°C (1400°F)
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Figure 9. — Creep Ruptire Characterization of INCO 718 at 649°C (1200°F)
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BASIC LOW CYCLE FATIGUE PROPERTIES

Strain contro] LCF tests characterized the behavior of the AF2-1DA and INCO 718 under
both cyclic and cylic/hold conditions. All testing was performed under isothermal conditions at
760°C (1400°F) for AF2-1DA and at 649°C (1200°F) for INCO 718 which represents maximum
operating temperatures for the fracture critical areas of an advanced engine turbine ccmpo-
nents. In addition, strain control LCF tests were done at other mean stresses, mean strains,
variable cyclic hold times, and hold modes (stress hold vs strain hold) to determine the
corresponding effects on LCF life. The latter two additional testing types are dicussed later in
this report under Creep-Fatigue Evaluations.

Specimen Design, Experimental Procedure and Data Reduction

Specimen Design. — The smooth, cylindrical test specimen used in this program is shown
schematically in Figure 12. Specimens of this general configuration have been used extensively
for uniaxially loaded strain control LCF testing.

The ratio of net thread area to gage area was increased fom 3:1 to 5:1 for INCO 718
specimens to minimize possiblity of thread failure. This modified version for cylindrical
specimens (Figure 13j was used for all INCO 718 cyclic tests.

Specimens were machined by fine mechanical grinding, followea by polishing to provide a
smooth surface condition with minimum residual stresses.

All test specimens were visually examined prior to testing in normal light and with
fluorescent penetrant to screen for machining anomalies or surface discontinuities. Additionally
randomly selected samples underwent through dimensional inspection to ensure conformance to
print requirements.

Experimental Procedure. — Currentiy, there are no ASTM or other accepted industry-wide
standards for elevated temperature controlled strain LCF testing. The techniques and specimen
for data gencration and analysis to be used in this program are discussed below. Where
applicable, they conform to ASTM Recommended Practice for Room Temperature Low-Cycle
Fatigue Teeting (E606).

All testing machines were controlled under a system of calibration and preventive
maintenance schedules. System accuracies are within 2%. Approved calibration procedures,
records, and National Bureau of Standards (NBS) traceability were retained for all test
equipment from which data were obtained.

Isothermal strain-controlled LCF characteristics were determined for this program using
servohydraulic, closed-loop-on-axial strain, LCF testing machines designed and built at
P&WA/GPD. A typical test machine with controls and readout instrumentation is shown in
Figure 14,

Specimen axial strain were measured and controlled by means of a proximity probe
extensometer (Figure 15). The extensometer were spring-loaded, rounded knife-edge contact
points located within the cylindrical gage length of the specimen. Specimen axial strain causes a
relative displacement of the knife edges which was picked up by the proximity probe. The strain
output signal from the proximity probe was sent to the electronic control console for
demodulation, amplification, filtering, and data processing.
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Gatorized™ AF2-1DA i

T

ol




6.v8SZ Q4
@
14 5
[
)
o o
M...R
£
ca
T AT
o0

VZ-4rNNBL-S29°0

12 12uoouy 40f (afor) jpd1punk)) usw1dads ()J) oninog 3198 MmO j043U0) uID)S

® ewoN eeg Aud
eBen jo ielue) Byl 1B ‘BIg

v-v uojoeg
8vZ'0 3
1620

0290

®10 czo0
860°0 008°0

s000ld || seLl
e ge00 V™ 0sL't
052170 0sb'E
005°E

B P

- ...lﬁ«‘(v\l‘ii‘

syiepy Bujuiyoepy [BuSLaWNOI) BAOWeY O} uoldeng feuipmiBuc
8yl Ui YSI|od [Buld B AQ Pemojjio4 ‘ys|uld puuy suld vy g eq O} uonoes abey
uswioadg J0 spul uo AuQ pewied sbuppep uoneoynuep)

A4 100°0 UMMM Ddlueduo) 8q o) sselswelq Ny

pejliwed Indsepun ON

‘Alyioows pepue|g 8q O} lipey pue sjulod jusbuey

oo¥" (® eloN 1jod webuey

paywied
§8j0H 18lUBD

G BlON Jed
uonesynuep)|

VL o Ak e b i S, eSS b S

N

el 2\ A R €L

sjujod webuej je uey JojlBwg
S00°0 O $00°0 8 O} uondes sben jo iseweiq

$OYOU] Ul 9Je suolsuBwWIq |1V

[ER X XA mﬁuoz sssmm

e

— gl d4ndug

R @ O

25

hof

R TR DR [ ]




KFAE 215467

Figure 14. — Servohvdraulic Closed-Loop LCF Test Machine
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Load measurement was obtained by a commercial tension-compression load cell and
associated electronic equipment for amplification and processing.

An x-y recorder was used for recording load vs strain plots at predetermined cyclic
intervals during testing. The recorder was calibrated with the extensometer so that the ratio of
specimen collar deflection to x-y recorder pen movement in the x direction was known. The y
axis of the x-y recorder was calibrated with the load cell so the ratio of specimen load to x-y
recorder y axis pen movement was known. Digital outpnt of all variables (strain, ioad,
temperature) was monitored.

In ac ition, dual pen stripchart recorders gave a periodic data record of stress range and
strain range vs time, inelastic strain vs time for crack initiation determination, and for
determination of cycles a particular percent change in stress range drop.

The command signal for the strain cycle was produced by a triangular wave signal
generator with feedback from the extensometer output to complete the closed-loop-on-strain
circuit necessary for the triangular strain waveform. The frequency and ramp of the triangular
wave, and therefore, the strain rate can be adjusted from 11X10-5to 6X10~2cm/cm/sec.

For the hold tests, an adjustable timing circnit in the cycle control unit of the LCF testing
machine was used to maintain hold at the required stress or strain. The specimen was strained
at the rate set by the signal generator until the required strain (or stress) limit was attained. At
this point, the signal generator was switched io a timed “sense and hold” sequence which then
maintained the strain (or stress) for the prescribed time period or uatil a final strain limit was
veached. Then the signal generator ramped in the reverse direct’.n o c¢herg. the strain at the
proper strain rate to the opposite limit. When the set point wa- . -ached, the command signal
reversed direction, and the cycle was repeated.

One advantageous feature of these function generator- was their ability to be controlled or
switched at one endpoint by one variable (i.c., stress) and swit .ed at the other endpoint of the
test cycle by a second variable (i.e., strain). In addition, a stress ncld could be programmed on
one end of the test cycle which used strain as the final control limit (i.e., the variable to be held
was relatively independent of the variable which controls the final endpoints).

The continuous cycle strain-controlled LCF tests were conducted at constant total strain
ranges to establish cycles to failure in the 10?to 10® cyclic life range.

The cyclic LCF tests were performed using a saw’ooth strain vs time waveform at a
frequency of 0.50 Hz (30 cpm). The strain cycle was fully reversed (mean strain equal to zero, Re
minimum strain/maximum strain == —1.0). A typical cyclic LCF test waveform and hysteresis
loop are shown in Figure 16.

All specimens were cycled to failure in the strain-controlled test mode. Load-strain
hysteresis plots were obtained at intervals throughout the life of the specimen.

The number of cycles to complete specimen separation (N,), and the number of cycles to
produce a 5% drop in th-~ cyclic load range (N;) were determined for each test. The changes in
specimen compliance causing the Jdrop in cyclic load range was used as an indicator for crack
initiation.




S S S =

LA e

S

¥

kg

L

-
<1

CRINTT T

OF VoA o -
Tensile
Stress
|<—A«,——>L Mean Strair = 0
} 1 =050 Hz (3 cpm)
—& y/ R = 1.0

¥ Aq_jj — Strain A my
/ VV AT
i , — i

‘-‘——Aq-—.

Compressive
Gtress

Strain

As =Total Stress Range

A¢y =Total Strain Range = J¢q + J¢

A¢j =Inelastic Strain Range

Aeg =Elastic Strain Range = Je - J¢
R, =Minmum Strain/Maximum Sirain
f =Cychc Frequency

FO 1354637
Figure 16. — Typical LCF Cycle, Re -1

The total strain and the elastic and inelastic ¢train components were determined at the
specimen half-life (N/2) from the hysteresis plots taken during each test. The strain
components are described in Figure 16.

All tests were conducted in air at 760°C (1400°F) for AF2-1DA and at 649°C (1200°F),
respectively. Temperature was controlled uniformly over the specimen gage section using
calibrated thermocouple temperature readout and control instrumentation.

Data Analysis. — All specimens were cycled to failure with load-strain hysteresis plots obtained
ot intervais throughout the life of the specimen. Stripchart monitcring of creep strain, stress
relaxation, and stress or strain ranges were obtained. The number of cycles to first indication of
failure by cracking, N, was determined by the first indication of deviation in the stabilized
stre. . range or by deviation in the inelastic compliance vs life stripchart plot.

In addition, where applicable, the following were determined: (a) the number of cycles to
10¢ drop in the stabilized ratio of peak tensile stress to peak compressive stress, N;; (b) the
number of cycles ic 5 and 50% drop in the stabilized load rage, N, and N,;; and (c) the cycles to
failure by comnlete separation of the specimen, N,.
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From the hysteresis plots obtained during each test, the total, elastic, inelastic, and creep
strain ranges at the half-life cycle, N, were calculated. Further, the stress range, stress

relaxation per cycle, and mean stress were reported at N,

The cyclic hardening or softening percentage defined as

AUN - Ad‘

CHP = ——Z‘—-———XIOO%,
9,
where
CHP = Cyclic Hardening (Softening) Percentage,
Aoy, = stress range at half life,
and
A, = sgtress range on lst cycle
were obtained.

Results for each cyclic test ar> summerized in Appendixes B and C which include:

1.

2.

10.

11.

12.

13.

14.

The load range vs number of cycles. N curves were plotted for each test and are contained

Number of ¢ycles to first indication of failure by cracking, N,

Number of cycles to 10 percent drop in stakilized ratio of peak tensile
stress to peak compressive stress, N,

Number of cycles to 5 percent drop in stablilized load range, N
Number of cycles to 50 percent drop in stabilized load range, N,
Number of cycles to failure by complete separation of the specimen, N,
Total strain range at N,

Elastic strain range at N,

Inelastic strain range at N,

Creep strains per cycle at N,

Stress range at N,

Amount >f stress relaxation per cycle at N,

Mean stress at N,

Average cyclic frequency of the test

Cyclic hardening or softening percentage.

in Appendix A.
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The N, life daia for each test waveform were plotted vs total, elastic, and inelastic strain
range. Regression analysis was performed to establish mean life curves for the above data.

