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Chapter 1

Introduction

The goal of the t,_k described in this report is to establish the basis for an

advanced fault-tolerant onboard computer that will be the successor to the current

generation of fault-tolerant computers (e.g., SIFT [1] and FTMP [2]). Particular

features envisioned for this new computer include the following:

• Support for the processing of application programs written in a modern pro-

gramming language, e.g. Ada

• Minimal burden on the programmer to prepare programs for the fault-tolerant

computer

• Flexible, dynamic scheduler

• To tile extent possible, an executive that can be easily ported among different

processors types

• Immunity to transient faults the number of which might exceed the voting

margin

• Immunity to massive transient faults, i.e., that might drive processors to a state

from which they cannot proceed without the assistance of other processors

• Extendability significantly beyond that provided by SIFT



1. Introduction

• Compatibility with the envisioned electronics system of the aircraft of the fu-

ture, i.e., a large number of sensors and actuators each with its own microproces-

sor, and the possibility of replacing a given function that can no longer be

processed by one or more backup functions.

Towards this goal we are working on the following technical problems:

1. The use of Ada as the language for the executives of the computer and the

application programs - Chapter 2

2. The architecture of a network-based fault-tolerant system - Chapter 3

3. A new paradigm (an extension of the conventional voting paradigm) for

comparing the values produced by replicated processors - Chapter 4

On (1), we have identified the potential advantages arising from the use

of Ada. Besides the gain in portability, it is likely that the executive can be

appreciably simpler than a comparable executive written in other languages (e.g.,

Pascal or Assembly Code) since the Ada runtime system itself provides some of the

basic functions of the executive: scheduling, process synchronization, and memory

allocation. The key problems we have been working on are (a) the identification of

that data of the application programs that has to be voted on, (b) how to inform

the executive when a vote is to take place, and (c) the identification of those

points in the program where the amount of voted information is minimized. In

the worst case, the amount of data to be voted on can be substantial, including:

global variables, local variables, stack frames, multiprocess substructure when

a task is composed of interacting subtasks, and the heap that is accessible to

these subtasks. A further complication arises when the voted data has to include

rendezvous information. Here interactive consistency must be used to ensure that

all replicas synchronize with the same subtasks. However, the amount of data

is drastically reduced by doing voting when the state of the program does not

include values of the global variables, when there are not temporary variables,
and when a task has no active subordinate tasks.

On (2), we have identified a preliminary architecture as the basis for the

-- 2 --



1. Introduction

research. The architecture consists of clusters interconnected by a network.

Each cluster, which is logically associated with a sensor, an actuator, or a site

of computation, would itself be redundant; the cluster could even be a SIFT

computer whose processors are microprocessors. Different from the intracluster

interconnection structure, the network that links the clusters would not be star-

connected. Instead each cluster could be connected to only a few other clusters

(perhaps 3). If each cluster is a SIFT (say composed of 5 processors), then the

link between a pair of connected clusters could consist of 5 connections - between

corresponding processors in the cluster pair. With this structure, conventional

voting could be used to mask errors arising in the transmission of data between

directly connected clusters. We have investigated the reliability of such a system,

assuming that overall system failure occurs if any cluster exhausts its redundancy

or if enough processors fail in any cluster pair such that voted communication

between these clusters cannot take place.

We have also studied the problem of finding optimal network graphs. The

objective here is to minimize the number of hops required for the transmission

of data between any two clusters. This problem appears to be that finding low

diameter graphs assuming a constraint on the fan-out for each node.

The assumption underlying (3) is that it might be advantageous to relax the

principal concept underlying SIFT (and all voter-based fault-tolerant systems)

that all replicas of a task get identical inputs and are expected to produce identi-

cal outputs. By relaxing this requirement it would be possible for the replicas to

run at different times, thus allowing the system to be less vulnerable to correlated

transient faults. If the different replicas of a task produce different values, conven-

tional voting does not work. The voting function is replaced with a filter function

that, similar to the conventional vote function, takes as inputs the values from

the various replicas. We have started to investigate properties for this filter func-

tion. It appears that extensions of our clock synchronization algorithm [3] (after

elimination of grossly out-of-range values, the median of the remaining values is

the clock value to be synchronized to) will work for reasonably well-behaved func-

tions. When the inputs are binary values, the function can be simpler. We do not

-3-



1. Introduction

yet have a solution when the task function does not satisfy reasonable continuity
conditions.

-4-



Chapter 2

Application of Ada to Fault-Tolerant Systems

2.1 Scenario and Goals

SIFT successfully demonstrated reliable computation for aircraft flight con-

trol applications through replication of flight control programs on multiple com-

puters. Fault masking was achieved by broadcasting results of replicated tasks

and majority voting. In SIFT, task replications, executing on distinct processors,

maintain loose synchronization using a preplanned schedule.

The characteristics of the SIFT software structure are:

• A fixed set of user tasks

• Tasks are periodic and executed with fixed frequency

• Communication between tasks is limited to a fixed number of "results", broad-

cast at the end of each task iteration. Tasks share no storage and have no

communication during execution.

