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1.0 INTRODUCT ION

In remote sensing applications there is a need for an atmospheric
model to simulate the response of a satellite sensor for realistic, var-
iable atmospheric conditions. In addition, there is a need for an atmo-
spheric model to "correct" the sensor response for expected or anticipated
atmospheric conditions which exist for a particular region of interest.

The remote sensing of the Earth's surface and the interpretation of
various surface elements is a complex problem for many reasons. First,
there is the variability of the surface itself; the reflectance and emis-
sivity of surface features are dependent upon factors which are either dif-
ficult to model or predict. Thus, the intrinsic radiance of a species of
vegetation will depend upon the growing season, soil moisture, time of day,
wind speed, precipitation history, and perhaps other factors which are dif-
ficult to analyze. Second, atmospheric effects can play a role in varying
the radiance of the surface material at the surface and also in the radi-
ance along the path which connects the sensor and the target element.
Thus, one can have a variable atmosphere as a result of the spatially and
temporally varying aerosol or the variable gaseous components such as water
vapor, ozone, and carbon dioxide. In addition, there is the presence of
clouds and, therefore, cloud shadows which must be accounted for in the
analysis of remote sensor data. | '

Remote sensing means different things to different groups. One may
be interested in estimating the proportion of crops or materials in a given
region. Another may be interested in the identification of various fea-
tures based upon spectral properties. In early work in remote sensing,
investigators attempted to create signatures of various materials based
upon their actual spectral characteristics in a known area. Then the sen-
sor was transported to another area and each pixel of data was then tested
to determine how it compared spectrally with the known signatures. By des-
ignating a specific area for dinvestigation one could then classify the
pixels according to their spectral classes. Another method can be used
however; one which is based upon models of various materials. The models
can be general so that they are characteristic of many of the variables



which are used to represent actual data. Thus, a particular crop model
might have the capability of predicting spectral reflectance in terms of
the period during the growing season, the time of day, soil moisture, and
wind speed. This is theh an attempt to remove some of the variability
associated with various material classes.

A similar problem exists with the atmosphere. In the extension of
spectral signatures from one area to another the atmosphere will be dif-
ferent and, therefore, errors will be introduced into the processing of
images for classification analysis. A deterministic atmospheric radiation
model would certainly be desirable. Unfortunately, it is impossible to
predict the optical state of the atmosphere throughout the time span and
spatial region over which remote sensing takes place. In lieu of such
models, we shall investigate the statistics of basic atmospheric optical
properties so that we can determine a measure of the variability of the
atmosphere for particular times and areas of concern. We base our sto-
chastic model on actual data for optical thickness as measured by sensors
throughout the world.
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2.0 MODEL PARAMETERS

In remote sensing technology there are many parameters which are
used in the description of surface features and the atmosphere. Because we
are considering the atmosphere in this investigation rather than the de-
tails of the surface, we will consider the atmospheric parameters in some
detail. The primary parameters on which the radiation at the sensor
depends are those listed in Table 1.

Table 1., List of Primary Parameters for Remote Sensing

Target Bidirectional Reflectance o(9,07)
Background Albedo Pg
Spectral Optical Thickness T,
Target Directional Emissivity e(Q)
Background Emissivity ep
Single Scattering Albedo W
Scattering Phase Function p(cosx)
Density of Each of i-th Gas Component n.
Extraterrestrial Solar Irradiance E1
Geometry 5?5

Many of these primary parameters are, in turn, related to more basic quan-
tities such as those listed in Table 2. These quantities are used in
models for the specification of the primary parameters and should be con-
sidered for the detailed modeling of the inherent features of surface and
atmospheric quantities. It should be noted that we have not included the
functional dependence of each parameter in the tables. It will be assumed
that the physical (radiometric) and optical quantities are spectral and de-
pend upon the wavelength of the radiation.



