
-'

)

"

nl\S-f\ CA- Il ~) 159

NASA Contractor Report 172159

NASA-CR-172159
19840002697

Feasibility Study For A
Generalized Gate Logic
Software Simulator

John G. McGough
Flight Systems Division
Bendix Corporation

Contract NAS 1·15946
July 1983

I, ;""'i " (., 'leiC) ,
'- , 1 '.' '(1.i

.LJ',NGLEY RESEAflCH L'ENTER
Lla~ARY. NAS"

H.;~,:;->.;O[j, Vlf(GlrJ!A

Nl\SI\
National Aeronautics and
Space Administration .

NF02035

Langley Research Center
Hampton, Virginia 23665

.\

TABLE OF CONTENTS

1.0 SUMMARY AND CONCLUSIONS
1.1 Summary
1.2 Conclusions

2.0 INTRODUCTION
2.1 Objectives of BGLOSS
2.2 BGLOSS Requirements
2.3 Objectives of GGLOSS

3.0 SIMULATION TECHNIQUES
3.1 The Prototype Network
3.2 Simulation Techniques

3.2.1 Unit-Delay Simulation
3.2.2 Event-Driven Simulation
3.2.3 Zero-Delay Simulation
3.2.4 Summary of Simulation Techniques
3.2.5 Application To GGLOSS

3.3 Other Key Design Issues
3.3.1 2-Valued Versus Multi-Valued Logic
3.3.2 Network Initialization
3.3.3 Gate Operations And Alternate Network

Representations
3.3.4 Parallel Versus Serial Mode Simulation
3.3.5 Fault Modelling

3.3.5.1 Proposed Fault Model
3.3.5.2 Validity of The Proposed Fault
3.3.5.3 Implementation of The Proposed

Model
3.3.5.4 Fault Collapsing

3.3.6 Extension to Multiprocessor Systems
3.4 Simulation Timing

3.4.1 Simulation Speed
3.4.2 Simulation Efficiency

4.0 BGLOSS CHARACTERISTICS AND APPROACH
4.1 Salient Characteristics
4.2 Rationale
4.3 Simulation Techniques

4.3.1 Functional-Level Networks
4.3.2 Gate-Equivalent Circuits
4.3.3 The Prototype BDX-930 Network Model
4.3.4 Fault Models
4.3.5 Method of Identifying Detected Faults

4.4 Preprocessor/Postprocessor Characteristics
4.4.1 Statistical Methods

4.5 Simulation Timing
4.6 Problem Areas
4.7 BGLOSS in Retrospect

5
5
7

8
8
9
9

10
10
15
15
17
17
18
19
20
20
22
22

24
26
27

Model 28
Fault 30

32
32
32
33
34

37
37
37
38
38
38
39
39
40
41
41
41
42
42

1

n~ 4 -- 10/Co5#

TABLE OF CONTENTS (CONT'D)

.,
5.0 GGLOSS 43

5.1 Introduction 43
5.1 .1 Summary Review of BGLOSS 43
5.1.2 BGLOSSls Deficiencies 43
5.1.3 Conclusions 43

5.2 Overview of GGLOSS 43
5.2.1 General Characteristics 45
5.2.2 Specific Characteristics 45
5.2.3 GGLOSS Modes of Operation 45

5.3 Required Tasks 46
5.3.1 User Tasks 46
5.3.2 GGLOSS Tasks 47

5.4 Structure of GGLOSS 47
5.4.1 Preprocessor Tasks 47
5.4.2 Postprocessor Tasks 47
5.4.3 Executive Tasks 48
5.4.4 Library of Bliss-coded Macros 48
5.4.5 Overview of The Simulation Process 48

5.5 IIO Options 49
5.6 Estimated Tasks 49

6.0 REFERENCES 51

APPENDIX A PROPERTIES OF LOOP-FREE NETWORKS 71

APPENDIX B SPECIAL DIGITAL DEVICES 74

APPENDIX C A HYPOTHETICAL SIMULATION j~

2

FIGURE

1
2
3
4
5

6
7
8

9
10
11

12

13

14

15

16
17
18
19
A-1
B-1
B-2
B-3
B-4
B-5
B-6

B-7

B-8

B-9
B-10
B-11
B-12
B-13

B-14

LIST OF ILLUSTRATIONS

TITLE PAGE

Realization of a Simple Clocked Node 52
Realization of a Compound Clocked Node 53
R-S Flip Flop 54
Realization of a Sequential Network 55
Prototype Network Models For Unit-Delay and 56
Zero-Delay Simulations
Node Evaluations in U And Z Simulations 57
Common Gates 58
Equivalence of an n-Input "OR" Gate And n-1 59
Binary "OR" Gates
Parallel/Serial Mode Simulations 60
Typical Parallel/Serial Interfaces 61
Gate-Equivalent Imlementations of 62
S=(A+B) (C+D)+EF
Transistor Network Realization of 63
S=(A+B)(C+D)+EF
Fault Correspondences in Gate-Equivalent 64
Circuits
Procedure For Simulating Faults in a Functional - 65
Level Device
A Method of Parallel Simulation Of Special 66
Failure Modes
Standard Fault Model of a Gate 67
Combinational Networks of Different Structure 68
BDX-930 Processor 69
Proposed Structure of GGLOSS 70
Example of Rank-Ordering 73
R-S Flip Flop, Nand Gate Representation 82
R-S Flip Flop, Nor Gate Representation 83
Logic to Inhibit The Occurrence of S=R=1 84
D-Flip Flop 85
State Diagram of D-Flip Flop 86
Simplified Model of D-Flip Flop 87
(Requiring Clock Transition Through Zero)
Simplified Model of D-Flip Flop 88
(Clock Transition Through Zero Not Required)
Typical Tristate Transmitter/Receiver 89
Arrangements
Gate-Equivalent Circuit, Tristate Bus of BGLOSS 90
Typical BGLOSS Model of a Transmitter/Receiver 91
Model of Bidirectional Transceiver Used in BGLOSS 92
Memory to Memory Bus Transceiver Models 93
Prototype Network Model of Memory to Memory Bus 94
Transceiver
Gate-Level To Register-Level Conversion Algorithm 95

3

FIGURE

B-15
C-1
C-2
C-3

C-4

TABLES

B-1

LIST OF ILLUSTRATIONS (CONT'D)

TITLE PAGE

Register-Level To Gate-Level Conversion Algorithm 96
A Generalized Computer Architecture 101
A Typical Computer Control Unit 102
Prototype Network Model of a Typical Computer 103
Control Unit
Construction of Combinational Networks Within 104
Compound Nodes

LIST OF TABLES

TITLE PAGE

Excitation Table for the D-Flip Flop 97

4

FEASIBILITY sruny FOR A GENERALIZED GATE LOGIC SOFTWARE SIMULATOR

1.0 SUMMARY AND CONCLUSIONS

1.1 SUMMARY

Past experience has shown that commercial gate logic software simulators
are several orders of magnitude too slow to perform practicable fault
experiments which require simulation of digital hardware and software.
In 1979 Bendix developed a very high speed gate-level simulation of the
Bendix BDX-930 digital computer cpu (hereafter referred to as "BGLOSS").
The simulation was used to perform fault experiments to determine fault
latency and to validate coverage of self-test programs. The success of
BGLOSS in these programs resulted in a follow-on contract to determine
the feasibility of developing a generalized version of BGLOSS (hereafter
referred to as "GGLOSS") which would retain the high speed feature of
BGLOSS and, in addition, be applicable to a wide variety of digital cir­
cuits and computers.

SECTION SUMMARY

Section 2.

The objectives and requirements of BGLOSS are reviewed and extended to
GGLOSS.

Objectives of BGLOSS

o To conduct failure modes and effects analyses
o To assist in the design and validation of self-test
o To obtain fault latency data such as was obtained in (refs.1,2)

Requirements of BGLOSS

o Capable of simulating software
o High speed
o Capable of simulating multiple cpu's operating concurrently

Section 3.

A hypothetical network is defined which represents the prototype of all
networks to be simulated. The network features a fictitious clock
which, effectively, discretizes the time scale. The User constructs a
prototype network by

o defining the gate operations of the network
o selecting a fictitious clock period
o designating which branches are clocked

5

It is shown that this procedure produces a network of combinational cir­
cui ts whose inputs are clocked. GGlOSS then evaluates each combina­
tional circuit once in every clock cycle. It is shown that the clocked
combinational circuits can be evaluated in any order but the gates
within each combinational circuit must be evaluated in a definite order.
GGlOSS computes the correct order.

Other key design issues are examined, including

o 2-valued versus multi-valued logic
o network initialization
o gate operations and alternate network representations
o parallel versus serial mode simulation
o fault modelling
o extension to multiprocessor systems

It is concluded that, to obtain high speed, GGlOSS should employ

o 2-valued logic
o parallel mode simulation
o a low-level programming language for gate evaluations

This section concludes with a discussion of simulation speed and effi­
ciency. It is shown that BGLOSS achieved an effective speed of
2.86x10**6 gates/sec as compared with 1000 gates/sec for commercially
available simulators.

Section 4.

The salient characteristics of BGLOSS are reviewed for possible inc-:.r­
poration into GGlOSS.

Characteristics of BGLOSS

o Gate logic software simulator
o Programmed in Bliss
o Vax 11/780 host computer
o parallel mode simulation, exclusively
o fixed order of node evaluations
o 2-valued logic, exclusively
o Requires User-initialization of the network
o Stuck-at faults, exclusively
o Collapses faults
o Capable of simulating software
o 2.86x10·.6 gatesisec

6

r·

Section 5.

After a review of BGLOSS an overview of GGLOSS is given.

Proposed Characteristics of GGLOSS

o gate logic software simulator
o hosted on Vax 11/780
o parallel mode simulation
o serial mode stmulation, optional
o fixed order of node evaluations
o 2-valued logic, exclusively
o requires User-initialization of the network
o stuck-at faults, exclusively
o collapses faults

GGLOSS will be tmplemented in such a way as to make maximum use of an
existing computer-aided circuit design facility. In particular, the
method of defining gate-level circuits, peculiar to the existing data­
base, will be retained. GGLOSS will be designed to interface with
eXisting netl1st and partsl1st formats. Simulation specifications and
data not normally on file in the database, such as failure rates and in­
put/output options, will be input via the menu.

Appendix A

A brief discussion of an algorithm for computing the proper order of
gate evaluations is given.

Appendix B

Techniques of modelling basic digital devices, such as flip flops, tri­
state busses and Rom memory, are described.

Appendix C

To illustrate the methodology of GGLOSS a simulation of a hypothetical
Computer Control Unit is described.

1.2 Conclusions

o A high speed generalized gate logic software simulator is feas­
ible. Speeds of the order of 2x10 •• 6 gates/sec can be achieved.

o The fidelity of fault simulation is at least as good as that of
an event-driven commercial simulator.

o The simulator can, albeit at reduced speed, simulate circuit
timing.

7

o The simulator can be designed to utilize the existing resources
of a computer-aided circuit design facility. It will not be
necessary to reprogram existing gate-level circuits which are on
file in the database.

o A reasonable degree of transportability can be obtained by pro­
gramming the control and executive functions of GGLOSS in
Fortran.

o For high speed it is necessary to use a low-level programming
language for gate evaluations. The recommended language is
Bliss.

2.0 Introduction

In the Fall of 1979 Bendix was awarded a contract by NASA Langley
Research Center to perform a fault simulation study to determine fault
latency in a digital avionics processor(ref. 1) • Prior to the award,
Bendix had developed a gate logic software simulator(BGLOSS) for its
BDX-930 digital computer. The study provided the opportunity to not
only establish fault latency statistics but to test BGLOSS in a variety
of scenarios, not the least of which included the simulation of software
progrm;s and their interaction with hardware faults. Prior simulation
experience lead to the conclusion that, next to reasonable accuracy,
simulation speed was the most important characteristic of a simulator.
Current, commercially available varieties are too slow for the types of
fault experiments envisioned, being of the order of 1000 gates/sec of
host computer cpu time. The impact of such speeds can readily be
appreciated by considering an application 1n which it is desired to
determine the detectability of a fault by a self-test progr~
consisting, typically, of 1000 assembly language instructions. Tn th~
BDX-930, an assembly language instruction requires, on the avera~e, four
passes through the cpu, which consists of 5000 equivalent gates. Thus,
a single fault, together with a complete execution of s~lf-test,
requires the simulation of 20 million gates. At 1000 gates/'!ec it would
require 5.55 hours of cpu time! Subsequently, after thousands of
simulated faults, the speed of BGLOSS was established at 2.86 million
gates/ sec on a Vax 111780 host computer. As a consequence of the
success of BGLOSS in the context of the Faal t Latency Study, NASA
Langley Research Center awarded Bendix a follcw-on contract to determine
the feasibility of developing a generalized gate logic software
simulator (GGLOSS) based upon the BGLOSS model.

2.1 Objectiyes of BGLOSS

BGLOSS was designed to simUlate faults in large scale digital systems
for the purpose of

8

*
*
*

conducting failure modes and effects analyses
designing and validating self-test programs
obtaining fault latency statistics such as were obtained in
(refs. 1, 2).

2.2 BGLOSS RequireEents

Based on the above objectives and intended applications a set of minimal
design requirements was established for the planned simulator:

A) The simulator must be capable of simulating software. This was
a basic requirement since the objectives included the design and
validation of self-test and the evaluation of fault latency when
comparison-monitoring is the method of fault detection.

B) The simulator must yield results in a timely manner. The simu­
lation of self-test and flight control applications programs
requires many passes through the cpu. Considering the quantity
of faults that were to be simulated it was the judgement of the
BGLOSS design team that the simulation time, on whatever compu­
ter BGLOSS was hosted on, should not exceed 25000 times real
time. Assuming 5000 gates in the cpu, at a clock cycle of 250
nanoseconds, this would be equivalent to simulating 801,753
gates/second (In any event, BGLOSS , simulated on a Vax 11/780,
did not exceed 7000 times real time, which was equivalent to
2.86x10**6 gates/second).

C) The simulator must be capable of simulating multiple cpu's, with
different software programs, concurrently. Because many of the
envisioned simulation experiments involved redundant channels of
a flight control system it was desired that the simulation
should be capable of modelling the concurrent operation of syn­
chronousand asychronous channels, i.e., processors which,
effectively, execute different software programs concurrently.

2.3 ObjectiTes of GGLOSS

The eventual success of BGLOSS was an indication that a more general
simulator could be designed which met the same design requirements. In
summary, these are:

1) The simulator must be capable of simulating software
2) The simulator must yield results in a timely manner
3) The simulator must be capable of simulating multiple cpu's,

operating sycnchronously or asynchronously with each, possibly,
executing different software programs.

In concluding this Introduction, it must be emphasized that GGLOSS is
intended solely as a fault simulator. In particular, it is not intended
as a circuit design tool. As a consequence, the reader will observe,

9

subsequently, that it lacks certain features that are normAlly contained
in state-of-the-art commercial simulators. These features and the
rationale for their ommission will be described in later sections.

3.0 StBulatioD Techniques

During the early phase of the study it became evident that a pre­
requisite for understanding the issues involved in the design of BGLOSS
and the rationale for selecting many of its features was a broad knowl­
edge of gate logic simulation techniques and the key issues involved in
the selection of a simulator. Thus, this Report begins with a general
survey of gate logic simulation techniques and related design issues.
It is hoped that the subsequent treatment of BGLOSS is more comprehen­
sible, as a result.

3.1 !be Prototype Network

Before discussing simulation techniques it is desirable to define a hy­
pothetical network which will r~present the prototype of all non-faulted
networks to be simulated.

Terminology

A graph is a set, (V,E,f), where

v = a set of elements called "vertices"
E = a set of elements called "edges"
f = a mapping from E to the set of unordered pairs of elements of

V.

A graph is "directed" if the edges are given a direction. The vert.i.ces
of a directed graph are called "nodes" and the edges, "branches". To be
more precise, a directed graph is a set, (N,B,f), where

N = a set of elements called "nodes"
B = a set of elements called "branches"
f = a mapping from B to NxN.

The node pair

f(b)=(u,v), b in B, (u,v) in NxN

directs the branch from node u to node v. Nodes u and v are the
"initial" and "terminal" nodes of b, respectively.

