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1.0 INT RODUCf ION 

In remote sensing applications there is a need for an atmospheric 

model to simutlate the response of Cl satellite sensor for realistic, var­

iable atmospheric conditions. In addition, there is a need for an atmo­

spheric model to "correct" the sensor response for expected or anticipated 
atmospheric conditions which exist for a particular region of interest. 

The remote sensinq of the Earth's surface and the interpretation of 
various surfa.ce elements is a complex problem for many reasons. First, 
there is the variability of the surface itself; the reflectance and emis­
sivity of surface features are dependent upon factors which are either dif­
ficult to model or predict. Thus, the intrinsic radiance of a species of 

vegetation will depend upon the growing season, soil moisture, time of day, 
wind speed, precipitation history, and perhaps other factors which are dif­

ficult. to analyze. Second, atmospheric effects can playa role in varying 
the radi ance of the surface materi al at the surface and al so in the radi­
ance along the path whi ch connects the sensor and the target el ement. 
Thus. one can have a variable atmosphere as a result of the spatially and 
temporally varying aerosol or the variable gaseous components such as water 
vapor. ozone, and carbon dioxide. In addition, there is the presence of 

clouds and, therefore, cloud shadows whi ch must be accounted for in the 
analysis of remote sensor data. 

Remote sensing means different things to different groups. One may 

be interested in estimatinq the proportion of crops or materials in a given 
region. Another may be interested in the identification of various fea-· 
tures based upon spectral properties. In early work in remote sensing, 
investigators attempted to create signatures of various materials based 

upon their actual spectral characteristics in a known area. Then the sen­
sor was transported to another area and each pixel of data was then tested 

to determine how it compared spectrally with the known signatures. By des-­
ignating a specific area for investigation one could then classify the 

pixels according to their spectral classes. Another method can be used 
however; one which is based upon models of various mate~ials. The models 

can be qener'al so that they are characteristic of many of the variables 



which are used to represent actual data. Thus, a particular crop model 

might have the capability of predicting spectral reflectance in terms of 

the peri od dur; ng the growi ng season, the time of day, soi 1 mo; sture, and 

wind speed. This is then an attempt to remove some of the variability 

associated with various material classes. 

A similar problem exists with the atmosphere. In the extension of 

spectral signatures from one area to another the atmosphere will be dif­

ferent and, therefore, errors wi 11 be introduced into the process i nq of 

images for classification analysis. A deterministic atmospheric radiation 

model would certainly be desirable. Unfortunately, it is impossible to 

predict thp. optical state of the atmosphere throughout the time span and 

spatial region over which remote sensing takes place. In lieu of such 

models, we shall investiqate the statistics of basic atmospheric optical 

properties so that we can determine a measure of the variability of the 

atmosphere for particular times and areas of concern. We base our sto­

chastic model on actual data for optical thickness as measured by sensors 

throughout the world. 
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2.0 MODEL PARAMETERS 

In remote sensing technology there are many parameters which are 

used in the description of surface features and the atmosphere. Because we 

are considering the atmosphere in this investigation rather than the de­

tails of the surface, we will consider the atmospheric parameters in some 

detail. The primary parameters on which the radiation at the sensor 

depends are those listed in Table 1. 

~.-----------.------------------,-------------------

Tab"le 1. list of Primary Parameters for Remote Sensing 

~.------------------------------------------

Target Bidirectional Reflectance 

Background Albedo 

Spectral Optical Thickness 

Target Directional Emissivity 

Background Emissivity 

Single Scatterinq Albedo 

Scattering Phase Function 

Density of Each of i-th Gas Component 

Extraterrestrial Solar Irradiance 

Geometry 

Many of these primary parameters are, in turn, related to more basic quan­

tities such as those listed in Table 2. These quantities are used in 

model s for the speci fi cat i on of the primary parameters and shoul d be con­

sidered for t.he detailed modeling of the inherent features of surface and 

atmospheri c quant it i es. It shoul d be noted that we have not i ncl uded the 

functional dependence of each parameter in the tables. It will be assumed 

that the physical (radiometric) and optical quantities are spectral and de-

pend upon the wavelength of the radiation. 
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Table 2. List of Basic Quantities for Primary Parameters 