• Communication between successive iterations of a task is limited to the same

broadcast "results". No storage is preserved between task iterations.
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• A preplanned schedule ensures that task results are available when required by
other tasks; tasks are never required to wait for input values.

• Errors in broadcast results, caused either by processor or communication faults,

are masked by majority voting. Since broadcast results are the only information

representing task state which is retained, no other form of fault masking is

required.

• No form of masking of errors due to incorrect programs is included.

• Errors detected during voting result in reconfiguration.

• Discrimination is provided between solid and transient faults. Transient faults

are masked by voting and do not cause reconfiguration.

• Reconfiguration consists of choice of a new, preplanned, schedule and allocation

of tasks to processors.

• Based on individual reliability requirements, tasks can be selectively replicated

to any necessary degree. These replications can be allocated to processors to

balance processor load.

The orientation of the SIFT design is towards predictability and reliability

rather than flexibility. An advantage of the approach is the very simple, and there-

fore inherently more reliable, nature of the Executive software. The simplicity of

the approach used in the Executive software imposed many constraints on the
user and exposed aspects of scheduling, communication and replication. These
constraints are not inherent in the "SIFT concept" - they were imposed to allow

a very simple implementation.

In this report, we investigate to what extent the concept of SIFT can support

a more general user interface. We consider a system in which the structure of the
user program is not constrained by the needs of fault tolerance, and in which the

system is not as dependent on the user to specify management of information and
resources in the system. In particular, we seek to permit a more dynamic program
structure.

-- 6 --
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To this end, we consider the Ada virtual machine and investigate building a

reliable Ada machine. Our goals are:

• To provide fault-tolerant support for a wide class of Ada programs.

• Ada programs should be unchanged, except for advisory directives.

• To allow greater asynchrony between executions of Ada program replications.

2.2 Considerations in Providing a Reliable Ada Machine

In investigating a reliable Ada machine, we continue the SIFT approach of

replication on independent processors, with error detection and masking based

on majority voting. For majority voting to suffice to detect and mask errors,

all replications of the program executing on working processors are required to

produce exactly the same results. Even non-deterministic programs must adhere

to this requirement - all instances of the program must behave identically.

2.2.1 Effect of Non-determinism

Ada provides a tasking facility, which inevitably introduces non-determinism.
This non-determinism results from direct interaction between tasks and from

access by tasks to shared global variables. Ada restricts access by tasks to shared

global variables, so that a!l non-determinism in Ada programs steins from direct
communication between tasks. The Ada mechanism for interaction between tasks

is the rendezvous. The rendezvous involves a task which calls a rendezvous entry

and a task which accepts the entry call. An entry call, equivalent to a procedure

call (with parameters), suspends the calling task until the entry is accepted and

a rendezvous is completed. When the called task accepts the call, a rendezvous

occurs, and the body of the accept procedure is executed. Following completion

of the accept procedure, both tasks are allowed to continue asynchronously. If a

task reaches the accept point, it is suspended until called.

- 7 -



2. Ada for Fault-Tolerant Systems 2.2. Providing a Reliable Ada Machine

Non-determinism is introduced by several tasks contending asynchronously

for the same accept procedure. Ada does not provide any guarantee of timing

for the concurrently executing tasks, and thus does not determine which task will

reach the call first. This timing can be influenced by lower level factors such as

system scheduling, interrupt handling, etc. These factors may vary from processor

to processor. In order for our majority vote masking to succeed, we must be able

to guarantee that all processors executing the multiprocess Ada algorithm accept

the same entry call into the rendezvous. We shall refer to this as a consistent

rendezvous.

Tasks in Ada are objects, which may be dynamically created and dynamically

terminated. One does not have any predefined configuration of tasks. It is possible

for an Ada program to contain an arbitrary number of instances of an Ada task

type.

2.2.2 Periodic Voting

The execution of an Ada program, of course, can be of arbitrary duration.

Reliability requirements demand periodic voting to detect and mask errors. When

should these votes be performed? Each vote in each processor must be performed

at exactly the same point in the computation. The moment of voting cannot be

determined solely on the basis of time, since different processors may be in different

states at that time. It also is not possible to determine for an arbitrary program

how to embed vote requests in the program to obtain votes with appropriate

I)eriodicity. For an arbitrary program there will be no obvious iterative structure

which could guide this choice. One must also take into account that some points in

the program may be more appropriate for voting because of cost or effectiveness.

A second issue concerns what information need be voted. Sufficient data

must be voted to detect that tasks instances executing on different processors are

performing the same computation. In SIFT, because voting is performed on task
results at a time when the task has terminated, only those results need be voted.

-8-



2. Ada for Fault-Tolerant Systems 2.2. Providing a Reliable Ada Machine

For a more general Ada program at which votes are taken periodically, there is

no explicit indication of what constitutes "results".