The number of branches which terminate at a node is called the
"in-degree" of the node.

10

A "path" is a sequence of branches b(1}.b(2} ••••• b(n} such that there is
a sequence of nodes N(O},N(1}, •••• N(m} with the property that the ini­
tial and terminal nodes of b(k) are N(k-1}, N(k), respectively. The path
is said to "join" N(O} to N(m}.

The "length" of a path is the number of branches in the path.

A path is a "loop" if it joins a path to itself.

A "network" is a directed graph. In our applications the nodes will
represent logic elements (e. g., AND. OR. INVERT) and the branches,
transmitted signals. Signals will assume the values of logic 0 and
logic 1. exclusively. Since a branch is always associated with a node
we associate a fictitious node with each external input. We call such
nodes "E-nodes".

A "primitive 'l network is a network whose nodes consist of single logic
elements, e.g., AND, OR, INVERT. A node of a primitive network is
called a "simple" node. A node which is not simple ~s called a "com­
pound" node.

A "combinational" network is a primitive network with no loops.

A node N is called a "predecessor" of node M if there exists a path
joining N to M (If the network has no loops then Nand M cannot be
predecessors of each· other). An ordering, N(1}, N(2), ••• , N(m), of the
network nodes is called a "p-ordering" if N(k) is not the predecessor of
any node N(j} where j<k. We note that, since some nodes are not related
by the predecessor relation, there will generally exist many p-orderings
of a network. In this connection we have

Theorem. In a network with no loops there exists at least one p-ordering
of the nodes (see Appendix A).

Clocked Networks

The prototype network will consist of compound nodes with each node rep­
resenting a combinational network. In order to model the network for
digital simulation it is necessary to introduce a discrete time scale.
For this purpose we introduce a fictitious clock. The clock generates a
periodic train of pulses which are transmitted to all nodes without
delay. Upon receipt of a pulse a node activates its inputs and computes
a set of outputs. The outputs, however, are only transmitted to other
nodes at' the descending edge of the pulse. As a consequence, node
inputs and outputs do not change while a clock pulse is present. A
realization of a simple clocked node, using D-flip flops. is shown in
Figure 1. A similar realization of a compound clocked node is shown in
Figure 2.

11

In connection with a clocked node it will be assumed that

1) all gates have the same propagation delay. d;
2) each clock cycle is a multiple of d;
3) the propagation delay through the combinational network does not

exceed the clock period.

As a consequence of this latter assumption, for all intents and pur­
poses, the propagation delay of the combinational network may as well be
zero.

Constructing The Prototype Network

We assu:ne, for the present, that the network is a prim1ti ve network
which may contain feedback loops. In our principal applications the net­
n~rk will represent a digital processor, in which case, the network is a
true, clocked network. In constructing the prototype network we take the
position that the User fully understands the dynamics of the constituent
circui ts in regard to normal and faulted performance. It is our view
that a Simulator cannot be expected to model a universal circuit. It
will be shown, subsequently, through numerous examples, that a network
model can be constructed at many hierarchical levels, depending upon the
objectives of the User. In addition, the failure modes of digital com­
ponents can be exceedingly complex and, in any case, will generally be a
function of the unique characteristics of the circuit. Only the knowl­
edgeable User can supply this information.

Briefly, the procedure for constructing a prototype network is as
follows:

1) Select a fictitious clock cycle. The clock cycle represents ~'le
smallest distinguishable time increment. As a consequencp., t .. ~
clock frequency is the maximum frequency of any networ:.c ir.j)ut,
internal state or output. For example, if it is desired t~ model
a nip flop and observe potential high frequency osc.i.lhtions
then the clock cycle should be equal to the delay of a single
gate. In a true, clocked network, on the other hand, the clock
cycle should not be greater than the true clock cy~le.

2) Identify clocked signals. The lI~~r must design:ate whiCh
signals, i.e., branches, are to be cl~cked. Effectively, this is
the equivalent of inserting a fictitious D-fl1p flop in the
branch. It is not necessary to identify the output nip flops,
as shown in Figures 1 and 2. These are superfluous, if it is
assumed that an output flip flop always tenninates at a clocked
node. In designating clocked branches the following rules must
be followed:

12

1) All external inputs are clocked.
2) All loops must contain at least one clocked branch.
3) If A and B are the initial and final branches of a path and

if A and B are clocked and no clocked branches intervene,
then the propagation delay between A and B must not exceed
the clock period.

If each clocked branch is cut the result is a set of disconnected, com­
binational subnetworks. The inputs to each subnetwork are clocked· and
the outputs are either inputs to a fictitious D-fl1p flop or network
outputs that are terminated. As a result of this construction the net­
work will consist of olocked, compound nodes of the type shown in Figure
2.

Multiple Clocks

The preceding network employed a single clock. It is desirable, either
to improve computational efficiency (see Example 6, following) or to
model certain high speed networks, to employ multiple clocks or a single
clock with multiple phases. In these arrangements the User associates a
clock, clock frequency and phase with branches. The rules governing this
designation are the same as before, i.e.,(1), (2) and (3).

As a result of this construction the network will consist of clocked,
compound nodes except that the fictitious D-flip flops are triggered by
different clocks. If we. make the assumption, as we do, that all clock
cycles are multiples of some primary clock cycle with period equal to
unity, then the network is evaluated as follows:

1) Each clocked branch is cut, as before, to form combinational
subnetworks. The inputs to each subnetwork are clocked, .possibly
by different clocks.

2) Each subnetwork is evaluated every time at least one input
D-flip flop is triggered, irrespective of whether or not the
input changed at this time. The triggering is activated by the
associated fictitious clock. Thus, for example, if all inputs
are clocked by clocks of period m and in phase with each other
then the subnetwork will be evaluated once in every m primary
clock cycles.

Observations

Desp1teits appearance as a clocked network the prototype can model a
wide variety of networks, as the following examples demonstrate:

13

Example 1. Asynchronous Network With Unit Gate Delays

The network is modelled by a primitive clocked network in which the
clock cycle is equal to the proagation delay of a single gate.

Example 2. Asynchronous Network With Variable Delays

All gate delays are assumed to be multiples of the delay, d, of a single
gate. If the gate delay is viewed as a transport lag then a gate with
delay md can be modelled by inserting m-1 fictitious gates, each with
delay, d, in series. The network is otherwise modelled as in Example 1.

Example 3. Realization of an R-S Flip Flop

The circuit is shown in Figure 3. The prototype network consists of two
nodes, N(O), N(1), also shown in the figure.

Example 4. A Sequential Network

It is shown in (ref.3) that every sequential network can be realized by
a combinational network with unit delay feedback. A realization. using a
prototype network, is shown in Figure 4.

Example 5. Simulating a True, Clocked Network

In a true, clocked network the network may experience a change of state
following the descending edge of a clock pulse. One example of this is
the D-flip flop, which requires that the clock return to zero before the
next data input---otherwise no output change is possible. There are ~~o
approaohes that can be taken when simulating a true, olooked nptworv,
depending on the desired aocuracy and level of detail of thp oircui t
model:

1) The nodes are evaluated only at the rising edge (Jf the true
olook. In this oase the oirouit models implicitly a~~ume that a
olock transition has occurred prior to each rising edge(see, for
Example, the D-flip flop model of Figura B-7).

2) The nodes are evaluated at both the ~ising and descending edges
of the true olook. The cirouit models should be oonstructed to
refleot differenoes in the responses, otherwise the extra net
evaluation in eaoh cycle is wasted.

In (1) the fiotitious olock may coincide with the true clook. In (2) the
fiotitious clock should be twice the frequency of the true clock, e.g.,
the nodes should be evaluated once at the rising edge and onoe at the
descending edge. Node outputs are transferred to the global memory
after all nodes have been evaluated, irresective of whether the
evaluation oorresponds to a rising or descending edge.

14

Example 6. Use of multiple clocks to improve efficiency

Consider a true clocked network which is combinational except that it
contains an R-5 fli p flop. While the inputs are clocked at, possibly,
true clock oyoles it may be desired to observe the outputs of the flip
flop at higher frequenoies. This oould be aohieved by evaluating the
total nat",-ork at a higher frequenoy but this would be oomputationally
very ineffioient sinoe the oombinational oiroui t inputs do not change
between true olook oyoles. A better approaoh would be to olook the
inputs of the flip flop at the higher frequency. This oreates an inde­
pendent subnetwork whioh oan be evaluated at high frequenoies without
requiring a oorresponding evaluation of the total network.

3.2 SDIOUTION TECHNIQUES

In this section it will be assumed that the network to be simulated is a
primitive network. The results, however, oan be extrapolated to networks
with oompound nodes in an obvious way. For illustrative purposes we con­
sider the primitive network of Figure SA.

There are essentially two teohniques used to simulate the prototype net­
work: the "Unit-Delay" and "Zero-Delay" simulations hereafter referred
to as the "Un and "z" simulations, respeotively. These differ in the
way that data is transmitted between simulated nodes. Speoifioally, each
node aooesses a dedioated, "looal" memory into which is stored oomputed
outputs. This memory can only be accessed by its associated node. When
data is to be made available to other nodes it is transferred, by the
simulation executive program, to a "global" memory whence it oan be
accessed by all nodes. Thus, at the start of eaoh node evaluation the
inputs are fetched from the global memory and the resultant, computed
outputs are stored in local memory.

1} In the U simulation the contents of all local memories are
transferred to the global memory after all nodes have been
evaluated.

2} In the Z simulation, on the other hand, upon completion of each
node evaluation the associated local memory is transferred
~ediately to the global set where it is used as input data in
subsequent node evaluations.

3.2.1 UDit-Delay St.ulation

The procedure is as follows:

1} Define an arbitrary ordering of the nodes.
2} Initialize the network (which is necessary because of the use

of 2-valued logic).

15

Then, at each clock pulse,

3) Evaluate every node in the selected order.
4) Transfer the computed output to the global set from whence it

can be accessed by other nodes.
5) Repeat (3),(4) at the next clock cycle.

Observations

1) The U simulation evaluates all nodes in every clock cycle. Thus,
if the network consisted of n nodes(excluding E-nodes) it could
require n*.2 node evaluations to propagate a signal through the
network.

2) The U simulation gives correct node outputs for any ordering of
node evaluations.

3) The U simulation is recommended when

a) it is desired to simulate the effects of propagation delays,
as in a feedback circuit; or

b) it is desired to observe the response of each node in each
clock cycle, as in a true, clocked network; or

c) it is inconvenient to determine a p-ordering of the nodes.

The disadvantages of the U simulation technique are:

1) It requires a large m.nnber of node evaluations to propagate a
signal through the network. This is wasteful if the propagation
delays are small relative to the time between successive in;.ut
events. For example, consider a combinational network of n nodp~
wi thin a higher-level node, as in a true , clocked net":ark. In
a good design the propagation delay of the circuit i~ never
larger than the clock cycle and, in most case~, very much
smaller. Consequently, the circuit is always stabJ~ before the
onset of the next clock pulse. In this scenario the IJ simulation
would require n*.2 node evaluations to propagate each input
event when actually n would suffice. Moreover, most of the n**2
evaluations result in no change in thp. circuit elemento.

2) Even when it is desired to observe the outputs of each node in
each cycle, in many applications only a subset of nodes see
changing inputs or outputs and, hence, require evaluation in
each clock cycle. The U simulation, however, evaluates all nodes
irrespective of whether or not the evaluation yields different
resul ts.

16

3.2.2 EYent-DrlYen St.ulation

To overcome this last disadvantage a variation of the U simulation can
be used: the Event-Driven simulation. In this approach only those nodes
are evaluated whose inputs, outputs or internal state have changed from
those of the preceding clock oycle. This is the most commonly employed
simulation teohnique. Unfortunately, it requires considerable software
overhead to maintain and this frequently offsets any advantage gained in
reducing the number of node evaluations. In addition, it does not lend
itself to parallel simulation (See Section 3.3.4).

3.2.3 Zero-Delay St.ulation

This technique is used to overcome the former disadvantage of the U
simulation. The procedure is as follows:

1) External input branches are olocked.

2) A p-ordering of node evaluation is selected, e.g., N(O),N(1),
N(2), •••• N(n-1).

3) The network is initialized.

Then, at the kth clook pulse, k:O.1,2, ••• , DO

4) Evaluate N(k(modn» and transfer its local outputs to the global
set.

Observations

1) The order of node evaluations is critioal: the ordering must be
a p-ordering.

2) In a oombinational network with n nodes(excluding E-nodes) the Z
simulation can propagate a signal through the network after, at
most, n node evaluations.

3) The Z simulation is recommended when

a) the outputs of intermediate nodes are of no interest; or
b) the propagation delays of the network are small relative to

the time between suocessive input events; or
c) the circuit is a subset of a node of a true, olocked network.

4) The Z simulation employs an invariant order of node evaluations.
This is a benefit in parallel mode simulation.

11

The disadvantages of the Z simulation are:

1) It requires a p-ordering of the nodes.

2) It assumes that the propagation delays of the network are small
relative to the time between successive input events, i ,e., a
node, once evaluated, does not see a change in input or internal
state until all nodes have been evaluated.

3) It is not easily applicable to sequential circuits unless the
time delay associated with feedback elements is large relative
to the propagation delay of the straight-through elements.

As a comparison of the U and Z simulation techniques consider the simu­
lation of a simple network consisting of tandem gates, as shown in
Figure 6A. The resultant node evaluations of the U and Z simulations are
shown in Figures 68,6C, respectively. From Figure 68 it can be seen
that the U simulation evaluates n nodes (excluding E-nodes) in each
clock cycle, for a total of n**2 to propagate the input. The Z simula­
tion, on the other hand, evaluates a single node in each clock cycle
(see Figure 6C), requiring only n node evaluations to propagate the
input to the output. In so doing, however, it assumes implicitly that
the input did not change during the intervening n cycles. If the input
were subject to change during these cycles then both techniques would
require the same number of node evaluations.We note that an Event-Driven
simulation of this network would have resulted in the same order and
quantity of node evaluations as in the Z simulation.

3.2.4 Soamary of StBulation Techniques

The U simulation technique is conceptually simple, easy to progr::.un,
independent of the order of node evaluations and yields the stat~s a~~
outputs of each node in each clock cycle. It is ideal for para).lel mode
simulation. The technique is recommended for simulating tha c.mlpound
nodes in a clocked network, as in a cpu. Its main disadv&nt"ge is the
large number of node evaluations required to propagate a stzna1.. through
the network.

The Z simulation technique is extremely effi':lient computationally when
the time between successive inputs is large clJmpar"ed with the propaga­
tion delay of the network. It is ideal for parallel mode and combina­
tional circuit simulations.

The Event-Driven simulation is potentially computationally more effi­
cient than the U simulation.However, the overhead may offset this
advantage. In any case, the Event-Driven simulation does not lend itself
to parallel mode simulation.

18

3.2.5 Application To GGLOSS

Both the U and Z simulation techniques will be used in GGLOSS. Briefly,
the procedure ~ill be as follows:

ER127

1) Starting with a given network the User creates a clocked, Proto­
type Network medel con:si:sting of compound nodes of the type
shown 1n Figure 2.

2) The compound nodes are evaluated at each clock cycle, concur­
rently, using the U simulation technique.

3) The combinational networks within the compound nodes are
p-ordered and evaluated using the Z simulation technique.

19

3.3 OTHER KEY DESIGlI ISSUES

other key design issues associated with the selection of the simulator are:

o 2-valued versus multi-valued logic
o Network initialization
o Gat~ operations and alternate network representatons
o Parallel versus serial mode simulation
o Fault modelling
o Extension to multiprocessor systems

3.3.1 2-Vnlued Ver3US Hulti-~alued Logic

In the prototype network all signals assume binary values, 0 and 1. In
many commercial simulators, however, signals are permitted to assume, in
addition, pseudo values such as

X: unknown state
E: error state
Z: high impedance state

The rationale for this multi-valued logic is

X: Under certain conditions circuits may assume unknown states and
outputs. A signal value is denoted by an "X" until its value is
known without ambiguity.

There are, principally, three scenarios in which the X designa­
tion has been found useful:

1) Power-On. At power-on the circuit elements may assume ran~Jm
bit patterns. These are designated by X's until they s~abll·­
ize to unambiguous values.

