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ABSTRACT

The objective of the research was to develop numerical
methods of reducing the computational task associated with
the assignment of damping to the large flexible space struc-
ture, the dynamics of which had been approximated to a
second-order linear matrix ordinary differential equation by
the finite-element method. |

An efficient decoupling algorithm by which selected
modes can be damped while the other modes retain their pole
locations was devised in order to alleviate the computational
burden caused by the high dimension of the system. Some
unjque properties on a class of the second-order lambda-
matrices were found and applied to determine a damping matrix
of the decoupled subsystem in such a way that the damped
system would have pre-assigned eigenvalues without disturbing
the stiffness matrix. The resulting system was realized as
a time-invariant velocity only feedback control system with
desired poles., Another approach using optimal control theory
was also applied to the decoupled system in such a way that
the mode spillover problem could be eliminated. The pro-
cedureS'Qere tested successfully by numerical examples.

Since the decoupling proéedure required only eigenvec-
tors of the selected modes, the computing time was reduced

significantly when the number of modes involved in damping

PRECEDINE__ PAGE BLAMK NOT FILMED
i )_!_\L

b o or b R e R, -

et A



assignment. was less than one fourth of the total modes.
Therefore, in large systems, only a few of the low frequency
modes need additicnal damping and the methods of decoupling
and control developed in this work may be attractive for the

vibration control of the large flexible space structure.
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.CHAPTER I
INTRODUCTION

1.1 Querview

It is well known that one of the problems inherent in
control of large space structures is that of vibration sup-
pression. The vibration control is crucial especially when
the structure is very large and mechanicallv flexible. In
particular, space structures such as satellite antennas or
solar energy collecting panels are expected to be very large.
Fortunately, with the advent of a space transportation system
the concept of the large and flexible space structures has
become more realizable than ever before. However, because of
the capacity limitations of the space transportation system
it may be mandatory that the structure be constructed of
light materials which have very low natural damping. There-
fore, it is obvious that a certain control action is required
to provide the large structure with sufficient damping, which
in turn could maintain the stability of the structure against
passible disturbances. This comparatively new control pro-
blem within the field of multivariable control systems was
considered in this work and a candidate solution to the pro-
blem was addressed.

A large space structure may be described as a continuum

W
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by a set of simultaneous partial differential equations [1].
The parameters contailned in the equations are, in general,
continuous functions of the spatial variables. Thus the
control system is in the realm of a distributed parameter
system. However, even though the distributed parameter sys-
tem is rich in theory [2-4] the implementable sensors and
actuators are difficult to obtain in the infinite dimensional
space. Consequently, a common approach to modeling is to
convert the partial differential equations of the distributed
system into an infinite set of ordinary differential equations
through spatial discretization [5-7]. A finite number of
modes are then retained for control. The resulting second-
order linear matrix differential equation is now of high
dimension and is difficult to handle on a digital computer.
Moreover, the dimensionality problem is compounded when the
second-order matrix differential equation is recast in the
state variable form.

The objective of this work is to investigate numerical
methods based on the properties of the second-order lambda-
matrices and to devise methods of reducing the computational
task associated with the finite-element model and the assign-
ment of damping to the structure. The dawmping assignment
will proceed in two different directions; eigenvalue reloca-
tion by velocity feedback and optimal control. Each of the

methods will be based on devising an efficient decoupling



technique by which selected modes can bte damped with all other
modes retaining thelr pole locations. Although it may not be
necessary, the theory of the eigenvalue relocation will be
developed on the basis that tle stiffness matrix will not be
changed,

In this work we employed the properties of the lambda-
matrices with the hope that we could alleviate the dimension-
ality problem mentioned above. Since the inceptlon of the
term ''lambda-matrix" [8] much progress has been made on the
subject not only in theoretical development but also in the
application to the system analysis and design. Nevertheless,
the second-order system which is abundant in the real systems,
for example, in dynamic structural analysis has often been
overshadowed by high-order systems. Although the high-order
system embraces the second-order system as a member, the
latter may have very unique properties not common to the
former. This was the primary motivation of this work.

Therefore, for a clasr of the second-order lambda-
matrices, we established some unique theorems which would
explain the movement of latent roots after a damping matrix
was added to the undamped system. These theorems were applied
to compute the damping matrix of the decoupled subsystem in
such a way that the damped system would have exact pre-
assigned latent roots without disturbing the stiffness matrix.

The resulting system was realized as a velocity feedback

LN



system with desired poles.

The optimal control theory was also applied tu the de-
coupled subsystem so that the computational load for the
procedure was reasonable ancd the mode spillover problem could
be eliminated. The method is similar to that of reference [9]
where the modes are decoupled and the optimal control is
determined for each mode. The main difference is in the
method of decoupling and the computaional procedure.

In Chapter I1I, a large system of second-order ordinary
differential equations was formulated by the spatial discre-
tization of the partial differential equations which had been
assumed to govern the structure. After changing coordinate
systems the statement of the problem was presented. 1In
Chapter III, definitions and theorems on the lambda-matrices
were collected and followed by the system properties developed
in this work. Based on this work the decoupling scheme,
eigenvalue relocation and velocity feedback control synthesis
schemes were illustrated with examples in Chapter IV. The
modes decoupling procedure of the state matrix and the optimal
control of the selected modes were described in Chapter V.

The conclusion and recommendations for further research were

given in the final chapter.

1.2 Previous Work and Related Literature ~

1.2.1 Control of Large Structures i

In the past several years, diverse groups of scientists %
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and engineers devoted much effort on the research of large
flexible space structures. For a broad view we refer to a
comprehensive survey paper [l]. In addition, we list some
of the literature which 1is closely related to our work.

Most works on the control problem of this dynamic system
were defined in the state variable form. T.c primary well-
developed feedback control techniques with some variations
wure applied to this problem: they are optimal control [10]
and pole assignment [11] by constant state feedback. These
two control schemes were examined in the form of full state
feedback for possible use in the active vibration control of
the system and some expected problems were pointed ou: in
[12,13].

Most authors avoided full state feedback for several
reasons — an awareness of the high dimensionality, the diffi-
culties associated with the measurement of the states as well
as the complexity of the Riccati equation. Instead, they
chuge local states or outputs as feedback énd/or worked on
decoupled modes independently. In [14) the local control was
defined as a control law that included feedback of only those
state variables that were physically near a particular actu-
ator. Then a necessary condition for the solution of the
linearn quadratic optimal control problem with the constraint
of the local state feedback was derived. 1In [15] the sub-

optimal output feedback control scheme originated in [l6] was



applied to the system instead of the computationally difficult
optimal one [17). However, this result sacrifices the guar-

antee of stability for the closed-loop contronl system.

it

Similarly, the inverse optimal control principle [18,19] was
applied to select the output feedback gain matrix in an
iterative manner_.[20],. In another note [21], a concept of
member damper controller: was introduced and the problem of
selecting diagonal velocity feedback gains was formulated

as an optimal output feedback regulator problem. Finally, an
optimal control of decoupled modes was pursued on the block
diagonally decomposed subsystems [9,22,23] rather than on the
full system. Also, the same decoupling technique was applied
to the control of flexible gyroscopic systems [24,25].

For the same reason as in the optimal control, the pole
assignment was carried out ty output feedback to alleviate
those difficulties mentioned above [26-29]. A direct velocity
feedback control was suggested as a special case of the output
feedback [30]. Under some restrictions, even though the
direct velocity feedback controller can not .destabilize any
part of the systcem, the exact pole locations can not be pre-
dicted apriori. Therefore, the initial decision of locating
and sizing the dampers was based on guesswork and engineering
judgement. Concerning this p:oblem an idea [31] was pre-~ ;
sented, which enabled the researcher to predict amalytically

the behavior of the closed-loop system by applying root
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perturbation techniques. However, this was only possible
when the controller was allowed to modify moderately the
natural frequencies nf the structure.

Aside from the active control, passive energy dissipation
mechanisms of the vibrating systems were studied and a future
design process for sufficient structural damping was sug-
gested in [32]. Also, a model with the damping matrix pro-
portional to the positive square root of the stiffness matrix

was rigorously investigated in [33].

1.2.2 Second-Order Dvynamic Systems and Lambda-Matrices

It is well known that undamped linear second-order sys-
tems possess classical normal modes, whereas in damped
systems this property is generally violated. However, a
special class of damped linear systems possesses the classical
normal modes. A necessary and sufficient condition for this
class of the systems was shown in [34]. Also, the stability
was analyzed for second-order systems [35] and for general
high-order systems [36]. In [37] the computational methods of
eigenvalues and eigenvectors of second-order systems were
discussed and these eigen-problems in a user supplied inter-
val were examined in [38]. Finally, controllability and
observability [39], a solution of the eigenvalue problem [401],
and a modal analysis for the response of this system [41] Were
studied on linear gyroscopic systems.

On the other hand, the ana’ve=is of wvibrating systems by

PN
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lambda-matrices was introduced in earlier works [8,42].

This mathematical area was rigorously developed by a group

of mathematicians and, as a result, a comprehensive treat-
ment was provided in [43]. Along with this development, the
algebraic theory of the matrix polynomials [44], algorithms
of their solvents [45,46] and spectral factors [46,47] of the
corresponding lambda-matrices were established. Also, trans-
formations of solvents and spectral factors were developed
in [48]. Consequently, as multivariable theories attracted
much attention from engineers lately, those lambda-matrix
related theories began to be applied to such engineering
fields as filter design [49,50], partial fraction expansions

[51] and multivariable control systems in general [52,53].
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CHAPTER II

FORMULATION OF THE PROBLEM

2.1 Description of the Mathematical Model

The large space structure is assumed to be described by

the following system of partial differential equations [1,5];

Mo(p)—az—“;i-;‘i)— * coﬂl—%ri’- + Kgu(p,t) = £4(p,t), (2.1)
where u({p,t) is the displacement of an arbitrary point p of
the domain D off its equiribrium position, M,(p) is the
distributed mass, KO is the time-invariant symmetric non-
negative differential operator of order 2P, and fo(p,t) is
the distributed control vector. The damping term CO—EL%%EL,
which is symmetric and represents the internal structural
damping, is thought to provide the structure with very weak
mode danping. The displacement u(p,t) must satisfy the
boundary conditions at every point of the boundary S of the

domain D;
Bi u(p,t) =0, i=1,...,P (2.2)

where Bi’ i=1l,...,P are linear differential operators.
Because of the theoretical difficulties and practical

complexities arising from the implementation of the infinite

br:.mc.l:: ‘1!!2,‘3‘
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dimensional control system [54] we approximate the infinite
dimensional system by a spatial discretization of the partial
differential equations. Among a variety of available methods
we choose a finite-element methud such as Galerkin's method
[55].

It is assamed in the method that an approximate solution
of (2.1), G(p,t), which also satisfies the associated boundary

coaditions (2.2) could be expressed as

~ n
u(p,t) = § ¢;(p)v;(t) (2.3)
i=1
where ¢i(p), i=l,...,n are comparision functions® depending
only on the spatial coordinates and vi(t), i=l,...,n are

time-dependent generalized coordinates. Since (2.3) is only
an approximazte solution it may not satisfy (2.1) exactly.
Hence, in Galerkin's approach, the v;(t) is chosen to mini-
mize the wean-square equation error when (2.3) is substituted
into (2.1).

Once vi(t) is determined, substituting (2.3) into (2.1),

pre-multiplying both sides by ¢§(p) and integrating over

! Comparision functions are any arbit?ary functions satisfying
all the boundary conditions of the eigenvalue problem and are
2P times differentiable over domain D{6, P. 140]. In
Galerkin's method they could be linear combinations of piece-

wise linear functions or cubie splines, etc.

10
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the domain D lead to

i t Tos o t
izlvi(t)fD¢r(p)Mo(P)¢i(p)dD + izl Ji(t)ID ¢r(p)co¢i(p)dn

i=1

(2.4)

where the superscript t denotes the transpose of the matrix.

