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ABSTRACT

The objective of the research was to develop numerical

methods of reducing the computational task associated with

the assignment of damping to the large flexible space struc-

ture, the dynamics of which,had been approximated to a

second-order linear matrix ordinary differential equation by

the finite-element method.

An efficient decoupling algorithm by which selected

modes can be damped while the other modes retain their pole

locations was devised in order to alleviate the computational

burden caused by the high dimension of the system. Some

unique properties on a class of the second-order lambda-

matrices were found and applied to determine a damping matrix

of the decoupled subsystem in such a way that the damped

system would have pre-assigned eigenvalues without disturbing

the stiffness matrix. The resulting system was realized as

a time-invariant velocity only feedback control system with

desired poles. Another approach using optimal control theory

was also applied to the decoupled system in such a way that

the mode spillover problem could be eliminated. The pro-

cedures were tested successfully by numerical examples.

Since the decoupling procedure required only eigenvec-

tors of the selected modes, the computing time was reduced

significantly when the number of modes involved in damping

v
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assignment was less than one fourth of the total modes.

Therefore, in large systems, only a few of the low frequency

modes need additional damping and the methods of decoupling

and control developed in this work may be attractive for the

vibration control of the large flexible space structure.
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CHAPTER I

INTRODUCTION

	

'	 1.1 Overview

It is well known that one of the problems inherent in

	

^-	 control of large space structures is that of vibration sup-

pression. The vibration control is crucial especi.ally when

the structure is very large and mechanicall y flexible. In

particular, space structures such as satellite antennas or

solar energy collecting panels are expected to be very large.

Fortunately, with the advent of a space transportation system

the concept of the large and flexible space structures has

become more realizable than ever before. However, because of

the capacity limitations of the space transportation system

it may be mandatory that the structure be constructed of

' light materials which have very low natural damping. There-

fore, it is obvious that a certain control action is required

to provide the large structure with sufficient damping, which

in turn could maintain the stability of the structure against

possible disturbances. This comparatively new control pro-
s

blew within the field of multivariable control systems was

considered in this work and a candidate solution to the pro-

blem was addressed.

A large space structure may be described as a continuum

U1
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by a set of simultaneous partial differential equations [1].

The parameters contained in the equatioua are, in general,

continuous functions of the spatial variables. Thus the

control system is in the realm of a distributed parameter

system. However, even though the distributed parameter sys-

tem is rich in theory [2-4] the implementable sensors and

actuators are difficult to jbtain in the infinite dimensional

space. Consequently, a common approach to modeling is to

convert the partial differential equations of the distributed

system into an infinite set of ordinary differential equations

through spatial discretization [5-7]. A finite number of

modes are then retained for control. The resulting second-

order linear matrix differential equat-.on is now of high

dimension and is difficult to handle on a digital computer.

Moreover, the dimensionality problem is compounded when the

second-order matrix differential equation is recast in the

state variable form.

The objective of this work is to investigate numerical

[

methods based on the properties of the second-order lambda-

matrices and to devise methods of reducing the computational

task associated with the finite-element model and the assign-

ment of damping to the structure. The damping assignment

will proceed in two different directions; eigenvalue reloca-

tion by velocity feedback and optimal control. Each of the

methods will be based on devising an efficient decoupling

2
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techv.ique by which selected modes can be damped with all other

modes retaining their pole locations. Although it may not be 	 A
i f

	

	
necessary, the theory of the eigenvalue relocation will be

developed on the basis that tt.e stiffness matrix will not be

changed.

In this work we employed the properties of the lambda-

matrices with the hope that we could alleviate the dimension-

a13ty problem mentioned above. Since the inception of the

term "lambda-matrix" [8] much progress has been made on the

subject not only in theoretical development but also in the

application to the system analysis and design. Nevertheless,

the second-order system which is abundant in the real systems,

.	 ; for example, in dynamic structural analysis has often been

y'	 overshadowed by high-order systems. Although the high-order

^
I	 system embraces the second-order system as a member, the

I

"! f	 latter may have very unique properties not common to the

 former. This was the primary motivation of this work.

iTherefore, for a clase of the second-order lambda-

f	
matrices, we established some unique theorems which would

t.	 explain the movement of latent roots after a damping matrix

ii	 was added to the undamped system. These theorems were applied
l

to compute the dumping matrix of the decoupled subsystem in

such a way that the damped system would have exact pre-

assigned latent roots without disturbing the stiffness matrix.

The resulting system was realized as a velocity feedback

3
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system with desired poles.

The optimal control. theory was also applied tv the de-

coupled subsystem so that the computational load for the

procedure was reasonable any: the mode spillover problem could

be eliminated. The method is similar to that of reference (9]

where the modes are decoupled and the optimal control is

determined for each mode. The main difference is in the

method of decoupling and the computaional procedure.

In Chapter II, a large system of second-order ordinary

(	 differential equations was formulated by the spatial discre-

^.	 tization of the partial differential equations which had been

assumed to govern the structure. After changing coordinate

systems the statement of the problem was presented. In

Chapter III, definitions and theorems on the lambda-matrices

f,	 were collected and followed by the system properties developed

in this work. Based on this work the decoupling scheme,

eigenvalue relocation and velocity feedback control synthesis

I	 schemes were illustrated with examples in Chapter IV. The

(	 modes decoupling procedure of the state matrix and the optimal

control of the selected modes were described in Chapter V.

The conclusion and recommendations for further research were

given in the final chapter.

1.2 Previous Work and Related Literature
as

1.2.1 Control of Large Structures

In the past several years, diverse groups of scientists

4
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l and engineers devoted much effort on the research of large

flexible space structures.	 For a broad view we refer to a

comprehensive survey paper [1]. 	 In addition, we list some

of the literature which is closely related to our work.

Most works on the control problem of this dynamic system

were defined in the state variable form.	 T.:c. primary well-

eieveloped feedback control techniques with some variations

wore applied to this problem: they are optimal control [101

and pole assignment [111 by constant state feedback. 	 These

two control schemes were examined in the form of full state

+ feedback for ?ossible use in the active vibration control of

the system and some expected problems were pointed ou: in

((
f.

[12,13].

Most authors avoided full state feedback for several

^. reasons — an awareness of the high dimensionality, the diffi-

culties associated wi.th the measurement of the states as well

t.t.
F

as the complexity of the Riccati equation. 	 Instead, they

e f chose local states or outputs as feedback and/or worked on
^. l
-

y
decoupled modes independently. 	 In [141 the local control was

t defined as a control law that included feedback of only those
,N

state variables that were physically near a particular actu-

ator.	 Then a necessary condition for the solution of the

linear: quadratic optimal control problem with the constraint

of the local state feedback was derived. 	 In [151 the sub-

(' optimal output feedback control scheme originated in [161 was

`i	 5



applied to the system instead of the computationally difficult

optimal one [17]. However, this result sacrifices the guar-

antee of stability for the closed-loop control system.

Similarly, the inverse optimal control principle [18,19] was

applied to select the output feedback gain matrix in an

iterative_manner_[201.. In another note [211, a concept of

member damper controllero was introduced and the problem of

j	 selecting diagonal velocity feedback gains was formulated

as an optimal output feedback regulator problem. Finally, an

optimal control of decoupled modes was pursued on the block

f
diagonally decomposed subsystems [9,22,23] rather than on the

full system. Also, the same decoupling technique was applied

to the control of flexible gyroscopic systems [24,25].

f	
For the same reason as in the optimal control, the pole

[	 assignment was carried out 1-y output feedback. to alleviate

those difficulties mentioned above [26-291. A direct velocity

feedback control was suggested as a special case of the output

t	
feedback [301. Under some restrictions, even though the

`	 direct velocity feedback controller can not.destabilize any

part of the system, the exact pole locations can not be pre-

dicted apriori. Therefore, the initial decision of locating

and sizing the dampers was based on guesswork and engineering

judgement. Concerning this problem an idea [31] was pre-

sented, which enabled the researcher to predict analytically

the behavior of the closed-loop system by applying root

l.f	
6
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r
perturbation techniques. However, this was only possible

when the controller was allowed to modify moderately the

natural frequencies of the structure.

Aside from the active control, passive energy dissipation

mechanisms of the vibrating systems were studied and a future

design process for sufficient structural damping was sug-

gested in [321. Also, a model with the damping matrix pro-

portional to the positive square root of the stiffness matrix

was rigorously investigated in [331.

1.2.2 Second-Order Dynamic Systems and Lambda-Matrices

It is well known that undamped linear second-order sys-

tems possess classical normal modes,..whereas in damped

systems this property is generally violated. However, a

special class of damped linear systems possesses the classical

normal modes. A necessary and sufficient condition for this

(	 class of the systems was shown in [341. Also, the stability

^.	 was analyzed for second-order systems [351 and for general

high-order systems [36]. In [371 the computational methods of

eigenvalues and eigenvectors of second-order systems were

discussed and these eigen-problems in a user supplied inter-

val were examined in [38]. Fir.Ally, controllability and

r
observability [391, a solution of the eigenvalue problem [401,

and a modal analysis for the response of this system [411 were

r)	 studied on linear gyroscopic systems.

On the other hand, the ana"r-is of vibrating systems by

7



lambda-matrices was introduced in earlier works [8,42].

This mathematical area was rigorously developed by a group

of mathematicians and, as a result, a comprehensive treat-

ment was provided in [43]. Along with this development, the

algebraic theory of the matrix polynomials [44], algorithms

of their solvents [45,46] and spectral factors [46,47] of the

corresponding lambda-matrices were established. Also, trans-

formations of solvents and spectral factors were developed

in [48]. Consequently, as multivariable theories attracted

much attention from engineers lately, those lambda-matrix

related theories began to be applied to such engineering

fields as filter design [49,50], partial fraction expansions

[51] and multivariable control systems in general [52,53].

..
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CHAPTER II

FORMULATION OF THE PROBLEM

2.1 Description of the Mathematical Model

The large space structure is assumed to be described by

the following system of partial differential equations [1,5];

M0(P)D2U(PZt)	 + C0 au(p,t)	 + K0u (P, t )	 = f 0 (P, t ),	 (2.1)
` at	 at

where u(p,t) is the displacement of an arbitrary point p of
yy

the domain D off its equiribrium position, M 0 (p) is the

distributed mass, K 0 is the time-invariant symmetric non-
4

- negative differential operator of order 2P, and f 0 (p,t) is

the distributed control vector. 	 The damping term C0 U (P,
at t),

which is symmetric and represents the internal structural

damping, is thought to provide the structure with very weak
M,

Lj mode da• aping.	 The displacement u(p,t) must satisfy the

f
boundary conditions at every point of the boundary S of the

domain D;
p

f
1 Bi u(p,t)	 = 0,	 i = 1,...,P	 (2.2)

where B i , i=l,...,P are linear differential operators. -yi

( Because of the theoretical difficulties and practical

L, complexities arising from the implementation of the infinite

9 fl
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n
u ( p , t ) _	 $i(p)vi(t)

i=1
(2.3)

. _..	 'm

dimensional control system [54] we approximate the infinite

dimensional system by a spatial discretization of the partial

differential equations. Among a variety of available methods

we choose a finite-element method such as Galerkin's method

[55].

It is assamed in the method that an approximate solution

of (2.1), u(p,t), which also satisfies the associated boundary

conditions (2.2) could be expressed as

f:

where ^ i (p), i=l,...,n are comparision functions' depending

only on the spatial coordinates and v i (t), i=l,...,n are

time-dependent generalized coordinates, Since (2.3) is only

an approximate solution it may not satisfy (2.1) exactly.

Hence, in Galerkin's approach, the vi (t) is chosen to mini-

mize the iaean-square equation error when (2.3) is substituted

into (2.1).