The regression moriel used for the cyclic (0.50 Hz, 30 cpm) tests is a composite exponential
function of the form Y = ANB + CNP, which relates total strain range (Y) to cyclic life (N). The
inelastic strain component in this model is the ANB term, and the elastic strain component
consists of the CNP terms. The inelastic strain was statistically regressed as a log-linear (straight
line on log-log paper) function (Y, = ANB). The elastic strain had the best statistically regressed
curve fit as a nonlinear log (straight line on log-log paper) function (Y = CNP).

Inelastic strain range data for all alloys has been adjusted to conform to the following
reporting system:

If measured Ac, was: Then reported Ae, wae:

0.00005 < A¢, <0.00015 . 0.0001

This was required due to the relative inaccuracy of the inelastic strain data on this order of
magnitude and -Cue to the significant effect that these data could exhibit on the linear
regressions of inelastic strain. Inelastic strain range data less than 0.0001 (< 0.0001) as reported,
were not used for regression analyses.

The methodology of summing independent log-linear (or nonlinear) regressions of the
elastic and inelastic strain components (Y = Y, + Y, where Y = total struin, Y, = inelastic strain,
and Y = elastic strain) has been used with excellent agreeement with the actual total strain
data generated in this program. Figure 17 illustrates this method of component strain
summation.

Sy —— Total Strain = AN® + CN, ©

£ 0.01p—
~ p———— Tr——
E —
! n (® Total Strain
€ . = ONP
8 ~Elastic Strain = CN @ Elastic Strain Component Data
73

0.001 — (’ inelastic Strain Component Data

10 100 1000 10,000 100,000
Cycles to Failure

FD 15459A

Figure 17. — Composite Experimental Fatigue Life Model Using Summation of Elastic
and Inelastic Strain Components
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The coefficients and exponents of this model can.he rearranged into a more general form:

Aep= A(N,)B+ C(N,)°

The basic composite exponential function model may be expanded and modified to
account for the effects of varying hold time, mean strain (or mean stress) effects, and hold mode
{strain-hold or stress-hold).

Also the cyclic inelastic strains can be separated into two categories: time independent or
plastic strain, and time dependent or creep strain. The total cyclic inelastic strain may be
partitioned into four basic categories:

Ae_: tensile plastic strain reversed by compressive plastic strain

pe . . . .
Ae,: tensile creep strain reversed by compressive creep strain
R tensile creep strain reversed by compressive plastic strain
e, tensile plastic strain reversed by compressive creep strain.

It may then be possible to establish strain-life relationships for each of the four generic cycle
types. The strain-life relations are expressed in the form
- Bij
Ag; = Ay N ™
where the first subscript refers to the predominant tensile inelastic strain component (i.e.,

plastic or creep), and the second subscript refers to the corresponding predominant compressive
component.

Upon completion of testing, all data was screened statistically for outliers based on the
mean regression lives established for each alloy. Spurious observations were repeated when
necessary. Any test results which appeared incongruous were subjected to metallographic and
fractographic evaluation to aid in explanation of the anomaly.

Continuous Cycle Fatigue Properties

Completely Reversed Continuous Cycle. — Isothermal axial strain controlled LCF tests were
performed on AF2-1DA at 760°C (1400°F) and on INCO 718 at 649°C (1200°F) under
completely reversed strain conditions. Six tests each were performed at a frequency of 0.5 Hz
(30 cpm) using a triangular strain vs time waveform. The tests were performed in an iterative
sequence to define the number of cycles to failure between 100 and 100,000 cycles.

The test results are summarized in Tables 11 and 12 for Ga fORIZED® AF2-1DA and
INCO 718, respectively. The baseline strain vs life curves are plotted in Figures 18 and 19,
respectively.

The results of LCF test are presented in Tables 11 and 12 as N, — cycles to failure
(ccmplete separation, of the test specimen as a function of total strair. range, Aep. The total
strain range for half-life (N, hysteresis loop) was analyzed to separate elastic (A¢,) and inelastic
strain (A¢;) strain components. Stress range for the first cycle 1 (AZ,) and for the half-life cycle
(A¥y,) and mean stress at half-life (Z_) are also presented. The hardening and softening
behavior of each test as compared to its initial cycle were also computed as per method
discussed previously.
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(® Actal Data

—e—— Regression Fit

Typical Cyclic
Test Cycle

otal Strain Range — %

e 0.5 }— g
0— €
= -1, 30 cpm
100 1,000 10,000 100,000 1,000,000
Cycles to Failure
FD 258491
Figure 18. — Total Strain Range vs Cycles to Failure for Fully Reversed Continuous
Cycle GATORIZED® AF2-1DA Data at 760°C (1400°F)
20— Legend g
(® Actual Data :
Regression Fit i
P&WA Data $
215 ¢
G.E. Data !
l . 0.33 Hz (20 cpm) s
4 !
g i
ﬂé 10— !
L] Typical Cyclic };
& Test Cycle . 3
E:} g O O ﬂ
2 05— ’Z .
R, = ~1 (30 cpm)
0 L | |
100 1,000 10,000 100,000 1,000,000
Cycles to Failure
FD 258492
Figure 19. — Total Strain Range vs Cycles to Failure for Fully Reversed Continuous

Cycle INCO 718 Data at 649°C (1200°F)
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In addition, the hysteresis plots generated periodically were analyzed to determine (1) the
number of cycles to first indication of failure by cracking, N ; (2) number of cycles to 10 percent
drop in stabilized ratio of peak tensile stress to peak compressive stress, N;; (3) number of cycles
to 5 and 50 percent drop in stabilized load range N, and N,,; and (4) stress range vs cycle (plots
are summarized in Appendix B).

A good agreement is shown in Figure 19 between P&WA and G.E. Data (Reference 8) for
INCO 1718 generated at similar temperatures and strain ratios. G.E. data are slightly lower at
longer lives which may be attributable to frequency effect. All of G.E. data were generated at
0.33 Hz (20 cpm).

Significant cyclic softening was observed at half-life for INCO 718 compared to AF2-1DA.
INCO 718 exhibited significant softening for all strain range levels. The magnitude of softening
was proportional to the total strain range.

The stress range vs inelastic strain ranges plots for both AF2-1DA and INCO 718 were log-
log linear and are shown in Figures 20 and 21, respectively.
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5000 |—

4000 |—

Regression Equation

- Ac (MPa) = 5808 (A)0-168
S 3000 — (R? = 0.95)
|
1]
o
c
& 2000 |—
0

1000 — A

0.00001 0.0001 0.001 0.01

Inelastic Strain Range — m/m FD 258493

Figure 20. — Stress Range vs Inelasti. Strain Range for AF2-1DA, 760°C (1400°F),
30 cpm, Strain Ratio of —1

Figures 22 and 23 illustrate typical stress-strain hysteresis loops at half life for AF2-1DA
and INCO 718 respectively.
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CREEP — FATIGUE PROPERTIES

Significant differences occur in the local stress-strain-time material response for different
fracture critical locations of aircraft engine turbine disks. Boltholes in disk web area., for
example, may be sufficiently constrained by surrounding essentially elastic material so that
their LCF-creep behavior may be approximated by a stress relaxation, or strain-hold cycle.
Blade attachment areas at the disk rim, however, may experience some net section creep and,
consequently, may be better represented by a creep hold, or constant stress-hold cycle.

Initial waveforms for this phase of testing were selected in an attempt to evaluate
differences between a stress-hold cycle (creep hold) and a strair.-hold cycle (stress relaxation).
Additional waveforms separated the contributions of mean stress and progressively increasing
mean strains (due to cyclically unreversed creep) on the LCF life.

Tests were conducted to investigate differences between a basic creep, or stress hold cycle
and the relexation, or strain hold cycle. Both tensile and compressive strain hold types
individually and combined were used.

Strain Hold Tasts

The strain was held constant for these tests at either maximum tensiie, compressive, or
tensile and compressive pegk strain. The peak stress was allowed to relax for a specified time.

These tests weve nerformed at the same temperature, mean strain, and ramp frequency as
the continuous cyclic tests mentioned above, but had a hold time at the maximum peak strain
(stress relaxation). The balance «{ the cycle was performed using the basic frequency used
above. Three tests were conducted each of *hiee different hold times of 0.5, 2 and 15 min per
cycle. The tests were performed in an ite10tive sequence to define the number of cycles to failure
from 1,000 cycles to a number of cycles equivalent to 1000 hours of testing. The tests were done
at 760°C (1400°F) for AF2-1DA® and at 649°C (1200°F) for INCO 718.

Peak Tensile Strain Hold. — These tests had a hold time at maximum peak tensile strain
(stress relaxation). A typical peak tensile strain hold cycle is shown in Figure 24. The test results
for both GATORIZED® AF2-1DA and INCO 718 are summarized in Tables 13 and 14,
respectively. The total strain range vs cycles to failure for all three (0.5 min, 2 min and 15 min)
hold times are plotted in Figures 25 and 26 for GATORIZED® AF2-1DA and INCO 718,
respectively,

All of the tensile strain hold tests for AF2-1DA had negative mean stresses. Only 15 minute
hold cycles showed detrimental effects of hold time compared to continuous cycle data
(Figure 25). Stress range at half-life for AF2-1DA indicated little or no (hardening or softening)
compared to INCO 718. The degree of strain softening for INCO 718 was higher for the high
strain range tests than for the lower strain range tests. Also evident is the degrading effect of
hold time on INCO 718 life. Almost all of the tests for INCO 718 showed reduction in cyclic life
for tensile strain hold data compared to fully reversea continuous cycle (solid line in Figure 26).
The magnitude of life reduction was greater at lcwer total strain ranges than at the higher total
strain ranges.
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Figure 24. Typical Tensile Strain Hold LCF Test

Peak Compressive Strain Hold. — Peak compressive strain was held 0.5, 2.0 and 15.0 minutes
for these tests. A typical compressive strain hold cycle is shown in Figure 27. A minimum of
three tests were done with each of three different hold times of 0.5, 2, and 15 minute per cycle
for both alloys.
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Figure 26. — Peak Tensile Strain Hold Time Test Results for INCO 718 at 649°C
(1200°F)
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Figure 27. — Typical Compressive Strain Hold LCF Test

The test results for GATORIZED® AF2-1DA and INCO 718 are summarized in Tables 15
and 16, respectively. The assessment of cyclic life debit for both alloys is depicted in Figures 28
and 29.