Thus, by introducing the notations

[ sEmyre; prap = fi_y,

’p
J (p)K ¢i(p)dD = Kri’
ID¢§(P)f0(P,t)dD = fr(t),
(2.4) reduces to
n
Z M 175 (€) + Z c v (t) + E K v, () = f (t),r=1, n
i=1 ri i=] ri

(2.5)

where fr(t) is the generalized forces associated with the.

generalized displacement v.(t):. It must be noted that

~

Mri=Mir and Kri=Kir because of the charateristiecs of Mo(p)

11
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and KO' Now, by letting

]

v(E) = [vy(£),...,v (£)1F

fA

and

~ ~ ~ t
f(t) [fl(t),oon’fn(t)]
(2,5) can be written in the matrix from

LYl

Mv(t) + Cv(Et) + Rv(t) = £(t), (2.6)

Rnxn

where the mass matrix Me is symmatric positive definite,

the damping matrix CeRnxn

is symmetric, and the stiffness
matrix KeR"XD is symmetric semi-positive definite,
By changing coordinates v(t) to x(t) by x(t)= M%v(t)

and pre-multiplying both sides of (2.6) by M"% we have
Ix(t) + Cx(t) + Kx(t) = £(t) (2.7)

where I is the (nxn) identity matrix, C = M-%CM_i, K = MTERME
and £(t) = ﬁ—%%(t). The change of the coordinates preserves
the system eigenvalues as well as "he symmetry of the system.

The associated homogeneous system of (2.7),
IX(t) + Cx(t) + Kx(t) =0 (2.8)

can be transformed to a corresponding lambda-matrix by

LT e S

assuming a solution x(t) = x4, exp(it) or by taking the

TN N

Laplace transform of (2.8) with zero initial conditioms.

12
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The lambda-matrix thus obtained is expressed as

AV = TA2 + CA + K, (2.9)

Y

and this monic symmetric second-order lambda-matrix will be

the main subject of chapter III.

2.2 Statement of the Problem

Consider for a monent a single degree of freedom
spring-mass-damper system with free vibration. This system

is characterized by a homogeneous differential equation
X(t) + 2gw_x(t) + wix(t) =0, (2.10)

where x(t) denotes the displacement from the equilibrium
position, z is known as viscous damping factor and Wy, is
the natural frequency of the system. BSubstituting the

solution y(t) = aexp(it) into (2.10) yields the character-

"istic equation,

2 . 2 _
AS 27wnh + w, = 0,

i = o 5 -2 = . - or2
with two roots, Ay Lw, + Jmn/l r? and Az Gu an/l C

where j=/-1. Hence, the solution of (2.10) can be written as

x(t) = aleXP(llt) + azexP(Azt), (2.11) -

where oy and @, are constants depending on the initial dis-

13
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placement and velocity.
Now, from the above elementary solution of the homo-

geneous system (2,10) we can observe several characteristics

i

of the system. First of all, the behavior of the system
with non-zero initial conditions (disturbarnce) depends solely
on the value of ¢, the viscous damping factor: When £>1 the
motion of x decreases monotonically with increasing time.
This is the overdamped case. When 0<z<l the system is under-
damped and it decays sinusoidally. 1In case f = 1 the system
is ecritically damped and is the limit between the regions.
When <0 the system becomes unstable. So, it explodes(z<0)
or oscillates(z=0) under the presence of a small disturbance.
Therefore, the stability of this single degree of freedom
system is determined only by the sign of z; it is stable if
>0, otherwise it is unstable.

Furthermore, the damping factor appears explieitly in
the equation so that the designer can choose this quantity
before testing and can predict the system response. This
property is especially desirable when the design specifica-
tions are very stringent as in the case of the large space
structure. Also, this arbitrary assignability of damping
may be critical under the system parameter uncertainty, in
which case the margin of stability plays a great role in the
design of robust system.

Not surprisingly, none of these properties of the scalar

o
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system belongs to the coupled multi-degree of freedom system
as in the example of the coupled two-degree of freedom system

shown below[35]:

1 0]. 8 of. 24.8 14.5647
x(t) + R(E) + x(t) =0
0 1 0 -2 14.5647 9.2
(2.12)

The eigenvalues of this homogeneous system are A1,2 = ~14j
and A3’4 = ~2+2j, so that the system is asymptotically
stable. Nevertheless, the damping matrix is not positive
definite, which indicates a completely different property
from that of the single degree of freedom system.

Concerned with the development of unique properties
on a class of second-order dynamic systems and with damping
assignment to the systems we define the problem as follows:

i) to develop properties of a homogenecus second-order

symmetric system

IX(t) + Cx(t) + Kx(t) = 0 (2.13)

where CeRT! ig symmetric and KeR™M*D ig symmetric semi-positive

definite, 1i) to find a symmetric damping matrix GeRP*R with

given K such that (2.13) has some (or all) pre-assigned system

eigenvalues, iii) to determine a collocated velocity only feed-

back control vector f(t)sRmxl of Ié(t) + Kx(t) = Bof(t),-

so that the closed-loop system is identical to the system

mx]

found in ii), where the output y(t)eR is defined by

15

e

i



—_———

y(t) = Bgi(t), BoeRnxm’

and control vector f(t)eRmxl by £(t) = Gy(t) with a time-

invariant gain matrix GeR™ ™,
In the second part of the work, we define the system

equation in state space form:

N(t) = An(t) + BE(t), BeRZPXm (2.14)
wheret
x(t)
nce) & I: :I
x(t)
0
ad | " .
K

We seek a control vector f(t) which is a function of state
vector; f(t) = I'n(t), FeRmXZn and minimizes a certain quad-
ratic cost functional with constraints (2.14), but does not
change all of the eigenvalues of the closfed-loop.system

matrix except for a few modes selected for control.

1 . . . )
The notations 0n and I (or Onxm and Inxm) indicate nxn -
zero matrix and identity matrix (or nxm). These will be

used throughout the work unless otherwise stated.

16 '?
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CHAPTER III

LAMBDA-MATRICES AND LINEAR SYSTEMS

3.1 Lambda-Matrices, Matrix Polynomials and Solvents

It was shown in the previous chapter that a second-order

lambda-r.. <rix,

2

A(A) = IA° + CA + F (3.1)

was obtained from the Laplace transformation of the system
equations (2.8) with zero initial conditions. 1In this
section definitions and theorems on the lambda-matrices,
matrix polynomials and solvents, which are essential to the
development and design of damping system, will ba summarized
for the continuity of the presentation. Proofs of the
theorems and more rigorous treatment of the general case

are given in Appendix A for lambda-matrices and in Appendix B
for their solvents.

A latent root of a lambda-matrix A(A) is defined as a
number AeC such that det A(A)=0 and a non-zero vector yscnxl
is called a right latent vector corresponding to the latent
root A if A(M)y=0_.1 where det denotes the determinant.

Cnxl

Similarly ze is a left latent veetor if AF(1)z=0

nxl’
As in the state space modeling of any matrix differen-

tial equation the lambda-matrix #()A) can be associated with

17



the block companion matrix ACERanZn which has the following

structure;

It is shown in Appendix A that the 2n eigenvalues of A, are
the latent roots of A(A) counting multiplicity. Therefore,
the terms ''system eigenvalues' and '"latent roots' of A(A)
will be used interchangeably throughout this work.
Associated with the lambda-matrix (3.1) are two types

of polynomials, a right matrix polynomial,

Ag(X) = X* + CX + K

and a left matrix polynomial,

AL (X) = X2 + %C + K

where XeCPE®, 1f Ap(Xp)=0__ and A (X, )=0__ then X, and

XL are called a right and a left solvent of A(XA) respectively.
The right(left) solvent is viewed as a matrix root of the
right(left) matrix polynomial and the solvents retain com-
plete information of lateat roots and latent vectors. These
characteristics of the matrix polynomials are explained in

the following theorens.

Theorem 3.1. If A()) has n linearly independent right

latent vectors Vi i=l,...,n corresponding to the latent

18
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1roots of A(A), Ai’ i=1l,.,..,0 (A is not necessarily distinct)

then YAY'1 igs a right solvent, where Y = [yl,...,yn] and

o= diag(Af, .. adg).

Theorem 3.2, If A(X) has n linearly independent left

latent vectors z4, i=1,...,n corresponding to the latent

roots of A()A), A,y 1i=1,...,n (Ai 1s not necessarily dis-

i
tinct) then z-1pz is a left solvent, wrere Z = [zl,...,znlt

and A = diag(kl,...,kn).

Proofs of Theorems 3.1 and 3.2 are included in Appendix
B, Notice that these theorems are special cases of Corol-

laries B.5 and B,6 in the appendix, respectively,

Theorem 3.3. A(X) is divisible on the right(left) by

IA-R (IX-L) if and only if R(L) is a right (left) solvent
of A(A).

Proof: See Appendix C.

3.2. Properties of A()L) = 112 + Ci + K

Definitions and theorems in the previous section can be
directly extended to n-th order lambda-matrices, whereas thne
properties developed in this section may be wvalid only on
the second-order real symmetric system, However, these

properties will serve as the foundations for the damping

system synthesis which will be developed in the next chapter.

Theorem 3.4. Suppose all latent roots of A{)) exist in

19
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distinct complex conjugate pairs. If a constant matrix

nxn

ReC is a right solvent of A()) and R has one latent root

and corresponding latent wvector out of each complex conjugate

pair, then

i) R¥* is a left solvent of A())

ii) A(x) = (Ix - R¥) (Ix - R) (3.2)
iii) R*R =K (3.3)
iv) R* + R = -C (3.4)

where * indicates complex conjugate transpose.

Proof: i) According to Theorem 3.3 A()) can be factored

on the right by (Ix - R), 1i.e.,

A(A) = Q(x) (Ix - R),

where @(A) is a quotient lambda-matrix. Upon taking the

complex conjugate transpose of A(A) it follows that

A*¥()) = (Ia* - R¥) Q*(}).

But, since C and K are real symmetric matrices, A¥())=A(1%).

Therefore,
A(M) = [A*(A)1* = AX(p*) = (Ix - R¥)Q*(A%)

Thus, R* is a left solvent of A()) by Theorem 3.3.

ii) The factorization 1s obvious from the fact fhat R and
R* Have a disjoint and exhaustive set of latent roots and
Q()) is of first order.
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iii and iv) Equating the coefficient matrices of (3.1) and

(3.2) completes the proof. AR

Lemma 3.5[58]. Suppose there exists a matrix U-such that-.

U 4 RK—%. Then, under the same assumption of Theorem 3.4

i) U is unitary

i) T Jagl% = T w (3.5)

i=1

where Ai and mi are eigenvalues of R and K, respectively

and |A;| denotes the absolute value of Age

Proof: i) UU* = RK'IR*
RR™L(R-1)*R* {from (3.3)}

=1

K ER#RK 2
K %K% {from (3.3)}

U*0

It

=1
1i) From i) we have R=UK%. Taking the determinant and

absolute value of this equation in order, we have

|det R| = |det UJ-|det KZ|
or
}:IlfA|=]ITIIw
i=1 i=1 L
where positive definiteness of K was utilized. PAAY

.This lemma establishes the relationship between natural

frequencies and latent roots of the damped system and will
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play an important role in assigring arbitrary damping, which

will be shown in the next chapter.

Theorem 3.6. Let Yy i=]l,...,n be latent vectors of A(})

*
with yi*yi = 1 and define By = y; Ky;. Then,

2 2 .
Wisn € By S wpo i=l,...,m, (3.6)

where wéi and w; are the minimum and the maximum eigen-

n ax

values of K, respectively.

