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RESIN SELECTION CRITERIA FOR "TOUGH" COMPOSITE STRUCTURES
by
C. C. Chamis and G. T. Smith

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Resin selection criteria are derived using a structured methodology con-
sisting of an upward integrated mechanistic theory and 1ts inverse (top-down
structured theory). These criteria are expressed in a "criteria selection
space” which can be used to identify resin bulk properties for improved com-
posite "toughness". The resin selection <riteria correlate with a variety of
experimental data including laminate strength, elevated temperature effects
and impact resistance.

INTRODUCTION

It is well known in the fiber composite community that resins (matrices)
provide the composite with the capability to resist load by <eeping the fibers
in place. The capability of the resin to keep the fibers in place results
from a combination of chamical, thermal, and mechanical interactions. These
combined 1nteractions produce the in-situ resin physical, hygral, thermal, and
mechanical properties which provide the composite with the requisite struc-
tural 1ntegrity in service environments, in general, and in turbine engine
service environments in particular. A structured methodology is needed which
can be used, in a formal way, to identify bulk (neat) resin characteristics
which translate to quantifiable compusite structural/mechanical behavior. The
result of such structured methodology will be a set of criteria (guidelines)
which can be used in advance to screen and/or select resins with the desirable
bulk properties in order to provide the specified composite properties. The
objective of the propoced paper 1s to describe a new structured methodology
developed at Lewis for assessing, evaluating and identifying desirable bulk
resin characteristics for specified structural composite integrity (fatigue
resistance, fracture toughness, impact resistance, compressive strength, buck-
ling resistance, vibration fregquencies, and "toughness"}.

The structured methodology is based on an upward integrated mechanistic
theory consisting of composite micromechanics, composite macromechanics,
laminate theory and structural/stress analyses and its inverse (a top-down
structured theory). All these are used fornally to identify the resin charac-
teristics which have a significant effect on composite mechanical behavior.
The structured methodology is developed by using mainly matrix notation. Ex-
panded equations are summarized in figures with appropriate schematics to
11lustrate the simulation and define the notation. The notation is also sum-
marized in the Appendix for convenience., The structured methodology is based
on Lewis' research activities on this subject during the past decade (for
example references 1 to 3). The references cited in the text mainly refer to
Lewis' research. However, these references include relevant references from



the literature. The results obtained are summarized in convenient criteria as
simple equation or ratio form which can be used to select resins a priori for
improved and/or specific composite toughness.

STRUCTURED METHODOLOGY

The structured methodology used to develop the resin selection criteria
embodies composite micromechanics, composite macromechanics, combined stress
failure criteria, laminate theory and structural/stress analysis. The struc-
tured methodology is integrated from composite mechanics upward to structural
analysis in order to relate the structural response to constituent materials
(fibers and matrix). It is then used in reverse, top-down, from structurai to
composite micromechanics. The structured methodology is described herein
using a top-down approach in order to formally relate a specific structural
response (for example displacement, stress intencity, stress wave propagation,
impact resistance) to constituent material properties (fibers and resins).
Resin and matrix are used interchangeably throughout this discussion.

Structural Response

The mathematical model describing the general structural response of a
structure is given, using matrix notation, by

M}y + (Clay + [Kltwy = (Fi{t)h (1)

where (U}, {04} and {u} are the acceleration, velocity, and displacement
vectors, respectively; [M], [C], and [K] are the mass, structural damping,
and stiffness matrices, respectively; and (F(t)} 1is the time dependent
force vector. Tne natural frequencies and buckling resistance (buckling load)
of a structure are described by special cases of equation (1), respectively,

<[K] - w2[M]> (oJ (2)

<[K] - »2[1]> = [0] (3)

where « 1S the structure's natural frequency associated with a specific
vibration mode, » 1is the eigenvalue containing the buckling load of a speci-
fic buckled shape and [I] 1is the identity or unit matrix. If it is further
assumed that [C] s proportional to [K], ([C] = +v[K]), prior to any
damage, then equation (1) can be written thus

(Mlcay + y[KJtGy + [Kluw = (F(t) (4)

Equations (2) and (4) depend on composite materiail properties embodied
primarily in [M] and {K] while equation (3) depends only on [K]. For
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most structural epoxies the density is about the same.4 Therefore, the
major infiuence of the resin in the global structural response of a composite
structure is through the stiffness matrix [K].