2) Entry Into Self-Test. At the initiation of a self-test
program the contents of accumulators and scrat~hpsd memory
may be unknown. The constituent bits are desig~ated by X IS

until they are explicitly set by the test.
3) Failure Conditions. Certain failures may i"esult in unknown

or ambiguous conditions such as wh~n all of the transmitters
of a tristate bus are in the high impedance state. The
resultant bus value is designaced by X's.

E: In some devices, such as flip flops, certain combinations of in­
puts and internal states are not permissible since they may
result in ambiguous or unintended outputs. When such a condition
arises the affected output is denoted by "E".

Z: This state distinguishes between high/low impedance states of a
transfer gate and the binary values of logic signals.

20

"

It will be shown, subsequently, that the use of multi-valued logio
greatly reduoes the real time effioienoy of parallel mode operations.
However, the issue , at present, is whether or not multi-valued logio is
neoessary.

The Unknown State, X

GGLOSS is not intended as a oirouit design tool: it will always be
assumed that the non-faulted oirouit is well-designed. As a oonsequenoe,
a standard input sequenoe will always result in a oorreot and un~bis­
uous state, independently of the initial state. In a olock synohronized
opu, for example, the oirouits stabilize to unambiguous values after
power-on. To obtain the oorreot initial conditions it is only neoessary
to simulate the power-on oondi tions for a random selection of initial
states of the network. In the fault soenarios it will always be assumed
that the network has stabilized to an unambiguous state prior to the in­
jeotion of a fault. It will be shown, subsequently, that fault models
are, themselves, logio networks which merely replaoe the non-failed net­
work. As a oonsequenoe, unless the fault model is, itself, ambiguous a
stuck-at fault oannot introduce an ambiguous signal in the network. The
absence of the X designation requires that memory elements be initial­
ized to known values. If this is inoonvenient or impraotioable random
bit patterns can be seleoted. Upon entry into self-test or any program,
for that matter, it is good design prooedure to initialize all pertinent
memory elements. The X state alerts the User to non-initialized memory
elements which may influence the outoome of the test. In summary, the
unknown state provides the following benefits:

1) It relieves the User of the burden of determining initial net­
work states and outputs.

2) It flags non-initialized states whose values may influenoe the
outoome of a test prooedure.

3) It oan be used to flag unknown or ambiguous signal values due to
failures. In the oontext of a fault simulator it does not
appear to be unreasonable to expect the User to provide the
initial oonditions for the network espeoially since these condi­
tions will have a unique effeot on failure modes. Replacing the
initial states and outputs by X' s defeats the purpose of the
simulation which is, after all, to identify failure modes and
effects. The oase of unknown or ambiguous effeots of failures is
a different matter. Here it may not be practicable to asoertain
the precise effects of a failure. However, even in this oontext
the use of the X state merely alerts the User to this uncer­
tainty. In any case the detectability of the fault oannot be de­
termined until the uncertainty is removed.

21

The Error State, E

It will always be assumed that the prototype network is defined at the
level of detail necessary to unambiguously model the network's response
to all combinations of inputs and internal states. Admittedly, this im­
poses a heavy burden on the user, requiring a detailed knowledge of the
fault modes of all devices in the circuit including those represented at
the functional-level. The use of "E" values alerts the user to an error
condition without detailing the resultant response. However, since the
purpose of GGLOSS is fault simulation and the determination of detection
coverage the use· of "E" values gives very 11 ttle information regarding
the subsequent detection of this condition and, consequently, should be
eliminated from the simulation.

The High Impedance State, Z

It will be demonstrated in Appendix B that a special state to denote
high impedance is unnecessary. In general, high/low impedance devices
can be modelled by gates with the high/low impedance states replaced by
binary valus of 0 and 1.

3.3.2 Network Initialization

In a well-designed network means are provided to stabilize the internal
states, usually at power-on. By simulating this condition the proper
network initialization can always be obtained and stored for future ref­
erence. Proper network initialization can always be obtained by simulat­
ing a sample program of sufficient length to arrive at an unambip:',:,Jus
network state.

3.3.3 Gate Operations And Alternate Network Representations.

In Section 1 the prototype network was defined in terms of AND, OR and
INVERT gates. In this section we will consider alternate gate represen­
tations. Figure 7 identifies the most common gates u8ed to either simu­
late or implement a digital network. It is well-known (see (ref. 3),
for example) that a sequential network cl:ln be realized by a combina­
tional network with loops. As a consequence, the sufficiency of a gate
set depends upon its ability to represent arbitrary combinational net­
works. In the prototype network the gates are assumed to be n-input
gates. This, however, is merely a convenience since each n-input gate
could have been defined, recursively, in terms of binary gates of the
same type by making use of the associative properties of the AND. and OR
operations. Thus, for example, an n-input OR gate could have been rep­
resented by n-1, binary OR gates t as shown in Figure 8. As a conse­
quence, we may say that the gate operations of the prototype, combina­
tional network constitute a two-element(1.e. ,0 and n Boolean Algebra
with binary operations of multiplication and addition and the unary
operation of complementation. The devices which perform these operations
are called "AND" gates, "OR" gates and "INVERT" gates, respectively.

22

..

,.

Definition 1. A Boolean function of n variables is a mapping of n-tuples
of binary variables into the set {O,1}.

Every Boolean function can be realized by a combinational network con­
sisting of AND, OR and INVERT gates, exclusively. However, this is not
the only set of gates that can realize a Boolean function.

Definition 2. A set of gates (i.e., gate-types) is "complete" iff. every
Boolean function can be realized by a combinational network constructed
from gates of the set.

It can be shown (ref.4) that the following sets are complete:

51) (AND, OR, nlVERT)
52) (AND, INVERT)
53) (OR, IW~ERT)
54) (NAND)
55) (NOR)

Since 51 is a complete set the prototype network of Section 1 is com­
plete in the sense that it can realize any Boolean function and, conse­
quently, any sequential network. On the other hand, since { NOR } is
also a complete set, a compl~te prototype network could be realized by
employing NOR gates, exclusively.

E"xample. A prototype network is realized by binary gates of the set
{ AND, OR, INVERT }. It is desired to realize the network using binary
NOR gates. The network can be transformed as follows: Let the symbol,
"I", represent the NOR operation. Then

replace x' by xix
replace x+y by (x/y)/(x/y)
replace xy by (x/x)/(y/y)

In summary, we may say that any prototype network can be realized by any
one or a combination of the gate sets, 51 through· 55. The only require­
ment is that the selected gate-set must be complete.

23

3.3.4 Parallel Versus Serial Mode SiBulatioD.

In order to achieve good simulation speed and efficiency careful atten­
tion must be given to the efficiency of the logical constructs of the
programming language. Typically, the host computer will contain, at the
assembly language level, logical constructs of the form, AB, A+B, and
A'. where A and B are whole words. Because they constitute the basic
logical operations of the computer these constructs are among the most
efficient in the instruction repertoire. Moreover. and equally important
from the standpoint of simulation. these instructions perform the same
logical operation on corresponding bits of the operands. Thus, if A and
B are the words

where
and

A = (a(1).a(2) ••••• a(m»
B = (b(1),b(2) •.••• b(m»

a(k).b(k) = kth bit values
m = number of bits in a word

then the construct • A+B. yields the result

c = (c(1) .c(2), •••• c(m»

where c(k) = a(k) + b(k). k=1.2, •••• m.

Effectively. m gate evaluations. are performed. in parallel, at the cost
of a single instruction. By exploiting this property the speed and
efficiency of the Simulator can be increased by a factor of m, approxi­
mately. Specifically. the simulation is that of m. identical netv.~rks
which differ from each other in that they have different fault ~ets vr
they are responding to different software programs. Each gat") nde is
represented by a full. m-bit word of the host computer. with ~he kth bit
value representing the kth network. A single pass through t~le network
yields the responses of the m networks in their respective f3uenarios.
This method of simulation is called "parallel mode simulatir,il".

Hereafter. logical constructs which are

1) highly efficient in real time and
2) perform the same operation on corresponding bits of the operands

will be referred to as "primitive logical constructs".

High-Level Programming Language. Typically, high-level languages such
as Fortran and Pascal avoid the use of primi the constructs. In these
languages the logical operands are Boolean variables(i.e.,TRUE or FALSE)
so that, in effect, an entire word of the host computer is reserved for
a single bit value. Thus. in these languages. to obtain the output of a
binary gate for m sets of inputs requires the execution of m, logical
construots. This method of simulation (i.e •• one gate at a time) 1s
called "serial mode simulation". Parallel and serial mode simulations
are illustrated in Figure 9 for the construct, A+B.

24

Macro Language. Macro languages provide the user with the basic capa­
bilities of assembly language while reducing some of the tediousness of
assembly language programming. They do this, typically, by allowing the
user to call-up strings of commonly used assembly language instructions
with a single instruction(i.e., a macro instruction). Macro languages
almost always retain the primitive logical constructs of assembly
language and, consequently, they are ideal for parallel mode simulation.

Example. It is desired to simulate a multiprooessor system with m, iden­
tical prooessors, each with a different software program. The cpu is
simulated in the parallel mode using a simulation technique that employs
an invariant order of node evaluations. Eaoh processor is represented
by a fixed bit position in the words of the host computer, e.g., proces­
sor 6k is repre:5ented by bit position 11k, k= 1,2, ••• ,m. The fact that
the resultant event sequences may be different for the m processors is
immaterial [since the order of node evaluations is invariant for any
event sequence. As a consequence, a single pass through the cpu (in a
olock cycle) gives the network states for the m processors.

Disadvantages of Parallel Mode Simulation

The use of parallel mode simulation imposes oertain constraints on the
Simulator: It limits the use of

1) high-level programming languages
2) multi-valued logic
3) Event-Driven simulation
4) and restricts modularization •.

1) To fully capitalize on the benefits of parallel mode simulation the
programming language must contain primi ti ve constructs. This precludes
the use of most high-level languages such as Fortran and Pascal. The use
of low-level languages(e.g., assembly and macro languages)severely
limits the transportability of the Simulator.

2) The use of multi-valued logic values, O,1,X,E or Z, requires two or
more bits to represent a signal value. Moreover, and more Significantly,
the logical operations involving these bits are not simple, logical
functions of pairwise bits of the input words. This negates the advan­
tage of primitive constructs, which operate on pairwise bits.

3) The efficient use of parallel mode simulation demands an invariant
order of node evaluations. If m networks are simulated in parallel, each
subject to different software, inputs or faul ts, it is to be expected
that they will experience different event sequences. As a consequence,
an event-directed simulator would eventually reach a condition that re­
quired, at the same instant of time, a different order of node evalua­
tions for two or more of the m networks.

25

4) To achieve maximum simulation speed and efficiency the network should
be modelled at the gate-level, since these operations corresond directly
to primitive constructs of the programming language. Functional-level
representations, such as registers, memory devices or Ie chips, must be
evaluated serially. Thus, when a gate interfaces with a functional-level
device it is necessary to convert from parallel to serial mode formats
or vice versa, depending upon the device. In addition, the functional­
level device must be evaluated repeatedly to obtain the appropriate
parallel oututs. The process is illustrated in Figure '0. Referring to
the figure, the inputs to the functional-level device are in parallel
mode format. The functional-level device, however, must be evaluated
serially, perhaps using a truth table or some other high-level evalua­
tion procedure. The procedure can be summarized as follows:

1) The parallel inputs are converted to serial formats, (a(k) ,
b(k», k=',2, ••• ,m.

2) The functional-level device is evaluated serially to obtain the
outputs, c(k)=f«a(k),b(k», k=',2, ••• ,m.

3) The outputs are converted to parallel format, i.e., to the whole
word (c(1),c(2), ••• ,c(m».

Despite the relative inefficiency of this procedure it is unreasonable
and impracticable to proscribe functional-level representations. Since
some functional-level representation is unavoidable it is recommended
that the number of such devices be kept to a minimum and efficient con­
version algorithms be used.

3.3.5 Fault Modelling

It has been demonstrated, thus far, that the prototype network h~s·th~
flexibility and capability to model a wide variety of digital ~jetworks
under non-faulted conditions. In this section techniques of mt;.Jeling
failure modes are considered. At the present time there is little or no
data available regarding either the mode or frequency of fai~ure~ of MSI
or LSI devices. Despi te this deficiency of data, fallur~ mode and
effects analyses are regularly performed for avionics and flight control
systems. The conventional approach is to assl~e a set of failure modes
for each device. These are usually restricted to faults at single pins
al though, occasionally, mul tiple faul ts may be considered. In most
cases the failure rate of a device is assumed to be uniformly distrib­
uted over the pins or over the set of postulated failure modes. Except
for special deVices, faults are assumed to be static, being either 5-a-O
or 5-a-1. The point to be made here is that failure modes and their
frequency of occurrence are necessarily conjectural and the credibility
of any fault model proposed here will suffer no less from this defi­
ciency of data than the conventional "model".

26

3.3.5.1 Proposed Fault Hodel

The proposed fault model is essentially the same as that used in BGLOSS.
The following assumptions regarding failure modes of digital devices are
assllDed:

1) Every device can be represented, from the standpoint of perform~
ance and failure modes, by the manUfacturer-supplied, gate-level
equivalent circuit (a " gate-equivalent" circuit is a logic
circuit that models the non-faulted performance of the device).

2) Every fault can be repre~ented as either a S-a-O or S-a-1 fault
at a gate node.

3) The failure rate of the device is uniformly distributed over the
gates of the equivalent circuit.

4) The failure rate of a gate is uniformly distributed over the
nodes of .the gate.

5) S-a-O and S-a-1 faults are equally likely.

6) Faults remain active indefinitely.

7) A fault at an output node propagates to all nodes and devices
that are physically connected to the failed node.

8) A fault at an input node does not propagate back to the driving
node.

This latter assumption, while unrealistic from the standpoint of
modeling shorts, provides a wider variety of failure modes than would
otherwise be possible if propagation were allowed.

The method of selecting faul ts is implicit in the above model. Each
S-a-O and S-a-1 is assigned a probability of occurrence proportional to
the prescribed failure rate. The resultant fault set is then randomly
sampled with each fault weighted by its probability of occurrence.
Thus, faults in devices with high failure rates will be selected more
frequently than faults in devices with lower failure rates. The above
procedure does not distinguish between gate-level and pin-level faults~
the method automatically assigns failure rates to pins. If only
pin-level faults are considered an alternative selection procedure is to
assume that

"the failure rate of the device is uniformly distributed over the pins".

While this assumption violates the prescribed fault model it is consis­
tent with the conventional method of assigning a probability of
occurrence to pin faults.

27

In summary, the essential assumptions of the proposed fault model are:

o All faults can be represented by single S-a-O and S-a-1 faults
of gate nodes of the non-faulted, gate-equivalent circuit.

o The failure rate of the digital device is uniformly distributed
over the gates of the gate-equivalent circuit.

Advantages of the Proposed Model.

o Faults are single, stuck-at faults.
o The model provides a simple and systematic procedure for

modeling a wide variety of faults including data-dependent
faults.

o The model provides a systematic procedure for associating a
probability of occurrence with each fault.

o The model accommodates parallel mode simulation.

3.3.5.2 Validity of the Proposed Fault Model

The proposed fault model is based on the fundamental assumption that the
failure modes of the digital device can be modelled by stuck-at faults
of a gate-equi valent circuit. The fact that it may be necessary to
inject multiple faults, whereas the proposed model employs only single
stuck-at faults, is a relatively minor difference since the proposed
model could just as easily accommodate multiple faults, as well. The
major effect of introducing multiple faults is the difficulty of assign­
ing probabilities of occurrence to the multiple fault sets.

The point at issue here is

o Does a gate-equivalent circuit, which was selected to ~odel non~
faul ted performance, correctly model failure l1Iod~s when
subjected to stuck-at faults?

o More specifically, can every failure mode be p~od~ced by a set
of stuck-at faults in the gate-equivalent circ~it? Conversely,
does every set of stuck-at faults produce a re~:i.1zable failure
mode?

Example. Consider a circuit that implements the logic, S:(A+B) (C+D)+EF.
Figure 11 illustrates two possible gate-level representations. In the
non-faulted case both representations are equivalent. It is apparent,
however, that the failure modes of stuck-at faults are quite different
in the two representations.