Once vi (t) is determined, substituting (2.3) into (2.1),

pre-multiplying both sides by ^ t (p) and integrating over

1 Comparision functions are any arbitrary functions satisfying

all the boundary conditions of the eigenvalue problem and are

2P times differentiable over domain D[6, P. 140]. In

Galerkin's method they could be linear combinations of piece-

wise linear functions or cubic splines, etc.

10
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the domain D lead to

n

	

;̂ .,(t)f 0.,t (p)M,(p)0 i (p)dD +	 (t)	 0 
t (P)C00i(p)dD

	

1 
3.	 D	 fD r
n

+ I v.(t)	 ot(p)kooi (p)dD	 r	 t)dD,-=l,...,n
i=l 3.	 D r	 fDot(p)fo(p

(2.4)

where the superscript t denotes the transpose of the matrix.
Thus, by introducing the notations

f

f

f Ot(p)m (p)Oi(p)dD

	

) D r	 0

t 
(P)Co^ i (p)dD = C^

D r

t (P)K ^--(P)dD	 R

	

D r	 0 3.	 ri'

fD^rt(OfO(p,t)dD = f r(t),

(2.4) reduces to

n . ..	 n ,	 n
ivi (t) +	 C	 (t) +	 K v (t) = f

A

	

r	 ri i	 ri i	 r

(2.5)

where f r (t) is the generalized forces associated with the.

	

generalized displacement V,(t);	 It must be noted that

'^ri'ir and Kr i=Kir because of the charateristics of M 0(p)

. M
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and K0 . Now, by letting

v(t) _ [vl(t),...,vn(t)]t

and

f(t) _ [f I(t),...,fn(t)]t,

(2.5) can be written in the matrix from

A	 n

Mv(t) + Cv(t) + Kv(t) = f(t),	 (2.6)

where the mass matrix McRnxn is symmetric positive definite,
A

the damping matrix CERnxn is symmetric, and the stiffness

matrix KeRnxn is symmetric semi-positive definite.

By changing coordinates v(t) to x(t) by x(t)= M-^v(t)

and pre-multiplying both sides of (2.6) by M-k we have

Ix(t) + Cx(t) + Kx(t) = f(t)	 (2.7)

where I is the (nxn) identity matrix, C = M-ACM- K = M- KM

	

and f(t) = M-kf(t). The change of the coordinates preserves
	 r

the system eigenvalues as well as ':he symmetry of the system.

The associated homogeneous system of (2.7),

Ix(t) + Cx(t) + Kx(t) = 0
	

(2.8)

can be transformed to a corresponding lambda-matrix by

assuming a solution x(t) = x 0 exp(At) or by taking the

Laplace transform of (2.8) with zero initial conditions.

I"
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X(t) = a l exp(a i t) + a 2exp(X 2t), (2.11)

The lambda-matrix thus obtained is expressed as

A(a) = U 2 + CX + K,	 (2.9)

and this monic symmetric second-order lambda-matrix will be

the main subject of chapter III.

2.2 Statement of the Problem

Consider for a monent a single degree of freedom

spring-mass-damper system with free vibration. This system

is characterized by a homogeneous differential equation

X(t) + 2^wnX(t) + wnX(t) = 0, 	 (2.10)

where X(t) denotes the displacement from the equilibrium

position, ^ is known as viscous damping factor and w n is

the natural frequency of the system. Substituting the

solution X(t) = aexp(at) into (2.10) yields the character-

istic equation,

X2 + 2;wna + wn = 0,

with two roots, X1 = -awn + jwn3l-^ 2 and a 2 = -own - jwn31-4Z

where j =3-1.	 Hence, the solution of (2.10) can be written as

where a l and a 2 are constants depending on the initial dis-

13
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placement and velocity.

Now, from the above elementary solution of the homo-

geneous system (2.10) we can observe several characteristics

of the system.	 First of all, the behavior of the system

with non-zero initial conditions (disturbance) depends solely

on the value of ^, the viscous damping factor; 	 When C>l the

motion of X decreases monotonically with increasing time.

^- This is the overdamped case. 	 When 0<4<1 the system is under-

damped and it decays sinusoidally. 	 In case 4 = 1 the system

is critically damped and is the limit between the regions.

When ^<0 the system becomes unstable.	 So, it explodes(4<0)

or oscillates(=0) under the presence of a small disturbance.

Therefore, the stability of this single degree of freedom

system is determined only by the sign of 4; it is stable if

>0,	 it is4otherwise	 unstable.

r
Furthermore, the damping factor appears explicitly in

the equation so that the designer can choose this quantity

4.	 C_

I
F^

^I

before testing and can predict the system response. This

property is especially desirable when the design specifica-

tions are very stringent as in the case of the large space

structure. Also, this arbitrary assignability of damping

may be critical under the system parameter uncertainty, in

which case'the margin of stability plays a great role in the

3esign of robust system.

Not surprisingly, none of these properties of the scalar

14
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system belongs to the coupled multi-degree of freedom system

as in the example of the coupled two-degree of freedom system

shown below[35]:

l 0 ..	

ro	

0	 24.8	 14.5647 X(t)
0 1 x(t) + 	

-2] x(t) + 14.5647	 9.2	
0

f	 (2.12)

I	 The eigenvalues of this homogeneous system are a 1,2 = -1fj
I

and X3,4 = -2t2j, so that the system is asymptotically

(	 stable. Nevertheless, the damping matrix is not positive
1

definite, which indicates a completely different property

from that of the single degree of freedom system.

((_	 Concerned with the development of unique properties

l	 on a class of second-order dynamic systems and with damping

assignment to the systems we define the problem as follows:

i) to develop properties of a homogeneous second-order

symmetric system

Ix(t) + Cx(t) + Kx(t) = 0
	

(2.13)

where CE:	 is symmetric and KERnXn is symmetric semi-positive
i

definite, ii) to find a symmetric damping matrix CeR nxn with

given K such that (2.13) has some (or all) pre-assigned system

eigenvalues, iii) to determine a collocated velocity only feed-

back control vector f(t)eRmxl of Ix(t) + Kx(t) = BOf(t),

so that the closed-loop system is identical to the system

found in ii), where the output y(t)eRmxl is defined by

Ll 15
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Y(t) = B0x(t), 	 B0eRnxm,

and control vector f(t)eRoxl by f(t) = Gy(t) with a time-

invariant gain matrix GeRmxm.

In the second part of the work, we define the system

equation in state space form:

n(t) = An(t) + Bf(t), BeR 2nxm	 (2.14)

where`
x(t)

n(t) °- x(t)

On 

z^	 n	 n
A -

[-K 0n

We seek a control vector f(t) which is a function of state

vector; f(t) = Pn(t), PeRmx2n and minimizes a certain quad-

ratic cost functional with constraints (2.14), but does not

change all of the eigenvalues of the closed-loop system

matrix except for a few modes selected for control.

1 The notations 0n and In (or 0nxm and Ins) indicate nxn

zero matrix and identity matrix (or nxm). These will be

used throughout the work unless otherwise stated.

16 r
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MICHAPTER III

LAMBDA-MATRICES AND LINEAR SYSTEMS

3.1 Lambda-Matrices, Matrix Polynomials and Solvents

It was shown in the previous chapter that a second-order

lambda-r _rix,

A(X) = Ia 2 + Ca + y	 (3.1)

was obtained from the Laplace transformation of the system

equations (2.8) with zero initial conditions. In this

section definitions and theorems on the lambda-matrices,

matrix polynomials and solvents, which are essential to the

development and design of damping system, will b a summarized

for the continuity of the presentation. Proofs of the

theorems and more rigorous treatment of the general case

are given in Appendix A for lambda-matrices and in Appendix B

for their solvents.

A latent root of a lambda-matrix AM is defined as a

number XeC such that det A(a) =0 and a non-zero vector yeCnxl

is called a right latent vector corresponding to the latent

root ,1 if A(A)y=0nxl where det denotes the determinant.

Similarly zeCnxl is a left latent vector if At(^)z=0nx1'

As in the state space modeling of any matrix differen-

tial equation the lambda-matrix M) can be associated with

17
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the block companion matrix A ceR2nx2n which has the following

structure;

n In
A
c -K -C

Y

It is shown in Appendix A that the 2n ei.genvalues-of Ac are

the latent roots of AM counting multiplicity. Therefore,

the terms "system eigenvalues" and "latent roots" of AM

will be used interchangeably throughout this work.

's Associated with the lambda-matrix (3.1) are two types

of polynomials, a right matrix polynomial,

AR (X) = X2 + CX + K

and a left matrix polynomial,

IA
L(X) = X2 + XC + K

p^where XeCnxn	If AR(XR) =Onxn and _-L(XL)=^nxn then XR and

?'	 ! XL are called a rig_hht and a left solvent of A(a) respectively.

The right(left) solvent is viewed as a matrix root of the

right(left) matrix polynomial and the solvents retain com-

1

plete information of latent roots and latent vectors.	 These

E, characteristics of the matrix polynomials are explained in

l the following theoreas.

Theorem 3.1. I£ AM has n linearly in0ependent right

latent vectors yi , i =1,...,n corresponding to the latent

c
18
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roots of AM,  A i , i=1,...,n (A i is not necessarily distinct)

then YAY-1 is a right solvent, where Y = [yl,...,y.1 and

A = diag(Al ' ... 'An).

Theorem 3.2.	 If AM has n linearly independent left
i

latent vector: z i , i=1,...,n corresponding to the latent
i

roots of A(A), A i , i=l,...,n (A i is not necessarily dis-

tinct) then Z -lAZ is a left solvent, w%ere Z = [zI'...,znIt

and A = diag(Al,...,An).

i

Proofs of Theorems 3.1 and 3.2 are included in Appendix

B. Notice that these theorems are special cases of Corol-

laries B.5 and B.6 in the appendix, respectively.

Theorem 3.3.	 A(A) is divisible on the right(left) by

IA-R (IA-L) if and only if R(L) is a right (left) solvent

of A(A).

Proof: See Appendix C.

3.2. Properties of A(A) - IX  + CA + K

Definitions and theorems in the previous section can be

directly extended to n-th order lambda-matrices, whereas the

properties developed in this section may be valid only on

the second-order real symmetric system. However, these

properties will serve as the foundations for the damping

system synthesis which will be developed in the next chapter.

Theorem 3.4.	 Suppose all latent roots of A(A) exist in

19
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distinct complex conjugate pairs. If a constant matrix

ReCnxn is a right solvent of A(X) and R has one latent root

and corresponding latent vector out of each complex conjugate

pair, then

i) R* is a left solvent of A(a)

ii) A(a) _ (IN - R*) (I1 - R)	 (3.2)

iii) R*R = K	 (3.3)

iv) R* + R = -C	 (3.4)

where * indicates complex conjugate transpose.

Proof:	 i) According to Theorem 3.3 A(x) can be factored

on the right by (IN - R), i.e.,

AM = QM (IN - R) ,

where Q(a) is a quotient lambda-matrix. Upon taking the

complex conjugate transpose of A(a) it follows that

A*(a) = (IX* - R*) Q*(a).

But, since C and K are real symmetric matrices, A*(1)=A(A*).

Therefore,

Tv

«.

A(a) = [A*(a)l* = A*(a*) = (IN - R*)Q*(a*)

Thus, R* is a left solvent of A(a) by Theorem 3.3.

ii) The factorization is obvious from the fact that R and

R* have a disjoint and exhaustive set of latent roots and

Q(a) is of first order.

20
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iii and iv) Equating the coefficient matrices of (3.1) and

(3.2) completes the proof. 	 000

Lemma 3.5[58]. Suppose there exists a matrix U-such that--

U = RK	 Then, under the same assumption of Theorem 3.4

i) U is unitary

ii) n 1x.12 = II wZ
i =1 1	 i=1 i

(3.5)

f

I

t

i
^	 ^	 t

p	 tl

f

I

C^

r

6

where a i and wi are eigenvalues of R and K, respectively

and Jail denotes the absolute value of ,1i.