The effect of compressive strain hold cycle on failure life of both alloys was observed to be
detrimental compared to tensile strain hold cycle. The plausible explanation could be the
presence vl positive mean stresses. The life debit due to compressive strain hold on INCO 718
(Figure 29) was more pronounced compared to AF2.-1DA {Figure 28). The magnitude of life
debit increased at lower strain ranges and higher hold time (15 min as compared to 0.5 min) for
INCO 718.

Peak Tensile and Compressive Strain Hold. — A combination tensile and compressive strain
hold LCF test was done similar to those strain hcld tests inentioned above but having a hold
period at both the peak tensile and peak compressive strains of the cycle. A typical cycle is
shown in Figure 30. A total of three tests were performed at 0.5 min hold time for

GATORIZED® AF2-1DA. INCO 718 was characterized at all three hold times (0.5, 2.0 and
15.0 min).

The test results are summarized in Tables 17 and 18 for both alloys. Figures 31 and 32
show the comparison of peak tensile and compressive strain hold tests with continuous cycle
data.
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Figure 31. — Peak Tensile and Compressive Strain Hold Data for GATORIZED® AF2-
IDA at 760°C

The effect of tensile and compressive Lold time on failure life of AF2-1DA was somewhat
less than observed for INCO 718 (Figures 31 and 32). As noted previously for tensile only and
compressive only strain hold, the magnitude of life degradation due to hold cycle on INCO 718
was higher for lower strain ranges and higher hold time duration. As expected for a balanced
loop, the mean stresses for all tests for both alloys were (at or near) zero.

Stress Hold Tests

Completely reversed strain-controlled fatigue tests were performed having a hold time at
the peak tensile stress, and a ramp frequency, mean strain, and temperature similar to the cyclic
tests. The tensile stress was held at a constant value until the specimen crept to a preselected
maximum tensile strain limit, whereupon the balance of the cycle was completed using the basic
frequency as described before. Because of cyclic hardening or softening of the specimen, it was
necessary to periodically increase or decrease the peak tensile creep stress in order to maintain a
repetitive time per cycle. Three different maximum tensile stress levels were selected. For each
tensile stress level, the total strain range was iteratively selected to define the number of cycles
to failure from 100 cycles to a number of cycles equivalent to 1,000 hours of testing. Tensile
stress hold tests were performed only on GATORIZED® AF2-1DA.

Tensile Stress Hold. — Tensile stress hold tests were conducted for GATORIZED® AF2-1DA
at peak tensile stress of 620.5 MPa (90 ksi), 482.5 MPa (70 ksi) and 310.3 MPa (45 ksi) at 760°C
(1400°F). The tensile stress was held constant until the specimen had crept to a preselected
maximum tensile strain limit, then the specimen was unloaded in the compression direction
such that the strain cycle was completely reversed. A typical tensile stress hold LCF cycle is
shown in Figure 33. Idealized first-cycle hysteresis loops for tensile stress hold LCF testing are
ahown in Figure 34.
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Figure 32. — Peak Tensile and Compressive Strain Hold Data for INCO 718 at

649°C (1200°F)
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Figure 33. — Typical Tensile Stress Hold LCF Test

FD 135465A

Compressive Stress Hold. — Compressive stress LCF tests were done at 620.5 MPa (90 ksi)
and 482.5 MPa (70 ksi) peak compressive stress similar to the tensile stress hold tests, with the
exception that the hold period was held at the mazimum compressive stress. The compressive
stress was held constant until the specimen crept to a preselected maximum compressive strain
limit, then the specimen was loaded in the tension direction such that the strain cycle was
completely reversed. Two different maximum compressive stress levels were selected to define
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LCF life from 106 cycles to a number of cycles equivalent to 1000 hours of testing. A typical
hysteresis loop and test cycle is presented in Figure 35.

%
£
i Strain Range is Varied for Any
§ Constant Stress Hold Condition
by Allowing Creep Strain
. Component to Vary
‘ Ay e ;—-—
A€y ———tmd
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FD 135458

Figure 34. — Idealized First-Cycle Hysteresis Plots for Tensile Stress-Hold LCF
Testing
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Figure 35. — Typical Compressive Stress Hold LCF Test

Combination Tensile and Compressive Stress Hold. — Combination tensile and compressive
stress hold LCF tests were done similar t. :he stress hold tests mentioned above but having a
hold period at both the peak tensile and peak compressive stresses of the cycle. This test cycle is

illustrated in Figure 36. Two tests were performed at 620.5 MPa (90 ksi) peak tensile and
compressive peak stress.

The combination tensile and compressive stress hold test could simply be conducted with
preselected tensile and compressive stresses with fixed hold times at both ends. A small amount
of cyclic creep ratcheting may occur if the tensile and compressive creep rates are not equal.

The test results for all stress hold tests for GATORIZED® AF2-1DA are enumerated in
Table 19.

The test results showing percent strain range vs life for all stress hold tests and continuous
cycle tests are plotted in Figure 37.

The tensile stress hold effect on cyclic life of AF2-1DA seems negligible for 620.5 MPa
(90 ksi) and 482.5 MPa (70 ksi) hold cycles. The 310-3 MPa (45 ksi) peak stress hold test ran
41,595 min. (approx 700 hours) and was discontinued. Compressive only and tensile and
compressive stress hold tests generally showed life debit (Figure 37).
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55

;
4
i
§
]
8
A
1




L N -
B P P

g e

s

RN el

'

56

L ¥

RS
ORIGINAL FAG™- 2
OF POOR QUALITY

R, = —1
t = 0.5 Hz (30 cpm) Exclusive of Hoid

Strain » : I._ _
Stress \ f‘ X
\ J \ Time
/ Strain )

0 / Stress

\ Time

Hold Time (Mot Constsmt)—--ll }-——

FD 173393
Figure 36. — Typical Tensile-Compressive Stress Hold LCF Test

Auxiliary Tests. — Several additional tests were performed to enhance understanding of high
temperature creep-fatigue behavior. Most of these tests were done on GATORIZED® AF2-1DA.

Creep-Extension (Ratcheting) of AF2-1DA. — Significant differences occur in the local stress-
strain-time material response for different fracture critical locations of aircraft engine turbine
disks. Boltholes in disk web areas, for example, may be sufficiently constrained by surrounding
essentially elastic material so that their LCF-creep behavior may be approximated by a stress
relaxation, or strain-hold cycle. Blade attachment areas at the disk rim, however, may
experience some net section creep and, consequently, may be better represented by a creep hold,
or constant stress hold cycle.

Initial waveforms for this phase of testing were selected in an attempt to evaluate
differences between a stress-hold cycle (creep hold) and a strain-hold cycle (stress relaxzation).
Additional waveforms separated the contributions of mean stress and progressively increasing
mean strains (due to cyclically unreversed creep) on the LCT life.

In an attempt to separate effects of the high net accumulated creep strain and the effects
of mean stress, an additional hold cycle was run with a constant peak (mean stress) but kept
total reversed strain range constant. There was significant creep strain (cyclically unreversed)
for the stress-hold cycle.

A typical stress-hold, stress control LCF test cycle is shown in Figure 38. The test results
are summarized in Table 20 and are plotted in Figure 39.
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Figure 37. — Peak Stress Hold Data for GATORIZED® AF2-1DA at 760° ( 1400°F),
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Figure 38. — Typical Stress-Hold, Stress Control LCF Test
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FD 164819

Figure 39. — Creep Extension (Ratcheting Type) Data for AF2-1DA at 760°C
(1400°F), R, = Variable

Of three tests that were conducted at £27-4 MPa (120 ksi), no cyclic degradation was
observed for 0.5 min hold, whereas significant reduction was evident for 2 min and 15 min hold
cycles. At lower peak stress level 372.3 MPa (54 ksi), same percent reduction of life for 15 min
hold test cycle was observed. The creep extension (ratcheting type) cycle seems detrimental
compared to tensile strain hold cycle for the similar hold duration.

Alternate Temperature Tests for GATORIZEDD AF2-1DA at 649°C (1200°F). — Three
representative tests were performed at total atrain range of 1.0%, and at an ai. ate
temperature of 649°C (1200°F) to ascertain strain rate and creep effects. In -8
investigations, (Reference 3) it was observed that the fall-off in strength for AF2-1DA begu. at
~ T700°C (1300°F) and it was a strong function of strain rate. (Figure 40.)

The three tests were conducted, one each, under (1) continuous full; reversed cycle,
(2) 2 min tensile strain hold, an-* (3) 2 min compressive strain hold cycles.

The test results are summarized in Table 21 and are plotted in Figure 41. The 760°C
(1400°F) temperature does show & degrading influence for all three cycle types compared to
649°C (1200°F) tests. The comparison of failure lines at both temperatures is further
graphically illustrated in the bar chart (Figure 42.) A cy-lic credit of 2 minute compressive strain
hoid was observed at 649°C (1200°F) compared to life debit at 760°C (1400°F).
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Figure 40.— 0.2% Yield Strength vs Temperature for AF2-1DA (Reference 3)

The test results are summarized in Table 21 and are plotted in Figure 49.

Mean Stress Effect Tests. — Mean stress has been reported by several investigators to be a
parameter having primary influence on LCF life. An investigation was undertaken to ascertain
this effect. All of the earlier continuous cycle testing was conducted at R, = —1 where mean
stress was at or near zero. Additional tests were scheduled at R, = 0 (all tensile strain cycles). In
general, strain R ratio imparts little effect at high total strain ranges and large effects at lower
strain ranges. At the lower strain ranges, mean stress is generally high. At high strain ranges,
mean stress approaches zero. The effect of decreasing mean stress with increasing strain range
(for all-tensile strain tests) is shown in Figure 43. It should be noted that the yield stress was a
critical factur in determining at what total strain range the mean stress reduction begins.