The global structural stiffness matrix [K] is an assemblage of local
stiffnesses. The local stiffnesses are related to the force deformation rela-
tionships and the local geometry. The force deformation relationships for a
cogposite Taminate, including hygral (moisture) and thermal forces, are given

(N [A] [C] (Ny}
’{M}i= c1' 0]} ’ t ’ ‘ ) %{MM)I )

where (N} and (M} are the resultant force and moment vectors at the

section, respectively. The subscripts T and M denote thermal and moisture
forces. The reference plane strain vector is given by {eg} and the local
curvatures by {u}. The arrays [A], [C], and [D] denote axial, coupled and
bending stiffness, respectively. The various arrays on the right side of equation
(5) for an Ny ply laminate, using laminate theory”, are given by

(A3, (€], [0] = Z <[ “2p 3@ -ad g @ - )] wErw >

N
L
{NT}, {MT} = Z <[(Zt ) %— (212: - ZE)] AT[R]T[E] {m}>_i (6)
i=1
N
[}
{NM}, {MM} = Z <|EZt - ZD),% (Zf - Zg)] Am[R]T[E] {BD{.

In equation (6), Z Tlocates the ith ply through the thickness from % reference
plane, [R] 1is the strain transformation matrix which defines the i‘" ply
orientation (ply material axes) relative to the structural axes, [E] defines
the ply stress-strain relationships, {a} the ply thermal expansion coeffi-
cients, and {8} the ply moisture expansion coefficients. The relative
changes al and,_ _am denote the changes in temperature and moisture, respec-
tively, of the jth ply meaered from a reference condition. The temperature
and the moisture for the i‘" ply are determined by heat transfer and moisture
diffusion analyses.



The important point to note from equation (5) is that the resin properties
influencing structural response are reflected through the ply property arrays
(E], (a}, and {8} . Another important poirt to note is that the top-down
structured theory described by equations (1) to (6) predicts global structural
response which is in very good agreement with experimental data. For ex~
ample: 1) the natural frequencies and mode shapes predicted by equation (2)
are in excellent agreement with exper1menta1 data for fiber composite fan
blades® and hybrid composite blades’; 2) the buckling loads of anisotropic
plates, including bending, stretch1ng, and cgu811ng, predicted by equation (J4)
are in good agreement with experimental data®»>?; 3) the impact displacements
predicted using equation (4) are in good agreement with the high-speed movie
data for a large nybrid composite fan blade7; and 4} the hygrothermomechani-
cal response of a variety of angleplied laminates predicted by equation (5)
are in very good agreement with measured dataZ. This good agreement of the
predicted various structural responses with experimental data verifies that
the global structural response of composite structures is formally related to
the ply properties [E], ¢a}, and (8} in equation (6). These ply properties
can be formally related to matrix properties by continuing the top-down
structured theory through composite macromechanics, combined-stress failure
criteria, and composite micromechanics as will be described later.

Stress Intensity/Concentration

Experimental data from composite laminates with circular holes and slit
type defects exhibit the same fracture characteristics. These characteristics
are similar for tensile or compressive loads and for a variety of hygrothermal
environmentslO, Typical results are shown in figure 1. Explicit equations
are available which describe the stress concentration/intensity in the
vicinity of a circular hole in an infinite composite angleplied laminatell,
The equations, relevant to this top-down structured theory, are summarized in
figure 2 with accompanying schematics.

It can be seen in figure 2 that the stress concentration ratlo °cee/c xx )
in the vicinity of the hole depends on the laminate properties 68 Ecxxs Ecyy’
Gexys and veyy.  These properties are detcrmined using the fo]low1ng Taminate
thedry equation

L
(€] = § 2 (t[RITENRD, (7)

R A |

where t. 1is the laminate thickness and t; 1is the ply thickness. Comparing
equations (7) and (6), it can be seen by 1nspection that [E.]} = [A]/t..
Therefore, the stress concentrations in the laminate (compos1te structure) are
formally related to ply properties through equation (7) and the equations in
figure 2. The hygrothermai effects on the stress concentration are determined
from equation (5) since the local laminate stresses are related to {N} and
{M}, or {eg} and {u} as will be described later,
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The speed (C) of the inplane stress wave propagation in an angleplied
composite laminate in the X, Y, and XY (shear) directions, respectively, are
given by

- gE -‘-1-
C = cxX 2 (8)
X p(l'vcxy“cyx)
SO T (9)
Y ol “VeyxVoxy
¢ = |5 Jo)] 3 (10)
Xy L cXy 2 /

where g 1is the gravity acceleration, p 1is the laminate density, G 1is the
shear modulus and the subscripts denote respective directions. The corres-
ponding through-the-thickness normal and shear speeds, respectively, are given

by

C, = (gEcz /e) (11)
C., = (g6, /e) (12)
Cpp = (g6y,/0) (13)

The speeds predicted by equations %8} to (13), except equation (11), have
been correlated with experimental data‘¢. These equations have also been
used extensively to theoretically investigate stress wave prggagation in
angleplied laminates due tc normal, oblique and edge impacts*~.