Proof: i) UU* = RK IR*

= RR-1(R-I)*R* {from (3.3)1

= I

U*U = OR* O

= OKK
-t
 {from (3.3))

= I

ii) From i) we have R=UK`. Taking the determinant and

absolute value of this equation in order, we have

Idet R1 = ldet U1 . 1det 01

or

II ^a.1 = II w.

i=1 1	 i=1 1'

where positive definiteness of K was utilized. 	 avv

.This lemma establishes the relationship between natural

frequencies and latent roots of the damped system and will

21
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play an important role in assigning arbitrary damping, which

will be shown in the next chapter.

Theorem 3.6.	 Let yi , i=l,...,n be latent vectors of A(a)

with yi*yi = 1 and define Si = yi*Kyi . Then,

wmin	 S i	 Wmax' i=1,...,n,	 (3.6)

where wmin and 0 are the minimum and the maximum eigen-max
values of K, respectively.

Proof:	 Let the Rayleigh's quotient f(x) = xx-IXx' where

xECnxl When x is replaced by eigenvectors of K the

Rayleigh's principle provides the proof immediately.	 000

Lemma 3.7.	 Let A iEC and yiECnxl, i=1 .... ,n be latent

roots and a set of latent vectors of A(a) such that yi*yi=1,

and define a i = `yi*Cyi and Si = yi*Kyi, i=l,...,n. Then,

the system can be classified as follows:

i) When ai	 3. and ai'o
a) l i = -aif 3ai- Nil

b) X+X- - Si, where ai = -ai + 3ai

X i = -ai - 3ai Si and

c) the i-th mode is overdamped.

ii) When a i>0 and ai<Si

a) a i = -ai t j 3s i - ai

22
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b) IAil2 = S i , and

c) the i -th mode is underdamped.

iii) When a  = 0 the i-th mode is oscillating.

iv) When a i < 0 the i-th mode is unstable.

Proof:	 Since A i and yi are latent roots and latent vectors

of AM respectively, (IA2 + Ca i + K)yi = 0. After.pre-

multiplying y i* ic follows that

X? + 2a 1 Ai+ Si	 0, i=l,... ,n.

Therefore, the latent roots can be expressed in terms of ai

and S i , i.e., a i = -ai f 3a2 	 which provides the proof.

vvv

Lemma 3 . 7 reveals that the positive definiteness of

the damping matrix C is not a necessary condition for the

stability of the system. In other words, even though the

matrix C is indefinite it is still possible that there are

some latent vectors yi such that yi*Cyi = ai>0,

which is a necessary and sufficient condition for a stable

system. The result obtained in (2.12) can now be explained

by this theorem.

Also, Lemma 3.7 combined with Theorem 3.6 shows the

feasible region of latent roots of a damped system in terms

of natural frequencies of the undamped system. After a

damping matrix C is added to the undamped system,

A' M = IA 2 + K, the new latent roots are bounded by the

23
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concentric circles with radii of maximum and minimum natural

frequencies of the undamped system. This is illustrated in

Fig. 1 and the system A(a) = IX 2 + Ca + K is classified

according to the asymptotic stability of the modes in Fig. 2.

Furthermore, Lemma 3.5 indicates that the new latent roots

are totally governed by the natural frequencies of the

undamped system. However, their precise locations are

affected by the new latent vectors which will be changed

after damping is introduced. The shift of latent roots

due to damping will be explained after Lemma 3.8 (classical

normal mode) is presented.

Lemma 3.8.	 If the damping matrix C has the same modal

matrix as the stiffness matrix K

i) IXilz = wi	 i=l,...,n when wi > ai and

ii) a3. i = w zi	 i=l,...,n when wi < ai,

where wi and 2a i ,. i=1,•.•,n are eigenvalues of K and C,

respectively, Lad ay and a l are the same as in Theorem 3.7.

Proof:	 By the hypothesis, let y.ECnxl in Lemma 3.7 be a
1

j	 normalized eigenvector of both matrices C and K. Then,

S i = w^, i =l .... ,n. Substitution of wi for S i in Lemma

3.7 gives the result of Lemma 3.8 directly. 	 Q4p

From this lemma we see the movement of latent roots

after damping is reinforced in case of the classical normal

24
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Im(a)

Figure 1: Feasible region of latent roots of the

underdamped system A(a) = Ia 2 + Ca + K.
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ai = kyiCyi

Im(1)

4	 Si - yiKyi

wmax

^/^ wmin^^^\

a i>0 &	 ai<0

at<si	 Unstable

i	 0	 \\\`

a i>0 &

Stable &
overdamped
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Stable & I-

underdamped

a i = 0

Oscillatory

Figure 2: Classification of system A(X) = Ia2+Ca+K

by the stability of the modes.
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modes. In this case the absolute value or the modulus of X 
i

	

	 is equal to the eigenvalue of K, whereas in the general case

as seen in Lemma 3.5 multiplication of the moduli of x i is

equal to the multiplication of the eigenvalues of K. The
I

shifts of latent roots for these two cases have been illus-

trated in Figs. 3 and 4.

3.3 Bounds on Latent Roots of A(X) = IA2 + CX + K

Careful examinations of the solvents of the linear

second-order system unveil some interesting relations between

solvent and coefficient matrices of the system. Based on

these relationships some bounds on the eigenvalues of the

damped system will be developed in this section. We separate

_•

	

	 solvent RECrixn into the real part RReRnxn and the imaginary

part RleRnxn Now, from Theorem 3.4 it can be shown that

RI is symmetric and the following relations hold for the

system;

t	 2RR RR +R I =K	 (3.7)

RR RI = RIRR 	(3.8)

RR + RR = -C.	 (3.9)

Before developing the bounds on the eigenvalues of the

system we introduce theorems necessary for the development.

CTheorem 3.9. Let f(x)	 xtAx for xe0x" x id 0 and
x x

27
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Figure 3. Shifts of latent roots after 
damping is

assigned(Classical normal mode case - C and K have

the same eigenvector matrix).
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Figure 4: Shifts of latent roots after damping is

assigned(general case). They must satisfy the

equality ialwi i=11Y,
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AeRnxn If xeRnxl is an eigenvector of k(A + A t), then f(x)

is the eigenvalue of k(A + A t ) corresponding to x.

Proof: Let a and x be an eigenvalue and corresponding

eigenvector of k(A + A t). Then,

= t (A + 
At 

) x __ 1 ( xtx	 Ax	 A+ xtAtx ) = 
xtAx 

f(
2xtx	 xtx	 xtx	 xtx

vav

Corollary 3.10.	 Let f(x) = x

t 
RRx for xeRnxl , x # 0. If

x x

xeRnxl is an eigenvector of (-C) then f(x) is the eigenvalue

of (-kC) corresponding to x, where C is the damping matrix

of A(X).

Theorem 3.11[59]. 	 Decomposing an arbitrary matrix A into

A = H1 + jH21 where H 1 and H2 are Hermitian x ; 'then for every

eigenvalue a of A we have

'min(H1) < Re a(A) < Xmax(Hl)

Amin(H2) < Im a(A) i amax(H2)

where aa	 , Re, and Im denote the minimum, the maximummin max

eigenvalue, real part, and imaginary part respectively.

tr
F

Proof:	 See Appendix D	 004

x Note that H l and H2 are defined as H l k(A + A*),

H2 Q j (A - A*) and that in general. they are not real.

r,
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Lemma 3.12.	 Let ReCnxn be a right solvent of A(X). Then

the real parts of the eigPnvalues of R have the fallowing

bounds:

IJ

Xmin(-12C) < Re a(R) < Amax(-kC)

where C is the damping matrix of A(X).

(	 Proof:	 Since H1 A- k(R +R*) a -kC from (3.4) Theorem 3.11
f.

provides the proof immediately. 	 000

This lemma provides the bounds on the real parts of the

eigenvalues of the damped system.

l..

l'

ij

i
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CHAPTER IV

SYNTHESIS OF DAMPED SYSTEM BY EIGENVALUE RELOCATION

4.1 Decoupling of the Stiffness Matrix

One of the major problems associated with the large

scale system is that of high dimensionality. One possible

approach to reducing the dimensionality is to decouple the

system equations into subsystem equations where the col

lection of subsystems retains the eigenvalues of the original

system. The most obvious method of decoupling the large

system is to compute the eigenvectors of the system and then

reduce the system equations to those of the Jordan form,

a total decoupling. It is not necEssary and probably not

preferrable to decouple completely but to decouple only those

modes that are to have additional damping. This partial de-

coupling has an advantage in that

new eigenvalues are more flexible

mode case as shown in Figs. 3 and

section the theoretical backgroun4

1	 will be developed.

the feasible locations of

than the classical normal

4 of'Chapter III. In this

i for the partial decoupling

Theorem 4.1.	 Let D.sCnixni, 	 consist of Jordani
1

blocks of KeRnxn in such a way that no Jordan block is split 	 -
Q

among Di 's and i E 1ni= n. If Yi l , i=1,...,2 exist for arbit-	 -

32
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rarily chosen matrix 'Y i eCnixni , K can be-blobk•diagonalized

through a similarity transformation to K B eRnxn of the form,

KB = Bdiag(KBl,...,KBR)

where B diag ( • ) indicates a block diagonal matrix, and i

KBi - 'Y iDi 'Yi l ,	 i = 1, ... , R. 1

Proof:	 Let (P be an eigenvector matrix of K, 
TB = Bdiag

(T	 ...,T 	 and D=Bdiag (D1' .. ''DR)'	 Since ^YB 1 exists from

the existence of T- 1 , i=1,...,R K	 can be expressed as K =
i	 B	 B

YBD'YB l .	 When the equality D = 0 -1K(P is substituted, KB=

dt_ TKT-1 is obtained where T	 `YB0 -l .	 Since T-1 exists,

the proof of the theorem is completed.	 vav
f

The Ti matrix in the above theorem is arbitrary and

T can be computed directly.	 However, the decoupled block

` KB_ is, in general, not symmetric. The following lemma shows
a

a way to obtain symmetric blocks.

i

Lemma	 4.2.	 Let KeRnxn be symmetric and of simple structure

and D.eRnixni be a diagonal matrix which consists cf eigenval-

ues of i-th block with jIni=n.	 Also let (D be an orthogonal

eigenvector matrix of K. 	 Then, K can be block diagonalized

ri into KB eRnxn by a similarity transformation T such as

LI =tKB = TKT -1 , where KB = Bdiag (j 11D1 0 11 " .. '^RRDR^RR)'

LJ I	 ?
33
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t	 -	 t

T =	 ,

t	 - 	 t

is appropriately block partitioned as

X 11	 "'	 ^1k

and iii , i=l,...,k are orthogonalized matrices of ^iieRnixni.