From this example it may be concluded that a gate-equivalent circuit
does not necessarily model the failure modes of the device. The ques­
tion is, does any gate-equivalent circuit do so?

28

In several recent pub l1cations (refs. 5,6) the assumption that failure
modes can be modelled by stuck-at faults of a gate-equivalent ci~cuit is
challenged. The authors assert that

1) All failures cannot be modelled by stuck-at faults.
2) Stuck-at faults are satisfactory for modelling small-scale cir­

cuits but inadequate for large-scale circuits.
3) Faults should be opens and shorts, referenced to the physical

layout of the circuit.

In support of this thesis the authors exhibit the gate circuit of Figure
12. The switch-like network consists of a load transistor and a set of
command transistors which act l1ke switches. By applying input pat­
terns,e.g.,A,B,C,D,E,F, a set of conduction paths are determined between
the output node and the VSS power supply node. A conduction path is
activated when all of its command transistors are on; a conduction path
is blocked when at least one of its command transistors is blocked.
When a conduction path between output node and the VSS node is activated
the output °is at the VSS potential(logic state 0); when all conduction
paths are blocked the output is at the VDD potential(logic state 1).
The network realizes the function S=(A+B)(C+D)+EF.

Two possible gate-level representations of the function were given pre­
viously in Figure 11. Figure 13 shows a set of open and short faults of
the transistor network and the corresponding stuck-at faults in the gate
circuits. Of the seven faults selected, gate circuit #1 can model four
as stuck-ats; gate circuit #2 can model six, provided that multiple
stuck-ats are allowed. Faul t #7, which shorts two paths, cannot be
modeled by either gate circuit. The reason is that this fault creates a
new logic circuit which realizes the function

S=(A+B+E) (C+D+F) •

From this example it becomes clear why the failure modes of small-scale
devices can be modelled by gate-equivalent circuits with stuck-at
faults: they consist of relatively few multiple conduction paths.

Based on the above observations we conclude that::

1) The proposed model is adequate to model failure modes of SSI
devices.

2) The proposed model should accommodate multiple stuck-at faults.

3) The selection of an appropriate gate-equivalent circuit, which
most closely models the failure modes of the device, should be
based on a failure modes analysis of the transistor circuit.
Based on this analysis the user must select a realistic set of
open and short faults and their associated stuck-at faults. The
User should be cognizant, however, that not every combination of
stuck-at faults corresponds to a realizable failure mode.

29

The above procedure will result in a gate-equivalent circuit
that will model normal performance and a subset of realizable
failure modes. Each failure mode not modellable by the gate­
equivalent circuit will undoubtedly require a unique gate
circuit to model. Thus,

4) The user must select a set of "representative" faults and deter­
mine, for each fault, a unique gate circuit to model the
resultant failure mode.

In summary, the fault model will consist of

1) A gate-equi valent circuit which models normal performance and
some failure modes.

2) A set of gate circuits which model the failure modes of repre­
sentative faults not modellable by the gate-equivalent circuit.

3.3.5.3 Dapleaentlng the Fault Hodel

The Simulator must be capable of simulating faulted and non-faulted net­
work performance in either the serial or parallel modes of simulation.
When a device is represented at the functional-level it is necessarily
simulated in the serial mode. Implementing fault modes associated with
a functional-level device is a relatively straightforward procedure:
The database contains a non-faulted device representation at the func­
tional-level and a set of fault models (see Figure 14). When a fault is
to be injected the Simulator Executive identifies 1) the fault and 2)the
network,i.e.,one of the m, parallel networks to be faulted. The Simula­
tor then evaluates the appropriate network responses and, after p.:!.l
parallel inputs have been serviced, converts the outputs to the ~~pro­
priate parallel format.

The procedure is more delicate when the device is repres-::nted at the
gate-level. Here, the concern is speed and to achiev~ epeed it is
necessary to maintain parallel mode simulation at all timds. The effi­
cient use of parallel mode simulation requires:

Rn A single gate circuit which models both faulted and non-fclUlt;:~
performance.

R2) Every gate must be evaluated for each of the m, parallel networks
and in an invariant order.

The major advantage of the proposed fault model in this context is that
it employs a single gate circuit which models both faulted and non­
faulted performance. As we have seen, however, it may be neoessary to
employ several different circuits for this purpose. In any case it is
necessary to comply with requirements R1 and R2 if efficient parallel
mode simulation is to be achieved.

30

,)

· Example. A gate-equivalent oirouit is given whioh models normal perform-
anoe and some failure modes. It is neoessary to oreate an additional
oirouit to model a speoial failure mode. To oomply with R1 and R2 the
oirouits are simulated as shown in Figure 15. During eaoh olook oyole
both oirouits are evaluated. The speoial failure mode is aotivated by a
disorete qualifier,F. In the parallel mode F is represented by an m-bit
word in the host oomputer. When it is desired to aotivate this failure
mode in, say network Ik, the kth bit is set to a logio 1, all other bits
remaining at logio O. The logio 1 state oauses the transfer of the out­
puts of gate oirouit #1 to the outputs of the devioe. Naturally the
extra gates introduoed for this purpose are never faulted.

Modelling Failure Modes in The Gate-Equivalent Circuit

The method of parallel mode simulation depioted in Figure 15 oan be
relatively oostly in simulation speed and effioienoy sinoe it requires
the evaluation of the gates in both the gate-equivalent and special gate
oiroui ts dur ing eaoh pass. In this seotion more effioient simulations
are desoribed,

The gate-equivalent oirouit is used to model non-faulted performance and
some failure lIlodes whioh are the result of stuok-at faults. To model
stuok-at faults each gate is expanded in a manner illustrated in
Figure 16, for an AND gate. Referring to the figure

a = 1 models a 5-a-1 of A
b = 1 models a 5-a-1 of B
o = 0 models a 5-a-O of A or B or AB
d = 1 models a 5-a-1 of AB

It is noted that stuok-at faults are modelled by seleoting appropriate
values of inputs, a,b,o, and d. Moreover,when a=b=d=O and 0=1 the oir­
oui t models non-faul ted performanoe. Thus, in the parallel mode the
oirouit of Figure 16B oan be used in all m networks, whether faulted or
not. The oiroui t, however, requires 5 gate evaluations whereas the
non-faulted gate required a single gate evaluation. If every gate where
replaoed by a similar oirouit the simulation speed would decrease five­
foldl To avoid this penalty it was found expedient, in BGLOSS, to par­
tition the network and insert faults in one partition at a time.

Modelling Speoial Failure Modes

When it is neocessary to model special failure modes a special gate
oircuit must be included, as illustrated in Figure 15. However, the
gate-equivalent c~rcuit then consists of non-faulted gates, only. Thus,
there is relatively little reduotion in simulation speed. Naturally it
is 'advisable to inoorporate a single special gate cirouit, at a time.

31

3.3.5.4 FAULT COLLAPSING

Another technique used to increase simulation speed in BGLOSS was "fault
collapsing". It was recognized that not all stuck-at faults were dis­
tinguishable at a gate output. For example, a S-a-O fault on an input
node of an AND gate is indistinguishable from a S-a-O fault on the out­
put node. As a consequence, if two indistinguishable faults of the same
gate were selected, only one fault was simulated.

3.3.6 Extension To Multiprocessor Systems

Parallel mode simulation is ideal for simulating multiprocessor systems
although it may, under certain conditions, result in a decrease in simu­
lation speed. As an illustration, consider a multiprocessor system such
as SIFT (ref. 7), consisting of a processors. Each SIFT processor is
assigned a set of computing tasks, some of which are redundantly
executed, depending upon the cri ticali ty of the task. Non-cri tical
tasks are normally assigned to a single processor. As a consequence, it
may be assumed that, for the most part, the processors are executing
different programs. Assuming that a 32-bi t word of the host computer
represents a single gate node, the bits are subdivided into 4 segments,
of a bits. Each segment represents a different version of the multi­
processor system. A fault would then be injected into one of the a bits
in each segment (If faults are limited to the same processor then it is
only required to simulate the 7 memories of the non-faulted processors
and 4 memories corresponding to the faulted processors). In this
approach only 4 faults can be simulated in a single run as compared with
31 if a single processor system is simulated. This results in an a-fold
decrease, approximately, in simulation speed. An apparently attractiv~
alternative approach would be to simulate 7, non-faulted processor~ and
25, faulted processors in a single run. The problem here is t~,at the
action taken by the multiprocessor system may be different for dif~drent
faul ts. Effecti vely, the system operates like an event-r.:ri V .. m simu­
lator. As a consequence, when a fault is injected it i::l n~cessary to
simulate the non-faulted processors for the duration of the run in order
to determine the resultant action taken by the system. In ~ummary, when
the action taken by a multiprocessor system (e.g., dual, triplex, etc.)
is dependent on the fault then it is necessary to simulate all of the
non-faulted processors during a run.

3.4 SIMULATION TIMING

An important figure of merit of a simulator is the cpu time required by
the host computer to simulate a network. This is particularly important
when it is desired to simulate a software program in a mini processor •
In these applications a typical miniprocessor might consist of 5k or
more equivalent gates and a single instruction could require 4 or more
passes through the cpu. If the entire software program is executed for
a single fault, as in self-test, then it is obvious that even a modest
number of faults would require a very large number of gate evaluations.

32

3.4.1 S~ation Speed

Definition 1.

Given a class of combinational networks, each with n gates. If the host
oomputer requires T seconds of cpu time, on the average, to propagate a
single input vector through a network then we define

"simulation speed" = nIT gates per second.

Example. In the parallel mode of operation, if

, m = number of bits per word
and T = cpu time for a single pass
then simulation speed = nm/T gates Isec

Thus, parallel mode operations improve simulation speed by a factor of
m.

Observations

1) The figure of merit is independent of the nunber of gates
aotually evaluated by the simulator.

Example. In a tandem combinational network of n gates a Z simu­
lation will propagate a signal after n node evaluations whereas
a U simulation would require n**2 node evaluations. If the host
computer cpu time was 1 second for each then the simulation
speed would be n gateslsec for eaoh simulation.

2) Simulation speed is a function of the speed of the host compu­
ter. For our purpo~9s all simulation speeds will be referenced
to the Vax 11/780 computer(0.8 HIPS).

3) The figure of merit, when applied to either a U or Z simulation
is independent of the structure of the network since each of
these simulations evaluates a fixed number of gates, e. g., n··2
and n,.respeotively. However, when applied to the Event-driven
simulator the figure of merit is a strong function of network
structure. Consider, for example, the two networks of
Figure 17. Eaoh contains n gates but the figure of merit ap­
plied to network 12 will tend to favor the Event-Driven simula­
tion over the Z simulation sinoe the former could propagate some
inputs after only a single node evaluation. In general "simula­
tion speed" will always favor the Event-Driven over the Z
simulation.

33

•

4) It is desirable to obtain the relative simulatidn speeds of the
U and Z simulations. While each method evaluates a fixed number
of gates the problem is that some gates have more than two
inputs. Thus, the desired relationship is a funotion of the

1) average number of inputs/gate;
2) cpu time required for each gate;
3) average number of gates in the network.

If the gate constructs correspond to 2-input gates and if

then

and

n = average number of gates in the network
i = average number of inputs/gate,

n(i-1) = average number of equivalent, 2-input gate~

Z simulation speed = n(i-1)x(U simulation speed).

3.4.2 Sfaulation E~rlclency

Definition 2.

Let t = real time to propagate a signal through a network
T = average cpu time required by the host computer to

simulate a single pass through the network.

We define
"simulation efficiency" = tIT.

This figure of merit will be applied principally to a mini processor ~~u
where t = true, clocked cycle.

The definitidn is independent of the number of gates In thE: n~Gwork.
This omission was intentional in order to preclude an incorrect computa­
tion of simulation efficiency based on simulation speed. F'"r t!xampl~,

suppose that simulation speeds for the Z and Event-Driven simulations
are known for the collection of combinational circuits within each node
of a true, clocked network. If the speeds ara A and B, respectively,
and if n = number of gates in the network then it might be cotioludec.i
that At/n, Bt/n were the respective simulatio~ efficienci~s. The problem
is that these favor the Z simulation since they do not account for the
fact that not all nodes are exercised in a clock cycle, e.g., the Event­
Driven may only need to evaluate a reduced set of nodes in each cycle
(see Example 4 for an estimate of the proportion of nodes actually eval­
uated in a large-scale network). Thus, when computing simulation effi­
ciency from simulation speed it is necessary to ascertaln the average
number of gates exercised in a single pass through the network.

34

Example 1. In the parallel mode of operation, if

m = nunber of bits per word
T = cpu time for a single pass

and t = real time for single pass

then simulation efficiency = mt/T.

Thus, parallel mode operations improve efficiency by a factor of m.

Example 2. The simulation speed and efficiency of BGLOSS
as follows:

n = 5000 equivalent gates of the BDX-930 cpu, excluding
main merr.ory

(i = 4 = everage n~ber of inputs/gate)
t = clo~k cycle of the BDX-930 = 250 nanosec.

determined

Based on a large number of runs on the Vax 11/780 it was determined that

a) Non-faulted Case

simulation efficiency = 1/5000

(i.e., a single pass through the cpu required 5000x250/10**6 =
.00125 sec of host computer cpu time).

Since there were 5000 gates in the network,

simulation speed = 5000/.00125 = 4x10~*6 gates/sec.

b) Faul ted Case

simUlation efficiency = 1/7000.

Thus, simUlation speed = 5000/.00115 = 2.86x10~.6 gates/sec.

It is emphasized that these para~eters reflect the use of parallel mode
simulation with a word size of 32 bits. Moreover, the nodes were only
evaluated on the rising edge of the clock pulse.

Example 3. As an indication of the relative simulation speed and effi­
ciency of BGLOSS these parameters were estimated for an existing commer­
cial software simulator. The simulator was event-driven and required
300 seconds of Vax 11/780 cpu time to propagate 100 inplJt vectors
through a non-faulted network consisting of 2300 equivalent gates. Thus,

simulation speed = 100x2300/300 = 767 gates/sec.

35

The network represented the cpu of a miniprocessor with a clock cycle of
2S0 nanoseconds. Thus, a single pass through the network was equivalent
to 2S0 nanoseconds of real time. Since a single, simulated pass re­
quired 3 seconds of host computer cpu time

simulation efficiency = 2S0x10**-9/3 = 1/12x10**6

i.e., the simulator was 12 million times slower than the real processor.

When the simulator was used to simulate faults it was estimated that

simulation speed = 430 gates/sec

based on a network of 214 equivalent gates and 367 simulated faults. It
is emphasized that, being event-driven, the simulator did not necces­
sarily evaluate~ll of the gates in the network in each pass.

Example 4. In (ref. 8) the authors describe a design for a high speed
logic and faul t software simulator, VOTE. The simulator employs the
event-driven technique, 4-valued logic and parallel simulation wherever
possible. The authors estimate that, in the non-faul ted case, for a
processor consisting of SO,OOO equivalent gates

1) 1S00 gates are evaluated, on the average <3% of total), in a
single pass using the event-driven simulation;

2) simulation on a Vax 11/780 would require one cpu second to eval­
uate 7000 gates.

Thus, if the prediction is realized, the effective speed would be

simulation speed = 7000xSOOOO/1S00 = 2.33x10*.S gates/sec.

In the faul ted case simulation speed is estimated to be 8 t:fJaes slower.
Of particular interest, in this example, is the estimate that, in a
large network, only 3% of the gates require evaluation in a single pass.

ER128

36

4.0 BGLOSS CIWlACTERISnCS ARD APPROACH

_.1 SALIENT CHARACTERISTICS

Based on these discussions of Section 3 we are now in a position to enumerate
the characteristics and features of BGLOSS. These are:

o Gate logic software simulator
o Progranmed in BLISS
o Vax 11/780 host computer
o Parallel mode simulation, exclusively
o Fixed order of node evaluations
o 2-valued logic, exclusively
o Requires User-initialization of the network
o Stuck-at faults, exclusively
o Collapses faults
o Capaole of simulating software as well as hardware
o Limited input capability
o Limited output capability
o 2.8 million gates/sec

4.2 UnOULE

Based on the discussions of Section 3 the rationale for selecting the
features and techniques of BGLOSS can now be given:

1) Parallel Mode Simulation. For high speed, simulation via
parallel simulation and efficient primitive constructs. This
required, however, a fixed order of node evaluations.