Theoretical predictions of stress wave propagation due to point impact

require a contact law in general. One such lav for an jmpfﬁting elastic
sphere is given by the following approximate relationships*™,

£EE 3/2
_ 1/2 s cz2 s
Fo= (43)(R) ETT (T )T ] (14)

Z
J

where F is the contact force, R s the radius of the impacting sphere and

6 is the local indentation. The subscript s denotes impacting sphere
properties.
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Taken collectively, equations (8) to (14) show that stress wave propaga-

tion in composite laminates depends on the laminate properties E, G, v, and
p. These laminate properties are formally related to ply properties through

equation (6) as was already mentioned.
Ply Strains and Stresses
In the top-down structured theory, the jth ply strains {ej} are formally
related to global variables {ey} and {(u} by the following matrix equation.

{ei} = [Ry] (e} - Zi (w} (15)

where the glotal variables are determined from structural analysis. The cor-
responding ply stresses are given by

{o53 = [Ej] (e} - am(8) - aT{a} ; (16)

For the special case of in-plane loads only, the ply stresses are formally
related to laminate stresses {oc} by

oi} = [E§1IR{I(ECTT (og) (17)

where [E.] is given by equation (7). Equation (17) is significant because
it shows Ehat the ply stresses depend on local ply properties [E;j] as well
as integrated laminate properties [Ec]. Equation (17) constitutes the ply
stress influence coefficients for the case of in-plane loads only.

The ply strains and stresses determined from equations (15) and (16), or

(17%, are normally comnared to ply fracture properties using available failure
criteria such as ply:

maximum strain: {e;})

A

(&g} (18)

maximum stress: (o3} < (S (19)

'R

or combined-failure stress criterion, for examp1e15

a 2 o 2 o 2 o o
1la 1228 125 ella” 2228 )
F(0.,S ,K ) =1- [( L ) + + 2} -K (20)
U \Si1la S.228 1125 1125 1145228

where o; denotes the ith ply stress along the material axes denoted by
the numerical subscripts and with sense denoted by o« or 8 (tension or

6



compression). The corresponding ply uniaxial strengths (fracture stresses)
are denoted by S. The coupling coefficient K;1» depends on the ply
elastic properties E; 311, Eg22, v412, and v, 23.

The ply elastic constants [E;] and the uniaxial strengths (S;) can
be formally related to matrix material properties using composite micro-
mechanics as will be described subsequently.

Equations (18), (19), and/or (20) are used to assess laminate/composite
structural integrity, durability, and/or composite toughness. This may be
stated as the magnitude of stress {oc}, resulting from stress concentra-
tion due to impact or defects, that a composite can sustain prior to ply or
interply damage which will degrade (1) the composite global structural
response or (2) the composite life/durability3. The composite life, or
durability, is usually measured by its resistance to cyclic (fatigue),
mechanical, hygral, and/or thermal loading.

Composite Micromechanics

Composite micromechanics is the discipline which formally relates ply
properties to constituent material properties4. The properties pertinent to
the development of "resin selection criteria" pursued herein are the ply
mechanical properties (elastic [E;] and strength S;) and the ply hygrothermal
properties (8, and a, ) where the subscript ¢ (instead of i) has been used
to denote ply properties, in general. In addition, the hygrothermal degrada-
tion effects on the mechanical and thermal properties are related to the
"hot-wet" ply environment and to the "hot-wet" glass transition temperature of
the resin through a hygrothermal degradation factor Fm (HGTM).

The equations for predicting ply properties in terms of constituents are
summarized in figure 3. The notation in these equations corresponds to the
schematic in the figure. The ply elastic properties are explicitly related to
the matrix (resin) (r) and fiber (f) properties and to the hygrothermal
degradation through (Fm). It can be readily observed in these equations that
the "resin-controlled" ply properties are: E; 22, E;33, Gg12, and G;23.

The equations for ply longitudinal strengths %tension and compress1on? with
attendant schematics for various fracture modes are summarized in figure 4.
The dependence of the ply longitudinal compression strength on resin is
through the resin properties (denoted by subscript (r)) and the ply intra-
laminar shear strength (S,125). The hygrothermal degradation effects on

ply longitudinal strengths are incorporated through the respective resin prop-
erties using the degradation factor (Fm) as shown in figure 3. Similarly, the
equations for ply transverse (tension and compression) and i1ntralaminar shear
properties are summarized in figure 5. The equation for lower bound strength
is derived assuming a resin slab (plate) periorated with a regular array of
holes. The correlation_between this equation and experimental data on yield
stress of a steel plate16 is illustrated in figure 6, where S, and 3

denote yield stresses of the plate with and without the perforations, respec-
tively. The parameter R denotes perforated area ratio which equals

K¢ or the fiber volume ratio. The corresponding equations for ply hygral
(8,) and thermal (a,) properties are summarized in figure 7.