Barometric Pressure P 
Aerosol Index of Refraction m 
Aerosol Size Distribution n(r) 
Aerosol Shape Factor s 
Particulate Number Density N 

Atmospheri c Temperature Ta 
Cloud Temperature Tc 
Target Temperature Tt 
Backqround Temperature Tb 
Water Vapor Pressure e 

Spectroscopic Parameters A; 

We now describe briefly the radiometric quantities which are used in 

the deterministic and stochastic atmospheric radiation models. The surface 
radiance, that is, the upward-directed radiance at a surface element is 
given by the following equation: 

Lo (~) =[ ~s' ;--p(;,;--)Lin(;")d;", 

1f 

(1) 

where ns is the unit normal surface vector, p(n,n") is the bidirectional 
surface reflectance which is dependent upon the directional unit vector for 

A A 

the incoming radiation n" and the vector for the outgoing radiation n. The 
A 

incoming radiance Lin (n), in turn, depends upon the atmosphere and the 
background surface albedo. It is the task of agronomists, hydrologists, 

geologists, and others to present specific models of the bidirectional 
reflectance for their respective disciplines. Once this is done the atmo­
spheric scientist can use his models of the atmosphere to generate the 

downwelling radiation field so that one can calculate the surface radiance 
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Lo (rl). For many exampl eS one can use the assumption of a di ffuse surfacE~ 

in which case the bidirectional reflectance ;s constant with respect to 

direction and we have for the surface radiance 

(2) 

where! p is the surface albedo and ETOT is the total (solar plus diffuse 

sky) downward irradiance on the target. 

The radiance at a sensor aperture can be expressed as 

WherE! Tis the transmittance along the path between the target and the 

sensor and Lp is the path radiance. These two quantities are dependent 
upon the scattering and absorptive properties of the atmosphere, the 

geomf!try, and in the case of path radiance, the surface albedo. Many 

models exist which can be used to calculate the transmittance and path 

radiance, some of which are summarized by Turner [1]. Because of the 

rel atively simple closed-form exp,'essions used in a modified two-stream 

model, we will use the model of Turner [2,3,4] in our analysis. 

Because of the ease with which we could obtain data and because 

therE! is a reasonably good understanding of atmospheric particulates, we 

will concentrate on the stochastic nature of the atmospheric aerosol in 

this investigation. In a previous study, Turner considered the repre­

sentation of the spectral optical thickness of the atmosphere in terms of a 

random variable. It should be recalled that the aerosol optical thickness 

of Earth's atmosphere can be expressed as the following: 

(4) 

where KA (A,Z) is the volume extinction coefficient at altitude z. Because 
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the particulates are so variable we can consider 'o'A(:>") as the most var­

iable part of the optical thickness, at least in the spectral regions where 

gaseous absorption is weak. Thus, the aerosol optical thickness can have 

any positive value, i.e., 

(5) 

Another quantity of considerable importance in radiative -transfer 

theory is the single-scattering albedo wo(:>"). It is the ratio of the 

volume scattering coefficient to the volume extinction coefficient and is a 

measure of the amount of scattering. It has the following range: 

(6) 
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3. () Sf OCHJ\Sf I C MODE L 

In this section we consider the formalism for the statistical 
properties of the highly variable atmospheric components. 

3.1 Sensor Response 

A typical sensor has detectors the output of which is usually in 

volts. In a~y case, we can write the sensor output 

(7) 

where Sk(A) is the spectral response function of the sensor for the k-th 
channel. If the radiance L(A) is known then the integration can be per·· 
formed and the response sk can be determined. 