Table 2. List of Basic Quantities for Primary Parameters

Barometric Pressure
Aerosol Index of Refraction
Aerosol Size Distribution

Can
=
S

Aerosol Shape Factor
Particulate Number Density
Atmospheric Temperature
Cloud Temperature

Target Temperature

T o+ O D

Background Temperature

® -4 —4 4 4 = »n 3 3 ©

Water Vapor Pressure

=
-

Spectroscopic Parameters

We now describe briefly the radiometric quantities which are used in
the deterministic and stochastic atmospheric radiation models. The surface
radiance, that is, the upward-directed radiance at a surface element is
given by the following equation:

L, (@) = [ n..0%(a,07)L, (2°)dar, (1)
™
where hs is the unit normal surface vector, p(é,é’) is the bidirectional
surface reflectance which is dependent upon the directional unit vector for
the incoming radiation 6” and the vector for the outgoing radiation 2. The
incoming radiance L;, (5 }, in turn, depends upon the atmosphere and the
background surface albedo, It is the task of agronomists, hydrologists,
geologists, and others to present specific models of the bidirectional
reflectance for their respective disciplines. Once this is done the atmo-
spheric scientist can use his models of the atmosphere to generate the
downwelling radiation field so that one can calculate the surface radiance



Lo(ﬁ}». For many examples one can use the assumption of a diffuse surface
in which case the bidirectional reflectance is constant with respect to
direction and we have for the surface radiance
=P
Lo = w Eror (2)

where o is the surface albedo and Ergr s the total (solar plus diffuse
sky) downward irradiance on the target.

The radiance at a sensor aperture can be expressed as

L= LT+ Lp,
where T is the transmittance along the path between the target and the
sensor and Lp is the path radiance. These two quantities are dependent
upon the scattering and absorptive properties of the atmosphere, the
geometry, and in the case of path radiance, the surface albedo. Many
models exist which can be used to calculate the transmittance and path
radiance, some of which are summarized by Turner [17. Because of the
relatively simple closed-form expressions used in a modified two-stream
model, we will use the model of Turner [2,3,4] in our analysis.

Because of the ease with which we could obtain data and because
there is a reasonably good understanding of atmospheric particulates, we
will concentrate on the stochastic nature of the atmospheric aerosol in
this investigation, In a previous study, Turner considered the repre-
sentation of the spectral optical thickness of the atmosphere in terms of a
random variable. It should be recalled that the aerosol optical thickness
of Earth's atmosphere can be expressed as the following:

(s¢]

conl®) j{ a2z, (a)
0

where KA (r,z) is the volume extinction coefficient at altitude z. Because



the particulates are so variable we can consider TO,A()\) as the most var-
iable part of the optical thickness, at least in the spectral regions where
gaseous absorption is weak. Thus, the aerosol optical thickness can have
any positive value, i.e., ‘

0 < TO’A(A) < ® (5)

Another quantity of considerable importance in radiative -transfer
theory is the single-scattering albedo w (}). It is the ratio of the
volume scattering coefficient to the volume extinction coefficient and is a
measure of the amount of scattering. It has the following range:

0 < wo(x) <1 (6)



3.0 ST OCHAST IC MODEL

In this section we consider the formalism for the statistical
properties of the highly variable atmospheric components.

3.1 Sensor Response

A typical sensor has detectors the output of which 1is usually in
volts. In any case, we can write the sensor output

Sk i/f L(x) Sk(x)dx, ' (7)

0

where Sk(x) is the spectral response function of the sensor for the k-th
channel., If the radiance L(g) is known then the integration can be per-
formed and the response S can be determined.

The response s, and the radiance L(r») are considered to be stochas-
tic quantities i.e., they have properties which are associated with random
variables. As stated earlier, the randomness arises from two factors; 1)
the unknown or statistical nature of the surface properties, and; 2) the
statistical nature of the atmosphere. Thus, we consider the mean and
covariance of the sensor response for channels k and k' i.e.,

R, = E gsk} (8)
Cr = E {(Sk’Rk)(sk"Rk')} ’ | (%)
where E denotes the expectation.
3.2 The Covariance Matrix

For multispectral remote sensing applications one can use the
maximum Tikelihood decision rule for classification. Let us designate the
1oqah1thm of the radiance by a vector Xk’ i.e.,



_ ’ 10
X, = Tn L. (10)

One can then use the n-dimensional normal distribution function i.e.,

n - -
e {12 G (XX ) (XK Y (1)

F(XqsXpsueesX ) =
172 O enVe T Kk'=1

when C is the determinant of the covariance matrix Crgre We will now
- develop an expression for the covariance matrix for the spectral radiance
in terms of. the variances, means, and covariances of the known quantities.
Let us consider the stochastic parameters to be optical thickness =,
single-scattering albedo w, and the background albedo Pge The spectral
radiance for the i-th pixel and the k-th channel can be represented ap-
proximately by