*
Proof: Let the Rayleigh's quotient f(x) = %;%5 where
. ]

nxl

xeC Wher x is replaced by eigenvectors of K the

Rayleigh's principle provides the proof immediately. 7YV

Lemma 3.7. Let AieC and yianXI, i=l,...,n be latent

roots and a set of latent vectors of A(A) such that yi*yinl,
1 = * = * 1 ==

and define oy %yi Cy, and 8; =y; Kyi, i=1,...,n. Then,

the system can be classified as follows:

* 2
i) When ai>0 and aizsi

—1 - 2‘ —
a.) ;\.i Ct;i * I/ai Bi’
oo ol 2
b) A;A; = By, where Aj a; + /di - B,
T = - - 2
Ai g Jai -Bi and

¢) the i-th mode is overdamped.
0 2
ii) When ai>0 and a;<B;

= - s - 2
a) A ay J/Bi a7

22
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2 o
b) lhil By, and
¢) the i~th mode is underdamped.
1ii) When ay = 0 the i-th mode is oscillating.

iv) When a; < 0 the i-th mode is unstable.

Proof: Since A, and y; are latent roots and latent vectors
of A()A) respectively, (Ilg + GA; +‘K)yi = 0. After pre-

multiplying yi* 1¢ follows that
A2+ 2a50; + B; =0, i=1,...,n.

Therefore, the latent roots can be expressed in terms of o,

and By i.e., Ay = -ag F ﬁai - By which provides the proof.

i
AR
Lemma 3.7 reveals that the positive definiteness of

the damping matrix C is not a necessary condition for the
stability of the system. In other words, even though the
matrix C is indefinite it is still possible that there are
some latent vectors Yy such that yi*Cyi = ai>0, ;=1:...,n,
which is a necessary and sufficient condition for a stable
system. The result obtained in (2.12) can now be explained
by this theorem.

Also, Lemma 3.7 combined with Theorem 3.6 shows the
feasible region of latent roots of a damped system in terms
of natural frequencies of the undamped system. After a
damping matrix C is added to the undamped system,

A'(p) = IaZ + K, the new latent roots are bounded by the

23



concentric circles with radii of maximum and minimum natural
frequencies of the undamped system. This is illustrated in
Fig. 1 and the system A(XA) = 122 + €A + K is classified
according to the asymptotic stability of the modes in Fig. 2.
Furthermore, Lemma 3.5 indicates that the new latent roots
are totally governed by the natural frequencies of the
undamped system. However, their precise locations are
affected by the new latent vectors which will be changed
after damping is introduced. The shift of latent roots

due to damping will be explained after Lemma 3.8 (classical

normal mode) is presented.

Lemma 3.8. If the damping matrix C has the same mcdal

matrix as the stiffness matrix X

i AL |2 = w? i=1l,...,0 when w? > g2’
1) Ayl w; o, i=1,..., wf > af and
P doq —- = 2 s _ 2 < 2
ii) Aili we , 1 l,...,n when wi < &y,
where mi and Zui,;ial,...,n are eigenvalues of K and C,

+

respectively, aad A; and A; are the same as in Theorem 3.7.

Proof: By the hypothesis, let y_anXI in Lemma 3.7 be a
i

normalized eigenvector of both matrices C and K. Then,

B. = w?, i=1,...,n. Substitution of w? for B: in Lemma
i i i i

3.7 gives the result of Lemma 3.8 directly. vy

From this lemma we see the movement of latent roots

after damping is reinforced in case of the classical normal

24
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Figure 1: Feasible region of latent roots of the
underdamped system A(A) = Ilz + CA + K.
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modes. In this case the absolute value or the modulus of Ay
is equal to the eigenvalue of K, whereas in the general case
as seen in Lemma 3.5 multiplication of the moduli of g is
equal to the multiplication of the eigenvalues of K. The
shifts of latent roots for these two cases have been illus-

trated in Figs. 3 and 4.

3.3 Bounds on Latent Roots of A(X) = IxZ + C) + K

Careful examinations of the solvents of the linear
second-order system unveil some interesting relations between
solvent and coefficient matrices of the system. Based on
these relationships some bounds on the eigenvalues of the
damped system will be developed in this section. We separate

nxn

solvent ReC™™ into the real part RRERFxn and the imaginary

Rnxn

part Rye . Now, from Theorem 3.4 it can be shown that

RI is symmetric and the following relations hold for the

system;

£ 5

RR Bg * Ry =K (3.7
RE Ry = RyRy (3.8)
Rt + Ry = ~C. (3.9)

Before developing the bounds on the eigenvalues of the

system we introduce theorems necessary for the development. !
A xCax nxl
Theorem 3.9. Let £(x) = =% for xeR , X # 0 and
X X x

27
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AeRTED | 1f xeRnxl is an eigenvector of %(A + At), then £(x)

is the eigenvalue of %(A + At) corresponding to Q.

Proof: Let A and x be an eigenvalue and corresponding

eigenvector of %(A + AF). Then,

> xt(A + At)x 1 xtAx xtAtx - xtAx _ ~
A AtA '2-( At + "ata ) = S o - f(x)
2X°x ® XX
VVV.
xt X nxl
Corollary 3.10. Let f£(x) = = for xeR , ¥ # 0. If
XX

~ x1

xeR™* is an eigenvector of (-C) then f(ﬁ) is the eigenvalue

of (-%C) corresponding to Q, where C is the damping matrix

of A(A).

Theorem 3.11[59]. Decomposing an arbitrary matrix A into

A = H; + jH,, where H; and H, are Hermitian'; then for every

eigenvalue A of A we have

Apin(Hy) S Re A(A) < ap . (Hy)
Amin(Hp) < Im A(A) < Apax(H2)
where Amin’ Amax' Re, and Ig denote the minimum, the maximum

eigenvalue, real part, and imaginary part respectively.

Proof: See Appendix D AN

! Note that H1 and H, are defined as Hy a (A + A¥%),

H2 Q'é%{A - A*) and that in general they are not real.

30
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Lemma -3,12. Let ReC™™ be a right solvent of A(A). Then

the real parts of the eigenvalues of R have the following

bounds:
Amin(-gC) < Re A(R) < Amax(—%C)

where C is the damping matrix of A(XA).

Proof: Since Hj; e %(R +R¥*) = -%C from (3.4) Theorem 3,11

provides the proof immediately. A"AY

This lemma provides the bounds on the real parts of the

eigenvalues of the damped system.

31
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CHAPTER IV

SYNTHESIS OF DAMPED SYSTEM BY EIGENVALUE RELOCATION

4.1 Decoupling of the Stiffness Matrix

One of the major problems associated with the large
scale system is that of high dimensionality. One possible
approach to reducing the dimensiorality is to decouple the
system equations into subsystem equations where the col- ..
lection of subsystems retains the eigenvalues of the original
system. The most obvious method of decoupling the large
system is to compute the eigenvectors of the system and then
reduce the system equations to those of the Jorxdan form,

a total decoupling. It is not necessary and probably not
preferrable to decouple completely but to decouple only those
modes that are to have additiomal damping. This partial de-
coupling has an advantage in that the feasible lozations of
new eigenvalues are more flexible than the classical normal
mode case as shown in Figs. 3 and 4 of Chapter III. In this
section the theoretical background for the partial decoupling

will be developed.

Theorem &4.1. Let Diecnixni, i=l,...,% consist of Jordan
blocks of KeR™™ in such a way that no Jordan block is split
. 2
. ) . L
among D;'s and i£1n1= n. If Wi , i=1,...,% exist for arbit-

32
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A ahd

rarily chosen matrix Wiecnixni, K can:be-block  diagonalized

nx
R n

through a gimilarity transformation to Kpe of the form,

K (K

B = Baiag®pyr- - Xpgy)

where Bdiag(') indicates a block diagonal matrix and

= -1 i =

KBi ‘PiDi‘yi ’ l - 1,-..,2.
Proof: Let ¢ be an eigenvector matrix of K, ¥, = B,.

B diag
(¥1,.-,¥,) and D=By, (D},...,D)). Since v3! exists from
the existence of ng, i=1,...,% Ky can be expressed as Kp=
WBDWEI. When the equality D = o~ 1ge is substituted, K=
TkT"! is obtained where T & WB¢-1. Since T T exists,
the proof of the theorem is completed. AAY

The ¥; matrix in the above theorem is arbitrary and
T can be computed directly. However, the decoupled block
Kgs is, in general, not symmetric. The following lemma shows

a way to obtain symmetric blocks.

Lemma 4.2. Let KeR™™® be symmetric and of simple structure

and DiaRnixni be a diagonal matrix which consists c¢f eigenval-

£ - :
ues of i-th block with i:zj:lni=n. Also let ¢ be an orthogonal

eigenvector matrix of K. Then, K can be block diagonalized

into KBERnxn by a similarity transformation T such as

- _1 _ = =t = .‘:‘..t
KB = TKT N Where KB = Bdiag (¢11D1¢11,.-.,¢££D2¢2£),

ih

"y
2.
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911911 e 911%1
T = . . ,
= -t = —t
Po®le o %ap%90

and $ii’ i=l,...,% are orthogonalized matrices of $iisRnixni.

Proof: Substituting $ii for Wi, i=l,...,2 in Theorem 4.1

. - T =t
gives KBi : qbiiDquii and

= =t ; -t:--‘1
" f11911. - %1%
T = ¥p3" = : :
= _t = -t
00910 0 ®p0%4n vy

If the interest is in assigning damping to a few of the
low frequency modes, it is not neceszary to compute all of
the eigenvectors of K. Since most of the energy of the
system is in the lower frequency modes, a reasonably con-
trolled structure would require control of the first few
modes with the exception of the rigid modes. Under these
circumstances the following rheorem is useful for the eigen~

value assignment:

I ), S = %0E¢

3’ “Tn-q and

Theorem 4.3. Let E = Bdiag(I

34

31

L

SR U S



ORIQINAL TAGE 13

OF FoOR QUALITY

T = S8 + %E where 8eC™*™ i3 an eigenvector matrix of KeR"FT,

Then, T will block diagonalize K into the form Kp = Bdiag

(KB1’ KBZ) under a similarity transformation; K, = TKT'l,

B
where KBlequq has eigenvalues corresponding to the first q

eigenvectors of ¢ and the rest of them belong to KB?E
g (n-Q)x(n-q)

Proof[60]: Let ¢ be partitioned into four blocks

where ¢]lquxq and ¢22€C(n-q)x(n-q). Then, with E as defined,

T =28 + %E
= %[@E + Eole™t
411 qu(n-—-q)

= q,-l'
O(n-q)xq ~¢22

¢D¢"l,

-1

Since K

K, = TKT

_ -1 -1
= Baiag(911P1%11 922D2927)

provided that no eigenvalue Ai is common to both D, and D2.

- -1 .
When.we denote KBi = ¢iiDi¢ii’ i=1,2, the proof is completed.

'AAY

35
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The similarity transformation in Theorem 4.3 can be

obtained from the knowledge of the eigenvectors corresponding

to those modes that are to be decoupled. Let Py be the

eigenprojector! of the q modes that are to be decoupled;

I

P =0 q qu(n-q) ot

0(n-l)xq 0n-q

t t
911911 %11%21

t t !
921911 ¢21¢2{_J

1_,t

where it is assumed that ¢ is normalized such that ¢ ~=¢",

The matrix S defined earlier is then

§ = Pp - %In
and thus

Oq qu(n~q)

T = P +

D lo I
(n-q)xq n-q
Since the matrix Py contains only the first q eigenvectors

of K, [¢§l ¢§l]t, T has been shown to be constructed from

those q eigenvectors.

1 The eigenprojector corresponding to the first q eigen-

. . . . d t
valués of a simple matrix K is defined as Pp = i§1¢i¢i
where 95 is an i-th normalized eigenvector of K. For the

general case and properties of the eigenprojectors, seel51].
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The computational procedure given above can be utilized
to find KBl which contains the desired eigenvalues that are
to be moved away from the jw axis of the undamped system.
The computational technique to assign the eigenvalues will

be discussed in the next section.