The mean stress was varied from 0 MPa (0 ksi) to 344.7 MPa (ksi). Test results for
GATORIZED® AF2-1DA are summarized in Table 22 and are plotted in Figure 44.

Generally, cyclic life seems to be insensitive to mean stress variations for AF2-1DA under
fully reversed loading conditions ana at 760°C (1400°F), Figure 44.

Zero Strain Ratio Tests (INCO 718). — A limited number of tests were conducted on INCO 718
at zero stra’n ratios (R, = 0) to distinguish between oxidation degradation and time at
temperatur. ffects. Continuous cycle (nonhold) and hold (strain hold) tests were conducted for
INCO 718 at 649°C (1200°F). A typical (nonhold) LCF cycle with R, = 0 is shown in Figure 45 at
649°C (1200°F). The test results are summarized in Table 23 and are plotted in Figure 46.
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Figure 41.— Temperature Effect on Strain Hold Data for GATORIZED® AF2-1DA
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Figure 43. — Mean Stress vs Total Strain Renge for a Typical Turbine Disk Alloy

As discussed before, the mean stress for all tensile strain cyc'e tests tends to zero at higher
strain ranges, thus minimizing any mean stress influence on life. This can be seen from Figure 46
for continuous cycle data. At lower strain ranges, all tensile cycles have higher mean stress
compared to fully reversed cycles and show mean stress effect — i.e., lower cyclic life. The same
behavior was oi.served for tensile and compressive hold cycles at higher strain ranges .1.0%)
where all tensile cycle and fully reversed cycle lives are comparable. The reduced life for R = 0
at lower strain range was not observed for tensile strain hold cycle.
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Figure 44. — Mean Stress Effect on LCF Data for GATORIZED® AF2-1DA at 760°C
(1400°F), 30 cpm, R,= 0
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Figure 45. — Typical All Tensile Strain Hold LCF Test
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Figure 46. — Strain Ratio Effect on Continuous Cycle Data for INCO 718 at 649°C
(1200°F), 30 cpm
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METALLOGRAPHIC EVALUATIONS

Fractographic and metallographic studies were performed on strain contrel low-cycle
fatigue samples for both GATORIZED® AF2-1DA and INCO 718. Representative high and low
strain range cyclic and cyclic/hold samples from each of the alloys were characterized to
determine the mechanisms of crack initiation, especially in the low-strain long-life regime.
These studies were done by direct viewing of the fracture with a scenning electron microscope
(SEM). The metallographic section taken through the origin of esch sample enabled
identification of ooth the location and character of the fatigue origin, and the morphology of the
early stage of crack growth.

The sample numbers and corresponding test conditions for both alloys are listed in
Table 24. The results are summarized in Table 25. The general observations for both alloys are
as follows.

TABLE 24. — CONTROLLED STRAIN LOW-CYCLE FATIGUE SAMPLES CHARAC-
TERIiZED BY FRACTOGRAPHY

Spec. Type Temp. AegV
SIN Test °C % N®

AF2-1DA 14 Continuous cycle (Re = —1) 760 0.500 196,657
18 0.5 min ten strain hold 760 0.750 17,400
21 2.0 min ten. strain hold 760 0.768 5300
2h 15.0 min ten. strain hold 760 0.750 3522
30 0.5 min comp. strain hold 760 0.505 31174
31 2.0 min comp. strain hold 760 0.525 22163
41 0.5 min ten. and comp. strain hold 760 0.500 1156
47 15.0 min comp. strain hold 760 0.750 25919
62 2.0 min ten. strain hold 649 1.000 1577
63 2.0 min comp. strain hold €49 1.000 1405
64 Continuous cycle (R= —1) 649 1.000 862
66 827.4 MPa (120 ksi) creep extension 760 1.350 61
73 482.5 MPa (70 _ksi) comp. stress hold 760 0.750 2053

INCO 718 10 Continuous cycle (Re = —1) 649 0.930 5163
14 0.5 min ten. strain hold 649 0.800 24026
17 2.0 min ten. strain hold 649 0.850 3941
19 15.0 min ten. strain hold 649 1.015 1329
26 0.5 min comp. strain hold 649 0.800 9500
29 2.0 min comp. strain hold 649 0.800 6872
31 18,9 min comp. strain hold 649 1.0 1335
37 15.0 min ten. and comp. strain hold 649 1.000 494
41 2.0 riin ten. and comp. strain hold 649 0.800 2358
42 0.5 min ten. and comp. temp strain hold 649 0.765 3411
48 Continuous cycle (Re = 0) 649 0.800 7690
50 2.0 min. comp. strain hold (Re = 0) 649 0.800 3181
33 0.5 min ten. and comp. strain hold 649 1.295 649
38 0.5 min ten. and comp strain hold 649 0.980 1632
51 2.0 min ten. and comp strain hold 649 1.200 723

(1) Total strain range
(2) Cycles to failure

—-——-)""“*'* iR
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TABLE 25. — SUMMARY OF FRACTOGRAPHIC AND MLTALLOGRAPHIC STUN'%S

R

' Spec  Type*
2 Material S/N  Test Initiation
. AF2-1DA 14 C-L Stage I oxidized origin, transgranular

18 C/D-L Subsurface origin, oxidized, transgranular

21 C/D-L Surface origin, oxidized, transgranular

26 C/D-L Surface origin, secondary cracks, intermixed

30 C/D-L Multiple origins, Ti, Cr may be carbides present

31 C/D-L No defects, probably transgranular

41 C/D-L Faceted origin, transgranular cleavage fracture

47 C/D-L Multiple origins, transgranular

62 C/D-H  Multiple origir), transgranular

63 C/D-H Multiple origins, oxidized, transgranular

64 C-H Multiple origins, Stage I facets, transgranular

66 C/D-H Multiple origins, Stage I facets, transgranular

73 C/D-L Multiple origins - Stage I, facet, transgranular
INCO 718 10 C-H Stage I faceted origin, intergranular, turning to transgranular

14 C/D-L Locally intergranular cracking

17 C/D-L Locally intergranular cracking

¢ 19 C/D-H Locally intergranular cracking
"‘? 26 C/D-L Stage I faceted intergranular origin, turning to transgranular cracking
i 29 C/D-L *age | faceted intergranular crigin, turning to transgranular cracking

31 C/D-H Multipie origins, intergranular fracture
37 C/D-H Multiple origins, intergranular fracture
41 C/D-L Origin at scratch, intergranular fracture
42 C/D-L Origin smeared, mixed fracture
48 C-L Stage I faceted origin, intergranular
50 C/D-L Origin at machining mark, intergranular, turning to transgranular
33 C/D-H Origin at machining marks, mixed fracture
38 C/D-H Origin at surface, intergranular switching to mixed mode
_ 51 C/D-H Multiple origins, intergranular.
¢ C = Cyclic
C/D = Cyclic Hold
H = High Strair Range
L = Low Strain Range

GATORIZED® AF2-1DA

B Tl Lo s I

The SEM examination of all AF2-1DA elevated temperature failures showed that the
crack nucleation sites for the dominant cracks were from surface or near surface location rather
2 than internal origins. The continuous cycle (Figure 47A) as well as cyclic/hold samples (Figure
47B, C and D) :xzhibited multiple origins. The most prevalent mode of initiation and early
growth for all the samples examined was transgranular initiation normal to the tensile direction.
On the fracture surface, these sites were usually flat and featureless as shown in Figures 48 and 4
49 for different specimens. In each case, the shape of the crack and the morphology of the tear
lines indicated that the crack originated at the specimen’s surface, although there was generally
no obvious microstructural feature or defect that could be associated with the origin. One
exception was for specimen MNo. 18 where initiation nucleated at a subsurface void. The
microscopic resolution was limited, in the area of the origin due to oxidation and rubbing of the
fracture surfaces during fatigue cycling,

ot
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(a) S/N 14, Cyclic, A¢, = 0.5%, 196,657 Cycles

(b) S/N 21, 2.0 Min Ten. Strain Hold, A¢, = 0.75%, 10,939 Cycles

(¢) S/N 31, 2.6 Min Comp Strain Hold, A¢, = 0.525%, 2,163 Cycles
(d) S/N 73, Peak Comp 482.5 MPa (70 ksi) Stress Hold, 2,053 Cycles

GATORIZED® AF2-1DA Strain Control LCF Fracture Faces

“D 261873
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100x a. 2000% b.

FD 261874

Figure 48. — SEM Fractographs of GATORIZED® AF2-1DA Samples No. 14 (Top)
ana No. 21 (Bottom) Showing Faceted Stage I Origin (a), Heavily
Oxidized Transgranular Fracture (b), and Surface Origins (c), Oxidized
Transgranular Fraciure With Striations (d)
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Figure 49. — SEM Fractographs of GATORIZED® AF2-1DA Samples No. 31 (Top)
and No. 73 (Bottom) Showing Surface Origin (a), Transgranular Fracture

(b), Stage i ¥aceted Origins (c), and Transgranular Fracture With
Secondary - .cking
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(a) S/N 10, Continuous Cycle, A¢ = 0.930, 5,163 Cycles

(b) S/N 29, Peak Comp Strain 2.0 Min Hold, 6,872 Cyclus

) S/N 42, Peak Ten. and Comp Strain 0.5 Min Hold, 3,411 Cycles
(d) S/N 50, rear Tomp Strain 2.0 Min Hold (R= 0) 3,181 Cycles

FD 261876

Figure 50. — INCO 718 Strain Control LCF Fracture Faces
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Figure 51. —

C. 100 d.

FD 281877

SEM Fractograph of INCu i2 Samples No. 10 (Top) and No. 29
{Bottom) Showing Intergranular Fracture at Origin (a and c) Turning

Traasgranular al a Later Stage (b and d)
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Back from Origin

100X d.
Back from Origin

Near Origin

FD 261878

Figure 52. — SEM Fractograph of INCO 718 Samples No. 42 (Top) end No. 50
(Bottom) Showing Mixed Mode Fracture at Origin (a) Turning

Trunsgranular (b), Intergranular Fracture (c¢) Turning Transgranular
With Distinct Striation Marks
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The compressive stress hold failure (Sample No. 73) showed Stage I i :cted crack
nucleation (Figure 49C) followed by transgranular fracture with clear indications of secondary
cracking (Figure 49D). The surface-subsurface transition (SST) phenomenon observed in other
studies (Reference 3) where dominant crack nucleation at a near surface pore for high strain

range tests changed to crack nucleation at a subsurface metallic inclusion was not confirmed
here.