2) BLISS. A very efficient macro language that contains primitive
constructs,-

3) 2-Valued Logic. For high speed simulation. Furthermore, all
simulated faults resulted in unambiguous states.

4) User-Initialization. Eliminated the need for "unknown" logic
states.

5) Stuok-At Faults. Easy to simulate, espeoially in the parallel
mode. Moreover, stuok-at fault models appeared to be adequate.

6) U,Z Simulation Techniques. The overhead of an Event-Driven
simulation was expeoted to be unacoeptable. In addition, it was
anticipated that most of the devices oould be simulated by the Z
simulation teohnique. Problems assooiated with the proper order­
ing of the network were disoovered, belatedly.

7) Simulation Speed. Preliminary analysis of fault soenarios indi­
oated that a simulation effioiency of 1/25,000 would have been
aoceptable. It was a pleasant surprise to ~chieve 1/7,000.

37

8) Fault Collapsing.
efficiency.

11.3 SIllULATIOB TEClDfIQUES

4.3.1 FUnctional-Le.el Networks

For increased simulation speed and

In BGLOSS the only devices that were simulated at the functional-level
were

o Microprogram memory (5I1S473)
o Microprogram control prom (54S288)
o Macroinstruction start address prom (54S472)
o Main memory, Rom and Ram
o Ram memory (accumulators) of the ALU (2901A)

These devices were defined by arrays.

4.3.2 Gate-EquiYalent Circuits

A gate-equivalent circuit was obtained from the manufacturer for all IC
devices, including the 2901A ALU. In several cases it was expedient to
modify the gate circuit either for convenience or to increase simulation
speed.

Gate-Types: The simulation imposed no restrictions on gate-types. In
fact, all of the common gates of Figure 4 were used somewhere in the
network.

Flip Flops: As indicated in Appendix B, flip flops, even clocked flir
flops, can present problems in simulation. Because of the large O'.!dn­
tity of D-flip flops in the cpu the equivalent circuit was modi~.ied to
that of Figure B-7. Observe that the feedback branch is clocke6.

Busses: With one exception all bus transceivers of thp. cpo are
unidirectional and all are tristate. For BGLOSS, it wa"s dE'termined that
the tristate busses of the BDX-930 operate like wired AND logic and,
hence, are functionally equivalent to connecting the transmitted signals
to the input of an AND gate. Moreover, when all impedance levels are
high the bus value is a logic 1. The gate-equivalent circu1 t of the
bus, used in BGLOSS, is shown in Figure B-9. The only bidirectional
transceivers were between the memory bus and the cpu data bus and
between the memory bus and memory. A detailed description of bus
simulation techniques is given in Appendix B.

38

4.3.3 The Prototype BDX-930 Network Model

The complete BDX-930 cpu circuitry is shown in Figure 18. The network
was modularized by manually partitioning the circuit into subsets of
components, primarily for convenience of computation. The combinational
networks within each module were manually p-ordered. The modules were
then evaluated once in every clock cycle. In retrospect, it i3 obvious
that the modules should have corresponded to clocked, compound nodes.
They did not: some inputs were clocked and others were not. As a result,
some module boundaries separated the inputs and outputs of combinational
circuits which should have been modelled with zero delays. This created
two problems:

1) The non-clocked inputs, instead of propagating to a clocked node
with zero delay, were delayed by at least one clock cycle, de­
pending upon the number of intervening modules. This problem
was resolved by identifying the outputs of these circuits and
outputting their values immediately to the global memory. This
solution required, in addition, that the modules be evaluated in
a p-order. .

2) In some cases two modules contained different inputs to the same
combinational, zero delay circuit. As a consequence, it was not
always possible to evaluate the modules in an invariant order
and obtain the correct results for all combinations of inputs.
This problem was resolved by reassigning these inputs to the
same module.

With the above changes the Prototype Network Model had the following
structure:

1) Modularized, some inputs clocked, some non-clocked.
2) Non-clocked outputs transferred, immediately, to global memory;

clocked outputs transferred to global memory after all modules
were evaluated.

3) Modules were evaluated in an invariant p-order to insure correct
. simulation of combinational, zero delay circuits cut by module
boundaries.

4.3.4 Fault Models

The underlying assumptions of the BGLOSS fault model were exactly those
described in Section 3.2.5.3. BGLOSS employed, essentially, two failure
models:

1) Gates were faulted by the method described in Section 3.2.5.3
and as shown in Figure 13.

2) Bits in memory devices, e.g., the micromemory, were faulted to
the complement of the non-faulted value.

39

In all cases the faults remained for the duration of each experiment.

BGLOSS did not model special failure modes.

4.3.5 ltethod of Identifying Detected Fau1ts

As indicated in the Introduction, BGLOSS was developed primarily for the
purpose ·of validating self-test programs and estimating fault latency in
a comparison-monitored system. In these applications it was essential
that the meaning of "detected faul tit, as assessed by BGLOSS, exactly
corresponded to that of the target system. The following discussion an­
tiCipates the need for a simple, concise and general definition of
"fault detection" to be used by GGLOSS. Typically, a self-test program
outputs an encoded set of discretes which signifies "pass" or "fail".
Usually the "fail" discrete is output at that point in the program at
which the fault was detected, but this is not essential. It is almost
always the case, however, that the output occurs, when it occurs at all,
no later than in the time required by a non-faulted, but identical, pro­
cessor to complete the entire program, assuming that the program con­
sists of an invariant sequence of instruotions. When a fault oocurs
there are three possible responses of self-test:

1) The fault is detected, explicitly, and the program attempts to
output a "fail" discrete.

2) Self-test cannot be oompleted nor oan the "fail" discrete be
output.

3) The prooessor "suooessfully" oompletes self-test and outputs a
"pass" disorete.

Thus, a fault is recognizable, in principle, if

1) self-test outputs a "fail" discrete or
2) self-test does not respond. with either a "pass" or "fa!.!" diS­

orete in some period of time determined by the particula~ test.
(This "non-response" is usually monitored by a watchdog timer).

In BGLOSS this " period of time" was the time required by th~ non­
faulted processor to oomplete its self-test.

In the experiments involving comparison-monitoring oertain c~uputea
variables were deSignated as "monitored variables" and stored in memory
after each computation. Any difference, at the completion of a frame of
computations, between corresponding monitored variables in the faul ted
and non-faulted processors signified a "detected failure". This
approach, although a good approximation, was not a correct model of
comparison-moni toring. In a real system the monitored variables are
exchanged, usually over data links, and the processor which detects a
miscompare takes some action as a result. The BGLOSS approach had the
merit of not requiring an explicit software program for the monitoring,
or a simulation of the data links and the hardware associated with the
output discretes.

40

Extrapolating from the above scenarios, we propose, tentatively, the
following definition of "fault detection" for use in GGLOSS:

A "deteoted fault" is any fault which, during a predetermined interval
of time, results in a differenoe between the oorresponding outputs of
certain designated components of the faulted and non-faulted processors.
As a consequence, the User of GGLOSS need only identify the monitored
outputs and the associated time intervals.

4.4 PIEPBOCESSORIPOSTPBOCESSOB CHARACTERISTICS

Preprocessor Tasks

o Computed probability of stuck-at faults from device failure
rates

o Queried User for number of faults to be simulated
o Randomly selected faults

postprocessor Tasks

o Determined which faul ts were deteoted and the clock cycle in
which detected

o Computed cumulative fault detection statistics
o outputted results

BGLOSS did not compute p-orderings. This was done manually.

4.4.1 Statistioal Methods

The teohniques of statistical analysis are described, in detail, in
(ref. 1) • It is sufficient to note that the method 1s based on random,
stratified sampling techniques.

4.5 SIllULl.TIOI TIMIKG

The simulation speed and efficienoy of BGLOSS was given in Example 2 of
Section 3.4.1, i.e.,

simulation speed = 2.86x10**6 gates/sec

simulation efficiency = 1/7000

using a Vax 11/780 host computer.

41

4.6 PllOm.EiI AREAS

The problem areas of BGLOSS have been described throughout this report.
In summary, the problem areas were:

1) Incorrect designation of compound nodes. Node boundaries, in
some cases, cut zero delay circuits. Consequently, some node
values had to be passed to global memory immediately while
others had to be delayed until all nodes were evaluated. Distin­
guishing between these outputs was a tedious and time consuming
exercise. In addition, these mixed nodes had to be evaluated in
a definite order.

2) The network had to be p-ordered, manually.

3) The simulation was entirely Bliss-coded. Changes in a circuit
had to be reprogrammed in Bliss.

4) Initially, inefficient parallel/serial conversion algorithms
were used.

5) Considerable effort was expended in determining prototype models
of flip flops, busses, etc.

4.7 BGLOSS III RETROSPECT

Despite initial problems BGLOSS was a resounding success from the stand­
point of simulation speed, efficiency and fidelity of modelling stuck-at
faul ts. More than 10, 000 faul ts \-lere eventually simulated and every '.;,1-
detected fault (i.e., by Self-Test) was analyzed to determine ~:hy 'f.~
was not detected. In only one case was it determined that the simula­
tion was in error in modelling a fault.

Despi te this success, however, BGLOSS was a disappointment bE'~ause it
could not be used to simulate a different cpu. BGLOSS wa~ customized
for the BDX-930 and the format did not permit an extr'apolation to an­
other computer.

In retrospect it is now apparent that a gen~ral1zed BGLOSS could have
been developed at less cost.

42

5.0 GGLOSS

5.1 IITRODUCTIOH

5.1.1 s..&ry ReYiev of BGLOSS

The success of BGLOSS can be attributed to

o The use of a low-level progr~~ming language (Bliss) and parallel
simulation and

o a fixed order of node evaluations.

The result was a very high speed gate logic software simulator.

5.1.2 BGLOSS's Deficiencies

BGLOSS suffered from several deficiencies:

1) It . required virtually a complete reprogramming to apply the
simulation to another cpu.

2) It was not easily transportable, being programmed entirely in
Bliss.

3) It was not User-friendly: circuit changes could only be imple­
mented by directly reprogramming in Bliss.

5.1.3 Conclusions

In retrospect it is now clear that, had it been a design goal, BGLOSS
could have been developed with greater applicability and at less cost.
It is to be hoped that the proposed GGLOSS design embodies the good
features of BGLOSS and none of its deficiencies.

5.2 OVEBVIEV OF GGLOSS

This section gives a brief overview of GGLOSS; its essential character­
istics and the factors and considerations that influenced the design.
As explained in Section 3.3.4, the high speed simulation requirement of
GGLOSS imposes certain constraints on the design, notably in the use of
a higher order programming language. Subject to this constraint the ob­
jectives of the GGloss design are:

o maximal transportability and
modifications, to an existing,
facility

o ease of use

43

adaptability, with minimal
computer-aided circuit design

To maximize transportability it is proposed to host GGLOSS on a Vax
11/780 computer; to code the control and executive functions in Fortran
and to code the high speed arithmetic and logical constructs in Bliss.

To achieve adaptability and ease of use GGLOSS will be" menu-driven" and
will utilize, to the greatest extent possible, existing circuit specifi­
cation formats.

It is envisioned that a given network will be defined in a manner al­
ready familiar to the User, e.g., via standard partslists, netlists and
component specifications at the gate-level. The menu will be reserved
exclusively for selecting desired output data and procedural options
available to the User'. In order to simplify the implementation and re­
duce the cost of GGLOSS it is intended that the User will provide a
database system for preparing, editing, storing and displaying hier­
archical network designs. Such systems are commercially available and
relatively inexpensive. This approach offers other advantages in addi­
tion to those cited above:

1) It does not require a redefinition of a previously defined net­
work. It recognizes that a fault simulator is only one of many
tools associated with the design, development and validation of
digi tal circuits and, consequently, a network definition will
most likely exist in the database long before a fault simulation
is undertaken.

2) It allows the User flexibility in planning a database system in­
dependently of GGLOSS.

3) The database system can be expected to provide a far greater
capability than one developed exclusively for GGLOSS. F-:,r
example, it can be expected to contain a library of st;:ondar~
digital devices, graphics capability, computer-aided des~gn pro­
grams such as Tegas, Spice and a User-friendly design lan~uage.

Essentially, then, the database system will provide the carability for
preparing, editing, storing and displaying hierarchical netwc~ks. From
the standpoint of GGLOSS, it is only required that the circuit be
defined in terms of a standard partslist and n~tlist in database. The
network definition may include the failure ratos of components but this
is not an essential requirement.

In summary~ we may say that the general characteristics of GGLOSS are

44

.,

5.2.1 General Characteristics

• High speed gate logic software simulator
• Hosted on a Vax 11/780 computer
• Control and executive functions coded in Fortran
• Arithmetical and logical constructs coded in Bliss
• Utilizes existing dntnba3e system
• Menu-driven

The specific characteristics of GGLOSS have been alluded to in previous
sections and are summarized here:

5.2.2 Specific Characteristics

• Conducts limited interaction with User via the Menu
• Preprocessor/postprocessor features
• Gate-level and component-level simulation
• Parallel mode of operation; serial mode, optional
• Fixed order of node evaluations
• Includes parallel/serial transformations for interfacing between

gate-level and component-level modules
• 2-valued logic, exclusively
• Requires user-initialization of network ~
• Stuck-at faults, only
• Collapses faults
• Speed = 1 to 2 M gates/sec on Vax 11/780
• Unit-Delay simulation of clocked nodes
• Zero-Delay simulation for combinational circuits

5.2.3 GGLOSS Hodes of Operation

GGLOSS will be designed to simulate any User-defined Prototype .Network
which is constructed according to the rules of Section 3.1. This is the
only mode of GGLOSS. However, as noted in Section 3.1, a Prototype net­
work can model a wide variety of networks. By simply designating
clocked branches the User completely determines the Simulation.

Example 1. It is desired to simulate a primitive combinational network.
It is known, a priori, that the propagation delay through the network is
small relative to the successive changes of input events. The User
defines the network by specifying a Partsl1st and Netl1st. The parts
are assumed to be defined in a standard library of components. The User
then designates all external input branches as "clocked branches". Apart
from selecting the output data the non-faulted simulation is now
completely specified. GGLOSS will· determine a p-order of gate evalu­
ations and proceed to evaluate the combinatioqal network once in every
clock cycle. The User has specified, in effect, a Z simulation.

45

Example 2. It is desired to simulate the same network as in Example 1.
However, in this case the time between successive changes of input
events is small compared with the propagation delay through the network.
The User defines the network as in Example 1 but designates all branches
as "clocked branches". The non-faulted simulation is now completely
specified. GGLOSS proceeds to evaluate each gate in every clock cycle,
transmitting the results to the global memory after all gates have been
evaluated. The User has specified, in effect, a U simulation.

5.3 REQUIRED TASKS

5.3.1 User Tasks

As a minimum, the User will be required to:

* Define network
o Supply partslist/netlist
o Functional-level modules
o Memory, accumulators, registers
o Edit and add to standard circuit
o Fault models, if non-standard

Figure 15, for example)

library
{ See Section 3.3.5.3 and

No matter which mode of operation is ultimately se~cted by the User it
is the User's responsibility to define the appropriate prototype
network.

* Define contents of program and microprogram memories.
* Supply: network initialization; start location; test vector

sequence, if required.
• Supply failure rates of components.
• Supply definition of "fault detection".
• Supply fault list.
• Designate clocked branches, clock frequencies and phasee.
* Designate IIO options: outputs, formats, etc.

A more detailed description of a typical User-procedure for setting-up a
simulation is illustrated in Appendix C.

46

5.3.2 GGLOSS Tasks

As a minimum, GGLOSS is required to:

• Translate the circuit specifications to executable code.
• Debug User-defined network for completeness{e.g.,identi,y

dead-ended pins) and continuity.
• Compute probability of faults in faul t list or select faul ts

probabilistically.
• Collapse faults.
• Partition the network for efficient fault injection.
• Supply fault models for standard gates.
• Create simulated network.
• Execute and control simulation.
• Identify detected faul ts and the clock cycle in which the faul t

was detected.
• Compute cumulative fault detection statistics.
• Output results; store, if required.
• Conduct limited interaction with User(via menu)

5.4 STRUC'lURE OF GGLOSS

The proposed structure of GGLOSS is shown in Figure 19. Excluding the
Bliss compiler, GGLOSS is comprised of three programs: Preprocessor,
Executive and Postprocessor. In addition, GGLOSS will provide a library
of primitive, Bliss-coded macros and the capability to expand the
library.