L-'k(T awapB) = p-‘k Fk(TawspB) + Gk(T s apB)s (12)

where Fk is a radiometric factor related to the atmospheric transmittance
between the target and observer and the total (direct plus diffuse) down-
welling irradiance at the target. Gk is a radiometric factor related to
the path radiance andp;, s the spectral reflectance of the i-th pixel for
the k-th channel. Averaging over all pixels in a training set or for a
model of a particular class we get

L (t0,0p) = 0y F(twapg) + G lt.wi0p). (13)

It should be noted that the terms in Equation 13 depend upon the atmos-
pheric parameters T and w and the background reflectance o B If we now
denote f(t), g(w), and h(pB) as probability density distribution functions
for the parameters t,w, and o respectively, we can then integrate each of
these parameters over all atmospheric states for which the distribution
functions are valid, and obtain their mean values. In a later section we



will perform these averages for a specific region and time of year. Thus,
the complete average is given by

L, =0y F + Gy (14)

The radiance covariance matrix is then written as

J3

o) (15)

Ms
—
—
1
— i
i
= 1

ClLyolys) =

—

1

-t

J

Substituting expressions 12 and 14 into Equation 15 and carrying out the
algebra gives us the final expression for the radiance covariance matrix,

C(Lk:)l-k-) = C(pk,pkl) C(Fk,Fku) + 5k5k'C(Fk’Fk') +
Fka'C(pkfpkl) + EkC(Fk’Gk') +
BkIC(Fku,Gk) + C(Gk,le). (16)

Let us now examine Equation 16 carefully 1in order to understand its
significance. The matrices involving Fk and Gk are known if we know the
joint probability density distribution functions for the optical thick-

nesses, For example, the covariance matrix elements for C(Fk,Fk.) are
given by

o oo

C(FoF) = [ [ FFR )RR (FomFy )Ry (17)

-0 =00

where f(F,,F,.) is the joint probability density function. This, in turn,
is known in terms of the distribution function g for the optical thick-
nesses i.e,,

f(Fk$Fk') = g(TkaTkl)/Ja (18)



when J is the Jacobian of the transformation between the variables. From
reflectance models we can determine the means and covariance for the re-
flectances in Equation 16 and, therefore, the complete covariance matrix
for multispectral radiances is determined. The diagonal value of the
matrix is the variance. It is given by

2
(L) = oo )?(F) + 5y a2(F) + Fotloy)

+ 25, C(F,.6,) + (G, (19)

We can now treat special cases of Equation 19, If the atmosphere is
constant, that is, if there is no variation in the optical properties of
the atmosphere then we have for the variance

o2Ly) = Fro?(p)s | (20)

which indicates that as the atmospheric turbidity increases from one stable
condition to another the variance decreases. This fact is reasonable; in-
deed, the variance will be zero if the turbidity or the atmospheric optical
thickness is very large because Fk decreases as turbidity increases and
there will then be no variation at all. This is illustrated in Figure 1
for dark and bright surfaces for varioué atmospheres. As the visibility
decreases  the dark surfaces will brighten and the bright surfaces will
darken and all surfaces will approach the 1imit point which is the path
radiance,

For the special case of a constant surface Equation 19 gives us

2
OZ(Lk) = E)kO'Z(Fk) + ZBkC(Fk’Gk) + OZ(Gk)o (21)

Equation 21 is quite interesting; it indicates that if we know the sta-
tistics for the atmosphere throughout a uniform spatial area then the
reflectance can be determined by solving for Ek. Thus, the atmospheric
statistics are found by examining a data base on optical thicknesses and
the complete variance 02(Lk) is determined experimentally by remote
sensing. A direct experiment using, say, the Landsat multispectral sensor
should confirm the validity of Equation 21. '

10
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3.3 Radiative Transfer

Using .an atmospheric radiation model we will now develop expressions
for the means and variance of the path radiance. For simplicity, we will
use a single-scattering approximation for the path radiance, i.e.,

1

1
Lp( Tousd) = Ly [1-e‘(TR LA G ;5)} | (22)

where R is the Rayleigh optical thickness and T is the aerosol optical
thickness. It is assumed that the Rayleigh value for a gaseous atmosphere
is always known. It is given by

: |
“g(h) = Tplhg) 5= . (23)

wheretR(ho) is the value at some standard altitude (sealevel), P is the
barometric pressure at altitude h, and Po is the pressure at sealevel, The
cosine of the nadir view angle is u and the cosine of the solar zenith
angle is o The factor L0 is the asymptotic radiance, given by