The equations summarized in figures 4, 5, and 6 close the loop in the
structured methodology required to develop the "resin selection criteria".

7



Recall that this methodology consists of two multilevel theories: (1) An
upward integrated theory which formally integrates resin elastic, hygral and
thermal properties into composite structural response and (2) a top-down
structured theory which formally relates the composite structural integrity/
durability to the same resin and, in addition, strength properties. The
hygrothermal environment and degradation effects are included in both
theories.

RESIN SELECTION CRITERIA--DERIVATIONS AND IDENTIFICATIONS

The resin selection criteria are derived with the aid of equations (17)
and (20). Equation (17) is used in the form of Ply Stress Influence
Coefficients {PSIC) defined as

Ul = (EIRIECTL (21)

where the subscript g 1is again used to denote ply properties in general.

The expanded form of equation (2) when the composite is subjected only to

ocxx 15 shown in figure 8. Analogous equatinns can be ?9rived when the
composite is subjected to other stresses or combinations*/. Using the PSIC
from the equations (fig. 8), equation (20), accounting for hygrothermal degra-
dation effects (%) and hygrothermomechanical degradation effects (#ymM),
and rearranging results in the equation summarized in figure 9. The definitions
for ¥ and Qﬁrm are included at the bottom of the figure for complete-
ness. The equatiun in this figure explicitly relates ply combined stress
failure/damage (first ply failure) to the composite stress and includes the
hygrothermomechanical degradation effects. The resin influence is through the
prope~ties with subscripts 22 and 12 and can now be readily assessed by
expressing these properties in terms of constituent properties using the
appropriate composite micromechanics equations from figures 3, 4, and 5.

The results obtained for transverse strengui:, transverse modulus, energy
density and first ply failure, respectively, are summarized in figure 10. All
of these are expressed explicitly in terms of matrix properties. The benefits
of a matrix (resin) (Sp, Ey) relative to a reference matrix (Spg, Emg) are indi-
cated by Ag (Sp/Spo) for strength and ap (Eq/Epg) for modulus. The mean-
ing of the parameters Cg, Cp, Cy, and C 15 apparent from the equations in which
they appear. These parameters are used to include those constituent material
and ply properties which are independent, or very nearly so, of resin proper-
ties, Analogous expressions can be obtained for shear and interply delamina-
tion from the expressions in figure 10 by suitable replacement of variables
and subscripts.

From the previous giscussion and the expressions in figure 10, the resin
selection criteria for improvements in individual properties are:

1. ag for ply transverse and intralaminar shear strengths, for
interply de%amination and interlaminar shear controlled longitudinal
compression.

2. ap for ply transverse modulus, longitudinal tensile and shear
strengths, and crippling-controlled longitudinal compression strength,

8 OFIGNAL FAGT 1S
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3. ag/ap for ply transverse, intralaminar anc interlaminar shear
energy densities,

4. rg/Ap for laminate (composite) strength and "compesite tough-
ness" in general.

The graphical representation of the "resin selection criteria” is illus-
irated in figure 11 where the improvements relative to a reference (state-of-
the-art), Spo and Ep~) matrix for individual and combined properties are
readily observed. The “resin selection criteria" for improved "composite
toughness" and structural integrity/durability in general can be now simply
stated as follows:

"To improve composite toughness, increase the S35p/E;, ratio relative
to Spo/Eme With Sy increasing at a faster rate *han Ep".

It is important to note that Spy/Ep may be misconstrued as only
strain to fracture., It is not as is readily observed from figure 12, It is
also worth noting that the structural integrity dependence on the (Sp/Ep)
ratio is consistent with thoie obtained by sensitivity analyses in conjunction
with structural optimizationl8

COMPARISON WITH EXPERIMENTAL DATA AND DISCUSSION

Available experimentzl datal9s 20 for several composite properties made
from a variety of resins, with stress strain curves as plotted in figure 13
and in different environments, are compared with the "resin selection criteria”
described previously.