4.2 Computational Procedure for the Damping Matrix Determination

Assume that the system stiffness matrix K is block
diagonalized into KBl and Ko and that KBl has the eigen-
values of the system that are to be moved. The subsystem
matrix KBl can now be further decoupled and it will also be
agsumed that KBl is block diagonalized to (2x2) matrices

K,. with two distinct real eigenvalues®. The theory given

Bj
previously can now be utilized to assign the eigenvalues
of the low-order subsystems,

2x1

Let AiEC and yiFC for i = 1,2 be the latent roots

and a set of independent latent vectors of the desired sub-
*
gystem with yi¥; = 1. Define a new set of vectors wieCZXI
; =L . = . .
such that w, = ¢jjyifor i = 1,2 where ¢jj 1s a normalized
eigenvector matrix of KBj' Let each component of L be

expressed in polar form,
Wi = @il exp(j@ik), i,k =1,2 (4.1)

1 Sﬁbsystem matrix KBj has real eigenvalues when the stiff-
ness matrix K is real symmetrié “and of simple structure.

This can be justified by Lemma 4.2.
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where a1 and Bik are the modulus and argument of the complex

[} . * = * =
number Wigeo respectively. Since Y%V, 1 then L 1 and

afy +aly =1 (4.2a)

a2, + agy = 1. (4.2b)
Furthermore,

wigwyy + W1Wyp = 2a;727,0080, (4.3a)

w§2W21 + w%':lw22 = Zazlazzcosez (4.3b)

A A
where @l = 612 - 811 and 92 = 821 - 822.

2x2

On the other 'hand, assuming,RjeC- is a solvent of the

damped subsystem with stiffness matrix K X from Theorem 3.4
we have

= R*R,. (4.4)

Ky .
Bj 373

Now let W = [w1 Wz], Y = [yl yz], Ak = diag(w%, w%) and
A = diag(ll, Az) where wi and Ai, i=1,2 are eigenvalues of

K,. and latent roots of the damped subsystem., Then from the

1

Bj
relations, KBj = Ejjﬂk$§j’ Rj = YAY ~ and Y = $jjw we have

W*AKW = AFWFWA

This matrix equation is then written as follows:

2 2 2 2 2 2 .
wjayy + wyag, WiWF Wy T woWi, Wy,
LHS =

2, 2 92 2 2 2
:’Iwzlwll towpwiawy,  wjany; + whas,

38
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AfAq Mg (Wiywyy + wiawyo)
RHS = (4.5)
AGhy (WEywyp F WEawgg) Aara

Equating elements of (4.5) and noting that the matrix is

symmetric we have three equations:

2.2 2.2 _ 2
2_2 2.2 _ 2

wE wWo, (AFA, - mz) = w¥ W (wz - A%¥A,) (4.6c)
117217172 1 1272272 1727 ’

Since wf,Wy, # 0! a complex number s can be defined from

(4.6c) as

2
* - o
JA FirWar %2 - M.
* -
WigWay  AfA, - w

(4.7)

(T

The number s can also be obtained from (4.1) as

* By the independency of w; and w, both w;, and w,, (or

Wiq and WZl).cannot be zeroes at the same time. If either
Wqg OF Wyy is zero then W11Woy = 0 except in two cases,'i.e.,
W= [é 2] and W = [g é] . It now follows from W = $§jY
that Y = [¢1 ¢2] and Y = [qaz ¢1] , respectively. These are

the classical normal mode cases.
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a.q,4a
1121 . .
§ = ————= (co0s80 + jsin®) 4.8
412222 (4.8a)
where @ = @1 + 02 = tan'l(Im.s/Re 5). (4.8b)

Theorem 3.4 also gives

= R% .
C RJ + R

BJ J (4.9)

and by a similar substitution as in (4.5)

=t = -1 -1
E € 3., = - (W) IpRuE - waw .
#5:Cp 3055 (W) " ARy A (4.10)
. ~ A =t =
with C,. = ¢..C_.d..
o Bi ~ ®33%Bi%;
MWW + WAWA = -W*Eijl (4.11)

Substituting the previously defined variables into (4.11)

we have a set of nonlinear equations:

™y 7 ~ T

. 2 | - =
a7y 2a11a12cose1 ays 6 201
: 11
a2 2a,8,,C080 a2 20
21 2122 2 22 2 (4.12)
a a C = -
Re s Eglcos@2+5llcos@1 1 12 Re t
22 12
a a C
Im s —glsin02+—llsin61 0] L 2%_ Im ¢t
i 422 412 R ]
where Cij’ i,j=1,2 are elements of CBj’ oy i=1,2 are real

4 %
parts of A; and t = (A + A,) (s + 1).
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The computational procedures for the subsystem can be
summarized as follows:
1) Compute the eigenvalues wi and normalized eigen-

vectors ¢i’ i=1,2 of KBj‘

2) Select new eigenvalues A; and compute J% = IAilz,
i=1,2.
3) Solve the set of equations for a%j, i,j = 1,2:
— st 5 ] -
1 1 ary asq 1 1
2 2 2 2 ~2 ~n2
w w a a w w
_1 %JH*H Z{J L“1 {

4) Compute Re s and Im s from (4.7)
5) Compute © from (4.8b)
6) Solve the set of nonlinear equations given in (4.12)

for the coefficents Ci" i,j=1,2.

J

7) Compute the damping matrix CBj = ?..6 LB

The subsystem is then transformed back with the other

subsystems to obtain the damped system equation,

4.3 Velocity Feedback Control Scheme

In the two previous sections it was shown that the

stiffness matrix K can be decoupled into block diagonal 7 :

. = =t . .
matrices, K,. = .D.d.. =1,...,% through orthogonal -
Bj ¢jJ Jq’JJf J ’ ’ g ogon "HI

WBGt (see Lemma 4.2) and that

similarity transformation T

sufficient damping can be assigned to each subsystem by #
I

i
41 i
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shifting system eigenvalues. In this section, damping ag-
signment will be realized through a velocity only feedback
control. TFor simplicity of the implementation, collocated
control (in which the actuators and sensors are placed
together) will be employed.

Neglecting the low natural damping the large flexible
system of which the vibration is to be controlled is express-
ed as |

x + Kx = Bof
_ pte

1, faRmX1, yeRmXI and BoeRnxm are generalized

where xeR™"
displacement, control input, output, and actuator matrix,
respectively!. Notice that the form of sensor matrix BS of

the collocated comtrol. With the state vector n defined by

nd | (4.14)

the system described in (4.13) is now written in the state

space form as

(4.15)
On 0

_ t
y = [}Hmn Bé]TL

! The notation of vector y is different from that in Chapters

IT and III. This notation will be used in this chapter only.
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Let GeR™™ be the time-invariant velocity feedback gain

matrix, then this control law will be

_ t
f = GE)Imm BOJ n

Therefore, the closed loop system is described as

On In

n (4.16)

S
Il

_ t
K BOGB0

and its eigenvalues are identical to the latent roots of the

corresponding lambda-matrix,

A = TA2 + 0r + K

where C = —BOGBS. (4.17)
Thus the remaining problem is to decompose C into
BOGBS’ so that resulting feedback gain matrix G together
with a sensor matrix B0 and an actuator matrix Bg will pro-
vide the system with sufficient damping by means of shifting
system eigenvalues to pre-assigned locations.
We will now show this prodecure in a constructive way.
Suppose that-the stiffness matrix is decoupled into three
subsystems Kgq» KB2 and KBB by Lemma 4.2. It is also assumed

that K,, and KBZ are (2x2) subsystems whose modes are to be

Bl
damped and KB3 has the rest of the-modes which will remain

unchanged. Then, according to Lemma 4.2
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where
71101057 0 0
- = =t
Kp = 0 92909%32 0
0 0 aaDabe
| 3373733 |
and _ -
950 0 O
T = 0 ¢, O 3C. (4.18)
0 0 93
. >

On the other hand, for subsystems K 50 j = 1,2 damping
matrices CBj’ j = 1,2 could be determined by the procedures
described in Section 4.2, and they are assumed to be written
as

Cgs = $..C..85. , =1, 2. (4.19)

Therefore, in the generalized coordinate system the damping

matrix will be

Cpy O 0
= -1 |
c=1" 0 Cy 0T, (4.20)
0 0 0
— —
bt
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Substituting (4.18) and (4.19) into (4.20) we have

- = ] A -t -t =t
r:"11 912 l Cgp 9 977 %31 %31
C =18, 8y Y 8, 85, 85, (4.2D)
37 93

Thus, by comparing (4.17) with (4.21), a solution to the

collocated velocity feedback contxrol problem is as follows:

Actuator matrix; By = [¢1 ¢y oo ¢2k]
Sensor matrix; BS
where k is the number of (2x2) subsystems to which damping
is to be assigned and ¢ is a normalized eigenvector corre-

sponding to the i-th mode.

4.4 Illustrative Example

Example 1:
The example chosen for computational purposes has a

mass matrix I and a stiffness matrix K

9 s ]
-5 11 -6
-6 13 -7
K= -7 15 -8
-8 17 -9
-9 19
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which has natural frequencies given in Table 1. The zeroes
of the matrix K have been deleted for the sake of brevity.
"'he two lowest niodes are to be damped with the real parts

of the damped eigenvalues at -0.5 and -1.0.

Table 1. Natural Frequencies w, in Example 1

Mode i Wy
.135
.215
175
.980
. 687

470
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Through the computational procedures given in the pre-
vious section the velocity only feedback gain matrix G and
the force actuator matrix B0 (the sensor matrix BF assuming

0
the sens.rs and the actuators are collocated) were obtained

as follows:

1.053 -1.099
-1.099 1.949

46

ig

s e b e
z H



The damping matrix C and the eigenvalues of the closed-loop

lOOOOOOl

.3216
4960
.5350
.4700
.3376
1715

——

0.5528

0.4527
-0.0008
-0.3889
-0.4901
-0.3130

system were computed and listed in Table 2 and Table 3,

respectively.

The eigenvalues of the closed-loop system show

that the two lowest mcdes get the pre-assigned amount of

damping exactly while the rest of the modes remain unchanged.

Table 2. The Computed Damping Matrix C
0.3134 0.1938 -0.1451 -0.4086 -0.4461 -0.2730
0.1938 0.1641 0.0121 -0.1203 -0.1575 ~-0.1016
-0.1451 0.0121  0.3015 0.4939 0.4790 0.2811
-0.4086. -0.1203 0.4939 0.9291 0.9360 0.5571
-0.4461 -0.1575 0.4790 0.9360 0.9519 0.5685
-0.2730 -0.1016 0.2811 0.5571 0.5685 0.3399
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Table 3, Eigenvalues of the Closed-Loop System (Example 1)

Mode i  Real Part? Imaginary Part

%

1 -1.0000 +1.183
2 ~-0.4999 +1,543
3 0 £3.175
4 0 +3.980
-5 0 +4.,687
6 0 +5.470

-12

! Zeroes are less than 10 in double precision

arithmetic of the AS/9000N system.

Example 2:
The second example has a stiffness matrix of
5 -4 1 0 0
-4 6
1 o .
Koxagy= 1001 o e e 0
" 1
6 -4
0 » [} . . . a L) 0 ’ 1 -4 5

and natural frequencies given in Table 4. The six lowest

modes were damped by shifting the real parts of the eizen-

L -

values to -0.5 for each mode.