The response sk and the radiance L(A) are considered to be stochas­

tic quantities i.e., they have properties which are associated with random 

variables. As stated earlier, the randomness arises from two factors; 1) 

the unknown or statistical nature of the surfac{~ properties, and; 2) the 
statistical nature of the atmosphere. Thus, we consider the mean and 
covariance of the sensor response for channels k and k' i.e., 

Rk = E tSk3 (8) 

C k k I = E {( S k - R k )( Ski - R k I )} , 
(9) 

where E denotes the expectation. 

3.2 The Covariance Matrix 

For multispectral remote sensinq applications one can use the 
maximum likelihood decision rule for classification. Let us designate the 
logarithm of the radiance by a vector Xk, i.e., 

7 



(10) 

One can then use the n-dimensional normal distribution function i .e. , 

(11 ) 

when C is the determinant of the covariance matrix Ckk ,. We will now 

develop an expressi on for the covari ance matrix for the spectral radi ance 

in terms of· the variances, means, and covariances of the known quantities. 
Let us consi der the stochastic parameters to be optical thi ckness T, 

single-scattering albedo w, and the background albedo PB. The spectral 

radi ance for the i -th pi xel and the k-th channel can be represented ap­

proximately by 

(12) 

where Fk is a radiometric factor related to the atmospheric transmittance 
between the target and observer and the total (direct plus diffuse) down­

welling irradiance at the target. Gk is a radiometric factor related to 

the path radi ance and Pi k is the spectral refl ectance of the i -th pi xel for 

the k-th channel. Averaging over all pixels in a training set or for a 

model of a particular class we get 

- -
Lk(T,w,PB) = PkFk(T,W,PB) + Gk(T,W,PB)· (13) 

It should be noted that the terms in Equation 13 depend upon the atmos­

pheric parameters T and wand the background refl ectance P BO If we now 

denote f(T), g(w), and h(PB) as probability density distribution functions 

for the parameters T , w, and P B respect i vel y, we can then integrate each of 

these parameters over all atmospheri c states for whi ch the di stri but ion 

functions are valid, and obtain their mean values. In a later section we 
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will perform these averages for a specific region and time of year. Thus, 

the complete average is given by 

-
Lk = P k F k + Gk• (14) 

The radiance covariance matrix is then written as 

n n 
C(Lk··,Lk,) ='''''' '" ( )( ~ ~ Lik - Lk Ljk' - Lk, )· 

i =1 j=1 
(15 ) 

Substitutinq expressions 12 and 14 into Equation 15 and carrying out the 

algebra gives us the final expression for the radiance covariance matrix, 

Let us now examine Equation 16 carefully in order to understand its 

sign'ificanc€!. The matrices involving Fk and Gk are known if we know the 

joint probability density distribution functions for the optical thick­

neSSf!S. For example, the covar'iance matrix elements for C(Fk,Fk, ) are 
gi ven by 

00 00 

C(Fk ,.Fk I) = f I f(F k ,Fk I )(Fk-Fk)(Fk ,-Fk I )dFkdFk I' 
(17) 

-co -00 

where f(Fk,F k, ) is the joint probability density function. This, in turn, 

is known in terms of the distribution function 9 for the optical thick-

neSSE!S i.e., 

(18) 
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when J is the Jacobi an of the transformation between the vari abl es. From 

refl ectance model s we can determi ne the means and covar; ance for the re-

fl ectances in Equation 16 and, therefore, the 

for multispectral radiances is determined. 

matrix is the variance. It is given by 

compl ete covari ance matri x 

The di agonal val ue of the 

2 2 

cr 2 (Lk) = cr 2 (Pk)cr 2 (Fk) + Pk cr 2 (Fk) + Fkcr 2 (Pk) 

(19) 

We can now treat special cases of Equation 19. If the atmosphere is 

constant, that is, if there is no variation in the optical properties of 

the atmosphere then we have for the variance 

(20) 

which indicates that as the atmospheric turbidity increases from one stable 

condition to another the variance decreases. This fact is reasonable; in­

deed, the variance will be zero if the turbidity or the atmospheric optical 

thi ckness is very 1 arge because Fk decreases as turbi dity increases and 

there will then be no variation at all. This is illustrated in Figure 1 

for dark and bright surfaces for various atmospheres. As the visibility 

decreases the dark surfaces wi 11 bri ghten and the bri ght surfaces will 

darken and all surfaces will approach the limit point which is the path 

radiance. 