Proof:	 Substituting iii for T i , i=1,...,k in Theorem 4.1

gives KBi 	 iiDiOii and

t	 011011	 ...	 011OR1
T = YB^

t	 -	 t

1	
^kkOlk	 okk^kk	 vav

If the interest is in assigning damping to a few of the

low frequency modes, it is not necessary to compute all of

the eigenvectors of K. Since most of the energy of the

system is in the lower frequency modes, a reasonably con-

trolled structure would require control of the first few

modes with the exception of the rigid modes. Under these

circumstances the following `'leorem is useful for the eigen-

value assignment:

Theorem 4.3.	 Let E = Bdiag(Iq, -In_q), S = kOE(D -1 and

34
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T = S + kE where IDeCnxn is an eigenvector matrix of KEexn

Then, T will block diagonalize K into the form K B = Bdiag

(KBi , KB2 ) under a similarity transformation; KB = TKT-1,

where KB1eRgxq has eigenvalues corresponding to the first q

eigenvectors of 4) and the rest of them belong to KB?e

R(n-q)x(n- q)

1

I

L

F1

C
CN

Proof[60]: Let 0 be partitioned into four blocks

	

11	 X12

_	 X 21	 022

where O, leCgxq and 0 22 EC
(n-q)x(n-q)	 Then, with E as defined,

T=S+E

[^E +

X11	 0gx(n-q)	 -1

0 (si-q)xqq -022

Since	 K = (DDO-1,

KB = TKT-1

-1	 -1

Bdiag ( ^11D1^il l ^22D2^22)

provided that no eigenvalue X i is common to both D 1 and D2.

when we denote KBi - oiiDi^-!, i=1,2, the proof is completed.il

vva	 1
I
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The similarity transformation in Theorem 4.3 can be

obtained from the knowledge of the eigenvectors corresponding

to those modes that are to be decoupled. Let P D be the

eigenprojector l of the q modes that are to be decoupled;

P = CD	 Iq	 0gx(n-q)	 ,t
D

O(n-1)xq	 On-q

t	 t

'lo t ,	 ^lloti
t	 t

X2011 02021

where it is assumed that 4 is normalized such that (D-1_(Dt

The matrix S defined earlier is then

S = PD - iIn

and thus

[0qOgx(n_q

T=P+
(n-q)xq In-q

Since the matrix PD contains only the first q eigenvectors

of K, [$11 021)t' T has been shown to be constructed from

those q eigenvectors.

1 The eigenprojector corresponding to the first q eigen-

q	 tvalues of a simple matrix K is defined as P D = iEi^i^i

where q is an i-th normalized eigenvector of K. For the

general case and properties of the eigenprojectors,see(51].
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The computational procedure given above can be utilized

to find KB1 which contains the desired eigenvalues that are

to be moved away from the jw axis of the undamped system.

The computational technique to assign the eigenvalues will

be discussed in the next section.

4.2 Computational Procedure for the Damping Matrix Determination

Assume that the system stiffness matrix K is block

diagonalized into KB1 and KB2 and that KB1 has the eigen-

values of the system that are to be moved. 	 The subsystemM ^.

matrix KB1 can now be further decoupled and it well also be

assumed that KBl is block diagonalized to (2x2) matrices

KBj with two distinct real eigenvalues'.	 The theory given

previously can now be utilized to assign the eigenvalues

1
of the low-order subsystems.

t.
Let A i eC and y. C2x1 for i = 1,2 be the latent roots^ f

and a set of independent latent vectors of the desired sub-

', system with yiyi = 1.	 Define a new set of vectors wieC2xl

1>	 i such that w 	 = ^^ j yi for i = 1,2 where Tjj is a normalized
•.t

eigenvector matrix of KBj .	 Let each component of w 	 beI..

1

y
k

expressed in polar form,

r4

w	 'ik = aik exp(j^ik), i,k = 1,2	 (4.1)

^' 1 Subsystem matrix KBj has real eigenvalues when the stiff-

LI
ness matrix K is real symmetric and of simple structure.

This can be justified by Lemma 4.2.
r
L

37

t

—_ —.^



- i

38

_-7

OF POOP, Qt !a : "'Y

where aik and 8 i are the modulus and argument of the complex

number wik , respectively. Since yi*yi = 1 then wi*wi = 1 and

ail + a22 = 1	 (4.2a)

a21 + a22 = 1.	 (4.2b)

Furthermore,

w12w1112 + wllwl2 -	 E)
(4.3a)

w22^"'21 + w21^''22 - 2a21a22cos02 (4.3b)

where O1 A 8 12 - ell and 02 A 8 21 - e22.
On the other , hand, assuming . R

i
ec2x2 is a solvent of the

damped subsystem with stiffness matrix K BD , from Theorem 3.4

we have

KBD = M. 	 (4,4)

Now let W = [wl w2], Y = [yl y2], A  = diag(w1w 2) and

A = diag(a l , a 2 ) where wi and X i , i=1,2 are eigenvalues of

KBD and latent roots of the damped subsystem, Then from the

relations, KBD 	
iiA0ji , R  = YAY -1 and Y = $^^W we have

W*AKW = A*W*WA

This matrix equation is then written as follows:

wlall + w 2a12	 wlwllw21 + w 2w12w22	 -{
LHS =

w 1 21w11 + w 2w22^''12	 w 1 a21 + w2a22
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X 1 X 2 (w11 21 + w12w22)
RHS	 (4.5)

^2^1 (w21w11 + w22w12 ) 	 ^2^2	 `

Equating elements of (4.5) and noting that the matrix is

symmetric we have three equations:

w1a11 + w2a12
 = IX1I2	 (4.6a)

w1a2 1 + ^2a22 = IX2I2
	 (4.6b)

wIIW21(X1^2 - W 1 ) = w12w22 (w 2 - '*1'2)' (4.6c)

Since w12w22 " O 1 a complex number s can be defined from

(4.6c) as

2
	S g wllw2l = w

2 - a1 2	
(4.7)

w12w22	 '1a2 - ^1

The number s can also be obtained from (4.1) as

By the independency of w 1 and w2 both w12 and w22 (or

wll and w21 )•cannot be zeroes at the same time. If either

wl2 or w22 is zero then wllw2l = 0 except in two cases, i.e.,

W = [0 i) and W = [0	 Q)	 It now follows from W = =tii 
y

that Y = [0 1 0 2 1 and Y = [0 2 ^1), respectively. These are

the classical normal mode cases.
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s = a11a21 (cos0 + jsin0)	 (4.8a)	 A'
a12a22

where 0 = 0 1 + 0 2 = tan - 1 (Im. s/Re s).	 (4.8b)

Theorem 3.4 also gives

CBj = Rj* + Rj	
(4.9)

and by a similar substitution as in (4.5)

=t
ii
	 jj = -(W*)-lA*W* - WAW-1	(4.10)

or with CB	 Jj	
JCBj0jj

f

A*W*W + W*WA - -W*CBj W.	 (4.11)

Substituting the previously defined variables into(4.11) 	 t;
:A

we have a set of nonlinear equations:

2	 2
all	 2a11a12cos01	 a12 A 	201

C11

a21	 2a21 a22coso 2	 a22	 2°2	 (4.12)

aRe s 21	 C12l 11cos0 1 C12	 Re ta22	 2 a12	 1

Im s a21 sin0 f-11 sin0 0 C22	 Im ta22	 2 a12	 1

where C ij , i,j=1,2 are elements of C Bj , ai , i=1,2 are real

parts of x i and t	 (11 + d 2) (s + 1).
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{
The computational procedures for the subsystem can be

` summarized as follows:

i( 1) Compute the eigenvalues w2 and normalized eigen-

g vectors 0 i ,	 i = 1,2 of KBj.

2) Select new eigenvalues X i and compute wi = 1aii2,

i = 1,2.

^l 3) Solve the set of equations for a2 .q	 i^,	 i, j 	= 1,2:

^' 1 1	 a2	 a2	 1	 111	 21

2 2	 2	 2	 ^2	 ^2
wl w2	 a12	 a22	 w2Lwlr

4) Compute Re s and Im s from (4.7)

5) Compute 0 from (4.8b)

6) Solve the set of nonlinear equations given in (4.12)

	

l'	 for the coefficents C ij , i,j = 1,2.

7) Compute the damping matrix C Bj = 
0jjCBj;ti=

The subsystem is then transformed back with the other

subsystems to obtain the damped system equation.

4.3 Velocity Feedback Control Scheme

In the two previous sections it was shown that the

stiffness matrix K can be decoupled into block diagonal

	

L	 matrices, KBj = jj DjJj , j = 1,...,R through orthogonal

	

t	 similarity transformation T = T B^ t (see Lemma 4.2) and that

sufficient damping can be assigned to each subsystem by

	

CJ	
41
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shifting system eigenvalues. In this section, damping as-

signment will be realized through a velocity only feedback

control. For simplicity of the implementation, collocated

control (in which the actuators and sensors are placed

together) will be employed.

Neglecting the low natural damping the large flexible

system of which the vibration is to be controlled is express-

ed as

x+Kx =BOf

y=Btx
	

(4.13)

_-	 C

r

r

where xeRnxl , feR=l , yeRmxl and B 0EOXm are generalized

displacement, control input, output, and actuator matrix,

respectively'. Notice that the form of sensor matrix Bt of

the collocated control. With the state vector n defined by

n ^
	 x	

(4.14)
X

the system described in (4.13) is now written in the state

space form as

0	 I	 0
n=	 n	 n n + nxm f

(4.15)
-K	 On	 B0

y= [Omxn B01 n•

' The notation of vector y is different from that in Chapters

II and III. This notation will be used in this chapter only.
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Let GeRmxM be the time-invariant velocity feedback gain

matrix, then this control law will be

f = G[Omxn B0] n

Therefore, the closed loop system is described as

T =	
On	 in	 n	

(4.16)
-K	 BOGBt

and its eigenvalues are identical to the latent roots of the

corresponding lambda-matrix,

A(a) = Ia 2 + CX + K

where C = -BOGBO.	 (4.17)

Thus the remaining problem is to decompose C into

B OGB O , so that resulting feedback gain matrix G together

with a sensor matrix B O and an actuator matrix B O will pro-

vide the system with sufficient damping by means of shifting

system eigenvalues to pre-assigned locations.

We will now show this prodecure in a constructive way.

Suppose that-the stiffness matrix is decoupled into three

t	 subsystems KBl , KB2 and KB3 by Lemma 4.2. It is also assumed

that KBl and KS2 are (2x2) subsystems whose modes are to be 	
1

damped and KB3 has the rest of the-modes which will remain

unchanged. Then, according to Lemma 4.2

r
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where

;11D101
—t1
	

0	 0

T KB
=t

—	
0	

^22D2722	
0

=

0	 0 
	 33D3;3t3

and

o11	
0	 0

T =	 0	 022	 _0	fit. (4.18)

0	 0	 X33

f
On the other hand, for subsystems KB ., j =

J
1,2 damping

C matrices CBj , j = 1,2 could be determined by the procedures

I described in Section 4.2, and they are assumed to be written

as

CBj = ^jjCBj^j	
,	 j	 = 1,	 2. (4.19)

^v Therefore, in the generalized coordinate system the damping

matrix will be

[w

CBI	 0	 0

C = T-1	 0	 CB2	 0	 T. (4.20)

0	 0	 0
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Substituting ( 4.18) and ( 4.19) into ( 4.20) we have

1#
"	 t	 t

X11 X 12	 CBI	 0	 XI X21 X 31	 i

C	 X21 X22	 P	 CBB2 	 [^It2 $ 2 $2	 (4.21)L
X 31 $321

Thus, by comparing (4.17) with (4.21), a solution to the

collocated velocity feedback control problem is as follows:

Gain matrix;	 G - Bdiag ( -CBl , -CB2 , ... ,-CBk)

Actuator matrix; 	 B 0
 - 

« 1 02 ... 020
Sensor matrix;	 Bt

where k is the number of (2x2) subsystems to which damping

is to be assigned and 0. is a normalized eigenvector corre-

sponding to the i-th mode.

4.4 Illustrative Example

Example 1:

The example chosen for computational purposes has a

mass matrix I and a stiffness matrix K



which has natural frequencies given in Table 1. The zeroes

of the matrix K have been deleted for the sake of brevity.

The two lowest modes are to be damped with the real parts
V

of the damped eigenvalues at -0.5 and -1.0.