2.2.3 Resource Management and Scheduling

Many potential applications of fault-tolerant computing involve real-time

performance constraints. In SIFT, these constraints are guaranteed to be satisfied

by a rigid, preplanned schedule. An Ada program, designed to meet the same

constraints, depends on dynamic interaction between the program and the Ada

scheduler. We expect that the Ada programs to be rendered fault tolerant will

already contain the resource and scheduling strategies necessary to meet the real-
time constraints. The introduction of fault tolerance should not perturb this basic

strategy, although there will inevitably be some overhead introduced as a result
of the additional mechanism.

2.2.4 Where to Embed Fault-Tolerance Mechanism

The additional mechanism needed to achieve fault-tolerance can potentially

be introduced at one of three levels:

• Below the level of the Ada run-time system.

• Within the Ada translator and its run-time support.

• Above the level of the Ada virtual machine.

The first alternative, implementing fault-tolerance below the level of Ada,

implies the Ada translator and its run-time support can be completely unchanged.
In order to accomplish this, one would have to introduce a fault-tolerant version

of the processor architecture assumed by the Ada translator. This approach

is certainly feasible, using mechanisms such as dual-dual. The problems to be

solved turn out to be comparable to those using the other alternatives, but the

-9-



2. Ada for Fault-Tolerant Systems 2.3. Mechanizing Fault-Tolerance

mechanisms cannot exploit the structure of the Ada program to reduce the cost

of the additional reliability.

The third alternative would consist of an Ada package, programmed entirely

in Ada, to implement the necessary mechanisms. This package would reproduce

to the Ada user program a fault-tolerant virtual machine equivalent to the original

machine. This would allow a highly portable solution, allowing the fault-tolerance

mechanisms to be applied to any system supporting the Ada. To accomplish

this, all necessary mechanisms would have to be expressible within Ada. Thus,

the consistent rendezvous must be programmed using the rendezvous facility

for communication between processes. Even with the aid of a preprocessor to

introduce additional statements into the Ada program, it would still be necessary

to augment the Ada compiler and run-time system to provide information not

normally accessible to the Ada program.

The second alternative, that of modifying the compiler and run-time support

of Ada, permits more efficient implementation of the necessary fault-tolerance
inechanisms. This is at the expense of requiring changes to a rather complex

compiler and run-time system, and results in a translator-specific implementation
of fault-tolerance.

In the following sections, we explore the capabilities necessary to support the

fault-tolerance techniques, and comment on the difficulties in implementing fault

tolerance within the Ada system.

2.3 Mechanizing Fault-Tolerance for Ada

In this section, we describe mechanisms to support a fault-tolerant Ada

virtual machine. It requires both error detection and masking support and a
mechanism to ensure consistent rendezvous. In presenting the major ideas, we

treat Ada programs, possibly itself implementing a multiprocess algorithm, as a

monolithic program, replicated in its entirety.

- 10 -



2. Ada for Fault-Tolerant Systems 2.3. Mechanizing Fault-Tolerance

2.3.1 Error Detection

The basic approach will be based on replication of the Ada program on

independent processors. We use a majority voting scheme to detect faults in a

minority of processors - the consensus in such a configuration is assumed to be
correct.

In SIFT, each processor uses only voted values as inputs - achieving im-

mediate error masking. Here, where there is no notion of distinct inputs, we have

no concept of masking input values. Rather, we use majority voting to detect

errors. Each processor uses only local state information in performing its com-

putation. Following an error, a processor will continue to compute erroneously,

but cannot influence other processors' computations. The error will be detected

during majority voting, leading to later fault diagnosis and reconfiguration. Error

masking occurs as a result of reconfiguration to exclude dependence on erroneous

processors.

To detect any erroneous computation, it is necessary to vote the entire state

of the program. Voting any less than the entire state could permit an undetected

error that might adversely affect the future computation. The program state, of

course, can be rather extensive - consisting of the run-time stack, heap, expression

stack, and any other run-time management information. Rather than broadcast

and vote this potentially large amount of data, we compute a signature of the

state. This signature should be an encoding of the state with sufficiently high

probability that distinct states map to distinct signatures. Furthermore, signature

calculation should not be highly correlated with the computation; if by chance an

erroneous chance reduces to the same signature value as that of the consensus,

further computation and a further vote should have a low probability that equal

signatures will again occur. Digital techniques such as [6] satisfy these criteria.

The length of the signature can be adjusted to meet the required probability of
immediate error detection.

One consequence of a multiprocess Ada program is that different instances of

the same program may contain tasks scheduled differently on different processors.

- 11 -



2. Ada for Fault-Tolerant Systems 2.3. Mechanizing Fault-Tolerance

Programs may never be in exactly the same state. Consequently, we cannot in

general vote entire Ada programs. Rather, voting must be done on a task-specific

basis. Therefore, it must be possible to determine a partitioning of program state

into task states. This raises several problems.

First, there may be no simple way to partition global state into task states.