For the special case of a constant surface Equation 19 gives us 

2 

cr 2 ( Lk) = Pk cr2 ( F k) + 2 Pk C (F k ,Gk) + cr 2 ( Gk ) • (21) 

Equation 21 is quite interesting; it indicates that if we know the sta­

tistics for the atmosphere throughout a uniform spatial area then the 

reflectance can be determined by solving for Pk. Thus, the atmospheric 

statistics are found by examining a data base on optical thicknesses and 

the complete variance cr2 (Lk) is determined experimentally by remote 

sens; ng. A di rect experiment usi ng, say, the Landsat mul t; spectral sensor 

should confirm the validity of Equation 21. 
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FiguY'e 1. Two-dimensional Representation of Spectral Signatures 
as a Function of Atmospheric Turbidity 
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3.3 Radiative Transfer 

Using an atmospheric radiation model we will now develop expressions 

for the means and variance of the path radiance. For simpl icity, we will 

use a single-scattering approximation for the path radiance, i.e., 

( ) = L [1- -(orR + .. c)(l + 1 )] Lp T,ll,</l A e II llO (22) 

where TR ;s the Rayleigh optical thickness and T is the aerosol optical 

thickness. It is assumed that the Rayleigh value for a gaseous atmosphere 

is al ways known. It is g; ven by 

(23) 

where'R(ho) is the value at some standard altitude (sealevel), P is the 

barometric pressure at altitude h, and Po is the pressure at sealevel. The 

cosine of the nadir view angle is ]l and the cosine of the solilr zenith 

angle is 1l0' The factor Lo is the asymptotic radiance, given by 

Wo]loEoP(]l, </l,-llO' </lo) 

4TI(]l+llO) 
(24) 

where Eo is the known extraterrestri al sol ar i rradi ance at the top of the 

atmosphere and p(ll,~,-]l,~ ) is the single-scattering phase function. The o 0 
asymptotic value for path radiance is reached for infinite optical depth, 

i.e., for a very turbid atmosphere. A representation of the path radiance 

;s given in Figure 2. We can write Lp 

as 

(25) 
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where 

a = e -bT Rand b = 1 + L . 
~ ~o 

(26) 

We now use a log-normal distribution function for the representation of the 
aerosol optical thickness i.e., 

(]) 
u 
s::: 
res 
' ..... 
'"0 
res 

0::: 

..d ...., 
res 

0... 

f(T) = _.::...1 __ 
..j2; aT 

(l-a)LA 

exp [- _1._ (1 n T-m) 2] , 
20'2 

------

o Aerosol Optical Thickness,T 

Figure 2. Path Radiance vs Aerosol Optical Thickness 

(27) 

WherE! 0'2 is the variance and m is the mean val ue. The mean val ue for Lp 
i 5 then 

00 

Lp = LA - LAa ~ e-bTf(T)dT 
o 

13 
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Likewise, we can determine the variance in the path radiance i.e., 

2 

V(Lp) = Lp - Lp' (30) 

where 

(31) 

where the I and K integrals are 

(32) 

and, 

(33) 

where 

m . .;-a = -be and f3 =y2 a. (34) 

The integrals must be done numerically and in a later section we will eval­
uate them to find the mean and variance in the path variance for a specific 
geographical area. 