Table 1. Natural Frequencies w i in Example 1

Mode i wi

1 1.135

2 2.215

3 3.175

4 3.980

5 4.687

6 5.470

Through the computational procedures given in the pre-

vious section the velocity only feedback gain matrix G and

the force actuator matrix B 0 (the sensor matrix Bt assuming

the sens,rs and the actuators are collocated) were obtained

as follows:

	

1.053	 -1.099
G=

	

-1.099	 1.94 9
-19

;i
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0.5528

0.4527

-0.0008

-0.3889

-0.4901

-0.3130

0.3216

0.4960

0.5350
$0 0.4700

0.3376

0.1715

The damping matrix C and the eigenvalues of the closed-loop

system were computed and listed in Table 2 and Table 3,

respectively. The eigenvalues of the closed-loop system show

that the two lowest modes get the pre-assigned amount of

damping exactly while the rest of the modes remain unchanged.

Table 2. The Computed Damping Matrix C

0.3134	 0.1938 -0.1451 -0.4086 -0.4461 -0.2730
0.1938 0.1641 0.0121 -0.1203 -0.1575 -0.1016

-0.1451 0.0121 0.3015 0.4939 0.4790 0.2811
-0.4086. -0.1203 0.4939 0.9291 0.9360 0.5571
-0.4461 -0.1575 0.4790 0.9360 0.9519 0.5685
-0.2730 -0.1016 0.2811 0.5571 0.5685 0.3399

li
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Table 3. Eigenvalues of the Closed-Loop System (Example 1)

jMode i Real Part'	 Imaginary Part

1	 -1.0000	 ±1.183

2	 -0.4999	 ±1.543

3	 0	 ±3.175

4	 0	 ±3.980

5	 0	 ±4.687

6	 0	 ±5.470

' Zeroes are less than 10- 12 in double precision

arithmetic of the AS/9000N system.

Example 2:

The second example has a stiffness matrix of

5 -4 1	 0	 •	 •	 •	 • •	 • •	 0

-4 6

1

K (20x2 W 100x
00

6 -4

0 •	 •	 • •	 •	 •	 •	 0	 1 -4 5

and natural frequencies given in Table 4.	 The six lowest

modes were damped by shifting the real parts of the eien-

values to -0:5 for each mode.
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Table 4. Natural Frequencies w i in Example.2

	

Mode	 i	 wi

	

1	 0.2233

	

2	 0.8885

	

3	 1.981

	

4	 3.475

	

5	 5.339

	

6	 7.530

	

7	 10.00

	

8	 12.69

	

9	 15.55

	

10	 18.51

	

11	 21.49

	

12	 24.45

	

13	 27.31

	

14	 30.00

	

15	 32.47

	

16	 34.66

	

17	 36.52	 J

	

18	 38.02
d

	19	 39.11	 R

	20	 39.78

-t

s
P
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The velocity only feedback gain matrix G has been

` turned out to be;

G = Bdiag (Gl' G2' G3)

where

-0.1214	 -3.1297
G 1 =

I: -3.1297	 -1.8767

-0.2903	 -4.3778
G	 =2 -4.3778	 -1.7087

-0.4622	 5.3003 -
G3 = i

5.3003	 -1.5374

(
The computer output of the actuator matrix B O and the damping

matrix C is given in Appendix E.	 And the eigenvalues of the

 closed-loop system shown in Table 5 indicate that the six

lowest modes were damped but the rest of them remained un-

damped as predicted.

[
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Table 5. Eigenvalues of the Closed-loop System (Example 2)

Mode i Real Part' Imaginary Part

1 -0.5006 ±0.6675
2 -0.4984 ±0.7856
3 -0.5007 ±1.936
4 -0.4988 ±2.319
5 -0.5000 ±3.123
6 -0.4998 ±4.690
7 0 ±10.00
8 0 ±12.69
9 0 ±15.55

10 0 ±18.51
11 0 ±21.49
12 0 ±24.45
13 0 ±27.31
14 0 ±30.00
15 0 ±32.47
16 0 ±34.66
17 0 ±36.52
18 0 ±38.02
19 0 ±39.11
20 0 ±39.78

' Zeroes are less than 10 -12 in double precision

arithmetic of the AS /9000N system.
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CHAPTER V

OPTIMAL CONTROL OF SELECTED MODES

5.1 Introduction

Consider the state equation, defined in (2.14), for a

plant

n(t) = A,.n(t) + Bf(t)
	

(5.1)

`3 I
,j

T'

u

n

6

r
:i	 l..

r^

g tI	 L.

h

F	

^^

C

;l

where AeR2nx2n is the system matrix, BER 2nxm is the actuator

matrix, n(t)ER2nxl is the state vector and f(t)ER nxl is the

control force vector. Let J be the associated scalar cost

functional with

J(n,f,t) _ knt(-)Hn(-)+k 0 [nt(L)Qln(t) +ft(t)Q2f(t)]dt.
11	

(5.2)

The Hamiltonian for the system is

H(rt,f,r,t) = Znt(t)Qln(t)+2ft(t)Q2f(t)+rt(t)[An(t)+Bf(t)]

(5.3)

from which it follows that n(t), r(t) and f(t) must satisfy

the equations:

n(t) = An(t) + Bf(t)
	

(5.1)

r(t) _ -Q ln(t) - Atr(t)
	

(5.4)

0	 = Q2f(t) + Btr(t).	 (5.5)
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The desired control for minimizing the cost function is

(10,P.211]

f(t) _ -Q2 1B tr(t)	 (5.6)

where it will be assumed that

r(t) = Pn(t).	 (5.7)

Differentiating (5.7) with respect to t and using (5.1)

and (5.4) we obtain the algebraic Riccati equation,

Q l + AtP + PA - PBQ2 IB tP = 0	 (5.8)

for P. Substituting P into (5.7) and the resulting equation

into (5.6) gives the control

f(t) _ -Q2 1Btp n( t ).	 (5.9)

This control will give the closed-loop matrix

A = A - BQ2 1B tP. 	 (5.10)

It is usually assumed that H and Ql are symmetric posi-

tive semi-definite matrices and Q 2 is symmetric positive

definite. The Riccati matrix obtained from (5.8) will also

be symmetric and positive definite. The matrices H, Q l and

Q2 are weighting matrices chosen to fix the cost penalty for

the initial conditions, the displacements and the control

efforts, respectively.
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r
This optimal control procedure works quite well when the

t number of modes in the system is not large but the computa-

tional load for several hundred modes makes this type of -

control impractical if time varying gain is used.	 Even when

a constant gain is used, the computation of gain is not a

trivial task.

There have been numerous papers about applying optimal

( control theory to the large space structure with the devel-

opment based on reduced-order models, see [9 -,12,13,31].	 The

[ computational load can be reduced significantly by this

approach but the reduced-order model must be carefully cho-
f
_

sen if mode spillover is to be avoided.
i

The work in this chapter will take an entirely different

direction.	 The computational load for the procedure is

reasonable and the mode spillover problem can be eliminated.

The spectral factorization algorithm will be used to decouple

the selected modes from other modes of the structure.	 The

optimal control theory will then be used to construct the

feedback for the selected modes. The uncontrolled modes are

uncoupled from the control modes and the possibility of mode

spillover is eliminated.

5.2 Mode Decoupling of the State Matrix

^I In this section a method is presented that decouples

some of the modes from the remaining ones so that the optimal +,

control strategy can be carried out on a lower-order system. -:

ll
^J
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This is an extension of the method given in Section 4.1, which

decouples the stiffness matrix K.

Consider the undamped system matrix A as defined in

(2.14) with C = 0 such that

In n
A

r_K
 0n

(5.11)

where KeRnxn is positive definite. The eigenvalues of K are

rgiven by wi where fjw i are eigenvalues of A. This suggests

I	
that the spectral decomposition of A can be obtained from

considering K rather than A.

LSuppose, as shown in Theorem 4.1, that there exists a

similarity transformation Tk (denoted by T in Theorem 4.1)

such that

KB1	 Oqx(n-q)
TkKTkl =	 (5.12)

O (n-q)xq	 KB2

where KBleRgxq has q eigenvalues and KL2eR (n-q)x(n-q) has

(n-q) eigenvalues of K. If such a matrix exists, then KB1

and KB2 give the spectral decomposition of K. To find Tk,

eigenvectors of K must be found (see Lemma 4.2) or the sign

algorithm [57] can be used to generate T k . The eigenvector

procedure will probably be the most efficient for large

systems so the procedure will be based on the method given

55

,r



rl -

ORIGINAL PryGl: 60

OF POOR QUALV

in Lemma 4.2.

Let ^ denote the orthogonalized eigenvector matrix of

K and be partitioned with appropriate dimensions as in

Lemma 4.2,

1

111	 X12

lU
^ _

X 21	 ('22

t If we further denote orthogonalized matrices of O ii by iii'

i= 1,2, then according to the lemma, K can be block diago-

"'	 ¢ nalized to ( 5.12) by a similarity transformation TKeRnxn

where

-  t
Kil	 TK12 	 $11011

t

X110210
T K =

rTK21

_ (5.13)

!u

t	 t

 TK2222012	 X22022

^.
and

t

KBi — ^iiDi^3.'	 i= 1,2.r i
p

Thus far, the spectral decomposition of K has been car-

`"' ried out but the system matrix (5.11) must be considered

because this is the matrix of concern.	 Let TA be a new

C
transformation matrix with

KOn

r
T	 =

ron

(5.14)

 T 

S6

t
T

r

i

-	 - _—

J
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t^	
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then,

0	 I

TAATAI =	
n	 n	

(5.15)

[_TV'Y_TKl

	
On

This gives a new system matrix with K B in the lower left

corner of the matrix, but the matrix (5.15) is not block

diagonalized. To block diagonali,e T AATAI , construct a

row-column interchange matrix F, where

Iq I

F=	 L — — I 9 1
I in

-
	 I

L q — J
II
I n-q

The blocks of zeroes are deleted in the matrix F for sim-

plicity. The block diagonal form AB can then be found by

	

AB = FTAATAIF-1 = TAT -1 ,	 (5.16)

where T = FT  and

0	 I
q	 q

KB1	 q0 I
	 02q

AB = — — ---
I

  
I  On-q In-q
I

02n-2q	
I -K	 0B2 n-q

57
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It can be shown from (5.13) that T is orthogonal and, after

simple arithmetic, T is written as

TK11 TK12	 0	 0	 }q

0	 0	 TKll Tk12 }q
T	 (5.17)

TK21 TK22	 0	 0	 }n-q

0	 0	 TK21 TK22 }n-q
q n q q n q

where TKij , i,j =1,2 is block partitioned matrices of T  as

defined in (5.13).

The spectral decomposition process will modify the

state vector n(t) as shown below. Remember that the state

vector n(t) was defined in chapter IV as

a

X(t)
(4.14)

x(t)

where x(t) is the generalized displacement vector. Let q(t)

be defined as the transformed vector,

q(t) A Tn(t),

then

q(t)-= TAn(t)

but

n(t) = T-lq(t)

thus

q(t) = TAT - Iq(t).

58
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f
Therefore, the similarity transformation on A to block diag-

onalize A will map n(t) into a new vector q(t) as defined

in	 (5.18).

All of the computations for the decomposition given in

this section can be carried out by considering the K matrix

which is (nxn).	 It is not necessary to find eigenvectors

of A since the necessary information is contained in.K.

3.3. Optimal Control of Undamped Decoupled Systems

7t was shown in the previous section that the state

matrix could be block diagonalized with selected eigenvalues

^a of AeR2nx2n placed in one of the selected block matrices.

Let the block matrix for the undamped system have the general

form:

AB1	 02q}

AB = TAT (5.21)
0	 ?.2 } 2n-2q
V	 V
2q	 2n-2q

where AB1 eR2gx2q has eigenvalues Ja i j<p and AB2eR(2n-2q)x(2n-2g)

has eigenvalues IX,I>p with p a scalar variable and A is the

undamped matrix.	 The value of p will be chosen to include

a^ the desired modes in AB1.