Secondly, even when such a partitioning is possible, it may be impractical to

deduce. Because processes may interact through global variables, the appropriate

partitioning may be only dynamically determinable. In order to provide a prac-

tical solution, we will disallow reference to global variables, forcing all task com-

munication to be via rendezvous calls.

For any partitioning, it is necessary that the combined partitions account

for the entire global state of the program. Votes at different times on task states
must ensure that the net effect is to guarantee that no information will escape

being voted. To ensure this, it is necessary not only to vote the information

inside the task state, but all information being communicated between tasks.

Since all information flow occurs by rendezvous, it is sufficient to additionally

vote all values passed as parameters by entry calls. Consistent with our global

variable restriction, no in out parameters or access values may be passed as

entry parameters.

Assuming the implementation of Ada is such that each task has a local run-

time stack and expression stack, voting the current state of a task necessarily

requires voting the value of these stacks. This cannot be done, of course, above
the Ada virtual machine, but can be accomplished by functions added to the Ada

run-time support. It is not a safe assumption that heap space is partitioned in

a similar manner. Any use of the heap, to allocate access variables, for example,

must be traceable to a single task. Voting must include all stack and heap values.

Vote values are generated in one of two ways. Upon encountering a user-

supplied vote pragma, a signature of the task's entire state is computed and

broadcast to the other processors. Upon entry call to a rendezvous, signatures of

input in parameters are computed. Upon return from a rendezvous, signatures for

- 12 -
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out parameters are computed. Each signature is tagged with a task identification

and a sequence number which uniquely identifies that vote.

ttaving established that state signatures are broadcast to all processors, we

now describe two possible algorithms for detecting and reporting errors. Because

no processor is dependent on values computed by other processors, there is no need

for synchronization between processors at vote points. However, some synchroniza-

tion points are necessary in order to avoid an unbounded amount of storage neces-

sary to hold signature values until a consensus is possible.

Tile simplest algorithm provides storage for one signature per task instance.

Processors can proceed asynchronously up to a vote point. No task instance can

progress beyond a vote point until all other instances have reached the previous

vote point. To ensure that a minority of failing processors cannot indefinitely delay

a vote, we must include a timeout mechanism in this vote. Timing starts when

a majority of processors have submitted values. It is assumed that it is possible

to establish an appropriate timeout value for each task and that the scheduling

can maintain the skew between instances of the task on working processors to

less than this value. At the expense of increased storage, it is easy to extend this

algorithm by storing additional signatures, thereby allowing greater asynchrony.

There is an alternative algorithm that allows much greater asynchrony with-

out storage penalty. Since voting is used for error detection rather than masking,

it is not necessary to vote every signature value separately. Rather, we aim

to maximize the number of pairwise comparisons between values generated by

different processors.

The voter stores, for each pair of task instances, one signature, its tag, and

the id of the processor that generated it.

• If no value is currently stored, a signature triple arriving from either processor
can be stored.

• If a signature triple arrives from same processor as that of the outstanding

triple,that signature is ignored.

- 13 -
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• If the arriving signature is from the other processor:

• it is ignored if its sequence nmnber is smaller than that outstanding;

• it is stored if its sequence number is greater than that outstanding;

• it is voted if the sequence number of the arriving triple is equal to the out-

standing triple. Error reports are generated and broadcast when discrepancies

in the vote are encountered.

To implement this scheme, we require that successive signature values be

computed cumulatively, i.e., that the previous signature be included in the cal-

culation of the next. Thus, each vote includes all previously computed signatures,

and errors can be detected even though every signature value is not voted inde-

pendently. As for the simple algorithm, a timeout mechanism must be used to

ensure detection of processors that generate no signature or infrequent signatures.

Processors that generate signatures with inappropriate sequence numbers will also

be detected.

The maximum interval between votes in this scheme is equal to the maximum

interval between generation of signatures plus the maximum skew between the

execution of the task on different processors.

2.3.2 Error Masking

The voting of task state, as described above, can only be used to detect

errors. Reliable operation requires also that error masking be provided:

• to mask transient errors,

• to move task instances from processors deemed faulty to other processors.

The algorithms by which the SIFT Global Executive diagnoses faults from the

error reports, and distinguishes solid from transient faults, are equally applicable
here and need not be described. In SIFT, voting automatically masks transient
errors and the Global Executive need take no action. When the Global Executive

- 14 -
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diagnoses a solid fault, tasks must be assigned to execute on other processors.

Tho3e processors have already obtained the required input values, with errors

masked by prior voting, and can immediately assume the tasks. For the current

scheme, however, the Global Executive must issue explicit directives to mask both
solid and transient faults. This masking must be performed by copying the entire

program state from a processor deemed to working correctly. The entire state can

be copied at once, though it may be possible to copy on a task by task basis, thus

reducing the time for which processing is suspended.