5.4.1 Preprocessor Tasks

• Translate circuit specifications to executable Bliss code
• Create standard fault models for gates (Special failure models

are defined in the Prototype Network Model. See, for example,
Figure 15)

• Collapse faults
• Partition network for efficient fault injection and assign fault

sets to partitions
• Compute probability of faults in fault list
• Compute p-orderings
• Debug network
• Conduct limited interaction with User(via menu)

5.4.2 Postprocessor Tasks

• Identify detected faul ts and the clock cycle in which the faul t
was detected

• Compute cumulative fault detection statistics
• Output results in appropriate formats

47

5.4.3 Executiye Task~

* Execute and control simulation
* Pass data to the Postprocessor

5.4.4 Library of Bliss-Coded Hacro~

Ini tially, GGLOSS will provide
constructs, coded in Bliss syntax.

a library of primitive
These will include:

ANO, OR, NAND, NOR, XOR, INVERT, D-Flip Flop, etc.

logical

The names of these constructs (i.e., macros) will correspond directly to
parts names in the partslist and in the library of standard components.
As a consequence, the translation from a part to its Bliss-coded
counterpart is relatively straightforward. The User can create higher­
level, Bliss-coded macros in exactly the same way that any higher-level
part is constructed, i.e., by deSignating a collection of previously
defined parts as a new component. It is emphasized that the translation
to Bliss-coded macros is completely transparent to the User. Neither a
knowledge of Bliss or the role it plays in the simulation process are
required of the User: The User defines the network in the User-oriented
language of the database system, a.g., in SDL, then GGLOSS makes the
translation.

The translation process requires standard formats for partslists, net­
lists and component definitions. These formats, however, can be expected
to vary, somewhat, from one facility to another. As a consequence, it
will be necessary to develop standard formats for use in conjunction
with GGLOSS. It will be the User's responsibility to translate eXist!Clg
formats to these standards. This is expected to be a minor task.

5.4.5 OVerview of the St.ulation Process

Referring to Figure 19:

1) The User creates a partslist and netlist using the User-oriented
language of the existing database system.

2) The Preprocessor conducts the interaction with the User, via the
Menu, and creates a node evaluation program in Bliss syntax. The
Bliss-coded macros are created as described in Section 5.4.3.
The node evaluation program is then compiled, eventually to be
called by the Executive Program as a Fortran subroutine. Since
the nodes are coded in Bliss their execution will be at· very
high speed and in the parallel mode. The Preprocessor is coded
in Fortran.

48

3) The Executive Program controls the execution of the simulation
and passes data to the Postprocessor for statistical analysis
and outputting. OUtputs can be placed on disc, printed or dis­
played graphically. Both the Executive and Postprocessor Pro­
grams are coded in Fortran.

5.5 1/0 OPTIOHS

The input and output options will be selectable , via the menu, and will
include the following:

• Network?
• Functional-level components?
• Fault models?
• Fault list?
• Fictitious nodes? .
• Failure rates?
• Network'initialization, start location?
• Test vector sequence?
• Compute number of clock cycles to completion of simulated

program?
• Use fault models for standard gates?
• Compute network partition?
• Compute collapsed faults?
* Clock frequencies, phases?
* Clocke~ branches?
* Fault detection statistics?
* Definition of fault detection?
• Print network/subnetwork states at specified clock cycle?
* Print network partition?
• Print contents of simulated memory?
• Print undetected fault list?
• Print "time to detect" faults?
• Print indistinguishable faults(i.e., dead-ended pins)?
• Print p-orderings?
• Print number of clock cycles to completion of program?

5.6 ESTDUTED TASKS

Preprocessor Tasks

1. Create standard netlist for translation to Bliss code
2. Create standard partslist for translation to Bliss code
3. Create standard library of primitive constructs, coded in Bliss
4. Create higher-level macro generation program
5. Define menu and create translation program
6. Conduct limited interaction with User

49

7. Create fictitious clocks and identify clocked branches
8. Create standard fault models
9. Create network partition

10. Compute p-ordering of network
11. Create Bliss-coded circuit for use by the Executive Program as

Fortran subroutines
12. Create program to compute probability of faults
13. Create program to select faults (using statified sampling)
14. Create fault list
15. Collapse faults
16. Debug network
17. Create table of instructions for Executive Program

Executive Tasks

1. Create program to execute and control simulation, using instruc­
tions obtained from Preprocessor

2. Pass data to Postprocessor

Postprocessor Tasks

1. Identify detected faults and the clock cycle in which the fault
was detected

2. Create program to compute cumulative fault statistics
3. Create program to output to disc, printer, display

GGLOSS Trials

1. Run sample simulations

Documentation Tasks

1. User's manual
2. Simulation techniques manual

50

6.0 REFEBEICES

1. Mc Gough,J.,Swern,F., "Measurement of Fault Latency in a Digital
Avionic Mini Processor", NASA CR-3462, NASA Langley Research
Center, Hampton, Va, October 1981.

2. McGough,J. ,Swern,F. , "Measurement of Fault Latency in a Digital
Avionic Mini Processor", NASA CR-3651, NASA Langley Research
Center, Hampton, Va, January 1983.

3. Wood,P.,Jr., "Switching Theory", McGraW-Hill, New York, 1968.

4. Lee,S., "Modern Switohing Theory and Digital Design", Prentice­
Hall, Englewood Cliffs, New Jersey, 1978.

5. Galiay,J.,Crouzet,Y.,Vergniault,M., "Physical Versus Logical
Faul t Models MOS LSI Circuits: Impact on Their Testablli ty" ,
IEEE Trans. Computers, vol.c-29, No.6, June 1980, pp. 527-531.

6. Chiang,K.,Vranesic,Z., "Test Generation for MOS Complex Gate
Networks", Proc. FTCS-12, IEEE Compo Soc., June 1982, pp.
149-157.

7. Wensle,y, J., Lamport, L., Goldberg, J., et. al., "Design and
AnalYSis of a Fault-Tolerant Computer for Aircraft Control,"
Proc. IEEE. Vol. 66, October 1978, pp. 1240-1254.

8. Ulrich,E.,Lacey,D.,Phillips,N.,et.al., "High Speed Concurrent
Fault Simulation With Vectors and Scalars", ACM Communications,
June 1980, pp. 374-380.

ER129

\
\

51

INPUT

V1 ,
N,

1--' -
I
I
I
I DFF

DFF

GATE CIRCUIT

I
I
,
J

I

NODE OUTPUT

FICTITIOUS CLOCK
I
I

. I

~

CLOCK CYCLE u ----- FICTITIOUS CLOCK

__ ---'I \-y-I

y
NODE COMPUTATION ~ COMPUTATION TRANSFERRED TO OUTPUT

FIGURE 1 REJ\Ul.I\TION OF A SIf.1PLE CLOCKED NODE

Ul
W

. .

CLOCKED INPUTS

--

•
OFF OFF

T V

OFF ... COMBINATIONAL NETWORK OFF '" CLO CKED OUTPUTS

I P

-OFF OFF
,
,J ,

I
~.,

;
FICTITIOUS CLOCK

OFF = D-FLIP FLOP

FIGURE 2 REALIZATION OF A COMPOUND, CLOCKED NODE

s
x

y
R

R-S FLIP FLOP

CLOCK

NODE 0
S ./ //

--+----4. DF.F.·· 1-----4
/ //

/.

IJ-+---I '9F~. 1---41---
,. ,',

r--, I> . I = FICTITIOUS OFF
L~

NODE (1)

/

R J-t---t. OFF" f----lil~-
,,' /"1' //

--+----4 ~DE~

CLOCK

REALIZATION OF R-S FLIP FLOP

FIGURE 3 R-S FLIP FLOP

OFF OFF

INPUTS OFF OFF 0 UTPUTS

· · · · · ·
OFF COMBINATIONAL NETWORK OFF

· . · · ..
..

OFF
j

OFF

· I · · I · · , ·
t
I

OFF OFF -- ...

FIGURE 4 REALIZATION OF A SEQUENTIAL NETWORK

55

FIGURE 5A PRIMITIVE NETWORK

1 3

FICTITIOUS CLOCK

FIGURE 58 PROTOTYPE NETWORK MODEL FOR UNIT-DELAY Srr·1ULATICj~

FICTITIOUS CLOCK

FIGURE 5C

1 2 3

PROTOTYPE NETWORK ~IDDEL FOR ZERO-DELAY . ~
Sn1ULATION tLlla = FICITIOUS OFF

FIGURE 5 PROTOTYPE NETWORK MODELS FOR UNIT-DELAY AND ZERO-DELAY SIMULATIONS

56

-

• • • • • • • ---f~ Yn

FIGURE 6A TANDEM NETWORK

elK Yo Yl Y2 Y3 Yn

n 1 1 0 0 • • • , • • • • • • • 0

1 1 1 1 0 a
? 1 1 1 1 a

n-1 1 1 1 1 • • • • • • • • • • • 1

FIGURE 6B OUTPUTS OF UNIT-DELAY SIMULATION

1.1 K Yo Yl Y2 Y3 Yn I
n 1 1

1 1* I- I
I-

_
1* 2 1 1

n-l I- I- 1* IX 1 I

FIGURE 6C OUTPUTS OF ZERO-DELAY SIMULATION

1* = NOT EVALUATED BUT ASSUMED = 1

FIGURE 6 NODE EVALUATIONS IN U AND Z SIMULATIONS

57

Xl

].
)X1 +X2 +»> x2 -

+ X
• n
• ..

xn

OR

Xl

) xl x2
x2 . .. xn AND • •
xn •

xl

).
>(X1 + x2 +

I

x2 + x } NOR • n
• •

xn

NAND

t>
1

X' --X I NVCr{T

FIGURE 7 CQf1JMON GATES

58

Ul
\0

Xl
x2

xn
) 0) xl + x2 + ••. + xn

• • • n-INPUT OR GATE
,

1 0) Xl + x2 + ••• + xn

n-l, BINARY OR GATES

FIGURE 8 EQUIVALENCE OF AN n-INPUT "OR" GATE AND n-l, BINARY "OR" GATES

----e:----II)t--.... ~ _= a_I + _b
I

bI

SERIAL MODE SIMULATION

PARALLEL MODE SIMULATION

FIGURE 9 PARALLEL/SERIAL f'10DE SIMULATION

60

... , a + I- \
min'

PARALLEL TO SERIAL
INTERFACE

FUNCTIONAL-LEVEL

DEVICE

SERIAL TO PARALLEL
INTERFACE

FIGURE 10 TYPICAL PARALLEL/SERIAL INTERFACES

61

A

B

C S = (A+B)(C+D)+EF

o E

IMPLEMENTATION #1 F

A

C
I

.....

0

B S "" (ft:!-ti)(C+O)+EF

-

E

F

IMPLEMENTATION #2

FIGURE 11 GATE-EQUIVALENT IMPLEMENTATIONS OF S = (A+B)(C+O)+EF
62

A

C

Vss

.. S

I

I

I
I

B E

•

D F

S = (A + B) (C + D) + EF

1

I

LOAD
TRANSISTOR

" • SWITCH -U KE
(NETWORK

I

J

FIGURE 12 TRANSISTOR NETWORK REALIZING S = (A + B) (C + D) + EF

63

VOO

#1

A --11
C

r-ii#4
#3

#7 E

F

~S

= OPEN FAULT
= SHORT FAULT

VSS

#1
s-a-o

A

#3
C s-a-o

0

A

..

#1
s-a-o

0

#2
E s-a-l

F------l

#5

TRANSISTOR CIRCUIT

#2
s-a-l

E
F

GATE - EQUIVALENT CIRCUIT #1

#6 /15-0-0
" /

s -a-

GATE - EQUIVALENT CIRCUIT #2

S=(A+B) (C+O) + EF

#4
S-a~o

FAULTS #5, #6, #7
NOT COVERED

FAULT #7
NOT COVERED

FIGURE 13 FAULT CORRESPONDENCES IN GATE - EQUIVALENT CIRCUITS
64

NON-FAULTED

DEVICE

REPRESENTATION I

i

I

! -- i
\
!

• !
I • i

INPUTS FAULT ! ,
• I

OUTPUTS •

MODEL #1
• •

I I .
I
• • I • i

•

FAULT

MODEL #n I
FAULT # -..

N EnlORK #
----~

FIGURE 14 PROCEDURE FOR SIMULATING FAULTS IN A FUNCTIONAL - LEVEL DEVICE

65

- ____ ••• __ •• _0 ____ - _ •• __ ••

IN PUTS
GATE-EQUIVALENT

CIRCUIT

ADDITIONAL
GATE CIRCUIT

TO MODEL
SPECIAL

FAILURE MODE

F = SPECIAL FAULT QUALIFIER

-
~

-
o--c ~ j -

FIGURE 15 A METHOD OF PARALLEL SIMULATION OF SPECIAL FAILURE MODES

66

OUTPU TS

A

a

B

b

A

______ B ____ ~I ~~--AB------

FIGURE 16A NON-FAULTED AND GATE

ORIGINAL
GATE

r--l
I I
I I
I I

I c

I
I I
I I
L- __ ~

FIGURE 16B AND GATE FAULT MODEL

FIGURE 16 STANDARD FAULT MODEL OF A GATE
67

AB

-----._---_._ .. _ ... _ - - -.---- .. - -- _ ... -._------ ._._- -._--._ ... --... -

n GATES

(~------------------~/\~-----------------,

•••

NEnlORK #1

[>
[>

C> n GATES

•
•
•

[>
NETWORK #2

FIGURE 17 COMBINATIONAL NETWORKS OF DIFFERENT STRUCTURE

68

.... - ... l.

-J.- 1~
r--''\r.-...... -w---

r'::t-----...
.... I' -,

.1-

.. i""

-A-= I
re-' =---J-r-T'-

oa-aJ

~l ... --. L
I ~1~IUaD\

TTL r-------....

.lJ. _11

,

-.•.
... I

12.'~1I\ l ~} ~ j.;L G ~: ~ :.:
1T '---'-- w -, ,- 1'-

_u - - - t-----I - - 14__-_1- - ..._-_1- - 1--
.! J..l [.. ..1-----1 14----1---1.. .. r----

\~~~/r~ ~~a r~a ~-:a<'-
~ ---~----' -.-

J. J.. . J.j. _on.
11 -- 1 1 !oo ~

.. ,..

Ill"· ••. I
PlI
•

• t-II' PIT. .-..
•

1....:_·1 t-:::::"'J I-I
• I

....... IST •
_cum .. ----

~. ---.--.- ~, l.
u_-un • (

(

.l~ J. j. J. j. J.j. J.J. J...l
.:. .. I I ~ 1)=========:------------~------,
· '.. -II i"" J. j.

- - -
~ .: __ ",. \ 1 11 "I
~---';~_-.J

I- I- -I
~J. ..LJ.. -lJ.. ..t~ J. J.._ J.J,.

.... 1

1-
J.j.

IA_ IAIC1I IAIC1I IA_ IA_

U U ..u u u u J ---
FIGURE 18 BDX-930 PROCESSOR

CIRCUIT - _____ _

......
0

OUTPUTS ·

. LIBRARY
PARTS LIST. OF

+ I STANDARD I
NE~T.J COM~N:.:J

PREPROCESSOR
PROGRAM

FORTRAN

POSTPROCESSOR
PROGRAM -1

~~T_R_AN __

NODE
EVALUATION

PROGRAM

BLISS
SYNTAX

EXECUTIVE
PROGRAM

FORTRAN

FIGURE 19 PROPOSED STRUCTURE OF GGLOSS

BLISS

COMPILER

LIBRARY
OF

BLISS-CODED
STANDARD

MACROS
BLISS SYNTAX

COMPILED
PROGRAM

CALLED AS A FORTRAN SUBROUTINE

II = EXISTING- DATABASE
L--1

.lPPEIDIX A
PROPERTIES OF LOOP-FREE NE'lVORICS

We state several important properties of loop-free networks. These are given in
the form of lemmas. We note that, since combinational networks are primitive
loop-free networks, all of the properties of loop-free networks apply to com­
binational networks, as well.