Consider now the algebraic Riccati equation for feRax2n

t and let AB be the decoupled matrix, thus Y must satisfy

N

I

l^

(JI
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Ql + AB •P + PAB - HQ2 lBtP.= 0	 (5.22)

where Q1eR2nx2n and Q2eRmxm are weighting matrices for q(t)

and f(t). The matrix BeR2nxm represents the control input

matrix where

q(t) = ABq(t) + Bf(t)
	

(5.'23)

with B = TB. It is assumed that the algebraic Riccati

equation (5.22) is completely decoupled such that

Q11 + AB1P 1 + P 1AB1 - Pl2lQ21B1P1 = 0	 (5.24)

Q12 + AB213 2 + P2AB2 - P 2B 2Q2lB tP 2 = 0	 (5.25)

where Q11 , Q12 are the weighting matrices for states and

B t = [B t ,BZ] with B 1eR2gxm and B 2eR (2n-2q)xm . The Riccati

matrices P 1 and P 2 can be found independently since the

equations are decoupled.

Substituting (5.21) for AB in (5.22),

Q1 + (T-1)tAtTtP + PTAT-1 - m2lBtP = 0 	 (5.26)

and rearranging (5.26) gives

TtQ1T + AtTtPT + T tPTA - T tPTBQ2 lB tTtPT = 0 (5.27)

Defining P = T tPT and Q1 = T tQ1T also gives

60
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Q l + A t P + PA - PBQ2 1B tP = 0
	

(5.28)
M

whi^..h is a usual algebraic Riccati equation for t-he general

control problem.

Denoting equation (5.24) as system 1 and (5.25) as

system 2, it follows that system 1 has the system equation

q1 (t) = ABlgl(t) + E l f(t)	 (5.29)

rq2(t

l(t
where q(t) =	 and with cost functional,

)

Jl ( gl , f , t ) = I o [ gi( t )Qll g l (t ) + ft(t)Q2f(t)]dt.

(5.30)

The other system has the system equation

q2 (t) = AB2g2 (t) + 2 2 f(t)	 (5.31)

and cost functional

12 (q 	 = I o [g2(t)Q12 g2 (t) + ft(t)Q2f(t)ldt,

(5.32)

where the final state cost was neglected. Assuming

that the first system is the desired system for damping,

then B2 = 0 will leave system 2 undamped and P 2 = 01.

It then follows that the Riccati equation for the uncoupled
s
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T11P1T12

t
T12P1T12

(5.33)

V

t'

F1

h
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system is

T11P1
t 

T11
P - T' tPT =

t
T12P1T11

where

T11 T12
T =

IT21 T22

B1
B =	 ( 5.34)

0 (2n-2q)xmm

Therefore, since T is orthogonal

B =

Bl

B2

= T -1B = Tt

ronxj

(5.35)

where B l , B2eRnxm.

1	 P 2 is not necessarily identical to zero, but certainly

P 2= 0 is a solution to (5.25) when B 2 = 0 and Q 12 = 0 as

assumed. This assumption is necessary to obtain a simple

feedback control law.
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with T11 ER gx2q and T12 eR2gx(2n-2q) . Since P 1 is symmetric,

P is also symmetric as desired.	 The control input matrix B

will have the form

Fe
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d1

^L

F
The numerical value of 2 1 can be c' :en so that system 1 is

controllable and that B1 = 0 but B2 9 u if the form (5.11)

is to be maintained.

The closed-loop system matrix of system 1 after optimal

control is then written as

_	 1-tAB1 - AB1 - X 1 42 B 1P 1 ,	 (5.36)

and, from the equations (5.10),(5.11),(5.33) and (5.35) with

B 1 =0, the closed-loop system matrix of system (5.1) with

cost (5.2) and'H=0 is given by

0	 I.,	 n	 n

f1 [-K+B 222 1B 2T12P1T11 B2221B2T12P1T12

(5.37)

The required feedback control vector f(t) was obtained

from (5.9), (3.23) and (5.33):

f (t) = -Q 2 1B tPTn(t)	 (5.38)

Id
which can now be determine.= as Q 2 , B and P are known.

C It may be pos,ib	 make B 22 2 1B 2T12P 1T11 = 0 in (5.3-7)Y

by properly seluctLng it'' `, and the weighting matrices. In
r

general., it will n:t h.- z	 and the stiffness of the struc-

ture will be (,^^angrr.:. TG should also be pointed out that
Lti	 1 ,.;

the matrix C(=B2Q2 B 2 1 	 doe_ rot -. p resent a model

tJ!	 .
63
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Y

i I	 ' with passive damping as C does not have the proper structure.

If the closed-loop system has the feedback defined as (5.38),

however, there are no restrictions since this control law

is not for a passive system.

I

1

^l
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r^	 !
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f^
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5.4. An Illustrative Example

Example 3:

The example 1 in Section 4.4 will be used to illustrate

the computational procedure. The stiffness matrix was

9 -5

-5 11 -6

-6 13 -7

K — -7 15 -8

-8 17 -9

-9 19

and the mass matrix was I 6 . The system was defined in state

space form with state vector q t (t)= [xt (t), xt (t)] :

0 6 I6 	[B]l

n(t) =	 n(t) +	 f(t).	 (5.39)
-K	 0 6	BZ

After an equivalence transformation T, which also decoupled

the two lowest modes, was applied to (5.39), the system was

changed to
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02	 I2
	

04x8

	

-KB1	 02 
I	

B1

	

4(t) _ -- I	 2 I	 q(t) +	 f(t)

	

o— I	
B 4	 4	 2

08x4

-KB2	 04
(5.40)

where q(t) = Tn(t) with T given in Appendix F and

03.83448
KBl -	 1.65133

16.81055

KB2 =	 0.23648

6.93450

2.07957

-1.65133

2.357722]

	

0.23648	 6.93450	 2.07957

	

17.86965	 -1.02621	 3.41672

	

-1.02621	 24.26231	 -5.16800

	

3.41672	 -5.16800	 18.86528

Thus, system 1 was decoupled and given by

0 2	 I2
41 (t) =	 ql(t) + S lf(t),	 (5.41)

-KB1	 02

which Was to be controlled to minimize the cost

il ( gl ,f,t) = I o [gt (t)Qllgl (t) + f t)Q2f(t)]dt (5.42)

with given Q11 = 1 4 , Q2 = 21 and Bi = [ 0 0 -1 11. The input

matrix 21 was chosen so that system 1 was controllable.

The Riccati equation (5.24) corresponding to (5.41)

and (5.42) was solved by the eigenvector method [61] and a
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1

solution was given by

i
6.31043	 1.42106	 -0.47965 -1.24103

j P1 = 1.42106	 5.51307	 0.90973 0.84844

-0.47965	 0.90973	 2.66756 2.46582

-1.24103	 0.84844	 2.46582 4.10804

With the assumption, 9 2 = 0 the solution P of	 (5.28)Î

was computed by (5.33) and listed in Appendix F and by

(5.36) the closed-loop system matrix of system 1 was

0	 0	 1 0
0	 0	 0 1

AB1 - -4.5959	 1.5900	 -0.2017 1.6422

2.4127	 -2.2964	 0.2017 -1.6422

j Finally, the feedback control vector f(t) was computed

t

from (5.38):

f

f(t)	 = rn (t)
where

r = [-0.4845	 -0.5051	 -0.2486	 0.0167 0.1396	 0.1097

l -0.1796	 0.1450	 0.6793	 1.0094	 0.9489 0.55011.

The closed-loop system matrix of the original system was

l.i
given in Appendix F and the eigenvalues of the system before

and after optimal control were listed in Table 6.

L^ The input matrix B and the state cost matrix Q1 of the

r original system was computed by (5.35) and Q l = TtQ1T.	 B2

L^
is given below and Q 1 in Appendix F.
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L

l..

1

L-

__	 _	 ...

B 2 =

-0.6696

-0.4798

0.1589

0.6767

0.7775

0.4835

Table 6. Eigenvalues X i of the System Matrix (Example 3)

before control

tj1.135

fj2.215

tj3.175

fj3.980

fj4.687

±j 5.470

i after control

-0.1713tjl.141

-0.7506tj2.117

tj3.175

tj3.980

tj4.687

tj5.470

Mode i

I
	

1
i	

2

3
i	 4

5

6

a^Y
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CHAPTER VI

CONCLUSION

6.1 Conclusion

For the vibration suppression of the large flexible

space structure, two independent velocity only feedback

control schemes — the eigenvalue relocation and the optimal

control — of the second-order system were developed in this

work. These methods were based on the properties of the

lambda-matrices and on an efficient mode decoupling technique

by which selected modes were damped with the rest of the

modes retaining their pole locations.

The eigenvalue relocation method allowed the designer to

place the closed-loop system eigenvalues within the feasible

region as illustrated in Fig. 1. This development was made

possible by the aid of the properties of the lambda-matrices

discovered in Section 3.2. Theorem 3.4 is considered funda-

mental in this class of system and Lemma 3.5 provides the

rule on which the eigenvalues move,

As a result, the vibration control by the eigenvalue

relocation was accomplished by the following sequence. First,

through the decoupling procedure described in Section 4.1

modes were selected for which damping was required. To each•

decoupled subsystem a damping matrix was computed in such a
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1,

way that the subsystem had the pre-assigned eigenvalues. Next,
r

under the assumption that the actuators and the sensors are

invariant	 feedbackcollocated, a time-velocity only 	 gain was

determined in the process which brought the coordinates of

the subsystems back to the original generalized coordinate

system.	 The whole procedure was demonstrated by numerical

examples.

Similar results as those achieved in this work may be

obtained through the pole assignment by gain output feedback

methods reported in [26-291, but our approach is completely

different from theirs: our method is devised by using lambda-

matrix with the constraint that K is invariant rather than

on the state space which resulted from the conversion of the

k

second-order system equations. In addition, it is based on

the assumption that the actuator and the sensor matrix are

designed at our disposal instead of being given as a part of

a plant. Therefore, it may be meaningless to compare these

^..	 methods and no attempt was made to this end. Roughly

speaking, however, their methods can assign min(n, m+r-1)

poles arbitrarily close to min(n, m+r-1) specified symmetric

values but nothing is said about the remaining poles, where

{{
	 n, m and r are the number of states, the rank of actuator

Li	 matrix and the rank of sensor matrix, respectively. Whereas,	 _+

fi	 in this work 2m poles (m=r and n>_2m) can be assigned almost

arbitrarily within the feasible region as conjugate pairs
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l
with the rest of the poles unchanged.

i
^_.

One advantage of this method over the classical normal

mode (complete decoupling) technique is that the feasible

region is much wider than that of the classical normal mode

case as shown in Figs. 3 and 4. 	 This freedom of choosing

the locations of system eigenvalues can enhance the damping

significantly, especially at the low frequency modes where

more damping is required.

The eigenvalue assignment technique developed in this

lw work also has some shortcomings.	 First of all, the system

of simultaneous equations, 	 (4.12), is non-linear.	 Conse-

quently, the existence of a solution is not guaranteed, nor

( is the uniqueness of a solution. 	 Nevertheless, a solution

t never failed to exist during the course of:computational ro

experiments.	 Since the damping assignment is achieved at a

(2x2) subsystem level, computational procedure is not very

involved, but the simultaneous equations require some x

f iterations.

Another disadvantage of the velocity only feedback

control scheme is that the sensor and the actuator matrix

must be computed. 	 When they are given as a part of the plant,

instead, the gain matrix may be approximated by the least

square method, for instance.	 If this is the case, the eigen- J

values of the closed-loop system will certainly deviate from

[ !i the pre-determined position even though the error may not be
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significant because of the continuity of the eigenvalues.

This problem remains for further research.

On the other hand, a procedure for optimal control of

selected modes was also developed in the last chapter

and it was shown that the control vector for a rather small

second-order lambda-matrix could be determined in such a way

that damping was added to the lowest modes with the other

modes remaining unchanged. The elimination of mode spillover

problem was made possible by the mode decoupling procedure

and by the manipulation of the actuator and the sensor

matrices.