) NOUOEOP(U9¢:'UO’¢O) (24)

L, =
A
An(utu,)

where EO is the known extraterrestrial solar irradiance at the top of the
atmosphere and p(u,¢,—uo,¢o ) is the single-scattering phase function., The
asymptotic value for path radiance 1is reached for infinite optical depth,
i.e., for a very turbid atmosphere. A representation of the path radiance
is given in Figure 2. We can write Lp

as

Lp(7) = Ly(1-2e™P7) , (25)

12



where

a=eDR and b=1+ (26)

=R
r_‘{v—a

0

We now use a log-normal distribution function for the representation of the
aerosol optical thickness i.e.,

) = S S exp [-f——L— (In T—m)2] , (27)
2r ot 202
LA - _
I
v /
(&)
f oy
-
©
&
Nt
prec
&
(l-a)LA

0 Aerosol Optical Thickness,t

Figure 2. Path Radiance vs Aerosol Optical Thickness

where o2 is the variance and m is the mean value. The mean value for LP
is then

Lo

- -b
LP =Ly - LAa fe Tf(r)dt . (28)

0

i

Lp(1-1). (29)

13



Likewise, we can determine the variance in the path radiance i.e.,

— 2

V(LP) = L2P - LP, (30)
where
13 = L5(K-17), (31)

where the I and K integrals are

1= 2 fm exp [-(t2+e°‘+8t)] dt ' (32)
_ ™ J
and,
K =\/%_f_: exp [-(t2+e2°°+8t)] dt, (33)
where
o = -be" and B =\/§*0- (34)

The integrals must be done numerically and in a Tater section we will eval-
uate them to find the mean and variance in the path variance for a specific
geographical area.

3.4 Atmospheric Data

The author made many contacts with atmospheric scientists and exper-
imentalists in meteorological data analysis to acquire a comprehensive data
base for the atmospheric optical parameters such as single-scattering
albedo and optical thickness. Virtually nothing exists on Wy, SO we will
have to assume values which are generally characteristic of a particular
region of investigation.

14



Although it is not difficult to measure the optical thickness, it
does require spectral filters and a clock-drive to orient a sensor toward
the sun., Usually the devices used require special handling by trained
personnel and uniformity of devices and methods of deployment. As a re-
sult, good values of TO(A) are available only for particular sites and for
limited times. The most comprehensive set of turbidity values is that of
the turbidity network or the Background Air Pollution Monitoring Network
(BAPMON) data [57] for 1978 which can be obtained from the Nationa1>011matic
Center in Asheville, NC. Using a two-band sensor, the data included
turbidity measurements for selected sites on an hourly basis for the
following locations.

Ireland

Spain

Federal Republic of Germany
Hungary
Bulgaria

Italy

Turkey
Afghanistan
India

Canada

United States
El Salvador
Antarctica
Pacific Islands
Australia

Data tapes are available from the National Climatic Center from which one
can obtain daily and monthly mean values, variances, and covariances for
the two spectral bands.

Associated with the turbidity, one can also obtain the usual weather

data from the National Climatic Center. Therefore, one can correlate the
turbidity or optical thickness with various parameters such as visibility,

15



pressure, temperature, and relative humidity. Likewise, one can generate
the multivariate probability distribution functions for all the variables.

In addition to the above data, a gridded data base [6] is available
for Europe containing cloud coverage, cloud type, cloud base and cloud top
heights, as well as temperature, pressure, and relative humidity at
eighteen layers from the surface up to 18.23 km (60,000 ft.) altitude. One
could use this data base to generate the probability density distribution
functions for clouds in the same way that we can do for aerosols. A multi-
variate probability distribution function would give us the number of
clouds within some selected area for any season as a function of cloud
coverage, cloud type, base height, etc. Having these distributions, one
could then calculate the expected values for the line-of-sight transmit-
tance for the cloud-free-line-of-sight. Because we have data for various
Tevels in the atmosphere, we can also generate the distribution functions
in four-dimensions, i.e, the three space dimensions and time. Although we
have not analyzed the cloud data, one can generate the probability distri-
butions for an arbitrary line-of-sight for space-to-ground transmittances
and radiances. In the present investigation we have used the turbidity
climatology data for two channels for one month as an example of the
technique.