The grain structure for this alloy, as reported earlier was coarser (ASTM 1-3) for all four
heat treat lots.

NCO 718

INCO 718 fractures also nucleated at or near surface locations. The continuous cycle
(Figure 50A) and cyclic/hold sample (Figures 50B, C, and D) initiations were predominantly
multiple surface origins. Cracking generally began as stage I mode and changed subsequently to
transgranular in most cases. Figures 51 and 52 A and C show a typical cross-sectional view of
intergranular crack initiation from the specimen’s surface. Cracking occurred on grain
boundaries perpendicular to the tensile stress axis. The subsequent :rack growth was primarily
transgranular or mixed mode with clear evidence of striation marks (Figures 51 and 52 C and D).

ae INCO 718 had finer grain size (ASTM 7-8) compared to AXF2-1DA.

Mg e
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CONCLUSIONS AND SUMMARY

Two aircraft turbine disk alloys, GATORIZED® AF2-1DA and INCO 718, were evaluated
for their low strain long life creep-fatigue behavior.

3
Static (tensile and creep rupture) and cyclic properties of both alloys were evaluated. The
controlled strain LCF tests were conducted at 760°C (1400°F) and 649°C (1200°F) for AF2-1DA
and INCO 718 respectively. Hold times were varied for tensile, compressive and ten-
sile/compressive strain hold (relaxation) tests. Additionally, stress (creep) hold behavior of AF2-
1DA was evaluated.
The resuits of this experimental program are summarized as follows:
1.  Generally, INCO 718 exhibited a more significant reduction in fatigue life
due to hold than AF2-1DA.
2. At low strain ranges (long life), the percent reduction in life for both alloys
for strain hold were generally larger.
3. All tensile strain cycle (R, = 0) tests indicated lower cyclic lives compared
to fully reversed strain cycle {R, = —1) tests especially for INCO 718. This
was due to higher mean stresses at comparable strain ranges.
4. Changing hold time from zero to 0.5, 2.0, and 15.0 min. resulted in
corresponding reductions in life. Reductions in life could be attributable to
exposure time at temperature as well as cyclic creep deformation damage.
5. INCO 718 showed far greater life than AF2-1DA for fully reversed
continuous cycle tests at 649°C (1200°F). This could be attributed to lower
tensile strength (higher ductility) for INCO 718. However, no appreciable
differences were seen under hold cycles for the conditions tested. :
;
6. Mean stress and accumulated creep strain (in stress hold cycles) for both \
alloys significantly affected LCF life. Life differences between stress hold ]
and strain hold cycles are attributed to mean stress and cumulative creep i

strains.

7.  Metallographic and fractographic evaluations were performed on failed
strain control LCF specimens. Crack initiation for cyclic tests were
generally transgranular for AF2-1DA alloys while for INCO 718 they were
generally intergranular, except where cracks initiated in voids and
inclusions.
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APPENDIX A
REGRESSION PLOTS VERSUS CYCLES TO FAILURE

This Appendix contains regressed typical plots of elastic strain (Ae,), inelastic strain (i¢)
and total strain (Aeg) vs cycles to failure for GATORIZED® AFZ-1DA and INCO 718 for few
selected groups of tests. The regression equations for all other groups of cycle types which had at
least three data points for three distinct strain ranges.
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TABLE A-1. — CONTINUOUS CYCLE CONTROLLED STRAIN (AF2-1DA) CYCLIC

PROPERTIES

R-SGUARE
—— YIELD STREMGTH, .27 SY (KST) 0.15821€+03
STRENGH COEFF., K' 0.46850E+03
STRAIN-HARD EXP., N* 0.17469E+00

FATIGUE STRENSH COEFF., SIGMA 0.28064E+03 0.988
=0.11563E4+00

FATIGUE DUCTILITY COEFF., EF’ 0.53207€-01 0.928
FATIGUE DUCTILITY EXP., C ~0.66192E+00

tQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPONSE

INELASTIC STRAIN RANGE = CH(CYCLES TO FAILURE)¥*xD
C= 0.67263E+01 0=-0.66195E+00

ELASTIC STRAIN RANGE = A%(CYCLES TO FAILURE )¥*»B
A= 0.20211E+01 B=-0.11564E+00

TOTAL STRAIN RANGE = A®(CYCLES .0 FAILURE)®#B + C*(CYCLES YO FAILURE J#*D
A= 0.20211E+01 B=-0.115€4£+00 C= 0.67263E+01 0=-0.66195€+00
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Figure A-1. — Elastic Strain Range vs Cycles to Failure for Fully Reversed
Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)

PRGN

L ur e



& )
¥
ORIGINAL PAGE 5
OF POOR QUALITY
’
103.0
10.0
. ; 1.0 ..
) M i
b ; :
{ —
Y ,
T o ;
o = .
- (o
- < ;
o F = 0.t . .
7"; ) % '
$ —
. i wd
g
g -
K — "
L .
. = k
— 0.90!
.
.
H ;
g .
% .
0.001
«
1
.% ~
: S
; s
. ’ ’? '
. ’ ‘l‘
. : {
0.0001 . “ :
2 3 (] S 6 7 - ¢
1 10 10 10 10 10 0 4]

CYCLES 70 FAILURE, NF

- Figure A-2. — [Inelastic Strain Range vs Cycles to Failure for Fully Reversed
Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)
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Figure A-3. — Total Strain Range vs Cycles to Failure for Fully Reversed Continuous
Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)
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TABLZ A-2. — 0.5 MINUTE TENSILE STRAIN HOLD (AF2-1DA) CYCLIC

PROPERTIES
R~SQUARE
—_—— YIELD STRE!"(Ha .24 SY (KSI) ===~ 0.14032E403
STREHGH Crifsf.» K' 0.36761E+03
STRAIN-HARD EXP., N’ 0.15497E+00
FATIGUE STRENGH COEFF., SIGMA 0.21673E+03 0.940
——— FATIGUE STREHGH EXP..B -0.82824E-01
FATIGUE DUCTILITY COEFF., EF* 0.33061€-01 0.920
FATIGUE DUCTILITY EXP., C -0.53445E+00

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPONSE

INELASTIC STRAIN RANGE = C#({CYCLES TO FAILURE)#*xD
C= 0.45656E+01 D=-0.53445E+00

ELASTIC STRAIN RANGE = A%(CYCLES TO FAILURE )»xB
A= 0.15975E+01 =-0.82865E-01

TOTAL STRAN RANGE = A%(CYCLES TO FAILURE)*#B + C*({CYCLES TO FAILURE )%**D
A= 0.15975E+01 =-0.82865E-01 C= 0.45656E+01 D=-0.53445E+00
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TABLE A-3. — 2.9 MINUTES TENSILE STRAIN HOLD (AF2-1DA) CYCLIC
PROPERT'ES
2.0 MIN TEMSILE “~RAIN DMELL ‘
CYCLIC PROPERTIES d
R-SQUARE
YIELD STREMGYH, .27 SY {KSY) 0.15002E+03
STRENGH COEFF., K* 0.714946E+03
STRAIN-HARD EXP., N' 0.25126E+00
FATIGUE STRENGI CCEFF., SIGMA 0.27091E+03 1.000
___ FATIGUE STRENGH EXP..B =0.11712F+00
FATIGUE DUCTILITY COEFF., EF’ 0.21020E-01 0.998
FATIGUE DUCTILITY EXP., C -9.46615E+00

EQUATIONS AiD COEFFICIENTS

STRAIN - LYIFE RESPONSE

INELASTIC STRAIN RANGE = CH(CYCLES TO FAILURE)*xD
C= 0.30439E+01 D:-0.46618E+00

ELATT..C STRAIN RANGE = A®(CYCLES TO FAXILURE )»xB
A= 0.19523E+01 B=-0.11724E+00

TOTAL STRAIN RANGE = AX(CYCLES TO FAILURE)**B ¢+ C*(CYCLES TO FAILURE)*xD
A= 0.19523E+01 B8=-0.11724E+00 C= 0.30439E+01 =-0.46618E+00
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,’ TABLE A-4. — 15.0 MINUTES TENSILE STRAIN HOLD (AF2-1DA) CYCLIC -
i PROPERTIES
{ P
t
R-SQUARE
YIELD STRENSTH, .2% SY (KSI) 0.13204E+03
STRENGH COEFF., K' 0.48540E+03
STRAIN-~HARD EXP., N° 0.20949E+0y
FATIGUE STRENGH COEFF., SIGMA 0.235656E+03 6.981
FATIGUE STRENGH EXP.,B _ -0.110125E+00
T EATIGUE DUCTILITY COEFF., EF° 0.32353E-01 0.996
FATIGUE DUCTILITY EXP., C -0.52584E+00
EQUATIONS ANO COEFFICIENTS
STZAIN - LIFE RESPONSE
T JNELASTIC STRAIN RANGE = C*(CYCLES TO EAILURE)®*D
- C= 0.44962E+01 D=-0.52587E+00
) ~ELASTIC SYRAIN WANGE S A%{CYCLES 10 FAILURET*<B ;
A= 0.1710SE+01 =-0.11022E+00
[ T TOTAL STRAIN RANGE = A®(CYCLES T0 FAILUREI*¥0 ¥ C*(CYCLES TO FAILURE)%*D
[ A= 0.17105E+01 B=~0.11022E+00 C= 0.44962E+01 D=-0.52587E+00
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Figure A-4. — Elastic Stizin Range vs Cycles to Failure for fully Reversed Peak
Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)
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Figure A-3. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak
Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)
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TABLE A-5. — 0.5 JINUTE COMPRESSIVE STRAIN HOLD (AF2-1DA) CYCLIC .
PROPERTIES
R-SQUARE
——— YIELR STRENGTH, .2Z SY (KS[) 0.15753E403
STREMGH COEFF., K® 0.56269E+03
STRAIN-HARD EXP., N°® 0.20486E+00
FATIGUE STRENGH COEFF., SIGMA 0.37126E+03 0.989
. FATIGUE STREMGH EXP..B =0.15856E400
FATIGUE DUCTILITY COEFF., EF’ 0.13135€+00 0.997
FATIGUE DUCTILITY EXP., C -0.77399E+00