Finally, the decoupling procedure for both methods

requires only the eigenvectors of the assigned modes. This

fact resulted in a significant saving of computing time when

the number of modes involved in damping assignment was less

than one fourth of the total modes.

The main contribution of this work can be summarized as

i

	

	 follows: i) unique properties of the second-order lambda-

matrix were discovered and applied to the vibration control

(

	

	 problem, ii) a computational procedure for the damping

matrix determination with the stiffness matrix invariant was

L-	 established, iSA) a technique to decouple the large system

r	 into smaller ;ubs7stems through partial eigenvectors was

developed, and iv) an optimal control method of the selected	 -;

modes-without any spillover to other modes was investigated.
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6.2 Recommendations for Further Work

One of the topics which deserves further research is the

passive damping algorithm: the complex sensory and actuating
a

devices of the active control may provide enough motivation

for research on the passive damping of the large space struc-

ture. In order to realize the passive damping, however, the

structure of the damping matrix should be in a simple form

such as diagonal or tridiagonal. Another promising area is

to extend the theory developed in this work to higher-order

systems; third-order, fourth-order, and so forth. This ex-

tension may be established without much difficulty since

there is well-developed theory on the corresponding lambda-

matrices. An algorithm of damping matrix determination for

bigger than a (2x2) subsystem is worth investigating. As to

I'

	 the optimal control part of the work, it would be worthwhile

{	

to find a necessary condition for the Riccati equation to be

l

	

	 decoupled completely. Finally, it may be interesting to

combine the eigenvalue relocation technique and the optimal
I

	

	

control method in such a way that the selected modes are con-

trolled optimally in some sense with desirable pole locations.

7

Y
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APPENDIX A

LAMBDA-MATRICES AND GENERALIZED LATENT VECTORS1513

Let Aiccnxn , i = 0,1,...,m and aeC. A T-matrix is

defined as

	

A(a) = Y  + A1 am-1 +...+Am	(A.1)

A latent root is also defined by a scalar a ieC such that

A(X i) is singular. When A0 is non-singular the A-matrix

is called regular and in such a case a monic A-matrix,.A(a)

can be obtained by changing coordinates, i.e.,

A(A) = A-IK(A)

	

= Iam + A1 am-1 +...+Am .	 (A.2)

Associated with A(a) a block companion matrix is

defined as-

	

0n	 In	 0n . . . On

0n 0n In

Ac °I
	

0n

	

0n	0n In

	

-Am	 m-1 . . . . . -A1

(A.3)
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There are very useful relationships between eigenvalues and

eigenvectors of the block companion matrix and latent roots

and latent vectors, which will be presented in the following

definition and theorems.

Theorem A.I.	 Let AM be defined as in (A.2) and Ac as

given in (A.3) then the latent roots of A(a) are the eigen-

values of Ac.

Proof: When (N - Ac ) is post-multiplied by the following

unimodular block Toeplitz matrix,

I	 0	 . . . .	 0n	 n	 n

AI	 In	 n

VM
In 0n

^m-12	 aI	 I

	

n	 n n

the following result is obtained

0n	 -In	 On . . . 0n

0	 0	 -I
n	 n	 n

	(IX-A) V(A) _	 Oc	 n

0	 • • •	 0	 -In	 n	 r

A(,1)	 * . . . . . . .
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in which A(1) is as given in (A.2). Now when the determinant
a

of the above expression is taken by expanding minors along

the ones, -it follows that

det[(IX-A
c
)V(a)] = det(IA-Ac ) = (-1) mn det AM

which implies that the eigenvalues of A c are latent roots

of A(A).	 VVV

1
Definition A.l.	 Let AM be defined as in (A.2) with

[	 latent roots X
i
 of multiplicity 

ni 
Primary right and

r	 left latent vectors, yid) , z p ) , Cnxl
,
 respectively, are

defind as
i

1.	 A(ai)y P) = Onxl	 j = 1,2,...,g i 	(A.4)	 x

	

3.

11 	 At(Xi)zi3) _ 0nxl	 J = 1,2, ... ,g i 	(A,5)

`	 where the number of primary right or left latent vectors of

f	 Ai denoted by q i , is the nullity of A(Xi)
1.

It is known [56] that a primary right latent vector

y (j) is a subvector of a right eigenvector of the block1
(	 companion matrix (A.3) with

L.

y(j )

Y
(j) =	 i i	 (A.6)

ci(j)

	

`i	 1 y1
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where y(i ) satisfies the algebraic equation (Ac - XiI)yci)

Omnxl. It is also not difficult to show that a primary

left latent vector, z3. , satisfies a similar form as the
primary right latent vector with

(am-l I + Ata'-2 +...+At )z(a)1	 1 1	 m-2 i

( a
m-2 I + AtXm-3 +...+At )z(.])1	 1 1	 m-2 i

(	

z(1) _	 (A.7)

{ t z(j)( a iI + Al )  1

z(iJ)

I	 where (l ) is an eigenvector of the block companion matrix.

It should be noted that the maximum number of primary

right or left latent vectors is n, i.e., max(q i ) = n. If
1

ni > qi then ni - qi generalized latent vectors must be

constructed to define the complete set of latent vectors of

the lambda matrix. These generalized latent vectors can be

obtained from a chain rule given in [57]. Notice that each

of these ni - qi generalized latent vectors may or may not 	 ^

have a chain of vectors according to the structure of the

Jordan block of the block companion matrix. The length of

the chain for each primary latent vector could be determined

fduring the computation o£ vectors until no vector satisfies

the chain rule.
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Theorem A.2.	 Let AM be defined as in (A.2) and a set

of right latent vectors yi1), y(2)0....Y1hj)ECnxl form a

right Jordan chain associated with the latent root X
i
 and

the j-th primary latent vector. Then, the chain rule is

given as

2

A(ai)YP') + ^aXi) 
yl k-1) + 2 d
	

yU-2) +...

dX

1	 d(Q-1)A(ai)	
(1)

+ (8.-1)I	 d (R-^)	 y i 	 - Onxl' k= 1,2,...,hj

(A.8)

where y i1) is the j-th primary right latent vector and hj

is the length of the Jordan chain. The vectors yik) for

1 < k < h. are generalized right latent vectors of the j-th

primary latent vector.

Proof. The proof of this theorem is obtained from consid-

eration of the chain rule for generalized eigenvectors.

The chain rule is

(2)(Ac-aiI)Yci _	 (1)
-	 Y ci

(A -a.I)y (3)
• i.	 ci

=	 y(2)
ci

(A - aiI)y(hi) = 
yC .-1)

ij

(A.9)
_'	 r

's
i

I

hi

f,
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being y() the j-th primary eigenvector and y(i)-for

1 < k < h  its generalized eigenvectors associated with the

eigenvalue A i of Ac . When (A.9) is expanded the chain rule

is obtained where yik) is formed from the first m rows of
(k)

Yci

Generalized right latent vectors yil) and }ti t) will

be obtained from

(2) dA(A i )	 (1) = 0
A(A i)y 3.	+	 dA	

Yi	 nxl

(3) dA(Ai)	 (2)	 1 d2A(Ai)	 (1)
A(Ai)Y3. + - dA Y1 + 21 dX2 Yi _ Onxi

	

or (A.8) in general.	 000

The chain rule can also be utilized to modify (A.6) for

the relation between generalized eigenvectors and general-

ized latent vectors with

Y(k)
i

Aiy1k)+y(jk-1)

Aiy�k)+2Aiyik-1)+yik-2)

M-1	 (	 Yn-1)Am-j-l(k-j)
E	 j	 i

j=0
[k-j>1]

84
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Theorem A.3.	 Let A(1) be defined as in (A.2), a set of

left latent vectors zi(1), zi2)  ̂.... zih^) EGnxl from a left

Jordan chain associated with the latent root 
Xi 

and the j-th

primary latent vector. The chain rule is given by

t	 (R)	 `At0 i ) (Q-1)	 1 d2At(X i) (R-2)A ( a i ) z i + --EA—zi	 + 2I 62	 zi	 +...

1	 d(R-1)pt(^i)
	 (1)

+ (R^)[ d^) Z (I) - ^nxl'

	

	 1,2...,hj

(A.11)

where zi l) is the j-th primary left latent vector and h i
 is

the length of the Jordan chain. The vectors zi k) for

1 < k < h. are generalized left latent vectors of the j-th

primary latent vector.

Proof; The proof of this theorem follows directly from

generalized left eigenvectors z (k ) of the companion form.ci
Generalized left latent vector zik) will be formed from the

last m rows of Z ( k ) .	 vvvci
Generalized left eigenvector z (k ) can also be definedci

f	 from latent vectors z^k) of ; 
i , 

the latent roots X. and
ll	 i	 i

the lambda matrix A(X). Utilizing (A.7) and the chain rule

for z^, , it follows that left generalized eigenvectors

satisfy the relation;

85
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r im-1 z+ Alt m-2ai +...+At )z(k)+(m-1)am-2I+(m-2) taim-3+...+ t 
)z(k-1)+...i	 m-1 i	 Al	

Am-2 i

z^i	 UiI+A1J^i+A2)zik)+(2ail+Ai)zik-1).^.yik-2)

(a I t)z(k)+z(k-1)i +A1 i	 i

Z(k)
i

(A. 12)

where the latent vector zik) is defined only for 1 < k < h^.
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APPENDIX B

SOLVENTS OF MATRIX POLYNOMIALS

Associated with an m-th order lambda-matrix (A.2) two

types of polynomial, the right matrix polynomial

ARM = X  + A1Xm-1+...+Am,	 (B.1)

and the left matrix potynomia:.

AL (X) - Xm + Xm-l
Al+...+Am	(B.2)

are defined for XECnxn. Matrices XR , XLeCnxn are called a

right and a left solvent if AR(XR) = Onxn and AL (XL ) = Onxn,

respectively. In this appendix structures of solvents will

be examined in terms of latent roots and latent vectors and

theorems on the existence of solvents will be given at the

end.

n.xn
Theorem B.I.	 Let JiE 1C 	 i be a single Jordan block with

latent root ai of multiplicity ni < n and yil),yi2),

(n i ) nxl
y 
	 EC	 be generalized right latent vectors of A (1.)> then

M

X	 Y, Jm-k
k=0	 i i - Onxn.i

.
where Xi = [yil) yi2) ... yi (n 1) ] and AO = I.

87
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Proof:	 Let Y	 = l	 ..	 (n )ci	 yci)	 ycil 1, where y(j) is a primary

right eigenvector of the block companion matrix Ac(A.3).
l

Then it is not difficult to obtain Yci from (A.6) and Yci

is written as

Yi

Yci =	
YiJi	 (B.4)

Y Jm-1
i s.

From the chain of generalized eigenvectors (A.9) of the

block companion matrix Ac it follows tbviz

AcYci YciJi	 r

i.e.,	 -^
On 	In	 C11 .... 0 1- !	 Y 	

YiJi

On 	On	 T	 Gn	 YiJi	 YiJi

(B._`)

-Am -Am-1 -Am-2...	 Y	 ylJm

Thus, the last row of (B.5) provides the conclusion of the 	 I

theorem,	 vvv

n.xn.
Theorem B.2. Let JieC 1 1 be a single Jordan block with

latent root a. of multiplicity n.< n and z^ 1) , z^2),...,
(n )
	 Z 

z  i eCnxl be generalized left latent vectors of AM,  then

88
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	Y 	 YJ

	

YJ	 YJ2

YJni-1	 YJmL

On In On ...	 On

On On In ...	 On

-Am -Am-1
-A -2 ...-Al

89C` a

(B.9)
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n m-k	 _
kIOJi YiAk - Oninn

(ni) (	 (
where AO = I and Z i = [Zi	zi 

ni-1)	
Z( I.

t .