The example which we shall take is for Cerro Verde in E1 Salvador as
given by the BAPMON data. This station was chosen because a fairly large
sample of observations was available, in comparison to some of the sample
sizes for other months and other stations. Table 3 illustrates the aerosol
optical thickness for the month of July, 1978 for the spectral bands 500nm
~and 880nm. The mean, variances, and standard deviations for both bands are
calculated. Also, we determined the covariance and the correlation. It
should be noted that the correlation coefficient of 0.979 is high which
implies a physical connection between the two bands ~ certainly not a sur-
prising result. In Figure 3 we present a histogram of the EV Salvador
data. As can be seen, most of the values lie near an optical thickness of
n.1. In Figure 4 we have plotted the results simultaneously for both
spectral bands. The high correlation is clearly seen.

16



Table 3 AEROSOL OPTICAL THICKNESS

LOCATION: Cerro Verde, E1 Salvador

24‘1)3;63) Day N 75 (500 nm) 4(800 nm)
7 1 | 5 0.19342 0.18881
7 2 1 0.18190 0.25559
7 4 4 0.07368 0.07368
7 5 | 1 0.08980 0.08059
7 6 6 0.11513 0.11513
7 7 8 0.09210 | 0.09901
7 8 6 0.08059 0.07599
7 10 1 0.07368 0.09441
7 11 3 0.11973 0.08980
7 12 1 0.08980 0.09441
7 13 4 0.08750 0.07368
7 14 4 0.05987 0.07599
7 18 2 - 0.06908 0.07829
7 19 1 0.07138 ~0.06447

17




Table 3 AEROSOL OPTICAL THICKNESS (cont.)

LOCATION: Cerro Verde, E1 Salvador

v I I L I

7 | 21‘ 2 ”~0'06908 | 0.08289

7 23 3 0.14967 | 0.16348

7 24 | 2 0.38683 0.52269

7 25 4 0.25559 | 0.35920‘

7 26 6 | 0.32466 | 0.37993

7 27 3 0.09210 | 0.08059

7 29 2 0.14046 | | 0.11973
Mean v 0.134 | ~ 0.151 )
Variance 0.00759 | 0.01486
S.D. - 0.08709 - 0.12191
Covariance | 0.01039

Correlation - 0.97900
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Similar data for the variable gaseous components such as ozone,
water vapor and carbon dioxide are difficult to obtain. Suitable data
bases probably exist, but to extract the effective absorber amounts and
correlate the results with time of year and location is a large task. In
the case of clouds, the problem is two-fold; first, one must develop
probability distribution functions for clouds 1in terms of geographic
location and time, and, second, one must then correlate the cloud type with
effective reflectance and emissivity. A possible solution is to use
spectral bands as in the Thematic Mapper to discriminate large, distinct
clouds from snow.

3.5 Results of Calculations

Using the E1 Salvador data as an example, we considered the fol-
lowing scenario:

Solar zenith angle 0y = 0°

Nadir view angle 6= 0°
L (Rayleigh optical thickness) = 0.1241

Wavelength X = 500nm

From these data we can determine the path radiance distribution function by
the following:

g(L/ry) = PR (35)
dL
dr

when f[ t(L)] is the probability distribution function for the optical
thickness. The corresponding function g(L/LA) or g(X), where X = L/Lp is

given in Figure 5. Evaluating the integrals in Equations 32 and 33 we
obtain

I = 0.40016
0.32837

-~
1}

21



so that the mean path radiance is

Lp = 0.6L4, | (36)
and the variance in the path radiance is
V(Lp) = 0.16824 L. | (37)

Similar results can be generated for the covariance between bands and for
any region and time for which optical thickness data are available.

0.3
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0.2 1 |
|
|
|
|

0.1 i
| |
| |
| |
! :
: Mode \ Mean

0 ' ! , )
0 0.2 0.4 0.6 0.8 1.0

Radiance Parameter x

Figure 5. Probability Distribution Function for Path Radiance,
for Cerro Verde, E1 Salvador (July, 1978)
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4.0 CORRECT ION ALGORITHMS

Having determined the radiance covariance matrix and the mean
radiance vector one can then process multispectral data for a particular
condition., There are several methods available for processing.

Method 1: The philosophy here is to obtain atmospheric data for large
areas of the world for various times of day for different times of year,
From this data base, one can then generate the statistics for the atmo-
spheric parameters and, therefore, the corresponding probability distri-
bution functions. Then, using radiative-transfer models one can determine
the covariance matrices and the mean values of the radiometric parameters.
Using actual field reflectances or models of reflectance one can determine
the means and covariance of the surface reflectances for various classes of
materials. Finally, all of this information is combined as in Equation 16
to determine the actual radiance covariance matrix and the mean radiances
for use in the decision algorithm, The resulting classification accuracy
should be better than previous methods which rely on a "universal" mean and
covariance. The general pattern is illustrated in Figure 6. It is obvious
that as more atmospheric data become available the more complete will be
our representation of atmospheric states and the more accurate will be our
classification.