3.4 Atmospheric Data 

The author made many contacts with atmospheric scientists and exper­
imentalists in meteorological data analysis to acquire a comprehensive data 

base for the atmospheric optical parameters such as single-scattering 
al bedo and optical thickness. Vi rtually nothi ng exi sts on wo ' so we will 
have to assume values which are generally characteristic of a particular 
region of investigation. 
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Although it is not difficult to measure the optical thickness, it 

does r'equi re spectral fi 1 ters and a c1 ock-dri ve to ori ent a sensor toward 

the sun. Usually the devices used require special handling by trained 

personnel and uniformity of devi ces and methods of deployment. As a re­

sult, good va.lues of '0(:\) are available only for particular sites and for 

limitE!d times. The most comprehensive set of turbidity values is that of 

the tliJrbi dity network or the Background Ai r Poll ut ion Monitori ng Network 

(I3APMON) datal [5J for 1978 which can be obtained from the National Climatic 

Center' in A!;heville, NC. Using a two-band sensor, the data included 

turbidity measurements for selected sites on an hourly basis for the 

following locations. 

Ireland 

Spain 

Federal Republic of Germany 

Hungary 

Bulgaria 

Italy 

Turkey 

Afghanistan 

Indi a 

Canada 

Un i ted States 

El Salvador 

Antarct i ca 

Pacifi c Is1 ands 

Austral i a 

Data tapes are available from the National Climatic Center from which one 

can obtain clai ly and monthly mean val ues, vari ances, and covari ances for 

the two spectral bands. 

Associated with the turbidity, one can also obtain the usual weather 

data from the National Climatic Center. Therefore, one can correlate the 

turbidity or optical thickness with various parameters such as visibility, 
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pressure, temperature, and relative humidity. Likewise, one can generate 

the multivariate probability distribution functions for all the variables. 

In addition to the above data, a gridded data base [61 is available 
for Europe containing cloud coverage, cloud type, cloud base and cloud top 

heights, as well as temperature, pressure, and relative humidity at 

eighteen layers from the surface up to 18.23 km (60,000 ft.) altitude. One 
coul d use thi s data base to generate the probabi 1 i ty densi ty di stri but ion 
functions for clouds in the same way that we can do for aerosols. A multi­

variate probability distribution function would give us the number of 
clouds withi n some sel ected area for any season as a functi on of cloud 

coverage, cloud type, base height, etc. Having these distributions, one 
could then calculate the expected values for the line-of-sight transmit­
tance for the cloud-free-line-of-sight. Because we have data for various 
1 evel s in the atmosphere, we can al so generate the di stributi on functi ons 
in four-dimensions, i.e. the three space dimensions and time. Although we 
have not analyzed the cloud data, one can generate the probability distri­
butions for an arbitrary 1 ine-of-sight for space-to-ground transmittances 

and radiances. In the present investigation we have used the turbidity 

cl imatol ogy data for two channel s for one month as an exampl e of the 
technique. 

The example which we shall take is for Cerro Verde in El Salvador as 
gi ven by the BAPMON data. Thi s station was chosen because a fai rly large 
sample of observations was available, in comparison to some of the sample 
sizes for other months and other stations. Table 3 illustrates the aerosol 

optical thickness for the month of July, 1978 for the spectral bands 500nm 

and 880nm. The mean, variances, and standard deviations for both bands are 
calculated. Also, we determined the covariance and the correlation. It 

should be noted that the correlation coefficient of 0.979 is high which 
implies a physical connection between the two bands - certainly not a sur­
prising result. In Figure 3 we present a histogram of the El Salvador 
data. As can be seen, most of the values lie near an optical thickness of 
0.1. In Figure 4 we have plotted the results simultaneously for both 
spectral bands. The high correlation is clearly seen. 
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Table 3 AEROSOL OPTICAL THICKNESS 

LOCATION: Cerro Verde, El Salvador 

~onth Day N 'rA (500 nm) 'rA(SOO nrW 
1978) 

7 1 5 0.19342 0.18881 
I 

7 2 1 0.18190 0.25559 

I 
I 

7 4 I 4 0.07368 0.07368 
! 

i 

7 5 , 1 0.08980 0.08059 
-

7 6 6 0.11513 0.11513 
. 