(n.) (n.-1)
Proof% Let Zc; _ [z(ni z(ni	 zci)It, where z(i ) is a

primary left eigenvector of the block companion matrix

Ac (A.3). Then it follows from (A.12) that

	

zci = [zi Ji l i ... Ji-1 Z 1 ]	 (B.7)

and

(B.6)

i

1

ZciAc - JiZci

i.e.,

[ Z i Jil i ... Jm-1 Z i ]	
On On .. On -A.m	 [J i l i *....Jm-1Zi]

In 0n..0nm-1

On On ,. In -A1	 (B.8)

The procf is obtained from the last column of (B.8). 	 DOV

nixni
Theorem B.3.	 Let J.EC	 be defined as the same way as

in Theorem B.1, Y = [Y l Y2 ... Y ZI ECnxn 
and J = Bdiag(J1R

J^, )ECnxn with Z n. = n. Then,
i=1 1
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Proof:	 Since

Y

YJ

YJm-1

	

Yi	 "' YR

YlJl ... YZJ9

Y Jm-1 ... Y Jm-1

	

1 1	 R t,

the proof is completed when (B.5) is appli%d block column-

wise R times.	 404

1	 nixni	 nxni
Theorem B.4.	 Let J leC	 , Z iEC	 be defined as the

same way in Theorem (B.2) and Z = [Zi Z2 ... ZR]t,

J = Bdiag(J1) J 2 ,...,JR )CC MM with	 n  = n, then,
i=1

[Z JZ ... Jm-1 Z]	 On ... On -A 	 [JZ J 2Z ... JmZ]

in . On -Am-1	 (B.10)

0'1... in -A1

Proof: Since

[Z JZ ...Jm-1 Z] = Z1 J 1Z 1 ... 
Ji..1Zl

m-1
Z2 J 2Z2 ... J2 Z2

M-1
ZQ JRZ Q ... JQ ZQ

90
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when (B.8) is applied block rowwise t times the proof is done.

vvv

Theorem B.5. Let JeCnxn be the same as in Theorem B.3.

If n columns of YeCnxn (n right latent vectors including

generalized right latent vectors) are linearly independent,

then YJY -1 is a right solvent of A(A).

Proof: From the last block row of (B.9)

m

IOAkYJm-k = 0nxn with A 0 = I.
k 

(B.11)

Since Y -1 exists by the hypothesis post-multiplying y -1 at

both sides of (B.11) gives AR (YJY-1 ) = Onxn' which implies

that YJY-1 is a right solvent of AM by the definition.

vvv

Theorem B.6. Let JeCnxn be the same as in Theorem B.4.

If n rows of ZECnxn (n left latent vectors including gener-

alized left latent vectors) are linearly independent, then

Z -1JZ is a left solvent of A(1).

Proof: From the last block column of (B.10)

m

k=
J
m-k 

ZAk = Onxn, with A0 = I.	 (B,12)
0

Since Z -- exists by the hypothesis pre-multiplying Z -1 at

both sides of (B,12) gives AL (Z -1JZ) = 0nxn' which implies

that Z -1JZ is a left solvent of A(A) by the definition,

vvv
91
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APPENDIX C
	 n

PROOF OF THEOREM 3.3

Proof [42, PP..48-491 We have

A(A) = Ao xm + Aixm.l+...+Am

= A
G Am-l

(IA-R) + (A0R+A1)Am-1 + A2Am-2 +...+Am

= [AO am-1 + (A0R+Al )a
m-2 ] (IA-R)

+ (A0R2+AIR+A2 )Am-2. + A3 Am-3 +...+Am

= [AO am-1+(AOR+A1 )Am-2 +...+(A0Rm-1+AlRm-2+...+Am_1)](IA-R

+ (A0Rm+A1R
m-1 +...+Am_1R•IAm)	 (C.1)

If R is a right solvent of A(A)

ARM = A0Rm + A1Rm-1+...+Am = 0..

Thus, the last equality of (C.1) implies A(A) is divisible

on the right by (IA-R) with quotient of (m-1)th order

iambda-matrix. This provides the necessity of the theorem.

On the other hand, if A(A) is divisible on the right

by (IA-R) AR (R) must vanish, which is the definition of a

right solvent. Now, the sufficiency of the theorem is proven.

In a similar manner, divisibility on the left by (IA-L)

can be shown without any difficulty. 	 ppp	 -
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APPENDIX D

PROOF OF THEOREM 3.11 [59]

For an arbitrary matrix A, define

H1 2(A + A*)

HZ	 2 (A - A*)

then, Hl , H2 are Hermitian and

A = H 1 + jH2'

According to the Rayleigh Principle, for every eigenvalue

X of A we have -

Rea = max Re x A x

x:W0	 x*x

1

x;60 3-7K 
2 (x*Ax + x*A*x)

x*HIx
= max— = amax(H1)

x^0

Similarly,

Pa

1

max I x*AxIma <_	 m x*x: ^max(H
X;40

2),

Im,X	
minRe x*x ^'min(H1)

and .
Im1 2'min Im —	 =Xmin(H2)'x#0

93
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COMPUTED DAMPING MATRIX C
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APPENDIX E

THE ACTUATOR MATRIX AND THE DAMPING MATRIX C OF EXAMPLE 2

ACTUATOR MATRIX

I
I
I

r
C

°C

L
LL ---- .

	0,7922	 1.2310	 1.1739

	

-0.1622	 .0,3950	 -0.4040

	

1.2310	 1,8041	 1,7640

	

-0,0861	 .0.4779	 -0.5441

	

1.1739	 1.7b40	 1.5464

	

0,2579	 -0.1752	 -0.3407

	

0.7593	 1,0120	 0.7784

	

0,6505	 0,2909	 0,0434

	

0,2947	 0,3231	 0.0007

	

0,7093	 0.5731	 0.3245

	

0,0451	 .0,0491	 -C,3243

	

0.5339	 00682	 0.3094

	

0,0716	 0.0527	 -0,0984

	

0,0382	 0,0807	 0.0365

	

0,2240	 0.3760	 0.3061

	

-0,3424	 -0,2460	 -0,2476

	

0.2815	 0.5468	 0.7352

	

-0,3082	 -U,1851	 -0.2630

	

0.1286	 0,3589	 0.6647

	

0,1507	 0,3195	 0,101A

	

-0,1622	 -0.0861	 0.2570

	

0.7247	 0,9892	 0,7020

	

-0.3950	 .0,4770	 -0.1757

	

0.9892	 1.3891	 1.222A

	

. 0.4049	 • 0.5441	 -0.340?

	

0.7020	 1,2228	 1.3755

	

-0.1824	 .0.2541	 -0.1746

	

-0.0208	 0,5335	 1.0712

	

0,1237	 U.170.0	 0.1300

	

-0,7800	 -0,3284	 0,4596

	

0.31 99	 0.43u9	 0.300u

	

-1.1643	 .0,9399	 .0.17on

	

0,3082	 0.3A95	 0.2005

	

-1,0226	 -1,0753	 -0,6020

	

0,1454	 0,1275	 -0,0709

	

-0.5427	 .0,8120	 -0.717A

	

-0,0181	 .0,1131	 -0.2763

	

-0.0067	 -0.0214	 -0.5826

	

.0,0608	 .0,1501	 -0,2410

	

0.0061	 -0.1391	 -4,3133

0.7593
0,1824
1.0720

-0.2541
0.7764

-0.1746
0.1004

-0,0013
-0.5147
0,1428

.0.6898
0,1445

-0.3505
-0.0241
0.2559

-0.2761
0,7503

-0.44b3
0.8780

.0,3790
0.6505

-0.0208
0.2909
0.5335
0.0434
1.0712

-0,0013
1,3580
0,0602
1,2536
U.0594
0.7876

-0,0851
U. 1538

-0.2954
-0,3777
-0,4016
-0.5890
-0.2888
.0,4206

0.2947
0.1237
0.3231
0.1108
0.0007
0.1302

-0.5147
0.0602

-0.9230
0.0249

-0.9722
0.0206

-0.6135
-0.0351
-0.0210
-0,2279
0.5258

-0.5395
0.8109

-0.8029
0,7893

-0.7800
0.5731

-0.3280
0,3245
0.4596
0.1428
1.2536
0.0249
1.6567

-0.0867
1.4470

-0.2222
0,7340

-0.3410
-0.0810
-0.3616
-0.5694
.0.2354
.0.4922

	

0.0451	 0.0716

	

0.3199	 0.3082

	

-0.0491	 0.0527

	

0.4349	 0.3895

	

-0.3243	 .0.0984

	

0.3004	 0.2005

	

-0.6898	 .0.3505

	

0.0594	 .0.0851

	

-0.9722	 .0.6135

	

-0.0867	 .0.2222

	

-1.0178	 .0.7821

	

.0.0578	 .0.1041

	

-0.7821	 .0.7870

	

0.0280	 0.1366

	

-0.3535	 -0.6282

	

.0.0469	 0.2239

	

0.0496	 -0.3735

	

-0.3951	 .0.0327

	

0.4199	 -0.1232

	

-0.8800	 .0.5569

	

0.5339	 0.0382

	

-1.1643	 .10226

	

0.4682	 0.0807

	

.0.9399	 -1.0753

	

0.3094	 0.0365

	

-0.1790	 -0.6020

	

0.1445	 -0.0241

	

0.7876	 0.1538

	

0.0206	 -0.0351

	

1.447D	 0.7340

	

.0.0578	 0.0280

	

1.4321	 0.7748

	

-0.1041	 0.13bb

	

0.7748	 0.2663

	

-0.1248	 0.2273

	

-0.0989	 .0.4290

	

-0.1148	 0.2401

	

.0.6451	 -0.0213

	

-0.0698	 0.1539

	

.n,5641	 -0.6343

0.2240
0.1454
0.3760
0.1275
0.3961

•0.0709
0.2559

-0.2954
-0.0210
0.3410
0.3535

-0.1248
-0.6282
0.2273

-0.7505
0.4561

-O.b953
0.3581

-0.5226
-0.0535
-O.S424
-0.5427
-0.2460
-0.8120
-0.2476
-0.7170
•0.2761
0.3777

-0.2279
-0.0870
-0.0469
.0.0989
0.2239

-0.4290
0.45bl
.0.1
0.5123

631

-0.9675
0.3370

-0.6536

	

U,2b15	 0,1286

	

-0.U181	 -0.0648

	

U.5468	 0.3589

	

-0.1131	 -0.1501

	

0,7352	 0,,1647

	

0,2763	 -0,241.9

	

0,7503	 0,8780

	

-0,4016	 -0.2088

	

0.5258	 0,8109

	

-U.6616	 -0.2354

	

0,0996	 0,4194

	

-U.1148	 •00698

	

-0,3735	 -0,1232

	

0,2401	 0,1539
00953 -0.5226

	

0,5123	 0,3370

	

-0.7448	 -0.5583

	

0.5398	 o.3Y17

	

-O,b583	 -0,2485

	

0,2975	 0,2921

	

-0.3082	 0.1507

	

-00867	 0.0861

	

-0,1851	 0,3195

	

0.4214	 -0--.1391

	

-0.2630	 0.1018

	

.0.5826	 -0.3133

	

.0.4463	 -0.3790

	

-O.SB90	 -0,4206

	

-0.5395	 -0.8029

	

-0.5694	 -0.uY22

	

-0,3951	 -0,8800

	

• 0,6451	 -0.5641

	

-0.0327	 -0.5569
•0,8213-0,6343

	

0,3581	 -0,0535

	

.0.9675	 -0.6536

	

0,5398	 0.2975

	

. 0.9090	 -0.5595

	

0,3917	 0,2921

	

-0.5595	 -0.3273

1 Two consecutive lines make a row of the matrix C.
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