RPN
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Table

4. Natural Frequencies w; in Example. 2

ORIGINAL FAGE {3
OF POOR QUALITY

Mode i

wj
1 0.2233
2 0.8885
3 1.981
4 3,475
5 5.339
6 7.530
7 10.00
8 12.69
9 15.55
10 18.51
11 21.49
12 24.45
13 27.31
14 30.00
15 32.47
16 34.66
17 36.52
18 38.02
19 39.11
20 39.78
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The velocity only feedback gain matrix G has been

turned out to be;

G = Bgjaq(Gyr Gpr Gy)
where
P~ -
~0.1214 -3.1297
Gl=
-3.1297 -1.8767_|
[ 0.2903 -4,3778 |
G, =
-4.3778 -1.7087
0.4622 5.3003
G =
3
| 5.3003 ~1.5374_|

The computer output of the actuator matrix B, and the damping
matrix C is given in Appendix E. And the eigenvalues of the
closed-loop system shown in Table 5 indicate that the §ix
lowest modes were damped but the rest of them remained un-

damped as predicted.
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Table 5. Eigenvalues of the Closed-loop System (Example 2)

Mode i Real Part? Imaginary Part
1 ~0.5006 +0.6675
2 -0.4984 +0.7856
3 -0.5007 +1.936
4 -0.4988 +2.319
5 -0.5000 +3,123
6 -0.4998 +4.690
7 0 +10.00
8 0 +12.,69
9 0 +15,55

10 0 +18.51
11 0 +21.49
12 0 +24 .45
13 0 +27.31
14 0 +30.00
15 0 +32.47
16 0 +34 .66
17 0 +36.52
18 0 +38.02
19 0 +39,11
20 0 +39.78

I zevoes are less than 10712 in double precision

arithmetic of the AS/9000N system.
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CHAPTER V

OPTIMAL CONTROL OF SELECTED MODES

5.1 Introduction

Consider the state equation, defined in (2.14), for a

plant

n(t) = An(t) + BF(t) (5.1)

2nx2n

where AcR : Znxm

is the system matrix, BeR
2nxl

is the actuator

matrix, n(t)eR is the state vector and f(t)t-:Rmxl is the

control force vector. Let J be the associated scalar cost

functional with

J(n,£,t) = %nt(m)Hn(W)+%JD[nt(t)an(t)+ft(t)Q2f(t)]dt.
(5.2)

The Hamiltonian for the system is

(N, £,1,8) = 30" (£)Qyn(e+5ET(£)Q,E(E)+r () [An(£)+BE(£) ]

(5.3)

from which it follows that n{t), r(t) and f(t) must satisfy

the equations: .

An(t) + BE(t) (5.1)

n(e) =
£(£) = -Qqn(t) - Afr(e) (5.4)
0 = QuE(t) + B r(p). (5.5)
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The desired control for minimizing the cost function is

[10,P.211)

84

£(t) = -Q; BEr(t) (5.6)
where it will be assumed that

r(t) = Pn(t). (5.7

Differentiating (5.7) with respect to t and using (5.1)

and (5.4) we obtain the algebraic Riccati equation,
q, + A% + PA - PBQ;'BP = 0 (5.8)

for P, Substituting P into (5.7) and the resulting equation

into (5.6) gives the control
£(t) = -Q; B Pn(p). (5.9)
This control will give the closed-loop matrix

A = A - BQ,'B®P. (5.10)

It is usually assumed that H and Q1 are symmetric posi-
tive semi-definite matrices and Q, is symmetric positive
definite. The Riccati matrix obtained from (5.8) will also
be symmetric and positive definite. The matrices H, Ql and

Q2 are welghting matrices chosen to fix the cost penalty for

LR

the initial conditions, the displacements and the control

efforts, respectively.

o SR
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This optimal control procedure works quite well when the
number of modes in the system is not large but the computa-
tional load for several hundred modes makées this type of -
control impractical if time varying gain 1s used. Even when
a constant gain is used, the computation of gain is not a
trivial task.

There have been numerous papers about applying optimal
control theory to the large space structure with the devel-
opment based on reduced-order models, see [9,12,13,31].  The
computational load can be reduced significantly by this
approach but the reduced-order model must be carefully cho-
sen if mode spillover is to be avoided.

The work in this chapter will take an entirely different
direction. The computational load for the procedure is
reasonable and the mode spillover problem can be eliminated.
The spectral factorization algorithm will be used to decouple
the selected modes from other modes of the structure. The
optimal control theory will then be used to construct the
feedback for the selected modes. The uncontrolled modes are
uncoupled from the control modes and the possibility of mode

spillover is eliminated.

5.2 Mode Decoupling of the State Matrix

In this section a method is presented that decouples
some of the modes from the remaining ones so that the optimal

control strategy can be carried out on a lower-order system.
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This is an extension of the method given in Section 4.1, which

decouples the stiffness matrix K.
Consider the undamped system matrix A as defined in

(2.14) with C = 0 such that

0n In
A = (5.11)
-K 0
n
where KeR™™ ig positive definite. The eigenvalues of K are

given by w; where ijwi are eigenvalues of A. This suggests
that the spectral decomposition of A can be obtained from
considering K rather than A.

Suppose, as shown in Theorem 4.1, that there exists a

similarity transformation Ty (denoted by T in Theorem 4.1)

such that

L KBl qu(n-q)

T, KTy (5.12)

O(n-q)xq KB2

where KBlequq has q eigenvalues and KﬁzeR(n—q)x(n-q) has
(n~-q) eigenvglues of K. If such a matrix exists, then KB1
and KB2 give the spectral decomposition of K. To find Tk’
eigenvectors of K must be found (see Lemma 4.2) or the sign
algorithm [57] can be used to generate T,- The eigenvector
procedure will probably be the most efficient for large

systems so the procedure will be based on the method given
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in Lemma 4.2,
Let ¢ denote the orthogonalized eigenvector matrix of
K and be partitioned with appropriate dimensions as in

Lemma 4.2,

I1f we further denote orthogonalized matrices of .. by aii'

i=1,2, then according to the lemma, K can be block diago-

nalized to (5.12) by a similarity transformation TKeRnxn,
where
- t = t
o Tkir o Triz |, | fufin %1t
T, = = (5.13)
: T T 5,05, 8,08
K21 K22 22712 22722
and
K,. = &..D.5C. i= 1,2
Bi i it dd ? ?

Thus far, the spectral decomposition of K has been car-
ried out but the system matrix (5.11) must be considered
because this is the matrix of concern. Let TA be a new

transformation matrix with

T, = , (5.14)
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-1 _ Tn
TAAT . (5.15)

This gives a new system matrix with Kp in the lower left

then,

corner of the matrix, but the matrix (5.15) is not block
diagonalized., To block diagonali.e TAATAl, construct a

row-column interchange matrix F, where

— —
I, |
i Bl ety
F = L __)l™q!
I I | |
I I
|
L ! I“'q__J

The blocks of zeroes are deleted in the matrix F for sim-

plicity. The block diagonal form AB can then be found by

Ay = FL ATl = partl (5.16)
where T A FTA and
0 T | ‘
BET) : 02q
N DR N
lL_Zn—Zq : Ky, On-g_
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It can be shown from (5.13) that T is orthogonal and, after
simple arithmetic, T is written as

[--—I ———m—

Tgi1  Txiz 0 0 1lq
0 0 Tk Txiz |14
T = ) (5.17)
0 0 Tgar Trgp |Imma
q n-q q n-q

where TKij’ i1,j=1,2 is block partitioned matrices of TK as
defined in (5.13).
The spectral decomposition process will modify the

state vectoX n(t) as shown below. Remember that the state

vector n(t) was defined in chapter IV as

x(t)
n(t) = . '
x(t)

(4.14)

where x(t) is the generalized displacement vector. Let q(t)

be defined as the transformed vector,

q(t) = Tn(t), (5.18)
then

q(t)” = TAn(t) (5.19)
but

n(t) = T'lq(t)
thug

q(£) = TAT Mq(t). (5.20)
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Therefore, the similarity transformation on A to block diag-
onalize A will map n(t) into a new vector q(t) as defined
in (5.18).

All of the computations fur the decomposition given in
this section can be carried out by considering the K matrix
which is (nxn). It is not necessary to find eigenvectors

of A since the necessary information is contained in.K.

o7

5.3. Optimal Control of Undamped Decoupled Systems

Tt was shown in the previous section that the state
matrix could be block diagonalized with selected eigenvalues
of ASRan2n placed in one of the selected block matrices.

Let the block matrix for the undamped system have the general

form:

Apq 0 [}2q
A = TAT ™Y = . (5.21)
é; 2£T2q

where ABlequxzq has eigenvalues [A;[<p and Ag
has eigenvalues [Ai|>p with p a scalar variable and A is the
undamped matrix. The value of p will be chosen to include
the desired ﬁodes in Apq -

Consider now the algebraic Riccati equation for Pdf&mzn

and let Ap be the decoupled matrix, thus P must satisfy
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Q; + AE B + Pap - PBq, BP =0 (5.22)

where QleRZnXZn and stRmxm are weighting matrices for q(t)

2nxm

and £(t). The matrix BeR represents the control input

matvix where
q(t) = Agq(t) + BE(t) (5.23)

with B = TB. It is assumed that the algebraic Riccati

equation (5.22) is completely decoupled such that

- t 5 - - = “l=t=

where Qll’ le are the weighting matrices for states and
BE = (8}, B5] with By eR®T™ and B,er(ZM-2VXM  mye Riccati
matrices ?l and Fz can be found independently since the

equations are decoupled.

Substituting (5.21) for AB in (5.22),

q + (1" Ly Eatrts & praT"l - PﬁqglﬁtP =0 (5.26)

and rearranging (5.26) gives

tot

15q,T + AFTEPT + TCBTA - T®PTBQ;'BEITPT = 0 (5.27)

Defining P = T*BT and Q = TtQIT also gives
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Qp + AP 4+ PA - PBQ;‘B’:P =0 , (5.28)

which is a usual algebraic Riccatli equation for the general
control problem,
Denoting equation (5.24) as system 1 and (5.25) as

system 2, it follows that system 1 has the system equation

ql(t)
where q(t) = and with cost functional,
qz(t)

Jl(qlsf:t) = Jo[qi(t)qllql(t) + ft(t)sz(t)]dt.
(5.30)

The other system has the system equation
qy(t) = Ap,y(t) + B E(E) (5.31)

and cost functional

o0

t = .t
J5(gqy,£,t) Jo[qz(t)leqz(t) + £7(0)Q,£(1) 1dt,
- (5.32)
where the final state cost was neglected. Assuming -
that the first system is the desired system for damping, 3

then B, = 0 will leave system 2 uﬁdamped and P, = 0%,

It then follows that the Riccati equation for the uncoupled
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system is
r-t = t
. T1P1Ti TPaTy
P =1T"PT = , (5.33)
t t =
T1oP1T11 T10P1T1o
where
T11 T1o
T =
Tyy Ty
with T, eR%4¥24 gng T, ,eRZF(A0-20) | gyp0e B, is symmetzic,

P is also symmetric as desired. The control input matrix B

will have the form

By
g = : (5.34)
0(2n-2q)xm

—

Therefore, since T is orthogonal

By P |
B = =T B =T , (5.35)
B2 Onx
nxm
where Bl’ BzeR .

1 Fz is not necessarily identical to zero, but certainly
?2= 0 is a solution to (5.25) when EZ = 0 and le = 0 as
assumed. This assumption is necessary to obtain a simple

feedback control law.
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The numerical value of El can be ¢' -en so that system 1 is
controllable and that B; = 0 but B, # v if the form (5.11)
is to be maintained.

The closed-loop system matrix of system 1 after optimal

control is then written as
A.. = A, - B,Q lEtp (5.36)
Agy = Agyp - B1Qy7ByPy -

and, from the equations (5.10),(5.11),(5.33) and (5.35) with
B1=0, the closed-loop system matrix of system (5.1) with

cost (5.2) and H=0 is given by

0 I
sl n

.-

i)
]

“ltot = Lot =
“KtB,Qy "BoTypP Ty BpQy BoTyoP1 o

(5.37)

The required feedback control vector £(t) was obtained

from (5.9),(5.23) and (5.33):

£(t) = -y BEPTn(E) (5.38)

which can now be determins.i as Q,, B and P are known.

It may be possibie o make B,Q;'BSTE,BiT1 = 0 in (5.37)
by properly selacting 3., and tbe weighting matrices. In -
general, it will nut he 72+ and the stiffness of the struc-
ture will be enange.. Tt should dlso be pointed out that

the matrix C(=B2Q£LBEL;Q“.1,;; doe: rot rzuaresent a model

- &
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with passive damping as C does not have the proper structure.
If the closed-loop system has the feedback defined as (5.38),
however, there are no restrictions since this control law

is not for a passive system.