- 15 -



Chapter 3

NETS: Network Error Tolerant System

Introduction

Our purpose in this research is to design and assess a fault-tolerant system
that could be the successor to the SIFT and FTMP class of computers. Although

SIFT and FTMP provide a reliability that for aircraft computations far surpasses

what could be achieved by nonredundant systems and incorporate redundancy in

an elegant way so that the reliability can potentially be proven using analytical

methods, they are deficient in several ways. They cannot be expanded beyond 8

(or so) processors and are not well-suited to the trend towards using smart sensors
and actuators distributed throughout the aircraft. SIFT and FTMP were designed

to be the centralized computer in an aircraft that contains primarily passive and
dumb sensors and actuators. These computers use distributed computation -

distributed over a number of processors - to achieve fault-tolerance. However, the

distribution is somewhat degenerate in that a large subset of the processors are

performing identical computations.

The computer concept under consideration in this task, NETS (Network

Error Tolerant System), is a bona-fide distributed system. NETS is an intercon-



3. NETS: Network Error Tolerant System 3.1. Requirements on the System

nection of clusters, each of which can be a simplex (nonredundant) processor or it-

self a fault-tolerant computer - say a SIFT configuration of 3-5 processors. NETS

offers all of the "conventional" advantages of a distributed system (e.g., expan-

dability, highly-parallel computation, physical separation of computation sites),

in addition to advantages particular to the goal of fault-tolerance (e.g., less costly

fault-tolerance, some immunity to massive transient faults, and better adaption

to fault conditions). We have completed a preliminary design and assessment of
NETS.

In the following sections we present:

• The specific goals of an aircraft fault-tolerant system that motivated the design
of NETS

• An overview of the NETS architecture

• An assessment of the reliability of NETS

• Design issues to be considered in a follow-on to the current investigation, e.g.,

the design of the distributed network executive that manages the fault-tolerance

for NETS, algorithms to compute optimal communication paths, an approach

to handling massive transient failures, and network-wide synchronization re-

quirements.

3.1 Requirements of an Advanced Fault-Tolerant System

The particular requirements for an advanced aircraft computer that motivated

the design of NETS are the following:

• Fault-Tolerance. We are assuming that, as in SIFT, the probability of a criti-

cal computation yielding an incorrect or late result is not to exceed 10-1°/hour

over a 10 hour period.

• Believable Reliability. Although we might never formally verify the NETS

design or implementation, the approach to fault-tolerance should be easily
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understood and verifiable by informal reasoning. Usually, believable reliability

is achieved only if there is no single site of computation wl,ose failure could

result in system failure, and if the fault-tolerance mechanism are conceptually

simple.

• Very Little Special Purpose Hardware. Most of tlle hardware should be

commercially available and known to be intrinsically reliable through extensive

field use. Special purpose hardware is prone to design and, perhaps, failure in

operation when exposed to unexpected environmental conditions. Furthermore,

the complexity of most specially developed chips precludes thorough testing

on the part of the manufacturer. Most chip designs become reliable only after

extensive testing by users followed by modification by the manufacturer. Special

purpose designs will not be so thoroughly stressed and, hence, will be much less
reliable.

• Expandable and Contractible. A family of systems all with the same basic

design, but which differ in terms of the number of processors, the size of the

processors, and the degree of error coverage is desirable. An order of magnitude
or more difference between the smallest and largest system in the family should

be feasible.

• On-line Insertion or Removal of Sites. It should be possible to change the

configuration without disturbing the currently proceeding computations.

• Immunity to Massive Transients. No current fault-tolerant system will

maintain operation in the presence of faults that impact the operation of more

than 1 (or 2) processors - typically the voting margin of most systems. However,

power surges or lightning could cause erroneous behavior - albeit temporarily
- from a considerable number of processors. A fully distributed system, by

virtue of having the processors physically separated by a reasonable distance,
should be able to survive transients that impact a large number of processors

or temporarily disable a few entire sites.

• Be Capable of Interfacing to Smart Sensors and Actuators Distributed

Throughout the Aircraft. These sensors and actuators might themselves
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offer some fault-tolerance and, surely, wil! provide on-site computation - usually

in the form of a microprocessor. An important issue in the design is to organize

the computations so that tile intersite communication is low compared with the
communication within a site.

• Capability of Using Different Processor Types. The use of different types

is recommended to reduce the probability of correlated faults, which could result

in system failure. In addition, the processor should be matched to particular

computational needs of the applications.

• Portable Executive Software. If a single design for the executive is to

be usable for all processor types, it must be portable. Some specialization of

the implementation for particular processors can be accepted, but only if the

specialized part is relatively small compared with the total software. The key,

then, is to design the executive as two components: a fixed part and a variable

part.

• Be Capable of Handling Critical Real-Time Computations. The dead-
lines of critical tasks must be achieved. The interaction of unpredictable tasks

compounds the difficulty of demonstrating that task deadlines are satisfied in a

distributed system.