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESFONSE

INELASTIC STRAIN RANGF = C#(CYCLES TO FAILURE Jx*D

C= 0.15364E+02 D=-0.77399E+00

ELASTIC STRAIN RANGE = A®(CYCLES TO FAILURE)xxB

A= 0.25957E+01 =-0.15853E+00

TOTAL STRAIN RANGE = A%{CYCLES TO FAILURE)®*¥B ¢+ Cx(CYCLES TO FAILURE)*»D
C= 0.15364E+02

A= 0.25957E+01 B=-0.15858E+00

=-0.77399Z+00
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TABLE A-6. — 2.0 MINUTES COMPRESSIVE STRAIN HOLD (AF2-1DA) CYCLIC

PROPERTIES

R-SQUARE

TRENGIH, .27 SY (KSI) N.14027E+0X

STREHGH COEFF., K* 0.48989E+03

STRAIN-HARD EXP., N°® 0.20124E+00
FATIGUE STRENGI! COEFF., SIGMA 0.27037E+03 0.996

— . FATIGUE STRENGH EXP,.,.B =0.13159E+00
FATIGUE DUCTILITY COEFF., EF® 0.521G8E-0" 0.990

FATIGUE DUCTILITY EXP., C -0.65391E+00

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPON3E

INELASTIC STRAIN RANG: = CH(CYCLES TO FAILURE )¥*xD
C= 0.66291E+01 D=-0.65391E+00

ELASTIC STRAIN RANGE = A®(CYCLES TO FAILURE )#*xB
A= 0.19256E+01 B8=-0.13163E+00

TOTAL STRAIN RANGE = A®(CYCLES YO FAILURE)*%B + C#(CYCLES TO FAILURE )#xD
Az 0.19256E+01 B=-0.13163E+00 C= 0.66291E+01 D=-0.65391E+00
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ORIGINAL PAGE i3
OF POOR QUALITY

TABLE A-7. — 15.0 MINUTES COMPRESSIVE STRAIN HOLD (AF2-1DA) CYCLIC

PROPERTIES
R-SQUARE
__ _YIELD STRENGTM, .27 SY (KSI) D 123ATFs03 .

STRENGH COEFF., K' 0.20652E¢03

STRAIN-HARD EXP., N' 0.82514E-01

FATIGUE STRENGH COEFF., SIGMA 0.25087€+03 0.999

e, =0,12592€400
FATIGUE DUCTILITY COSFF., EF* .10565E402 1.000
FATIGUE DUCTILITY EXP., C -0.15261E+01

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPONSE

INELASTIC STRAIN RANGE = C*(CYCLES TO FAILURE )%xD
C= 0.73362E+03 =-0.15261E+01

ELASTIC STRAIN RANGE - A¥(Lif LL& TC F“TLURE I%¥B
Az 0.17981E+01 B=-0.1263E<N0

TOTAL STRAIN RANGE = A%(CYCLES TO FAILURE)®*XB ¢ C*(CYCLES TO FAILURE)#»*D
A= 0.17981E+01 B=-0.12603E+00 C= 0.73362E+03 D=-0.12261E+01

STRESS - STRAIN RESPONSE

TOTAL STRAIN = STRESS/E + (STRESS/K')ex(]1/N')
E= 0.25633E+405 K'= 0.20652E+03 N'= 0.82514E-G)
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ORiGiitAL PAGE 3
OF POOR QUALITY

TABLE A-8. — TENSILE AND COMFRESSIVE 0.5 MINUTE HOLD (AF2-1DA)
CYCLIC PROPERTIES

R-SQUARE
— - YIELD STRENGTM, .27 SY (KSI) _____ __ _ 0.13483E:03
STRENGH COEFF., K*® 0.48682E+03
STRAIN-HARD EXP., N' 0.20659E+00
FATIGUE STRENGH COEFF., SIGMA 0.26094E+03 0.966
— FATIGUE STRENGH EXP..B =0.12929E400 —_
FATIGUE DUCTILITY COEFF., EF' 0.48866E-01 0.939
FATIGUE DUCTILITY EXP., C -0.62827€+00

EQUATIONS AND COEFFICIENTS

STRAI{ - LIFE RESPONSE

IHNELASTIC STRAIN RANGE = C*(CYCLES TO FAILURE)**D
C= 0.63234E+0) =-0.62827E+00

ELASTIC STRAIN RANGE = A#{CYCLES TO FAILURE )*xB
A= 0.18608E+01 =-0.12983E+00

TOTAL STRAIN RANGE = A¥(CYCLES TO FAILURE)%*B + CX(CYCLES TO FAILURE )%*xD
A= 0.18608E+01 B8=-0.12983E+00 C= 0.63234E+01 D=-0.62827E+00
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TABLE A-9. — CONTINUQUS CYCLE CONTROLLED STRAIN (INCO 718) CYCLIC

PROPERTIES
R-SQUARE
— . YIELD STRENGIH, .27 SY (KSI} 0.88229E+02
STREHGH COEFF., K°® 0.13442E+03
STRAIN-HARD EXP., N* 0.67753E-01
FATIGUE STRENGH COEFF., SIGMA 0.10433E+07 0.899
—  EATIGUE STREMGH EXP..8 =0.20759E=0_
FATIGUE DUCTILITY COEFF., EF' 0.23754E-01 0.933
FATIGUE DUCTILITY EXP., C -0.30639E+00
EQUATIONS AND COEFFICIENTS
STRAIN - LIFE RESPONSE
- INELASTIf STRAIN RANGE = C#{CYCLES TO FAILURE )*xD
’ C= 0.38419E+01 =-0.30640E+00
ELASTIC STRAIN RANGE 5 A¥{CYCLES TO FAILURE )**B
A= 0.88495E+00 B=-0,20874E-01
N YOTAL STRAIN RANGE = A#(CYCLES TO FAILURE)%*B + C*(CYCLES TO FAILURE )*xD
A= 0.88495E+00 B=~6.20874E-01 C= 0.38419E+01 D=-0.30640E+00
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Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at
649°C (1200°F)
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TABLE A-10. — 0.5 MINUTE TENSILE STRAIN HOLD (INCO 718) CYCLIC

PROPERTIES

——YIELD STREMGTH, .27 SY (KSI)

0.80368E+02

STRENGH COEFF., K°®

STRAIN-HARD EXP., N°®

FATIGUE STRENGH COEFF., SIGMA
GUE_STRENSH EXP..B

R-SQUARE

0.16441E+03
0.11517E+00
0.10586£+03
=0.34613E-01

FATIGUE DUCTILITY COEFF., EF*®
FATIGUE DUCTILITY EXP., C

0.999

0.21879€-01
~0.30055E+00

0.991

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPONSE

TELASTIC STRAIN RANGE = CH(CYCLES TO FAILURE)*#D

C> 0.35534E+01 D=-0.30055E-00

ELASTIC STRAIN RANGE = A®(CYCLES 7O FATLURE )8

A= 0.88976E400 B=-0.34911£-01

TOTAL STRAIN RANGE = A®(CYCLES TO FAILURE)*»B + C*{CYCLES TO FAILURE)#xD
C= 0.35534E+01

A= 0.88976E+00 8=-0.34911E-01

- LY L I ool - - -

=-0.30055E+00
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TABLE A-11. — 2.0 MINUTES TENSILE STRAIN HOLD (INCO 718) CYCLIC

PROPERTIES
R-SQUARE
——————YIEID STREMEE .27 SY (KST) 0.83811E+02
STRENGH COEfF . K' 0.34276E+03
STRAIN-I RL 7, 2., N' 0.22664E+00
FATIGUE STF®i H COEFF., SIGMA 0.26864E+03 0.453
—— FATIGUZ SIR '3H EXP..B =0.14927E:00
rATIGU™ DUCT .LITY COEFF., EF' 0.34123E+00 1.000
FATIGUE DUCTILITY EXP., C ~0.65863E+00

EQUATIONS AND CDEFFICIENTS

STRAIN - LIft RESPONSE

INELASTIC STRUIN RANGE = “5(CYCLES YO FAILURE )%*D
€= 0.4.201E+0% D=-0.65859E+00

ELASTIC STRAI} RANGE = A%(CYCLES TO FAILURE )*xB
A= 0.20910E+01 B=-0.14884E+00

TOTAL STRAIN RAIGE = AX(CYCLES TO FAILURE)**B ¢ C*(CYCLES TO FAILURE )¥*D
A= 0.2091 E+01 8=-0.14884E+G0 C= 0.43201E+02 D=-0.65859E+00
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TABLE A-12. — 150 MINUTES TENSILE STRAIN HOLD (INCO 718) CYCLIC

PROPERTIES
R-SQUARE
TRENGTM. .22 SY (KSI) 0.89395E+02
STRENGH COEFF., K' 0.17572E+03
STRAIN-HARD EXP., N' 0.10875E+00
FATIGUE STREMGH CO“FF., SIGMA 0.13599E+03 0.995
GUE STREMGH EXi ..B =0.57451E-01
FATIGUE DUCTILITY COEFF., EF’® 0.94721E-01 0.991
FATIGUE DUCTILITY EXP.» C -0.52829E+00

EQUATIONS AND COEFFICIENTS

STRAIN ~ LIFE RESPONSE

INELASTIC STRAIN RANGE = CH(CYCLES TJ FAILURE )*»xD
C= 0.13133E+02 D=-0.52834E+00

ELASTIC STRAIN RANGE = A¥(CYCLES TO FAILURE)**B
A= 0.11227E+01 =~0.57451E-01

TOTAL STRAIN RANGE = a%(CYCLES TO FAILURE)®XB + C*(CYCLES TO FAILURE )#xD
A= 0.11227€+01 B=-0.57451E~31 C= 0.13133E:02 D: -0.52834E+00
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Figure A-14. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak
Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C
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ORIGINAL PAGE iS5
OF POOR QUALITY