5.4, An Illustrative Example

Example 3:
The example 1 in Section 4.4 will be used to illustrate

the computational procedure. The stiffness matrix was

9 -5
-5 11 -6
6 13 -7
K= -7 15 -8
-8 17 -9

~3 19

and the mass matrix was 16. The system was defined in state

space form with state vector nt(t) = [xt(t), ﬁt(t)]

n(t) = net) + £(t). (5.39)

-

After an equivalence transformation T, which also decoupled

the two lowest modes, was apﬁlied to (5.39), the system was

changed to
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0 T, |
2 2 : 04x8
) -Kg1 0 | El
q(t) -— —.—q..—---—-—-—-i- ————— q(t) + _ f(t)’
0 e "2
8x4 |
Fe2
- —] (5.40)

where gq(t) = Tn(t) with T given in Appendix F and

[ 3.83448  -1.65133
Kp1 =

-1.65133  2.35772
[ 16.81055 0.23648  6.93450  2.07957
0.23648 17.86965 -1.02621  3.41872
6.93450 -1.02621 24.26231 -5.16800
2.07957  3.41672 -5.16800 18.86528

— —_—

Kgy =

Thus, system 1 was decoupled and given by

2 Iy

E‘[l(t) = 0

qp(t) + B £(e), (5.41)

~-K

Bl 2

which was to be controlled to minimize the cost
%t
Jl(ql,f,t) = Iu[ql(t)Qllql(t) + f%t)QZf(t)]dt (5.42)

with given Qll = 14, Q2 = Il and E% = [0 0 -1 1]. The input
matrix El was chosen so that system 1 was controllable.
The Riccatl equation (5.24) corresponding to (5.41)

and k5.42) was solved by the eigenvector method [61l] and a
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solution was given by

6.31043 1.42106 -0.47965 -1.24103

5 1.42106 5.51307 0.90973 0.84844
-0.47965 0.90973 2.66756 2.46582
-1.24103 0.84844 2.46582 4.10804

With the assumption, Ez = 0 the solution P of (5.28)
was computed by (5.33) and listed in Appendix F and by

(5.36) the closed-loop system matrix of system 1 was

'__ 0 0 1 0 ]

A 0 0 0 1
Bl ~4.5959 1.5900 -~0.2017 1.6422
2.4127  -2.2964 0.2017 -1.6422

] —

Finally, the feedback control vector £(t) was computed

from (5,38):

£(t) = I'n(t)
where
I = [-0.4845 -~0.5051 -~0.2486 0.0167 10,1396 0.1097
-0.1796 0.1450 0.6793 1.0094 0.9489 0.5501].

The closed-loop system matrix of the original system was
given in Appéndix F and the eigenvalues of the system before
and after optimal control were listed in Table 6.

The input matrix B and the state cost matrix Q of the
original system was computed by (5.35) and Q; = TtﬁlT. B,

is given below and Q1 in Appendix F.
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Table 6. Eigenvalues li of the System Matrix (Example 3)

~0.4798
0.1589
0.6767
0.7775

-0.6696

L_O.&BB%_

Mode 1 Ai before control Ai after control
1 +3j1.135 -0.1713%31.141
2 +j2.215 -0.7506+£j2.117
3 +53.175 +3j3.175
4 +3j3.980 +33.980
5 +j4.687 +j4.687
6 +j5.470 +j5.470
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CHAPTER VI

CONCLUSION

6.1 Conclusion

For the vibration suppression of the large flexible
space structure, two independent velocity only feedback
control schemes — the eigenvalue relocation and the optimal
control — of the second-order system were developed in this
work. These methods were based on the properties of the
lambda-matrices and on an efficient mode decoupling technique
by which selected modes were damped with the rest of the
modes retaining their pole locatioms.

The eigenvalue relocation method allowed the designer to
place the closed-loop system eigenvalues within the feasible
region as illustrated in Fig. 1. This development was made
possible by the aid of the properties of the lambda-matrices
discovered in Section 3.2, Theorem 3,4 is considered funda~
mental in this class of system and Lemma 3.5 provides the
rule on which the eigenvalues move,

As a result, the vibration control by the eigenvalue
relocation was accomplished by the following sequence. First,
through the decoupling procedure described in Section 4.1
modes were selected for which damping was required. To each-

decoupled subsystem a damping matrix was computed in such a
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way that the subsystem had the pre-assigned eilgenvalues. Next,

under the assumption that the actuators and the sensors are
collocated, & time-invariant velocity only feedback gain was
determined in the process which brought the coordinates of
the subsystems back to the original generalized coordinate
system. The whole procedure was demonstrated by numerical
examples.,

Similar results as those achieved in this work may be
obtained through the pole assignment by gain output feedback
methods reported in [26-29], but our approach is completely
different from theirs: our method is devised by using lambda-
matrix with the comstraint that K is invarient rather than
on the state space which resulted from the conversion of the
second-order system equations. In addition, it is based on
the assumption that the actuator and the sensor matrix are
designed at our disposal instead of being given as a part of
a plant. Therefore, it may be meaningless to compare these
methods and no attempt was made to this end. Roughly
speaking, however, their methods can assign min(n, m+r-1)
poles arbitrarily close to min{n, mtr-l) specified symmetric
values but nothing is said about the remaining poles, where
n, m and r are the number of states, the rank of actuator
matrix and the rank of sensor matrix, respectively. Whereas,
in this work 2m poles (m=r and nx2m) can be assigned almost

arbitrarily within the feasible region as conjugate pairs
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with the rest of the poles unchanged.

One advantage of this method over the classical normal
mode (complete decoupling) technique is that the feasible
region is much wider than that of the classical normal mode
case as shown in Figs. 3 and 4. This freedom of choosing
the locations of system eigenvalues can enhance the damping
significantly, especially at the low frequency modes where
more damping is required.

The eigenvalue assignment technique developed in this
work also has some shortcomings. First of all, the system
of simultaneous equations, (4.12), is non-linear. Conse-
quently, the existence of a solution is not guaranteed, nor
is the uniqueness of a solution. Nevertheless, a solution
never failed to exist during the course of .computational
experiments. Since the damping assignment is achieved at a
(2x2) subsystem level, computational procedure is not very
involved, but the simultaneous equations require some
iterations.

Another disadvantage of the wvelocity only feedback
control scheme is that the sensor and the actuator matrix
must be computed. When they are given as a part of the plant,
instead, the gain matrix may be approximated by the least
square method, for instance. If this is the case, the eigen-
values of the closed-loop system will certainly deviate from

the pre-determined position even though the error may not be
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significant because of the continuity of the eigenvalues.
This problem remains for further research.

On the other hand, a procedure for optimal control of
selected modes was also developed in the last chapter
and 1t was shown that the control vector for a rather small
second-order lambda-matrix could be determined in such a way
that damping was added to the lowest modes with the other
modes remaining unchanged. The elimination of mode spillover
problem was made possible by the mode decoupling procedure
and by the manipulation of the actuator and the sensor
matrices.

Finally, the decoupling procedure for both methods
requires only the eigenvectors of the assigned modes. This
fact resulted in a significant saving of computing time when
the number of modes involved in damping assignment was less
than one fourth of the total modes.

The main contribution of this work can be summarized as
follows: 1) unique properties of the second-order lambda-
matrix were discovered and applied to the vibration control
problem, ii) a computational procedure for the damping
matrix determination with the stiffness matrix invariant was
established, iii) a technique to decouple the large system
into smaller subsystems through partial eigenvectors was ‘E
developed, and iv) an optimal control method of the selected -

modes- without any spillover to other modes was investigated. .
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6.2 Recommendations for Further Work

One of the topics which deserves further research is the

passive damping algorithm: the complex sensory and actuating

ih

devices of the active control may provide enough motivation
for research on the passive damping of the large space struc-
ture. In order to realize the passive damping, however, the
structure of the damping matrix should be in a simple form
such as diagonal or tridiagonal. Another promising area is
to extend the theory developed in this work to higher-order
systems; third-order, fourth-order, and so forth. This ex-
tension may be established without much difficulty since
there 1s well-developed theory on the corresponding lambda-
matrices. An algorithm of damping matrix determination for
bigger than a (2x2) subsystem is worth investigating. As to
the optimal control part of the work, it would be worthwhile
to find a necessary condition for the Riccati equation to be
decoupled completely. Finally, it may be interesting to
combine the eigenvalue relocation technique and the optimal
control method in such a way that the selected modes are con-

trolled optimally in some sense with desirable pole locations.

0
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APPENDIX A
LAMBDA-MATRICES AND GENERALIZED LATENT VECTORS{51]

Let Aiecn’m, i=20,1,...,m and XeC. A A-matrix is

defined as

A(n) = onm + f&lxm"l o 4B (A.1)

A latent root is also defined by a scalar Az eC such that
A(A;) is singular. When AO is non-singular the A-matrix
is called regular and in such a case a monic A-matrix, A(X)

can be obtained by changing coordinates, i.e.,

A(A)

-1~
AO AC\)

I 4 A 01 FooHA {A.2)

1

Associated with A(X) a block companion matrix is

defined as-

-ron 1o C o, ;
R N |

A, = R ol (A.3) <
. B g

0, . 0, I, _ ”
R -‘-;;
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There are very useful relationships between eigenvalues and s
eigenvectors of the block companion matrix and latent roots
and latent vectors, which will be presented in the following

definition and theorems.

Theorem A.l. Let A(X) be defined as in (A.2) and Ac as
given in (A.3) then the latent roots of A()) are the eigen-

values of AC.

Proof: When (IX - Ac) is post-multiplied by the following

unimodular block Toeplitz matrix,

F—In 0n R On
/S SU .
via) = | " i
' I, 0
e AL |

[~ ]
0n I, Oy O
. On On —In T, : .
(Ir-4) V() =] et 0y
A T 4 _ _4
IO I 4
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in which A(A) is as given in (A.2). Now when the determinant
of the above expression is taken by expanding minors along

the ones, it follows that

' det[(IX-A,)V(X)] = det(Ir-A;) = (-1)™ dat A(X)

which implies that the eigenvalues of A, are latent roots

of A(A). yvyv

Definition A.l. Let A(A) be defined &5 in (A.2) with

latent roots A; of multiplicity n,. Primary right and

(j)scnxl

left latent wvectors, yij), zs , respectively, are

defind as

(3) _ P :
A(li)yi = Onxl j 1,2,...,qi (A, 4)

t (3) _
A (Ai)zi 0

[
i

] 1,2,.00,q; (A.5)

where the number of primary right or left latent vectors of
A; denoted by q;, is the nullity of A(a,)
It is known [56] that a primary right latent vector. .

yij) is a subvector of a right eigenvector of the block

companion matrix (A,3) with

— -

Y(J) |

(3 y

. ALyl .
Y(J) = 1yl ) (A.6)

cl . :

n-1_(3) :

i Vi |
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(3)

where Vel

satisfies the algebraic equation (A, - AiI)yég)=

Omnxl' It is also not difficult to show that a primary

left latent wvector, ziJ), satisfies a similar form as the

primary right latent vector with

—

m-1 £,m-2 t (1)
OVt SR s S S NP LN

m-2
(Ai

t,m-3 t (i)
(i) - .
Zei T ; (A.7)

t,.(3)
(AiI + Al)zi

2(3)
i

where :%i) is an eigenvector of the block companion matrix.
It should be noted that the maximum number of primary
right or left latent vectors is n, i.e., mgx(qi) =n, If
n, > q, then n; - 4q; generalized latent veztors must be
constructed to define the complete set of latent vectors of
the lambda matrix. These generalized latent wvectors can bhe
obtained from a chain rule given in [57]. Notice that each
of these ng - 9y generalized latent vectors may or may not
have a chain of vectors according to the structure of the
Jordan block of the block companion matrix. The length of

the chain for each primary latent vector could be detérmined

during the computation of vectors until no vector satisfies

the chain rule.
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Theorem A.2, Let A()X) be defined as in (A.2) and a set

of right latent vectors y(l), yiz),...,yihj)aCnxl

form a
right Jordan chain associated with the latent root Ai and

the j-th primary latent vector. Then, the chain rule is

given as
» dA(A,) LD dZA(Ai) (1-2)
2y (M + —gt- v (P v gy oz 7 +
e Doy o, |
PODT T D Vi T Onx AT L2 By

(A.8)

where yél) is the j-th primary right latent vector and hj

is the length of the Jordan chain. The vectors yék) for

1 < k < h. are generalized right latent vectors of the j-th
-]

primary latent vector.