• The Application Programmer Should Not Have to be Concerned with

the Fault-Tolerance Mechanisms. The key is to provide the programmer

with an interface that is not dependent on the processor he is producing pro-

grams for, oil the amount of fault-tolerance required for the computation, and

on the location of tasks interacting with his task.

_, Reasonable Cost. In contrast to the situation 10 years ago, the cost of the

computer hardware is not necessarily of prime concern, although it is desirable

for the system not to be too profligate in its use of hardware. Of more concern,

however, is the cost of the software and of the maintenance of hardware and
software.

The current SIFT system addresses primarily the Reliability, Believable Reli-
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ability, and Real-Time goals. The NETS system concept can satisfy all of the

above goals.

3.2 Overview of the NETS Architecture

The high-level organization of NETS, as shown in Figure 1, consists of an
interconnection of clusters. A cluster is a site which can be associated with a

sensor, an actuator, or can be a computation cluster whose role is to generate

outputs in response to inputs. A sensor cluster will have no logical inputs; an

actuator cluster no logical outputs. A computation cluster will have both inputs

and outputs. In generating the value to be delivered to an actuator in response

to sensor inputs, a chain of clusters, configured as an acyclic directed graph, will

be involved. Typically, the chain will consist of one or more of each of the three

types of clusters.

Figure 1. NETS is an Incomplete Interconnection of Clusters

Each cluster is a simplex (nonredundant) processor or a redundant processor.

A redundant processor will most likely be configured as in SIFT, i.e., a complete

interconnection among a set of processors. As discussed below, a cluster will

require no more than 5 processors to meet the overall reliability requirements

typical of an advanced aircraft.
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Figure 2. Within a NETS Cluster the Interconnection is Complete

Figure 3 depicts the structure of the interconnection between a pair of clusters

(A and B), assuming that each of the clusters is a SIFT containing 5 processors

(hereafter called 5-SIFTs). Note that the interconnection between A and B consists

of only 5 links. In contrast, 10 processors configured as in SIFT (Each processor

is connected to every other processor - the interconnection graph is complete),

would require lox0 45 links. An important question is: Can the reduced2 --

interconnection as provided by NETS meet the severe reliability requirements of

an aircraft computer? As we show below, the answer is yes.

Assume that a task a executing on A is required to transmit data to a task b

executing on B. It is assumed that a is computed on each of the working processors

of A. Thus each of the A processors transmits its results of executing a to B using

the link connecting it to B; a link, then, corresponds to an edge in the cluster

interconnection graph. When all processors of B receive the results, they exchange

the values received and perform a vote - as is standard for SIFT in processing

input values. Thus link failures are masked, provided the number of good links

exceeds the number of bad links remaining in the configuration. Note that a link

fails when either of its associated processors fails. Furthermore, each cluster will

become aware of its bad links and avoid using them - this is the usual adaptive

voting technique.
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1 1

2 55 2

A B

Figure 3. A 2-cluster NETS; 5 processors per cluster

The discussion above is concerned with the case where cluster B contains a

task that requires data from B's neighbor A. What if the destination of A's data

is to be a third cluster C, but the route to C from A includes B? In this case, as

above each of the working processors of B vote on the values received from A. The

results of the vote are then transmitted to C using those links not known to be

faulty. This vote and .forward protocol is clearly appropriate for accommodating

to both link and processor faults, but can be costly in terms of delay. Follow-on

work will be concerned with analyzing the delay and with ways of minimizing tile

delay through assignment of tasks to clusters.

To guarantee masking in a chain, all of the chain's clusters must be replicated;

it is anticipated that this kind of configuration would be employed for critical

computations. Note that support for replicated sensors and actuators is inherent
in this approach; each of the replicas would be associated with a processor. Further

note that the replication must be preserved for those clusters whose role is only

to forward data. Noncritical computations, on the other hand, need not involve

a chain all of whose clusters are replicated. Of course, there is no harm in using
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replicated clusters, other than a waste of computation power and an extra delay

expended in carrying out the store-and-vote protocol. It is likely that this protocol

can be dispensed with when the data to be forwarded originated with a noncritical

task. Figure 4 summarizes the possibilities.

SIMPLEX REPLICATED

CLUSTER / CLUSTER
A A O O A

(a) Acceptable Path
End nodes - simplex

Intermediate nodes - simplex or replicated

I

0 0 0 0 0

(b) Acceptable Path

All nodes replicated

0 0 -_ @ 0

(c) Unacceptable Path
End nodes - replicated

Intermediate nodes - simplex or replicated

Figure J. Communication Paths containing Simplex and Replicated Clusters

It is envisioned that each of replicated clusters will run the SIFT executive:

local executive, vote, error report, global executive, etc. To manage the interfacing

to the network, each cluster will also have a network executive, whose main

functions will be:
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• Forward messages destined for other clusters. Where necessary, the successful

transmital of messages is to be acknowledged.

• Receive and process error reports from neighboring clusters, from which faulty

links can be identified and avoided.