TABLE A-13. — 0.5 MINUTE COMPRESSIVE STRAIN HOLD (INCO 718}
CYCLIC PROPERTIES

R-SQUARE

——YIEID STREMGTM, .22 SY (KSI) 0. A79S1Fa02
STRENGH COEFF., K* 0.25787E+03
STRAIN-HARD EXP., N' 0.17309E+00
FATIGUE STRE.IGH COEFF., SIGMA 0.15497E+03 0.910
—  FATIGUE STREAGH EXP..B =0.73405E -0}

FATIGUE DUCTILITY COEFF., EF' 0.52757E-01 1.000
FATIGUE DUCTILITY EXP., C =0.42525E+00

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPCNSE

INELASTIC STRAIN RANGE = C#¥(CYCLES TO FAILURE)*xD
C= 0.78573E+01 =-0.42520F+0C

ELASTIC STRAIN RAMGE = A%(CYCLES TO FAILURE)¥x*B
A= 0.12641E+01 83-0.73605E-01

TOTAL STRAIN RANGE = A%(CYCLES TO FAILURE)®*¥B + C*(CYCLES TO FAILURE )**D
A= 1 . 126641E+01 B=-0.73605E-01 C= 0.78573E+01 =-0.42520E+00
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TABLE A-14. — 2.0 MINUTES COMPRESSIVE STRAIN HOLD (INCO 718)
CYCLIC PROPERTIES

R-SQUARE
—— _YIELD STRENGTH. .27 SY (KSI) _____ 0.83101E:02
STRENGH COEFF., K' 0.12451E+03
STRAIN-HARD EXP., N’ 0.65064E-01
FATIGUE STRE..GH COEFF., SIGMA 0.11123E4+03 0.994
—  FATIGUE STRENCH EXP..B -0.38129E-01
FATIGUE OUCTILITY COEFF., EF' 0.17672E+00 0.997
FATIGUE DUCTILITY EXP., C -0.58603E+00

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE RESPONSE

INELASTIC STRAIN RANGE = C#(CVYCLES TO FAILURE )#¢D
C= 0.23535E+02 0=-0.58607E+00

ELASTIC STRAIN RANGE = A®(CYCLES TO FAILURE)¥xB
A= 0.93106E+00 B8=-0.38369E-01

TOTAL STRAIN RANGE = A®(CYCLES TO FAILURE )#¥B ¢ CH(CYCLES TO FAILURE )#%D
A= 0.93106E+00 B=-0.38369E-01 C= 0.23535E+02 D=-0.58607E+00
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ORIGINAL PAGE 19
OF POOR QUALITY

' TABLE A-15. — 15.0 MINUTES COMPRESSIVE STRAIN HOLD (INCO 718)
CYCLIC PROPERTIES
R-SQUARE
—  _YIELD STRENGTH, .2Z SY (KST)  __ 0.90119E«02
STRENGH COEFF., K* 0.14243E+03
STRAIN-HARD EXP., N’ 0.73651E-01
i FATIGUE STREMGH COEFF., SIGHA 0.13888E+03 0.966
i —— - FATIGUE SIREHGH EXP..B . =0.60691E=01
i FATIGUE DUCTILITY COEFF., EF' 0.70993E+00 0.974
: FATIGUE DUCTILITY EXP., C -0.82133E+00
I3
EQUATIONS AND COEFFICIENTS
!
‘ STRAIN - LIFE RESPONSE
"H INELASTIC STRAIN RANGE = C*(CYCLES TO FAILURE }#xD
- C= 0.80345E+02 =~0.82127E+00
ELASTIC STRAIN RANGE = A®(CYCLES TO FAILURE )*¥B
A= 0.11515E+01 B=-6.61273E-01
!
j TOTAL STRAIN RANGE = A»(CiC!ES TU FAILURE)**B + C*(CYCLES TO FAILURE )*#D
’ A= u.11515E+01 8:.-0,617772- 2% C= 0.80345E+02 D=-0.82127E+00
-~
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Figure A-16. — Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak
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Figure A-17. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak
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ORIGINAL PAGE 1S
OF POOR QUALITY

£.26330E+02

R-SQUARE

TABLE A-16. — 0.5 MINUTE TENSILE AND COMPRESSIVE STRAIN HOLD (INCO
718) CYCLIC PROPERTIES

STRENGH COEF~., K*

STRAIN-HARD EXP., N'

FATIGUE STRENGH COEFF., SIGMA
——FATIGUE STRENGH EXP..B

0.13562E+03
0.96761E-01
0.13455E+03
=0.26122E=-01

0.969

FATIGUE DUCTILITY COEFF., EF°*
FATIGUE DUCTILITY EXP., €

0.92144E+00
-0.78671E+00

0.933

EQUATIONS AND COEFFICIENTS

STRAIN ~ LIFE RESPONSE

INELASTIC STRAIN RANGE = C#(CYCLES TO FAILURE)%xD

C= 0.10681E+03 =~0,78667E+00

ELASTIC STRAIN RANGE = AN(CYCLES TO FAILURE)*»xB

A= 0.11028E+01 B=~0.76055E-01

et e

e+ r e e -

PRCETI

B,
Rz’
.

114

C= 0.10681E+03

TOTAL STRAIN RANGE = AM(CYCLES TO FAILURE)®*#B + C¥(CYCLES TO FAILURE}¥»D

- A= 0.11028E+01 =-0.76055E-01 D=-0.78667E+00
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TABLE A-17. — 2.0 MINUTES TENSILE AND COMPRESSIVE STRAIN HOLD
(INCO 718) CYCLIC PROPERTIES

R-SQUARE
—— YIFLD STRENGTH, .27 SY (KSY) 0.A447F 202
STRENGH COEFF., K' 0.18701E+03
STRAIN-HARD EXP., N’ 0.13574E+00
FATIGUE STRENGH COEFF., SIGMA 0.23925€+02 0.489
; —FATJGUE STRENGH EXP..B =0.14721E+00 -
- FATIGUE DUCTILITY COEFF., EF' 0.61409E+01 0.639
¢ FATIGUE DUCTILITY EXP., C -0.10845E+01
¢
:
EQUATIONS AND COEFFICIENTS
STRAIN - LIFE RESPONSE
: INELASTIC STRAIN RANSE = C#(CYCLES TO FAILURE)#*D
‘ﬁ €= 0.57950E+03 D=-0.10845E+01
: ELASTIC STRAIN RANGE = A¥(CYCLES TO FAILURE )%»B
A= 0.18625E+0) =-0.14806E+00
".- TOTAL STRAIN RANGE = AX(CYCLES TO FAILURE)*¥B ¢ C*(CYCLES TO FAILURE)**D
v A= 0.18625E+01 B: -0.14806E+00 C= 0.57950E+03 =-0.10845E+01
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OF POOR QUALITY

TABLE A-18. — 15 MINUTES TENSILE AND COMPRESSIVE STRAIN HOLD
(INCO 718) CYCLIC PROPERTIES

R-3QUARE
YIELD STRENGTH, .2X SY (KSI) 0.74419€+02
STRENGH COEFF., K°* 0.10887€+03
STRAIN-HARD EXP., N* 0.61221E-01
FATIGUE STRENGH COEFF., SIGMA 0.12016E+03 0.890
FATIGUE STRENGH EXP.,B -0.70660E-01
FATIGUE DUCTILITY COEFF., EF' 0.50079E+01 0.988
FATIGUE DUCTILITY EXP., C -0.11542E+01

EQUATIONS AND COEFFICIENTS

STRAIN - LIFE KESPONSE

INELASTIC STRAIN RANGE = C#(CYCLES TO FAJLURE)¥»D
C= 0.44987E+03 D=-6.11540E+01

ELASTIC STRAIN RANGE = AX(CYCLES TO FAILURE )%%B
A= 0.98592E+00 B=-0.71648E-01

- TOTAL STRAIN RANGE = AX(CYCLES TO FAILURE)**B ¢ C¥(CYCLES TO FAILURE )%*D
A= 0.98592E+00 B=-0.71648E-01 C= 0.44987E+03 D=-0.11540€+01

*

4
i
=3
o

116

ﬁ:"ﬁ,;f‘*"' TR R, o] Sk U ) '

:x‘\ . ‘ . - - i oo )
.. Py LAt SN - . « - N

-
™.



ORIGINAL PAGE s
. OF POOR QUALITY

=
]
[
b~ i
= i
= 1.0 :
=
=
o
=
[
e
i
L oe =
—
Ld
1 10 llJa 103 :CI“ lus li:l5
- CYCLES T0 “RILURE, NF

Figure A-19. — Elastic Scrain Range vs Cycles to Failure for Fully Reversed Peak
Tensile and Compressive Strain 15.0 Minutes Hold Cycle INCO 718
Data at 649°C (1200°F)
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APPENDIX B
STRESS RANGE ¥s CYCLE PLOTS FOR
GATORIZEC> AF2-1DA AND INCO 718

This appendix contains stress range vs cycle plots for selected cyclic vests for GATOR-
1ZED® AF2-1DA and INCO 718. Also included are the tabulations containing: (1) the number of
cycles to first indicatien of failure by cracking, N, which was determined by first indication of
deviation (by 2%) in the stabilized stress range; (2) the number of cycles to 10% drop in the
stabilized ratio of peak tensile stress to peak compressive stress, N,,; (3) the number of cycles to
5 and 50% drop in the stabilized load range. N;and N,,; and (4) the cycles to failure by complete
separation of the specimen, N,.
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TABLE B-1. — CONTINUOUS CYCLE CONTROLLED STRAIN

o e

PERCENT STABILIZATION CONDITION 5
STABIL[ZED STRS ANG STRS ANG STRS ANG  NUMBER OF ’
LGAD DROP CYCLES KSI MPA (KS1) CYCLES
o 2.0 35 291 2009 297.4 1.0
5.0 39 282 19u8
10.0 4y 269 18U5
20.0 58 238 1E40 :
50.0 -- 149 1025
Nio =47 CYCLES,RATIO CHANGED BY 107 ;  NF=11y
o 2.0 255 276 1901 281.3 177.0
5.0 292 267 18u3
10.0 300 253 1746
; 25.0 308 211 1455
50.0 -- 1yl 970
; Nw =321  CYCLES,RATIO CHANGED BY 10% ;  NF= 32
‘{ ‘ A 2.0 277 256 1765 261.2 64.0
5.0 456 2u8 1711
. 10.0 664 235 1621
L 25.0 667 196 1351
50.0 677 131 900