7 7 8 0.09210 0.09901 

7 8 6 0.08059 0.07599 

7 10 1 0.07368 0.09441 

7 11 3 0.11973 0.08980 

7 12 1 0.08980 0.09441 

7 13 4 0.08750 0.07368 

7 14 4 0.05987 0.07599 

7 18 2 ' 0.06908 0.07829 

7 19 1 0.07138 0.06447 
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Table 3 AEROSOL OPTICAL THICKNESS (cont.) 

LOCATION: Cerro Verde, El Salvador 

Month Day N 't'A (500 nw 't'A (800 nm) 
(1978) 

7 21 2 0.06908 0.08289 

7 23 3 0.14967 0.16348 

7 24 2 0.38683 0.52269 

7 25 4 0.25559 0.35920 

7 26 6 0.32466 0.37993 

7 27 3 0.09210 0.08059 

7 29 2 0.14046 0.11973 

Mean 0.134 0.151 

Variance 0.00759 0.01486 

S.D. 0.08709 0.12191 

Covariance 0.01039 

Correlation 0.97900 
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Similal~ data for the variable gaseous components such as ozone, 

water vapor and carbon dioxide are difficult to obtain. Suitable data 

bases probably exist, but to extract the effective absorber amounts and 

correlate the results with time of year and location is a large task. In 

the case of clouds, the problem is two-fold; first, one must develop 

probability distribution functions for clouds in terms of geographic 

location and time, and, second, one must then correlate the cloud type with 

effective reflectance and emissivity. A possible solution is to use 

spectral bands as in the Thematic Mapper to discriminate large, distinct 

clouds from snow. 

3.5 Results of Calculations 

Using the El Salvador data CIS an example, we considered the fol­

lowing scenario: 

Sol ar zenith angl e eo = 00 

Nadir view angle 6= 0
0 

TR (Rayleigh optical thickness) = 0.1241 

Wavel ength A = 500nm 

From these data we can determine the path radiance distribution function by 

the foll owi ng: 

= fh(L)J (35) 

I~~I 
when f[ T(L)] is the probability distribution function for the optical 

thickness. The corresponding function g(L/LA) or g(X), where X = LILA is 

given in Figure 5. Evaluating the integrals in Equations 32 and 33 we 
obtain 

I = 0 .. 40016 

K = 0 .. 32837 
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so that the mean path radiance is 

(36) 

and the variance in the path radiance is 

V(Lp) = 0.16824 L~. (37) 

Simi 1 arresul ts can be generated for the covari ance between bands and for 

any region and time for which optical thickness data are available. 

0.3 r---------------------------------------------~ 

0.2 

0.1 

I 
Mode I Mean 

o 
~--~~--~----~----~--~----~----~----~--~--~~ 

0.8 1.0 o 0.2 0.4 0.6 
Radiance Parameter x 

Figure 5. Probability Distribution Function for Path Radiance, 
for Cerro Verde, El Salvador (July, 1978) 
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4.0 CORRECTION ALGORITHMS 

Having determined the radiance covariance matrix and the mean 

radiance vector one can then process multispectral data for a particular' 
condition. There are several methods available for processing. 

Method 1: The philosophy here is to obtain atmospheric data for large 

areas of the' world for various times of day for different times of year. 
From this data base, one can then generate the statistics for the atmo·· 

spheri c parameters and, therefore, the correspondi ng probabil ity di stri·· 

bution functions. Then, using radiative-transfer models one can determine 

the covariance matrices and the mean values of the radiometric parameters. 
Using actual field reflectances or models of reflectance one can determine 

the means and covariance of the surface reflectances for various classes of 
materials. Finally, all of this information is combined as in Equation 16 
to de!termine the actual radiance covariance matrix and the mean radiances 
for use in the decision algorithm. The resulting classification accuracy 

should be better than previous methods which rely on a "universal" mean and 
covariance. The general pattern is illustrated in Figure 6. It is obvious 

that as more! atmospheric data become available the more complete will be 
our representation of atmospheric states and the more accurate will be our 
classification. 