Method 2: A variation of the above method is to consider a limited number
of data sets. Let our reference radiometric factors be denoted by F and G,
that is, these are averages for some training set. Let the corresponding
averages for the unknown area be primed i.e., F' and G'. The bar indicates
that we have averaged over all atmospheric states. Then, one can operate
on the measured radiance L{ to obtain a corrected radiance i.e.,

LS ={ N F+G. | © 0 (38)

Let us consider a simple example. From our atmospheric and material class
data bases we determine F and G for the middle of Kansas in June. We now

23



Measured

~ Atmospheric

Parameters

Measured or

Modeled Reflectance

Parameters

|

Statistical
Functions

Statistical
Functions

Radiometric
Means and
Covariance

Reflectance
Means and
Covariance

Complete Radiance Means and
Covariance Matrix

24

Figure 6. Method for Atmospheric Correction of Multispectral Data




want o classsify materials in Texas in August so we use the corresponding
values F' and G' for that time and location. The Li are then the actual
radiances appropriate to the Texas location for each pixel i. L$ is then
the new or corrected radiance. If it turns out that the atmospheric con-
ditions and the material classes in Kansas are the same as those in Texas,
then %'=E and é'=é‘and

i i (39)

a result which indicates that we can do no better than the training set or
model data base. In any case, this is a method which allows us to extend
the spectral signatures.

Method 3: Another method we can use is based upon the assumption that one
knows or can identify a particular class of objects in a multispectral data
set or frame. We then have the following:

o2 (L) = F2g2(p), (40)

where it is assumed that we know the variance o2(p) for a particular class
of materials. From the measured radiance data we know o2 (L). Hence we

know the atmospheric parameter F. Likewise, in taking the average over the
known data we have

L =pF +6, . (41)

where L is measured and p is known. Therefore, both factors F and G are
determined and one can process all data in the region. A corrected rad-
jance is

4

1S4 L% ) g, (82)

where F and G are the known factors from a reference area.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

In this investigation we have analyzed measured optical thickness
data for one station in a simple two-band sensor network. The statistics
were gathered for one month from the National Climatic Center in Asheville,
North Carolina. The measurement stations are located in fourteen areas of
the world and represent, as best as we can determine, a complete and
comprehensive optical thickness data set. As described in this report, if
all the data were analyzed we could generate the statistics and probability
density distribution functions for optical thickness in terms of time of
day, month, and geographié location. Even if this were done, it would
represent data only for two bands in the visible part of the spectrum.
Nevertheless, the use of the data set would be better than not using it as
has been done in the past.

In this work we have assumed diffuse reflectances for the targets.
Although this 1is not a serious restriction, for completeness one should
develop a corresponding formalism for non-Lambertian surfaces. This could
have been done here, but it would have led to an unnecessarily complex
formalism. The key déve]opment in this investigation is the expression for
the general covariance matrix of radiances in terms of basic atmospheric
and reflectance data. Given reflectance data and atmospheric data we can
generate a more realistic radiance covariance matrix for particular spatial
and temporal regions. This should lead to more accurate probabilities of
classification than before because we are using data which more nearly
represent the region under consideration. It should be noted that this is
a statistical argument in that there may be occasions when one obtains a
high classification probability because the unknown data just happen to
possess values which are close to the reference data set. For example, if
the reference set is Kansas in June and the unknown set is Texas in August,
it is possible that the same atmospheric state could prevail in both places
for the times considered. In general, however, this is unlikely, so that a
statistical method based upon actual atmospheric data should provide the
user with a consistently higher classification probability for a 1abge

number of data sets.
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We recommend further development in this area. A complete stochas-

tic atmospheric radiative-transfer model can now be developed i.e., one

which includes the variation in the single-scattering albedo and the

gaseous components. If data are lacking one could at least develop the
mathematical formalism and use whatever theoretical models exist in atmo-
spheric physﬁcs to establish some stochastic parameters. For actual remote
sensing users we suggest the further analysis of optical thickness data and

the implementation of the algorithms in this report to multispectral clas-
sification problems.
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