- N1 =678 CYCLES,RATIO CHANGED BY 107 ; NF=678

X 2.0 4579 195 1345 199. 1 2715.0 i
5.0 4754 189 1304 :
10.0 ugy? 179 1235 |

% 25.0 4ssuy 149 1029
50.0 -- 100 686
Niw =4839  CYCLES,RATIO CHANGED BY 10% ;  NF=y4357

X 2.0 21351 167 1150 170.2 21188.0
5.0 22397 162 1115
10.0 23697 153 1056 :
25.0 2698 128 880 |
50.0 -- 8s 587 :

Nio =26969 CYCLES,RATIO CHANGED BY 107 ;  NF=27087 ;

& 2.0 186538 138 950 140.5 99733.0
5.4 19524y 1 3y 920
10.0 196246 126 872
25.0 196633 105 727
50.0 - 70 TE

Ni =196141 CiCLE>, ARTIO UHANGED BT 10% ;  NF= 195657
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TABLE B-2, — PEAK TENSILE STRAIN 16 MIN HOLD

PERCENT STABILIZATION CONDITION

STABILIZED STAS ANG STRS RANG STRS ANG  NUMBER OF

LOAD DROP CYCLES KSI MPA (KST) CYCLES

m 2.0 133 306 2109 312.1 56.0 .
5.0 187 297 20Uy i
10.0 - 189 281 1937 :
20.0 191 250 1722 ;
50.0 -- 156 1076 :

Nw =197  CYCLES,RATIG CHANGED BY 10% ;  NF=197 i

O 2.0 542 275 189y 280.3 412.0 ;
5.0 6u8 266 1836 ¢
10.0 674 252 1739 3
20.0 696 224 1546
50.0 - 140 366

Nw =689 CYCLES,RATIB CHANGED BY 107% ; NF=716

A 2.0 2849 168 1159 171.6 1662. .
5.0 3191 163 124
10.0 3306 154 1065
20.0 3359 137 946
50.0 -- 86 592

N =324y CYCLES,RATIO CHANGED BY 107 ; NF=3522
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TABLE B-3. — PEAK COMPRESSIVE STRAIN 16 MIN HOLD

PERCENT STABILIZATION CONDITION 4
STABILIZED STRS ANG STAS ANG STRS ANG  NUMBER OF 4
LOAD DROP CYCLES KS1 MPA (KST) CYCLES i
m 2.0 157 281 1940 287.2 91.0 ;
5.0 158 273 1881 | ;
10.0 160 258 1782 :
25.0 166 215 1485 | f
50.7 177 14y 930 ;
Nw =179 CYCLES,RATI0 CHANGED BY 107 ; NF=179 |
o 2.0 236 238 1638 242.y 97.0 i
5.0 239 230 1588 :
10.0 242 218 1504 3
25.0 254 182 1254 N
50.0 276 121 836 ,
Nw =285  CYCLES,RATIO CHANGED BY 10% :  NF=285 !
J
a 2.0 1013 190 1307 193.5 573.0 :
5.0 {129 184 1267
10.0 1131 174 1201
25.0 1138 145 1001
50.0 1149 37 667
N =1156  CYCLES,RATIA CHANGED BY 107 ;  NF=115€

‘lll ) 125
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TABLE B-4. — PEAK TENSILE STRESS HOLD

PERCENT STABILIZAT ON CONDIT1ON
STABILIZED STAS ANG STRS RANG STRS RNG NUMBER OF
LBAD DROP CYCLES KST MPA (KSD) CYCLES
m 2.0 255 236 1630 241.3 3.0
5.0 255 229 1580
10.0 257 217 1497
25.0 260 181 1248
50.0 -- 121 832
N =263 CYCLES,RATIO CHANGED BY 1C% ; NF=263
O 2.0 567 230 1589 235.2 300.2
5.0 725 223 1540
10.0 783 212 1459
25.0 823 176 1216
50.0 -- 118 g1t
N =815 CYCLES,RATIO CHANGED BY 10% ; NF=836
A 2. 5109 178 1224 181.2 1639.0
5.0 5971 172 1187
10.0 6150 163 112y
20.0 6525 145 1000
50.0 -- 91 625
Nw =7407  CYCLES,RATIO CHANGED BY 107 ;  NF=7407
H
¥ 2.0 gja 130 83y 132.4 100.0 ;
5.0 84§ 126 867 i
10.0 999 119 821 f
25.0 1170 89 685
50.0 -- 66 456 i
Nw =1287  CYCLES,RATIO CHANGED BY 10% ;  NF=1287 )
;
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TABLE B-5. — CONTINUQUS CYCLE CONTROLLED STRAIN

PERCENT STABILIZATION CONDITION
STABILIZED STRS BNG STRS ANG STRS ANG NUMBER OF
LOAD OROP CYCLES KSI MPR (KST) CYCLES
o 2.0 1 271 1866 276.2 1.0

5.0 2 262 1809 .

10.0 5 2u9 1714

50.0 530 138 8952

95.9 542 1y 95

Nie =518 CYCLES,RRTIO CHANGED BY 107 ; NF=5u2

® 2.0 1 254 1751 259.1 1.0
5.0 3 246 1697
10.0 7 233 1608
50.0 306 130 893
a5. 5 -- 13 89
Nw =772  CYCLES,RATIO CHANGED BY 10% ;  NF=825
A 2.0 2 235 1620 239.8 1.0
5.0 5 228 1571
10.0 23 216 1u88
50.0 3125 120 827
95.90 3351 12 83
Nwo <3362  CYCLES,RATI@ CHANGED BY 107 ;  NF= 3262
* 2.0 2 220 151y 22u.0 1.0 i
5.9 6 213 1467 :
10.0 40 202 1390 '
56.0 5163 112 772 2
a5’ 0 5163 i 77 5
Nw =5163 C.CLES,RATIN CHANGED BY 10% ; NF=5163 3
x 2.0 S 203 13494 207.0 1.0
5.0 47 197 1356
10.7 2180 186 1285
50. 0 237330 104 714
55.0 237330 h 71 5
Ni =237391 CYCLES,RATI@ CHANGED BY 107 ;  NF=237391 -
¢ 2.C 2957 171 1177 174. 1 1.0 \§ 7z
5.U luh L4 ;
10.0 157 1081 t
56,0 87 600 '
55.0 g 6G ;
Nio sUe3497 LI CLES,RATIO CAANGED 81 10% ;  NF= 54094y
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TABLE B-6. — PEAK TENSILE STRA(N 15 MIN HOLD

PERCENT STRABILIZATION CONDITION
STABILIZED STRS ANG STRS RANG STRS RNG NUMBER OF
LOAD DROP CYCLES KSI MPA (KSD CYCLES
o 2.0 1 253 1745 258.2 1.0

5.0 2 2u5 1691
10.0 6 232 1602
50.0 527 129 830
85.0 -- 13 89

Nuw =487 CYCLES,RATIO CHANGED BY 107 ; NF=538

® 2.0 2 24y 1682 249.0 1.0
; 5.0 5 237 1631
: 10.0 12 22y 1545
! 50.0 1317 124 858
95.0 -- 12 86
i Nw =1271 ~ CYCLES,RATIO CHANGED BY 10% ;  NF=1329
i R
) a 2.0 2 209 1439 ' 213.0 1.0
! 5.0 8 202 1395
} 10.0 58 192 1322
: 50. 0 .- 107 734
o 95.0 ~- Li 73
L Nw <4767  CYCLES,RATIA CHANGED BY 107 ;  NF=504l
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TABLE B-7. — PEAK COMPRESSIVE STRAIN 16 MIN HOLD

PERCENT ‘ STABILIZATION CONDITION .
STABILIZED STAS ANG STRS ANG STRS ANG  NUMBER OF i
LOAD DROP  CYCLES KSI MPA (KST) CYCLES
m 2.0 1 247 1703 252.0 1.0
5.0 3 239 1651
10.0 ? 227 1564
50.0 508 126 869
95.0 -- 13 87
Nw =483  CYCLES,RATIO CHANGED BY 10% ;  NF=525
O 2.0 5 224 1545 228.6 1.0
5.0 18 217 1497 ‘
10.0 73 206 1419 :
50.0 1314 L1y 788 {
35.0 -- t 79 :
Nw =1243  CYCLES,RHTi0 CHANGED BY 10%Z ;  NF=1335 ‘
a 2.0 y 194 133y 197.5 1.0
=ﬂ 5.0 m 188 1293 .
N 10.0 3uy 178 1225
: 50, 0 3227 99 681
, 95.0 -- 10 68
; Nw =3176  CYCLES,RATIO CHANGED BY 107 ;  NF=3237
- 2
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TABLE B-8. — PEAK TENSILE AND COMPRESSIVE STRAIN 15 MIN HOLD

PERCENT STABILIZATION CONDITION
i STABIL [ZED STAS ANG STRS RANG STRS ANG  NUMBER OF
; LAAD DROP CYCLES KS1 MPA (KST) CYCLES
m 2.0 t 253 1741 257.7 1.0
5.0 2 2u5 1688
10.0 4 232 1599
50.0 319 129 888
35.6 - 13 89
* Nw =205  CYCLES,RATIO CHANGED BY 107 ;  NF=321 :
o 2.0 2 243 1679 248.5 1.0
5.0 3 535 1627 ;
10.0 8 224 1542 ;
50.0 475 124 857 i
| 35.0 4oy 12 86 '
‘ N =494  CYCLES.RATIO CHANGED BY 10% ;  NF=.94 :
\ & 2.0 3y 182 1250 185.8 1.0 ’
: 5.0 14y 177 1217
. 10.0 792 167 1153
X 50.0 334 33 641
K 35.0 22 3 6u
: Nw =840  CYCLES,RATIO CHANGED BY 107 :  NF=8u40
|
o
) ORIGINAL PACGE 13 L
g OF POOR QUALITY :
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APPENDIX C
LCF RESULTS FOR GATORIZED® AF2-1DA AND INCO 718

This appendix contains the results of all cyclic tests for GATORIZED® AF2-1DA and
INCO 718 along with pertinent strain range parameters (total, elastic, inelastic, and creep)
stress parameters (mean stress, initial cycle and half life ranges), hardening and softenin~
characteristics at half life, and cycles/time to failure for each test performed under this program.
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