Proof. The proof of this theorem is obtained from consid-

eration of the chain rule for generalized eigenvectors.

The chain rule is

(A=A I)y(Z) = Y(cll)
(3) _ (2)
B2 D¥e3" = Yei
: (A.9)
(A -2 I)YEEJ) = Yé?j_l)
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WFSNRLtﬂ?JiTJ
g??ooa-“. GUALTY

(-
el
1 <k¢ hj its generalized eigenvectors associated with the

) k

being y the j-th primary eigenvector and yéi)ffor

eigenvalue Ag of Ac. When (A.9) is expanded the chain rule
(k)

is obtained where Yy is formed from the first m rows of
(k)

Tei -
Generalized right latent vectors yil) and yéz) will

be obtained from

dA(x.) (1)
(2) i’ vy, =0
A(Ai)yi + I i nxl
3y . A0 oy dzA(Ai) (1)
AQDY™ + == v; " * 3y o2 i T Onx1
or (A.8) in general. TATAY)

The chain rule can also be utilized to modify (A.6) for
the relation between generalized eigenvectors and general-

ized latent wvectors with

r——— k ]
{0
k-
KiY£k)+Y§ 1)
yélic) - A?_Y;g_k)+2}\iy:§_k-l)+y§.k—2) (A.10)
o1 (k-3)

m-1 n-1,,m-j~1
j=0
[k-321]
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Theorem A.3. Let A(A) be defined as in (A.2), a set of

left latent vectors zicl), ziz),...,zihj) eCHX1 from a left

Jordan chain assoclated with the latent root Ai and the j-th

primary latent vector. The chain rule is given by

t 2, t
dAT(Xy) (,. d“A=(2,) _
LTSV (it S L1 P il L € T
dA
(2-1),¢t
o1 d A(Ai)z(l)=0 4 =10 .
(E“l)l dA(R’_l) i nxl’ XN j
(A.11)

(1)

where z:”" 1is the j-th primary left latent vector and hj is
the length of the Jordan chain. The vectors zik) for
1 <k < hj are generalized left latent wvectors of the j~th

primary latent vector.

Proof; The proof of this theorem follows directly from
(k)
ci
Generalized left latent wvector zik) will be formed from the

generalized left eigenvectors z of the companion form.

last m rows of zég)- VvV
(k)

Generalized left eigenvector z,; can also be defined
from latent vectors zék) of Ai , the latent roots Ai and

the lambda matrix A(A). Utilizing (A.7) and the chain rule
(k)

for Zoi o

it follows that left generalized eigenvectors

satisfy the relation;
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m-1 t,m-2
(k) _ 2., t, (k) ty, (k-1) (k-2)
Zag (AiI-mlli+A2)zi +(27\iI+A1)z:L I-zi

£ (), (k-1)
(AiI+A1)z£ -+z£

(k)
25

(A.12)

(k)

where the latent vector z; ° 1s defined only for 1 < k < hj'
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APPENDIX B
SOLVENTS OF MATRIX POLYNOMIALS

Associated with an m-th order lambda-matrix (A.2) two
types of polynomial, the right matrix polynomial

_ ol m-1
AR(X) = X" + Alx +...+Am, (B.1)

and the left matrix polynomial

m m-1
AL(X) = X + X A1+...+Am (B.2)

X

are defined for XeC Matrices Xp, XpeG'™™" are called a

right and a left solvent if AR(XR) = Opyp, and AL(XL) = (

n nxmn’

respectively. In this appendix structures of solvents will
be examined in terms of latent roots and latent vectors and
theorems on the existence of solvents will be given at the

end.

n.xn '
Theorem PB.1, Let J,eC © T be a single Jordan block with

i
latent root A of multiplicity n, <mn and y(l), ySZ),...,
(ny)

Y eC ¢nxl be generalized right latent vectors of A (A) then .
-k | | -
¥ I7 :
Ak . (B.3) |
nxni { :
_ (1) (2 (ny)
where ,Yi—[ng_)yé) oo yy T 1 and Ay =1, |
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(1) (n;)

Proof: Let Yci = [yci vor Yoi

1, where yéi) is a primary
right eigenvector of the block companion matrix AC(AHS).
Then it is not difficult to obtain Yci from (A.6) and Yci

is written as

n

Y, R (B.4)

. m-1
YiJi

From the chain of generalized eigenvectors (A.9) of the

block companion matrix Ac it follows thu:

c el cit i
iceop r-" T r—. --| = —
On In Cn e Oﬂ Yi YiJi
i 2
:.:. : = : (B-S)
- _ m-1 m
A Ape1 Apeo-e A1 Y95 r Y9

Thus, the last row of (B.5) provides the conclusion of the
theoren, . vvv

xn

n,.xn,
Theorem B.2. Let J;eC ' Tbhea single Jordan bleck with

latent root A of multiplicity n,< n and zil), ziz),...
(n,) ' R
Z, iTeexl 4 generalized left latent vectors of A(A), then
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E m-k
C IV 2L A, = 0 (B.6)
k=0 i ik n,xn
(n;) (n,-1)
where Ay = I and Z; = [z, - z, 1 zi(_l)]t,
(n,) (n.-1) .
. - i i (1) ,t (i) .
Proof: Let zc:‘. [zci Z, vees Zos 17, where z,;" is a

primary left eigenvector of the block companion matrix

AC(A.B). Then it follows from (A.12) that

= m-1
Zci = [Zi JiZi . Ji Zi] (B.7)
an-l
zc1Ac = zc1
i.e.,
1 P . 2 1
m- _ m-
[Z; J;2;...97772;,1 |0, 0.0, -A_ |= 13,2, J72,...00772,]
I 0_..0_-A
n n'"'n “m-l1
LPn 0n: - In _Al__ (B.8)
The procf is obtained from the last column of (BE.8). LAY
nixng
Theorem B,3. Let JiEC be defined as the same way as
in Theorem B:I,QY = [Yl Y2 ces YQ] Ecnxn, and J = Bdiag(Jl"'
Jg)scnxn with I n, = n. Then,
i=1 1
‘On Ih O0p -+« Oy Y YJ
2
0, 0y I, 0, YJ ] YJ
: = :]. @9
-1 m
A -A -A N A YJ
_m m-1 m~2 1_J T L

v g



Proof: Since

Yi LI )

YlJl e

m-1
K
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the proof is completed when (B.5) is applicd block column-

wise L times. YA'AY
n,xn, nxn,
Theorem B.4. Let JleC , Ziec be defined as the
same way in Theorem (B.2) and Z = [g% 25 cen ZE]t,
J = Bdiag(Jq, Jpsnen,Jy)eC with_zlni = n, then,
l:
- i ] 2
[z gz ...3% 121 oy e 0y - - 13z 3%z ... J®z)
Ip ot 0n ~Apg (B.10)
Lgn' SR
Proof: Since
: m-1,, _ [, mel, |
[Z JZ2 ...J Z] = Zl lel “ ne Jl 121
m-
22 J222 o e J2 22
. . m_l
Zg JQZQ Jg ZE
L -
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when (B.8) 1s applied block rowwise % times the proof is done.
A%

Theorem B.5. Let JeCM¥M be the same as in Theorem B.3.

XN

If n columns of YeC (n right latent vectors including
generalized right latent vectors) are linearly independent,

then YJY ™! is a right solvent of A(A).

Proof: From the last block row of (B.9)

m

!
k=0

AkYJm“k = 0___ with A = L. (B.11)

Since Y ' exists by the hypothesis post-multiplying y'l at

both sides of (B.1ll) gives AR(YJ‘Y-1

1

) = Onxn' which implies

that YJY - is a right solvent of A(A) by the definition.

'A'AY

Theorem B.6. Let Jegh¥n

nxn

be the same as in Theorem B.4.

If n rows of ZeC (n left latent vectors including gener-

alized left latent vectors) are linearly independent, then

Z-lJZ is a left solvent of A()\).

Proof: From the last block column of (B.10)

g% za, =0, with Ay = I. (B,12)
0

L

k

Since Z_l exists by the hypothesis pre-multiplying Z—1 at

both sides of (B,12) gives A (272Jz) = 0__, which implies

1

that 2 ~JZ is a left solvent of A(ix) by the definition,

VA'AY
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APPENDIX C
PROOF OF THEOREM 3.3

Proof [42, PP.48-49] We have

]

m m-1
A(MN) AOA + AIA +...+Am

m-1 m-1 m-2
AOA (IA-R) + (A0R+A1)A + AZA +...+Am

= [thm"l + (A0R+A1)Am‘2] (IA-R)

2 . m-2 m-3
+ (AOR +A1RFA2)A + A3A +...+Am
_ m-1 m-2 m-1 m-2
= [AgA TH(AGRHA DA tooH(AGRTTTHAIRT ThlL A ) 1(IA-R
m m-1

If R is a right solvent of A(XA)

_ m m-1 _
AR(R) = AOR + AlR +...+Am = Onxn'

Thus, the last equality of (C.l) implies A(A) is divisible

on the right by (IA-R) with quotient of (m-1)th order -

lambda-matrix. This provides the necessity of the theorem.
On the gther hand, if A(X) is divisible on the right

by (IA-R) AR(R) must vanish, which is the definition of a

right solvent. Now, the sufficiency of the theorem is proven.
In a similar manner, divisibility on the left by (IA-L)

can be shown without any difficulty. AAY B
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PROOF OF THEOREM 3.11 [59]

For an arbitrary matrix A, define

ORIGINAL PAGE 9
OF POOR QUALITY

AL
Hy £ 5(A + A%)
AL - p%
Hy & 5o(a - A%)

APPENDIX D

then, Hl’ H2 are Hermitian and

A = Hy + jH,.

According to the Rayléigh Principle, for every

A of A we have -

ReA
x#0

I

x#0

max Re

1

15X

%
X Hlx

= max e =

x#0

Similarly, -

ImA < max I

x#0
Imi Z min
x#0
and . 5
Imd = min
x#0

m

XFA*x%

x*Ax _

XER
X*Ax
X*x
xkAx

o xFx

93

max (H

max
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A,
min

R o FAK
max o (X Ax 4+ xX¥A¥X)

).