Angleplied laminate and umidirectional strengths and moduli are compared
with Ay and ag in figure 14. The correlation for resin-controlled
properties (transverse and shear) with . is excellent. Also the fiber
controlled strengths S5,11F long1tud1na? flexure), S,11c and Scxyx
correlate with ap. As* expected tha fiber-controlled property Sg11T does
not correlate with ap. A very good correlation of resin contro]]ed proper-
ties (90° (transverse) and ihear) with Am o©only is shown in figure 15.
Comparisons with elevated temperature date are shown in figure 16, Again the
correlation of resin controlled properties (transverse and shear) with ag
is excellent, while there 1s no correlation of fiber controlled properties
with ap.

Various resins, i1ncluding those from figure 13, are plotted in the resin
selection criteria space shown in figure 17. It can be seen in this figure
that 5208 matriy is below the first ply failure boundary and would, therefore,
be unsuitable for improved fracture toughness. A group of resins, however,
are identified which will improve significantly the "composite toughness".
These resins have g ratios of about 3 and ap of about 2 or ag/ap
of about 1.5. The delaminated area sustained by a composite under impact
loading is correlated with the resin selection criteria ag/ay in figure
18. As can be seen, the correlation is excellent.

The important conclusion from the correlation results an1 discussion is
that che "resin selection criteria" derived herein correlates with experimen-
tal data for a variety of conditions. The resin selection criteria space is a

9
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concise graphical means to a priori identify resins with desirable bulk state
characteristics which will lead to "tougher" composites. The correlation of
the criteria with fatigue data is yet to be determined. However, based on the
theoretical results, it is anticipated that these resin selection criteria
should apply to fatigue loadings as well,

CONCLUSIONS

Resin selection criteria for tougher composites were der.ved using a for-
mal methodology consisting of upward integrated and top-down structured
theories. The criteria account for resin strength and modulus, ply energy
density, laminate first ply failure, environmental and cyclic load effects.
The criteria are expressed in resin properties benefits regions where the
region boundaries are given by siwuplified equations, or ratios, for resin
strength and modulus. The resir. selection criteria corralates with experimen.-
tal data for a variety of conditions including laminate strength and stiff-
ness, elevatea temperature effects and resistance t: impact. The criteria,
expressed 1n a “"criteria selection space”, proviade a formalized direction for
the a priory selection and the developmeni of resins for “"tougher"
composites.,
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laminate axial stiffness

global damping matrix; laminate stiffness matrix; stress wave speed
laminate bending stiffness

elastic properties matrix as defined by subscripts; modulus, as de-
fined by subscripts

global force; failure criterion function

hygrothermal property degradation factor

gravity acceleration

Identity Matrix

index

ply stress influence coefficient as definad by subscripts

global stiffness matrix; coupling coefficient in failure criterion
global mass matrix; laminate moment as defined by subscripts
moisture

laminate in-plane force as defined by subscripts

number of layers in a laminate

ply orientation matrix; impacting sphere radius

strength as defined by subscripts

temperature

thickness as defined by subscripts

global displacement

global (structural axes) coordinates

ply material axes coordinates

thermal expansion coefficient as defined by subscripts

moisture expansion coefficient as defined by subscripts

global damping matrix proportionality factor

change

local indentation

strain as defined by subscripts

global reference plane strain

failure strain as defined by subscripts

eigenvalue, resin selection criteria ratio as defined by subscript
global curvatures as defined by subscripts

Poisson's ratio as defined by subscripts

dersity as defined ' subscripts

12



g stress as defined by subscripts
9 nondimentional function defined by appropriate equations
W circular frequency

Subscripts

C compression
C composite property
HTM hygrothermomechanical effect
2 ply property
m moisture, hygrothermal effects
r resin property
S shear
S sphere
T tension, taomperature
Xy2 respective coordinate directions, properties
123 ply material axes respective properties
a T-tension or C-compression
T-tension or C-compression

Matrices
L] array, matrix
{} vector, column matrix

]'l matrix 1nverse

]T matrix transpose

13



FRACTURE LOAD, kip

ORIGINAL PAGE g
F POOR QuaLmy

a0 —
FULL-PENETRATION HOLE
b @ PRELOAD AT ROOM TEMPERATURE
w PRELCAD AT 300° F
O ROOM TEMPERATURE
v 300°F
0 b
\4 _—HOLE
//
v
y N\,
\®. Voo
/\.\ v
20 — SLT—
\
10 ] | |
0 1/8 33 5/8
DEFECT SIZE, in.

Figure 1, - Defected laminate static fracture data,
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Figure 6. - Simple expression accurately predicts fracture
stress reduction in perforated plates compared to energy
method,
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Figure 7. - Governing equations: micromechanics-hygrothermal properties.
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lation with measured composite data,
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