• Determine optimal paths to use in the communication of data between clusters,

where optimal means shortest delay. It is conjectured that this determination

can be carried locally in the sense that in deciding the shortest p_th to a cluster

A', cluster A selects its neighbor B such that the length of the path from B to

A' is shorter than than the path from any other of A's neighbor B' to A'.

• Participate in the initialization of neighboring clusters and in their recovery

from massive transients that disable the entire cluster.

3.3 Reliability Assessment

In this section we consider the reliability achievable by NETS. It is shown

that acceptable reliability - better than the requirement of 10-1°/hour - can

be obtained for relatively large NETS systems by using 5-SIFT clusters with a

fan-out not exceeding 3 from each cluster. We consider separately the following

fault occurrences: (1) permanent faults - system failure due to exhaustion of

spares, and (2) permanent faults - system failure due to buildup of faults before

reconfiguration is completed, Future work will consider transient faults.

3.3.1 Permanent Faults - Exhaustion of Spares

We will carry out the analysis for this case by first indicating how the analysis

is accomplished for simple cases: NETS containing 2 and 3 clusters. Then we will

derive the general result. The concern here is with system failure due to link and

cluster failures. It is assumed that the system fails if:
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1. One or more clusters fail, or

2. Due to link failures, two clusters are unable to communicate with each other.

This condition reduces to a cluster being unable to communicate with any of

its neighboring clusters.

3.3.2 Two-Cluster System

First we will show that all patterns of three link failures can be tolerated.

Next the number of patterns of 4 link failures leading to system failure will be

enumerated. Then the probability of system failure will be approximated as the

sum of the probabilities of link failures that cause system failure and cluster

failures that cause system failure.

C,USrERA C,USrER8
L5

/
L1

L2

Ai-ter handling failures in B1 and A5,

the system can tolerate failure of L3.

Figure 5. Failures tolerated in Two Cluster Nets.

We assume that link failures are detected immediately after their occurrence.

Thus, referring to Figure 5, failures of processors B1 and A5, implying failures
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of links L1 and LS, would be detected in turn and handled by the network

executive. At this point, there are 3 working links L2, L3, and L4, allowing the

system to tolerate another link failure - say L3; the results emerging from the two

working links would outvote the result from the newly failing link.

CLUSTER A CLUSTER B

L5

L1

L3

Examples of untolerated patterns of 4 failures are:

A1,A3,B2,B4 A1,A2,A3,B4 and A1,A2,A3,A4.

Figure 6. Failures not tolerated in Two Cluster NETS.

Now, as depicted in Figure 6, let us consider patterns of 4 faults that lead

to link failure causing system failure. We claim that faults in A1, Aa, B2, B4 is

such a fault pattern, as it implies failure of four links: L1, L2, La,and L4. (Note

that not all patterns of 4 faults lead to system failure; for example, faults in A1,

A2, B1, and B2 would cause only 2 links - L1 and L2 - to fail.) Another pattern

of 4 faults that leads to system failure is A1, A2, Aa, and B4. It is easily shown
that there are two classes of failures to be considered. For each of these classes

communication between the dusters can no longer be guaranteed, although there

are still adequate resources left in each of the clusters to allow voting to mask all
internal cluster failures.
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1. Failures of processors Ai, Aj, Bk, BI, where i, j, k, l are all different (as

illustrated in Fig. 6). Only one reliable link now exists between the two

clusters (link 5 in the figure}, in which case the voting of results transmitted

between the two clusters no longer masks errors. The number of such patterns

is (_) × (3) -- 30, where (mn) is the combination function - the number of
combinations of n items taken m at a time.

2. Failures of processors Ai,Aj,Ak,B1 or Bi,Bj,Bk,AI, where i, j, k, l, are all

different. Similar to the situation in (1), only 1 reliable link (link 5) remains

for intereluster communication. The enumeration here yields 2 × (5)× (34)__.

40 failure patterns.

(Note that a failure of 4 processors all within a cluster is not considered here

as it implies a failure of the cluster itself - see below) Summing (1) and (2) yields

70 failure patterns or a failure probability of approximately 70p 4, where p is the

probability of failure of an individual processor.

A cluster itself fails when the number of operational processors within a

cluster is inadequate to permit error masking through voting. Assuming, as

above, that faults occur at a low enough rate to permit the logical removal of

a faulty processor before the occurrence of a subsequent fault, failure of a cluster

occurs when 4 faults are occur. The probability of 4 faults within a cluster is

approximately (5) × p4 or 10p 4 when both A and B clusters are considered. Thus

the probability of system failure due to link failure and the probability of system

failure due to cluster failure are approximately the same.
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3.3.3 Three Cluster System

\

C

Figure 7. A Three Cluster NETS

Figure 7 depicts a 3-cluster NETS system; the fan-out from each cluster is
two. As in the 2-cluster system, all patterns of three link failures are tolerated, but

here, with the use of routing of broadcasts via intermediate cluster, all patterns
of four link failures are also tolerated. Figure 8 illustrates the protocol for

communication in the presence of the following faults: A1, B2, B3, and B4. This

fault patlern prevents A and B from communicating with each other directly.