Method 2: A. variation of the abOVE! method is to consider a limited number 
of data sets. Let our reference radiometric factors be denoted by ~ and ~, 
that is, thE!se are averages for some training set. Let the corresponding 
averages for the unknown area be primed i.e., ~I and ~I. The bar indicates 

that we have averaged over all atmospheric states. Then, one can operate 
on the measured radiance L; to obtain a corrected radiance i.e., 

( " -~) L~ =( L;-G F + G. 
\, F" 

(38) 

Let us consider a simple example. From our atmospheric and material class 
- -data bases vie determi ne F and G for the mi ddl e of Kansas in June. We now 
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Figure 6. Method for Atmospheric Correction of Multispectral Data 
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want to classsify materials in Texas in August so we use the corresponding 
-values FI and G1 for that time and location. The Li are then the actual 

radi ances appropri ate to the Texas 1 ocat i on for each pi xe 1 i. Lf is then 

the f1ieW or corrected radiance. If it turns out that the atmospheric con­

ditions and the material classes in Kansas are the same as those in Texas, 

then FI=F and G1=G and 

(39) 

a result which indicates that we can do no better than the training set or 

model data base. In any case, this is a method which allows us to extend 

the spectral signatures. 

Method 3: Another method we can use is based upon the assumption that one 

knows or can identify a particular class of objects in a multispectral data 

set or frame. We then have the following: 

(40) 

where! it is assumed that we know the variance 0'2{p} for a particular class 

of materials. From the measured radiance data we know 0'2 {L}. Hence we 

know the atmospheric parameter F. Likewise,;n taking the average over the 
known data we have 

L=pF+G, (41) 

WherE! L is measured and p is known. Therefore, both factors F and G are 

determined ilnd one can process all data in the region. A corrected rad­
; anCE! is 

(42) 

where F and G are the known factors from a reference area. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

In this investigation we have analyzed measured optical thickness 

data for one station in a simple two-band sensor network. The statistics 

were gathered for one month from the National Climatic Center in Asheville, 

North Carolina. The measurement stations are located in fourteen areas of 

the worl d and represent, as best as we can determi ne, a compl ete and 

comprehensive optical thickness data set. As described in this report, if 

all the data were analyzed we could generate the statistics and probability 

density distribution functions for optical thickness in terms of time of 

day, month, and geographic location. Even if this were done, it would 

represent data only for two bands in the visible part of the spectrum. 

Nevertheless, the use of the data set would be better than not using it as 

has been done in the past. 

In this work we have assumed diffuse reflectances for the targets. 

Although this is not a serious restriction, for completeness one should 

develop a correspondi ng formal i sm for non-Lamberti an surfaces. Thi s coul d 

have been done here, but it would have led to an unnecessarily complex 

formalism. The key development in this investigation is the expression for 

the general covariance matrix of radiances in terms of basic atmospheric 

and refl ectance data. Gi ven refl ectance data and atmospheri c data we can 

generate a more realistic radiance covariance matrix for particular spatial 

and temporal regions. This should lead to more accurate probabilities of 

classification than before because we are using data which more nearly 

represent the region under consideration. It should be noted that this ;s 

a statistical argument in that there may be occasions when one obtains a 

high classification probability because the unknown data just happen to 

possess values which are close to the reference data set. For example, if 

the reference set is Kansas in June and the unknown set is Texas in August, 

it is possible that the same atmospheric state could prevail in both places 

for the times considered. In general, however, this is unlikely, so that a 

statistical method based upon actual atmospheric data should provide the 

user with a consistently higher classification probability for a large 

number of data sets. 
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.We recommend further development in this area. A complete stochas­

tic atmospheric radiative-transfer model can now be developed i.e., one 
which includes the variation in the single-scattering albedo and the 

gaseollJs components. If data are ·Iacking one could at least develop the 
mathematical formalism and use whatever theoretical models exist in atmo·· 

spheric physics to establish some stochastic parameters. For actual remote 
sensing users we suggest the further analysis of optical thickness data and 
the implementation of the algorithms in this report to multispectral clas­
sification problems. 
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