Given a loop-free network with n nodes (including E-nodes).

Lemma 1.

There exists a unique sequence of disjoint and non-empty sets.
R{O),R{1).R{2) ••••• R(m). m ! n-1 such that - ,

1) each node is a member of exactly one set

2) R(O) oontains exactly those nodes with no inputs

3) R{k), k=1.2 ••••• m. contains those and only those nodes whose in­
puts originate in nodes belonging to the union of R(O),R{1) •••••
R{k-1> •

Nodes in R{k) are said to have "rank order kIt.

If m is the largest rank order of any node then m is called the "depth"
of the network.

Lemma 2.

If m = depth of the network then there exists at least one' path of
length m and no path exceeds m in length. (As a consequence. a signal
can be propagated through a network after. at most. m gate delays.)

Lemma 3.'

If nodes in R(O) are selected in any order, followed by nodes in R(1).
in any order. etc •• then the resultant sequence is a p-ordering of the
nodes.

Lemma 4.

There exists at least one p-ordering of nodes of a network without
loops.

Example. Figure A-1 shows a rank-ordered network. Using the node desig­
nations of the figure a p-ordering is N{O), N(1) ••••• N{11). The network
has depth = 4.

71

An Algorithm For Determining a P-Ordering Of Nodes

Lemmas 1 and 3 embody a procedure for determining a p-ordering of a net­
work without loops.

Step 1.

Identify all nodes with no inputs and place these in RCO)C If RCO) is
empty and at least one node remains then the network has a loop).

Step 2.

Remove the nodes of RCO) and their outputs. In the reduced network iden­
tify all nodes with no inputs and place these in R(l) (If R(1) is empty
and at least one node remains then the network has a loop).

Repeat the above process until all nodes are exhausted. The desired p­
ordering is obtained as prescribed in Lemma 3.

72

.'

1

I

Oc.-..--_---"_---r-___ I~N{l n r--i
I ~, I (9)'
I ~ol
I I I I
I 1 I I I' I

I N(5) I I I I
I 0 I 1 I

/,,\! ~. I I I I

N~~_ ~' I N~) I I !~1O)1
:1 I 1 I I I
I I N(6) I 1 I I

1_' I ~0 I I I I
N~ I I I I

L_ J ! __ J L_~ ~ __ I
R(O) R(I) R(2) R(3)

FIGURE A-I EXAHPlE OF RANK-ORDERING

r--,
I ~
I ~
I I
I ~

I ,
I
I
I
I
I

N(It)

I I __ .J

R(4)

APPENDIX B
SPECIAL DIGITAL DEVICES

The tech,niqucs of modelling and simulation described in the previous
sections will be illustrated by means of several basic digital devices:

I) Flip nops
II) Tristate busses
III) Functional-Level Program Memory

These devices were selected because they

o present unique problems of modelling and simulation;
o comprise the basic components of digital processors;
o constitute the most frequently simulated digital devices.

It is important to emphasize that the techniques of modelling and simu­
lation described herein are presented to assist the User in setting up
appropriate circuit models. GGLOSS, after all, merely evaluates gates.
The selection of an appropriate network model, to which these techniques
refer, remains the responsibility of the User.

I. FLIP FLOPS

1. R-S Flip Flop

A gate-equivalent circuit which uses the NAND gate implementation is
shown in Figure B-1A. An alternate implementation, using NOR gates, i~

shown in Figure B-2. Since the essential dynamics are identical in t~th
representations we will consider only the NAND gate circuit. From t~e

figure we obtain the characteristic function of the flip flop:

x(n) = S(n-1) + y' (n-1)
1)

yen) = R(n-1) + x' (n-1)

where n denotes time t=nd
d=propagation delay of a gate
()', = complement of () .

Nominally, y is the complement of x except when the forbidden pair,
S=R=1, occurs. The state diagram and truth table are shown in Figure
B-1B and B-1C, respectively.

It is recalled that the U simulation will evaluate both NAND gates in
every primitive clock cycle (i.e. ,a cycle equal to the delay of a
gate). From the state diagram it can be seen that, starting in one of

74

the states (x=O,y=1) or (x=1,y=O), it could require two clock cycles to
reach the final state. The operation of the flip flop is described as
follows:

S=O,R=O: The flip flop does not change state and one clock cycle is suf­
ficient to stabilize the outputs. While this is a normal input combina­
tion it could, nevertheless, result in en oscillation. From the state
diagram of Figure B-1B it can be seen that the pairs (S=O,R=1) and
(S=1,R=O) result in a transition through the state (x=O,y=O). If, while
in this state, (S=O,R=O), then the oscillation will occur. To avoid
this we require that the time between successive changes in the pair,
(S,R), must exceed the propagation delay of the flip flop, i.e., at
least one gate delay.

S=O,R=1: If the previous state is (x=O,y=1) the state will remain un­
changed. Again, one clock cycle is sufficient to stabilize. If the pre­
vious state is (x= 1 ,y=O) the state will change to (x=O, y= 1) after two
clock cycles.

S=1,R=0: If the previous is (x=1,y=0) the state will remain unchanged.
Again, one clock cycle is sufficient to stabilize. If the previous
state is (x=O, y= 1) the state will change to (x= 1 ,y=O) after two clock
cycles.

S=1 ,R=1: This is the forbidden combination. After, at most, two clock
cycles the final state is (x=1,y=1). This presents two problems:

1) y is not the complement of x;
2) while in state (x=1,y=1) the occurrence of the normal pair,

S=R=O, will result in an oscillation.

In a simulation in which gate delays are multiples of the primitive
clock cycle,d, it is probable that the combination S=R=1 followed by
S=R=O will occur frequently. To avoid this and the resul tant oscilla­
tion it is recommended that the SET and RESET inputs be modified as
shown in Figure B-3. This circuit prevents the occurrence of S=R=1, re­
placing it with S=R=O. All other combinations of Sand R remain
unchanged.

From this example it can be seen that the R-S flip flop can be simulated
with two NAND gates(excluding the fictitious circuit of Figure B-3) and,
to reach a stable value, requires four gate evaluations.

2. D-Flip Flop

The conventional gate-equivalent representation of the D-flip flop is
shown in Figure B-4A. The corresponding truth table is shown in Figure
B-4B. It will be shown, subsequently, that the dynamics of the D-flip

75

flop, as determined by the gate-equivalent circuit, are more complicated
than the truth table indicates. For the present we give a textbook de­
scription of the flip flop:

1) When C=O then S'=R'=1, independently of O. The x and youtputs
remain unchanged.

2) If 0=0 and C=O and C changes to a 1 then S' =1 and R' =0 and,
hence, x=O, y= 1. If now, while C=1, there are any subsequent
changes in 0, S' and R' will not change states nor will x and y.
When C returns to 0, S' =R' =1, so that the flip flop remembers
its previous state.

3) If. 0=1 and C=O and C changes to a 1 then S' =0 and R' =1 and,
hence, x=1,y=0. When C returns to 0, S'=R'=1, so that the flip
flop remembers its previous st~te.

This description is presumably based on the gate-equivalent circuit of
Figure B-4A. If so, it is mislead ing. It can be shown, in fact, that
these characteristics are as described if the following conditions hold:

C1)The positive and zero clock intervals each exceed the maximum
propagation delay of the flip flop.

C2)A change in the data input, 0, and an edge of the clock pulse
are separated,in time, by at least one gate delay.

While it may be true that these conditions are normally satisfied in a
well-designed network, they may not apply in a simulation, particularly
if the user is careless. If either condition is not satisfied the flip
flop could oscillate.

Example. If conditions (C1) and (C2) do not apply then the complete ex­
ci tat ion table for Sand R is given in Table B-1. The corrf!~pOndlng

state diagram is shown in Figure B-5. As an illustration, assurr:c:! that
condition (C2) does not apply. Let

O=o,C=O at time=O
0=1,C=0 at time=d
0=0,C=1 at time=2d,3d,4d, •••

From the excitation table the successive 5tates are seen to be

(0,1,1,1) at time=O
(0,1,1,1) at time=d
(0,1,1,0) at time=2d
(1,1,1,1) at time=3d
(0,0,0,0) at time=4d
(1,1,1,1) at time=5d
(0,0,0,0) at time=6d

etc.

76

where a state is defined as (a,S',R',b), the parameters being referenced
to Figure B-4A.

After time=3d, S' and R' oscillate between S'=R'=1 and S'=R'=O, causing
an oscillation in the x and y outputs of the D-flip flop.

Under non-faulted conditions if the input does not change more than once
in a clock cycle, it could require 2 gate delays to stabilize the x and
y outputs at both the leading edge and descending edge of. the clock
pulse. Using the U-Simulation it would require 24 gate evaluations in
each clock cycle(since there are 6 gates). However, if it is known, a
pr.iori, that condition~ (C1) and (C2) hold and the input will not change
more than once in a complete clock cycle, then a much simpler D-flip
flop model can be used. Under these conditions the characteristic func­
tion of the flip flop is

where

X(1) = x(O)*(C(1)*C'(0»' + D(1)*C(1)*C'(O)

y(1) = y(0)*(C(1)*C'(O»' + D(1)·C(1)·C'(O)

C(O) = past clock value (0 or 1)
C(1) = present clock value (0 or 1)
x(O),y(O) = past values ofx and y
X(1),y(1) = present values of x and y.

It is important to observe that the D-flip flop .requires that the clock
return to 0 before the next data input----otherwise no output change is
possible. The time between the "past" and "present" is the time between
the rising and descending edges of the clock pulse or between the de­
scending and rising edges. To properly evaluate the model it is necces­
sary to evaluate it, once at the leading edge of the clock pulse and,
again, at the descending edge. A non-faulted gate-equivalent.circuit of
this model is shown in Figure B-6. Observe that, in the non-faulted
case, y(1)=x' (1). One advantage of this model is that it also models
clock faults which prevent the clock from osc illating. If, however,
these clock faults, i.e., failure to transition through zero, are ruled­
out then the D-fUp flop admits of an even simpler model. Its charac­
teristic function is

X(1) = x(O).C'(1) + D(1).C(1)
2)

y(1) = y(O).C'(1) + D(1)·C(1).

This model can be evaluated at the rising edges of the clock, exclusive­
ly, or at both the rising and descending edges. This was the model of
the D-flip flop used in BGLOSS (with the additional assumption that
y(1):x' (1». A non-faulted gate-equivalent model of this circuit is
shown in Figure B-7. Observe the clocked feedback branches in both
models.

77

An additional advantage conferred by these simpler models is that they
can be simulated by the Z simulation. This is made possible because the
time delay of the feedback signals, x(O), yeO), c(O), can be set equal
to the clock cycle (or half of the cyc Ie, in the case of c(0)) and,
hence, is large relative to the propagation delay of the straight­
through elements.

II. TRISTATE BUSSES

Figure 8-8 shows five typical bus interface arrangements. Unless the
contrary is stated the following discussion applies to all arrangements.

At any given time one and only one terminal is transmitting (assuming no
failures). In this case the transmitting terminal sets its impedance
level to

Z=low (=logic level 0).

This transfers the signal to the bus. A transmitted output may be read
by one or more receiving terminals. The high impedance state effective­
ly cuts-off its associated gate while the low impedance state activates
it. Under prescribed operating conditions the bus value is determined
as follows:

1) . If only one transmitter is in its low impedance state the bus
value is that of the transmitting terminal.

2) If two or more transmitters are in their low impedance state and
if they are transmitting the same value then the bus is set to
this value.

A potential problem arises when

a) two or more transmitters are in their low impedance .:State and
are transmitting different values;

b) all transmitters are in their high impedance state~.

In the first case the bus could assume a 0 or 1 value. dp.pending upon
the particular bus interface. In the second case the bus value could
depend upon its prior value, e.g., if bus=1 p~eviously. then buS=1, now;
if bus=O previously, then it could take many gate delays before the bus
finally assumes the value 1. The correot model requires a careful
analysis of the bus interface circuitry.

For BGLOSS it was determined that, in the context of the BDX-930 cpu,
the tristate bus operates like wired AND logic, i.e., it was functional­
ly equivalent to connecting the transmitted outputs to the input of an
AND gate. Moreover, when all impedance levels were high, the bus value
was a logic 1. Thus, if

b(k)=transmitted signal of terminal Ok
Z(k)=impedance level of the transmitter

n =number of transmitters

78 .

then the bus value was given by

BUS=(b(1)+Z(1»AND(b(2)+Z(2»AND ••• AND(b(n)+Z(n».

Observe that all transmitters must be evaluated before the bus value can
be determined. The gate-equivalent circuit of the transmitter/bus used
in BGLOSS i3 3how~ in Figure 8-9. The figure also shows the fault set
used in the simulation. Observe that the impedance states are repre­
sented by either a logic 0 or logic 1.

Transmitter/Receiver Models

With one exception, no device of the BDX-930 cpu transmitted and
received data over the same bus. Thus, the bus interface configurations
of these devices correspond to arrangements #1 and #2 of Figure 8-8. A
typical BGLOSS model of this transmitter/receiver arrangement is shown
in Figure 8-10, including the placement of stuck-at faults. The one ex­
ception is the bidirectional transoeiver conneoting the DATA and Memory
busses (the memory, itself, contains a bidireotional receiver but this
was not simulated in BGLOSS). This arrangement corresponds to 115 of
Figure 8-8. The BGLOSS model of this tranoeiver is shown in Figure
8-11. Faults were injected, as shown.

Modelling a Bidirectional Transceiver

As indicated previously, a correct model of a transoeiver requires a de­
tailed analysis of the interfaoe oircuitry. Consequently, we do not pre­
sume here to offer suoh a model. We offer, instead, a candidate model
which could be correct given the assumption that the bus operates like
wired AND logic.

[It cannot be overemphasized that a correot transceiver model, as well
as other oircuit models, is the responsibility of the User. If such a
model can be represented by a prototype network, as described in Section
3.1, then the model can be simulated.]

The bidirectional transceiver is that connecting the Memory Bus and the
Ram Memory, as shown in Figure 8-12A. If the memory matrix is repre­
sented at the funotional-level then the transoeiver and memory can be
represented as a combinational network as shown in Figure 8-12B. A pro­
totype network model of the device is shown in Figure 8-13. This model
also inoludes stuck-at faults.

III. FUNCTIONAL-LEVEL PROGRAM MEMORY .
As indicated in Section 4.3.1, the only functional-level devices used in
BGLOSS were memory devices. To illustrate some of the considerations
involved in modelling these devices we will examine the BGLOSS simula­
tion of Main Program Memory(ROM).

79

Referring to Figure 18 the 9407 loads the memory address bus. This is a
unidirectional bus and presents no special problems of simulation. The
memory data bus is bidirectional and the techniques used to simulate it
have been described in Appendix B (see Figure B-11). At the start of a
clock cycle the program memory is commanded to write a word on the
memory data bus (at this time data is stable on both busses).

Of the 16 bits of the address bus only 15 are actually used to address
memory. Consequently, the BDX-930 can address 32k wordn. In general it
would have been necessary to allocate 32k words of the host computer to
simulate the BDX-930 memory. However, only enough memory was allocated
to store the simulated program--which never exceeded 2200 words. A
memory address outside of this range(as a result of a fault) caused
BGLOSS to write a "HALT" instruction on the memory bus. The rationale
for this was that a jump out of the program ~lOuld have been detected by
any monitoring strategy.

In BGLOSS it was assumed that no faults occurred in main memory. Thus
it was only necessary to simulate a single memory for all 32 parallel
processors. The contents of the simulated memory was then loaded with
the bit patterns of the simulated software program. Thus, memory was
represented by the array

C16-bit address word, 16-bit memory word).

As indicated in Section 3.3.4, when a device is represented at the func­
tional-level in a parallel mode simulation it 1s necessary to perform ~
parallel-to-serial or serial-to-parallel conversion when crossing it~
boundary. This is a time consuming operation and, if inefficientJ! im­
plemented, can result in a significant decrease in simulati~'1 spr;ed.
Because of its importance we will describe the conversion al~orit~m used
by BGLOSS, in detail.