(Hy) ,

(Hy)

(H,) .

eigenvalue
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APPENDIX E

ORIGINAL PAGE i3
OF POOR QUALITY

THE ACTUATOR MATRIX AND THE DAMPING MATRIX C OF EXAMPLE 2

ACTHATOR MATRIX

-0, 45995N=01
«0,909630m01
“04133900+VU0
0. 173840400
“0,209910+00
=0,201280400
=D, 267260400
«0, 287270490
n( X0087D¢ 10
w0,307741400
=0,3077an+00
-0, 300870400
«0,28727D400
-n, 287260400
=0,241260400
«(.20091D4060
=0, 173640400
=0, 133900400
=0.90963D=01
=0.459950=01

=0,17384D+0n
=(},287270400
=0+3008704+00
=0, 2099105+00
=0 459950 =y
04133900400
0267260400
0. 307740400
0.24912Rp400
0.90%63N=01
0,200650wl1
=0e20128N+00
= 30TT4040N
=0.26726D400
=0,13390D+N0n
0, 459950=01
0.209910400
0a300870400
04287270400
0. 173080400

1

COMPUTED DAMPING MATRIX C

1

00,7922 1.,2310
w=0,1422 =0,3950
{1.2310 1,80a¢
=0,084] wl 4779
1.173¢ 1o7640
0,2579 =0,1752
0,7593 f.,0720
00,6505 042909
0,2947 0,3231
0.7893 0,5731
00,0454 w0, 0498
0,5339 0,082
0,0716 0,0527
o,0382 0,0807
0,2240 0,3760
=0, 3424 ={,2460
0,2815 0,5468
=0,3582 «U,1851
G.1286 0.3589
0,1507 0,3195
=0,1622 =0,086%
0,7247 0,9892
«0,3950 =0,4779
0,9892 1,389}
=0,0049 ~0,5541
0,7020 1.,2228
=0,1824 =0,254]
=0,0208 0,5335
0,1237 Uu1708
=0,7800 «0,3280
0,3199 G, uxue
=1,1603 «0,9399
0,3p82 0,3895
=i, n228 -1.0153
0,1454 0,1275
=0,5427 «0.8120
=0,0181 =0,1131
«0,0867 <0,3214
=0,06U8 WU, 1501
0,001 0,1391

1.1739
=, 4040
1, 7640
=0,5441
1.5ubA
w) 3467
0,7784
0,043
0.0007
0,324%
=0, 3243
0,3094
=0, 09440
0.03658
0,3%1
=0,24TH
0.735P
of,2630
0,0647
0,101R
0,2579
0,7020
=0,175>
1,222R
=0,340p
1.,375%
w1744
1,0712
0,1302
0,U4594
0.30p4
=0, 1700
20,2005
=0,6020
=0,0709
-t ,TITN
=0,276%
=0,5024
-GQEQIQ
=), 5133

0,%094630=01
0,173840+u0
0,241280+00
0,28727D+00
0,307740+00
0,300870+00
0,26726D+00
0,209910+00
0413390000
0.45995D=01
=, 459950aD]
w0, 133900+00
=0,209910+00
=,267260+00
wl 300870400
w0,30774D4+00
287270400
=0,201280400
03173840400
=0, 909630=01
90,7593 0,2947
=), 18234 08,1237
1,0720 0,323}
=0,254] 0,1708
0,7784 0.0007
w0, 1748 0, 1302
0,1004 =0,591a7
=0,n013 00,0602
=0,5547 -0,9230
b,1u428 0,0249
») 6898 w0 9722
0,1445 0.0206
«0,3505 =0,0135
i, 0241 =0,035]
0,2559 «0,0210
-{, 2761 =0,2279
0,7503 0,5258
=0, 4453 «(,5365
D.,A780 0,8109
-0, 3790 =0,8029
0,4505 0,78493
=0,0208 =0,7800
0,2909 0,5731
92,5335 =0,3280
00,0434 0,32545
1.0782 0,4596
-0,0013 0.id28
1,3580 1.2538
U.0602 0,0249
1.2536 1.6567
0,0594 =-(,0867
06,7878 1.,4470
=0,0851 =0,3z22
U,1538 0, 7340
«0,2954 =0,3410
-4, 3777 =0, 0870
=0, 4016 =0,3814
), 5890 =0,5609y
-} 2865 =0, 2354
w0, 4206 =0, 4922

N,20991D+00 0,13390D+30
0.30774D400 =0,24128D+00
0.,24128N+00 =0,3008T0+00
0.459950=01 =0, 3u0870+00
«0,17384D400 =0,241280+00
w(,300870+00 =0,13360D+00
ul 267260400 0,476330=44
=), 90963D0m01 0,133900+00
0.,13390D+00 0,291260+00
0,28727D+00 0,300870+400
0,287270+00 0.3008T0+00
0.13390D+00 0,24,28D+00
«0,90963pm01 0,133900400
=, 24T26D+00 w0, 54748D=14
w(,300870400 =0,133900400
=0, 17388n+00 =0,24{280400
0,45995Dp=01 =0,300870+00
0,241260+00 w0, 300870400
0.30774D+00 =0,24]128D+00
0,20991D04+00 =0,133900+00
0,045 0,0718 042240
0,3199 0.3082 0. 1454
=0,0491 0.0527 0.3760
0,4349 0,3895 0,1275
20,3243 ol 0984 0,391
0,3004 0,2005 =g,070%9
=0,6898 =0,3505 0.2559
0,0594 =0,0851 =0,2954
=0,9722 wle6135 w0210
=), 0867 w2222 =0o3410
el 0178 =0,7821 =(),3535
«0,0578 w0, 1041 =l 1248
=), 7821 =0,7070 =0,0282
0,0280 00,1366 02273
=0,3535 =0,0282 =0,750%
=i, 0U4h9 0,2259 04564
0,099 =0,3735 wp,b953
=0,3951 =0,0327 De3581
0,4199 «=0,1232 =p,5226
=0,8B00 wU,5509 wg,0435
0.5339 0,382 w5424
ml 1843 =l ,d226 =, 9427
0,4682 00,0807 =p,2860
=0,9399 =].0753 =0,8120
0,3094 040365 w=g,2475
=0,1790 =0,6020 =0.T178
041445 =0,0241 np, 2701
0.1”75 D.1538 ") 3777
0,0206 =0,035] =g 2279
1.4470 0.7340 =0,0870
«0,0578 0,0280 =0,0469
1,4321 0,T748  =0,0989
=0,10u41 Del3bb D239
0,7748 0.2663  w0,4290
=0,1248 0.2273 Do 4561
-0, 0989 =, U290 =g 8311
=0,11408 0.2401 ¢.5123
=0,045] «0,8213 =p,90675
=, 0698 0.1539 0.3570
w0, 5641 =0,6343  w=p,bb3b

Two consecutive lines make a row of the matrix C.

94

Ve241280400
0300870400
Cs133900¢00
“0e13390N+00
=0+300870400
=0.241280400
0«40923D=15
0241280400
04300870400
0s133900+00
=0,13390D+00
=04300870400
=0,29128N+00
CelTYO7D™1S
O0s24128D400Q
D.,30087D400
Gei33900+00
=0¢13390D+00
<0430087D+00
=0224128D400
U,2815 0,1288
=0,0181 =0, Ub4Y
S TTY:! 0,3589
=0,113]1 =0,i50}
0,7352 0,6647
=0,2763 w0,2019.
$.7503 0,4780
=0,4018 =0,2888
V,5258 0,5109
=y, 4016 w(,d354
0,099 0,41949
=0, 1148 =0, U098
m0,3735 =0,1332
V,2401 0,1539
=0,5953 =0, %228
0.5123 0,5370
=0, 7448 -0,9583
0,%4598 03917
=0,9583  «p, 2485
V2975 0.2921
=0,5082 0,1507
=g, Vb6T 0,0861
=i,1851 0.3195
w0, 4214 e, 1391
-,2630 80,1014
=U,5828 =0,3133
=), U463 0, 3790
=),5890 =0,4206
=0,9395 =g b029
wi,b6q4 -0, U922
=0,395) ~(,0800
=),bu5] '0.50“1
=0,0327 =g, 55069
»),B213  w=g,0343
043581 =p,0535
=,9675 =0,0536
9.5398 0,2975
=0,%090 =0,5%95
0,3917 0,2921
“9,5595  =0,3273
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TRANSFDRMATION MATRIX T

0,63878
«0,03087
f,06000
. 0.00000
=0 ,48070
0,35598
0.41620
0,22639
¢, 00000
0,00000
0,00000
0,00000

0464973
0410995
290000
Go00000
0.07674
=0.67761
-0.25422
=0405608
000000
0.00000
000000
0.00000

0,29040
0,84%3a
0,00000
0,00000
0. 70R4n
0,85937
0,02851
-0, ,0000K
0.030080
0. nONga
0,00000
1 0,00000

FULL RICCATI HATRIX P

SYSTEH HATRIX A

2.52410 2.71587
2.71587 3.13700
1.,48925 2.09649
0.16516 082038
=-0H,50212 0.,03452
«0,44334 =0.15064
=0,18837 =0.07987
=, 35650 =0.21456
w0,46512 =0,33313
wl,47262 =0}.39015
»0,37816 =0.32834
=0,20065 =0.18143
CLOSED=LDOP
0,00000 0.00000
0,00000 0.00000
0,00000 0,00000
0,00000 0.00000
0,00000 ©0,00000
0,00000 0.00000
=9,32342 H,60617S
8,T6TST =1l.24233
0.07700 o©l.0B028
0.32781 0.34178
0.3766T  Q0.39273
0.23422  0.24420

91 OF ORIGINAL 3YSTEM

0.40899
0,40979
0.17163
=0 ,06385
=0,16239
=0,11785
0,00000
0,00000
0.00000
0,00000
0,006000
0,00000

080979
0.45103
0.26505
0,05707
=0.05448
=0.05686]
0.00000
0.00000
0400000
000000
0,00009
0.00000

1.28935
2.0966R
2.01617
1.5T6p1
1,0265p7
0,48953
0. L7158
0,1786a
0,087863
=g, 008648
=0,03%89
=0, 03908

~

0,00000
0, 00000
0,00000
0.000p0
9.00000
0,00000

=0, 16651
5,.58071

=12.,960g8
T.16025
0,19332
0.1202)

D,17163
0,2050%
0,28b2a
0,25t77
0,18097
0,0920n
0,00000
a,00000
00,0000
0., n0Ngn
0,00000
0,00000

MATRICES T,
iy, 07007 «d,2276%
0,62598 0.54%980
0,00008 D,30000
DLGOV0G U,008py
=0,49996 «=(,34i15
0,2a175 =0,37439
=D,a3756 0,70543
=D, 30504 =0,08002
0.0u000 0,.90400
0 00000 0,00000
0,00000 J,00000
0.00000 0,00000
0.16516 =0,50212
0,82046 0,034a52
1.57681 1,02652
1.93427 1.,68725
L.0B8725% l.05813
0.,9u771 O.9104
0,35522 0,30016
0,.4du249 3,52328
0,44037 0,51355
0,32335 0,41084
0,19771 0.27314
0,09000 0,13214
0,00000 0,00000
0,00000 0,00000
0,00000 0,00000
0,00000 0.00000
¢.0n000  0,00000
0,00000 0,00000
0,06116 0,09350
0.00800 0.30099
6,99735 a0.02219
=15.0128 7.90552
7.98704 =17,.10B58
=0,00808 8,952409
=0,00385 «0,10239
0,05707 =0,05480
0.25177 0. 18097
0,37221 3,34939
0,34%29 0,35%417
0,20238° 0,2112%
08,0000 a,0v900
G.00000 0,00d00
0,0000D 0.NN300
U, 00000 0, 004600
0,00000 0,00009
¢.00009 G, IN000

APPENDIX F
P, A AND Q; OF EXAMPLE 3

-l 1893]
0. 31410
a,M00py
0.2u0uD

-0,37611

=0, Nbod2

-0,25757
v, 89773
0,00000
0,00000
0,00000
0,00000

=0,8433g
=l 15084
0,48953
0,94771
0.96104
0.57383
0,21972
1,31948
6,32076
2.26291
0,17855
G,08781

3,0%000
o,00000
4,00000
0,00000
0,00000
0,00000
D, 07343
g,.05201
i}, ulTu3
al, 274320
a, 91474
-19,05301

=0,11785
-0, 5661
0409200
0,20234
d,21129
0.12738
0,00000
2,00000
0,vd000
2.,00000
0,000
v,20000

3,00000
B I
ng,03d78

) 03ud7
O Uil
0,000U0
G, 0000k
U OO

-l 48970
1395938
0.31620
0,22059

=D, 18537
-}, 07987
0a17150
0,35522
0.30010
G. 21972
0,99512
[.30380
112350
0, 76259
0,42577
0. L7938

1.00000
0,0000U
0,00000
0.0vVo0N
-0,00000
=0, 00000
=0,12025
(), 0B815
vl N2854
0,12191
0,13902
0. 0882

0,00000
0,00000
0. 0ul0D
[T
N 0UQuD
G NOQUD
0,40899
N 40979
0017103
-y NB385
=, 10239
=0,11745

o, 00L90
D 0unuld
0, 04973
v, 1099
[T
¢, 003
t, 00Uy
0, buupl
o utel4
=0 67701
=0, 20422
=, 05008

=0, 35650
=0, 21450
0, 174640
0,48249
0,52520
G, 31948
1,30380
1,78932
1,65803
1,240}
0, 77487
035820

9, 00000
1, 8yl
a_ou0D0
=D, Oudud
0, eu000
0_4u00ud
0,09912
u ullu2
=0, ,02353
=) juble
=0, 11509
=0,071496

0, 00000
0,000uy
000030
0,0v0u0
¢, vuo0p
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