In the parallel mode the address bus is represented by thd 16 words:

A(1) = bitf11 = a(1,1), a(1,2), ••• , a(1,32)

A(2) = bitf12 = a(2,1), a(2,2), •.• , 8(2,32)

A(16) = bit#16=(a(16,1), a(16,2), ••• , a(1q,32))

where it is assumed that each word of the host computer is 32 bits.

Bo

After the parallel-to-serial conversion we obtain 32 addresses. each
corresponding to that of a different cpu:

B(l) = Address'l = (a(l.l). a(2.1) ••••• a(16.1). x. x ••••• x)

B(2) = Address#2 = (a(1,2), a(2,2) •••• , a(16,2), x, x, ••• ,x)

B(32)= Addressn32= (a(1,32), a(2,32), •••• a(16~32), x, x, ••• ,x)

where x = "don't care" bit.

The host computer uses each of the 32 words to fetch a word from memory.
The conversion is repeated. in reverse. when loading the memory data
bus.

The BGLOSS conversion algorithms are shown in Figures B-14 and B-15.

81

S S'

R R'

FIGURE B-IA NAND GATE REPRESENTATION OF THE R-S FLIP FLOP

(S=O, R=O)

ALL

FIGURE B-IB STATE DIAGRAM OF R-S FLIP FLOP (NAND GATE;

@ t=nd @ t={n+l)d

r---------~~------------- ~--~~-----. .-- '\

S R x Y

o . 0 xn Yn

0 1 0 1

1 0 1 0

1 1 INDETERMINATE
FIGURE B-Ie TRUTH TABLE FOR R-S FLIP FLOP

FIGURE 8-1 R-S FLIP FLOP NAND GATE REPRESENTATION

82

(S=O, R=I)
(S=O, R=O)

(S=I, t{=0)
,5=0, t{=O)

S
x

y

R

FIGURE 8-2A NOR GATE REPRESENTATION OF THE R-S FLIP FLOP

(S=o, R=O)

ALL

FIGURE 8-26 STATE DIAGRAM OF R-S FLIP FLOP {NOR GATES}

FIGURE 6-2 R-S FLIP FLOP NOR GATE REPRESENTATION

83

(S=l, R=O)
(S=O, R=O)

(S=O, R=l)
(S=O, R=O)

S{IN)

R(IN)

EXCLUSIVE OR

S(OUT)
1------- TO SET OF FF

RlOUT) TO RESET OF F~

FIGURE B-3 LOGIC TO INHIBIT THE OCCURRENCE OF S=R=l

84

"

I,

C

(CLOCK)

D (DATA)

a

5 I

x

R'
y

FIGURE 8-4A
D - FLIP FLOP (NAND GATE)

@ to @ t f
--_1\,---

(CLOCK D '\

--.11\'---

(5' R'" (x

0(+) de 1 1 QO
Q' a

1(+) a 1 a a 1

1(+) 1 a 1 1 a

FIGURE 8-48 TRUTH TABLE 0 - FLIP FLOP

FIGURE 8-4 0- FLIP FLOP

85

Q

Q'

de = don't
care

00
0\

(0,0)

(1.0)

(l.~)

(1.1)

STATE = (a,SI. RI. b)

TRANSITION = (0, CLOCK)

(1.0)

(1,0) (0,1). (1.1)

(0,1)

(1.0)

(0.0). (0.1)

(1.1)

FIGURE A-5 SATE DIAGRAM D- FLIP FLOP

)(

-0
s...
QJ
N

.c
C\
:::::s
0
s...
.c,

Q.. c:
0 0
....J - U-,

:J: Q. 111 U - c: ::::J ro
~ U- s...

I,
CC 0

~ 0 u... u UJ 0 0 ~ ,...
U -l U Q UJJ 0 111
.8- 0 QJ

::: s...
0 :::::s
UJ 0-- QJ
U- s...
....J,
Q. ro
::: .c,
VI

1.0
I

CO

UJ
0:::
:::J
t.!'

u..

<:
I-
<:
0

-:J:
U
z:
~
c:a
Q
UJ
~
U
0
....J
U

-0 --,;.
U u

87

,..-------. (CLOCKED BRANCH)

CLK ' x = Q
CLK

y = QI

DATA

FIGURE 8-7 S;MPLIFIED MODEL OF D-FLIP FLOP

(assuming failuN-to-transition clock faults are prohibited)

~ #1 V

~ b

l' z #2

/ #3

l'
..

---. #4

I'l -..

#5 BIDIRECTIONAL

<)t-
.. -

BUS

FIGURE 8-8 TYPICAL TRISTATE TRANSMITTER/RECEIVER ARRANGENENTS

89

en "'"
...J ~ ::::I

~ en

"'" U
< Z

I C§ ~ ~
U "'" ::::I 0- c.D ::&: -Q en - en

"'" II II II
...J "'" --::::I
~~ -->< N ..Q

I en ZQ en OZ 0 Z< ...J
t!J
CO

U.
0

en
::::I
c:c

"'"
~

0'1
en -I 0.:: c:c

"'"
0.:: -::::I ::::I
t!J U - 0.::
U. -U

....
Z
UJ
...J

~ -::::I
0-
UJ

I
UJ

• • ~

- -- -- -N ..Q

- -N N - -N ..Q

- -C C - -N ..Q

90

RECEIVING
DEVICE

TRAf4Sr~ITT ING
DEVICE

z
b

~ = FICTITIOUS ELEMENT

X = STUCK-AT FAULTS

BUS

FIGURE B-IO TYPICAL BGLOSS MODEL OF A TRANSMITTER/RECEIVER

1.0
I\J

HEHORY BUS
HAIN MEMORY 1----0--1

MAIN

MEMORY

CPU

DATA BUS

11

• • •

CPU

MEMORY
BUS

ACTUAL 54S245 TRANSCEIVER ARRANGEMENT

~ = FICTITIOUS ELEMENT

X = STUCK AT FAULTS

BGLOSS MODEL OF
54S245 TRANSCEIVER

(MEMORY FAULTS PROHIBITED)

12

~---~

FIGURE B-11 BIDIRiCTIONAL TRANSCEIVER ~1ODEL USED IN BGLOSS
(UATA BUS TO MmORY BUS) .

HEM
BUS

MEM
BUS

MEM
BUS

R/w

ENABLE

RAH
r,lEMORY

t
R/w ENABLE

FIGURE B-12A r~EMORY TO MENORY BUS TRANSCEIVER

b1 RAM b2
~1EMORY

(FUNCTIONAL-
LEVEL)

R/w t f ENABLE

R/w ENABLE

FIGURE B-12B CO~lBINATIONAL NEnlORK REPRESENTATION OF TRANSCEIVER/MH10RY

FIGURE B-12 r·1Er40RY TO ~"Er10RY BUS TRANSCEIVER ~10DEL

93

~ = FICTITIOUS ELEMENT

x = STUCK-AT FAULTS

MEMORY

(FUNCTIONAL - LEVEL)

r/w

ENABLE

r/w ENABLE

MEMORY lfljS

FIGURE B-13 PROTOTYP; NlTWORK MODEL OF MEMORY TO MEMORY BUS TRANSCEIVER

NOTE:

Set U a
i (oil. 612. ... ,

Bk -0 where 611 • t
61j • 0 when i ., j

for K • 1. 2 ... , 32:

..1- ,

YES

YES

EXIT

" I, . • logical "AND" • "+" • logical "OR·'

6 i .,32) • i=-1.2.

FIGURE 8-14 GATE-LEVEL TO REGISTER-LEVEL CONVERSION ALGORITHM

95

. ••• 16

For 1. 1,2, ... , 16:

YES

...

YES

EXIT

FIGURE 8-15 REGISTER-LEVEL TO GATE-LEVEL CONVERSION ALGORITHM

96

TABLE B-1
EXCITATION TABLE FOR nIE D-FLIP FLOP

(a,S' ,RI ,b) •• D::O,C=O D=l,C=O D=O,C=l

(0,1,1,1) (0,1,1,1) (0,1,1,0) (0,1,0,1)

(0,1,1,0) (1,1,1,1) (1,1,1,0) (1,1,1,1)

(1,1,1,0) (1,1,1,1) (1,1,1,0) (1 ,0 ,1 , 1)

(1,1,1,1) (0,1,1,1) (0,1,1,0) (0,0,0,1)

(0,1,0,1) (0,1,1,1) (0,1,1,1) (0,1,0,1)

(0,1,0,0) (1,1,1,1) (1,1,1,1) (1,1,1,1)

(0,0,0,0) (1,1,1,1) (1,1,1,1) (1,1,1,1)

(0,0,0,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)

(1,q,1,O) (1,1,1,1) (1,1,1,0) (1,0,1,1)

(1,0,1,n (1,1,1,1) (1,1,1,0) (1,0,1,1)

(0,0,1,0)·

(1,0,0,0)·

(0,0,1,1)·

(1,0,0,1)·

<1,1,0,0)*

• = unreachable state (under non-faulted conditions)
•• 0 = data input, C = Clock, S = Set, R = Reset

97

D=l,C=l··

(0,1,0,0)

(1,1,1,0)-

(1,0,1,0)

(0,0,0,0)

(0,1,0,1)

(1,1,1,1)

(1,1,1,1)

(1,1,1,1)

(1,0,1,0)

(1,0,1,0)

APPENDIX C
A HYPOTHETICAL snruunoR

To illustrate the methodology of GGLOSS we will outline the procedures
employed by GGLOSS and the User in setting up and executing a hypotheti­
cal simulation.

Let it be desired to simulate a non-faulted digital computer suoh as the
BDX-930. A typical computer architecture is shown in Figure C-1. Sinoe
it is desirable to describe the prooedure in some detail we will concen­
trate, exolusively, on the Computer Control Unit (CCU). The extrapola­
tion of the prooedure to the other devioes will be apparent. A blook
diagram of a typical CCU is shown in Figure C-2."

We will omit a description of the sequence of operations of the CCU.
This can be obtained in any text on computer design. In any case it is
not necessary for the User to understand exactly, or even approximately,
how the CCU performs its function.

User Procedure

step 111

The User identifies each device of Figure C-2, its inputs and outputs,
and interconnections with other devices.

step 112

The User obtains a logic diagram for each device.

step 113

The User determines which devices are to be simulated at the g~te dnd
functional-levels. [Functional-level devices are memories, l'egisters or

. any device whose outputs can be defined as an array. To impr~ye

simulation speed it is recommended that simple devices, such a:s matrix
decoders, be represented by fictitious, gate-equivalent circuits instead
of at the functional-level. This eliminates a pair of parallel/
serial transformations.]

Step 114

The User determines which logic circuits already exist in the library of
standard components. Employing a standard format, the User defines any
new circuits and stores these in the library. At this point all gate­
level and functional-level devices are defined(including the contents

98

of all memories) and are resident in the library of standard components.
Each such device is designated a "part". The User then defines, via the
Menu,

1) a Partslist(devices)
2) a Netlist(interconnections)

for the CCU. This defines the network.

Step OS

In general, the system may employ several clock signals, usually of the
same frequency but with different phases. The User identifies all de­
vices which are activated by one of these signals, e.g., edge-triggered
flip flops.

Step 116

In Step fI7 the User will be required to specify when each node of the
Prototype Network is to be evaluated. To do this it is necessary to re­
late the fictitious and true clock periods. This relationship is User­
selectable, 'depending upon the desired number of node evaluations in
each true clock period. In our hypothetical simulation we will assume
that it is desired to evaluate each node at both the rising and descend­
ing edges of a true clock pulse. In this case the true clock period is
specified as twice that of the fictitious clock. Referring to Figure
C-2, it is seen that the CCU does not contain a true clock oscillator.
Consequently, we invented one (shown in Figure C-3). The output of the
oscillator is a periodic train of alternating 1's and a's, corresponding
to the rising and descending edges of the true clock pulses.

Step iI7

The User now defines the Prototype Network. The rules of Section 3.1
must be followed, e.g.,

1) all external inputs are clocked
2) all loops must contain at least one clocked branch
3) throughput delays are small relative to the true clock cycle

(this is assured in a well-designed network).

The Prototype Network model is defined simply by designating which
branches are clocked (by the fictitious clock). These branches represent
inputs to the true clocked devices. The resultant Prototype Network is
shown in Figure C-3. The clocked branches are those denoted by the
fictitious D-flip flops.

99

Step 118

The User defines an initialization of the CCU. In practice the CCU would
include a power-on external which would correctly ini tial1ze the CCU,
independently of its prior state. This input was omitted from Figure
C-2. Had it been inoluded, it would have been multiplexed with the out­
put of the Instruction Register and gated to the Starting Address
Decoder.

Step 119

The User selects the desired output formats, via the Menu.

Treatment of Flip Flops

To improve simulation speed we elect to simulate flip flops by the cir­
cuit model of Figure B-7 rather than at the functional-level. Since all
feedback paths must be clocked we must associate a fictitious clock with
ev.ery feedback branch of every flip flop. We use the same clock as in
Step 117.

Simulator Procedure

Step 111

The Simulator interrogates the User, via the Menu, to obtain the items
enumerated in Section 5. These include the Partsl1st, Netl1st and the
clocked branches.

Step 112

The Simulator (Preprocessor) constructs the appropriate network for sim­
ulation. It does this by the method described in Section 3.1, i.e., the
clocked branches are cut and the resultant combinational network 13 P­
ordered. The cut network is shown in Figure C-4.

Step 113

Since the dev ices are non-faul ted the Simul!ltor is now ready to begin
the simulation.

ER130

100

r-----~~~~ ------ -I---q .. ---L_,::;::...........J =
:2 , __ _

I--;::::::::..~------ -----
.... ------,_ .. -----.. :=::::::::: _ ..

FIGURE C .. 1 A GENERALIZED COMPUTER ARCHITECTURE

~A.r-__________ r-_________ ~:)~ " ,.T. '101\

"I
I
I

" ••• -.r. .00-."
Df~C"

ca.'. ,

-

I I

.. ,.,
."c-.n e.o-'·o.,

ron

FIGURE C .. 2

I

1--1-

I
I

r-----:=l
I rr iA I I
I .. L.. I ... _'n I I

I
..,.·ou·.... I ... ,""" .r·c.

I

I

Aoo-.",
.. ,'~OP·.x.·· ... I ... O··

I -aDo·." I
" .. lel

0",,'1

I

L

A TYPICAL COMPUTER CONTROL UNIT

101

'UT

Jill It.._ ,
.:c .. T ... ~ .. ","""f

.-- ---~

[;], FICTIT/OU~ ELEMENT

FICTITIOUS
ClOCI(

RCO:

REAL CLOCK

0.0.1.0 •...)

CLOCK
OsCILLATOR

STACK
POINTER

DATA CLOCKED Oft
LOW-TO-HIGH TRANSITIONS

START AllOR
DECCOn
PI!()f

~_~-;t-----------S-TA-C-K.-------------------------IN-C-RE-~--~--R--------------U--P-R-~-~

~ ~

R-ReG PIlX

[HABL[

.----------PI-P-EL-I--NE -'NEXT AIlOR-]
ReG __ J~~.-­

~f=--- .-r~f;.1-
>-..---r~F}-

BAAIICH
COHTROL
'tATRIX

'-----------------_._------+----
ElIABlE

F1GJRE C-j I"mTO. YPE NETWORK PI)[)[L TYPiCAl COtIPUTER CONTROl U/IIT

o
w

EJ = FICTITIOUS H£HENT

---------- -- ----- -------- -----

I NSTRIICT lOti
REG

STACI:
POIIiTER

DATA CLOCKED ON
LOW-TO-HIIiI\ TRAlISITIOItS

STAR T AllOR
DECODER

PRGI

STACK [
---x------

x -1

R-REG
NEXT AIlOR

tlJX -

EHABLE

INCRUUITER II""P~

~ ~ 0-

ENABLE

PIPELINE
REG

~//// --------'
f-L / . X = OUTPUT OF COtIlINATlONIIl NETWORK

/ / / 0 = IIlPUT OF COt81NATlONAL NETWORK j
L ______ ~-___ -=--_-_-~~~~~_--

F1GLJkE (-4 COUSTRUCTIOtl OF CO/-IIItIAlIOtIIll NETIIORKS WlTIllN Co/lPoottO NODES

End of Document