However, they can communicate through C. If A is to communicate with B, the

four working processors of A will send data to C where the five working processors
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will exchange the values received from A and, after voting, come to an agreement

on the values sent. C, using the two good links (1 and 5) that connect it with B
will transmit the data to B; this means that of C's 5 working processors, only C1

and C5 will participate in the communication with B. It can be shown, then, that

no pattern of 4 processor failures will cause link failure.

A B

\

Figure 8. A pattern of four faults that does not cause Link Failure

However, there are patterns of five failures that are not tolerated. The typical

pattern of such an untolerated fault pattern is: Ai, Aj, Ak, Bl or Bm, C1 or Cm,

where i, j, k, l, m are all different, as shown in Figure 9. The number of such

patterns is 3 × (5) × (2) × (2)yielding a failure probability due to link failures of

approximately 120p5.
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Note that the probability of a cluster failure (again, due to exhaustion of

spares) is 15p"t which, except for unreasonably high values of p, is larger than the

probability of link failure. Thus, for the case of a 3 cluster system, the assumed

interconnection is adequate with respect to achieving reliability in the presence of

failures that result in exhaustion of spares.

\

Figure 9. A pattern of five failures that is not tolerated.
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3.3.4 General Result for N-Cluster Systems with Fanouts of 2 or 3

Consider a fan-out of 2 from each cluster. System failure will occur when one

(or more) clusters is unable to communicate with any neighbor, thus isolating it

from the rest of the system. Enumerating the faults that cause this situation, we

find that the probability of system failure due to link faults is given by N × 40 × pS.

(This result is easily derived as a generalization of the enumeration carried out for

the the 3 cluster NETS.) The probability of system failure due to cluster failure is

N X 5 × p4; thus, for this general case, the fan-out of 2 is adequate for achieving

reliability.

If the intercluster fan-out is increased to 3, the probability of system failure

5 2 a p6 p6.due to link failure is decreased to N × (3)(,) × ----N × 80 ×

3.3.5 Permanent Faults - Fault Buildup Prior to Reconfiguration

The previous subsection considered the case where faults occur at _ low

rate, thus permitting the system to reconfigure itself after each fault occurrence.

However, a complete reliability analysis must consider the case where faults are not

handled immediately, allowing faulty processors to remain in the configuration.

We have not completed the analysis here, but our preliminary results are as follows.

A cluster itself will fail if 3 processors fail before reconfiguration can be

carried out. The probability of at least one such cluster so failing is N X 10 X p3.

For link failure, the typical pattern containing 4 faults causing failure before

reconfiguration can be completed, is Ai, Aj, (Bk, Bl, or Bin), (Ck, C1, or Cm).

Thus the probability of system failure due to link failure is N × 90 × p4, again

significantly lower than the probability due to cluster failure.
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3.4 Further Work

Additional work is recommended on the NETS concept to enable an assess-

ment of its suitability for advanced aircraft. Particular issues to be considered are

the following:

1. Transient Fault Analysis: A transient fault causes a processor to temporarily

deliver erroneous results. After a period of time, the processor will return to

a state where it will deliver correct results. The usual technique for dealing

with transient faults is permit the processor suffering the fault to deliver the

erroneous values for a certain period of time t, during which voting will mask

ttle error. If the processor does not return to an error-free state within t, it is

considered to have suffered a permanent fault. If t is set at too low a value,

then long-duration transient faults will be considered as permanent faults,

and good processors will be removed from the system. On the other hand,

if t is set too high, transient (and permanent) faults can build up, causing

the system to fail by having the voting lnargin exceeded. To determine the

vulnerability of NETS to transient faults, it will be necessary to weigh the

probability of exceeding the voting margin against the probability of running

out of spares.

2. Optimal graph structures for nets interconnection network: The goal here

is to minimize the delay associated with a computation, where the primary

controllable contribution to delay is in intercluster communication. One

possible objective function is to minimize the maximum delay by having an

appropriate structure for the network. There is a class of graphs, called

(n,d,k) graphs, the property of which is that for a graph of n nodes and

a fanout of k, the maximum distance between any pair of nodes is d. Here

distance is the number of hops required to go between any pair of nodes, where

the shortest path is selected. One objective is to maximize n for given values

of d and k. Kautz [5] has identified the graphs for different values of n,d, and

k. It remains to determine if the measure of minimum d is appropriate for

optimum communication in NETS. Another issue is the assignment of tasks
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to nodes to minimize tile delay. One additional issue to study is to define

what we call (n,d,k,f) graphs, graphs in which the distance between any pair

of nodes is no more than d under the assumption that up to f link failures

have occurred.

3. A Distributed Algorithm for Computing Optimal Communication Paths: It

will be necessary to associate paths in the interconnection graph with each

pair of clusters that communicate with each other. The computation of such

optimal paths can be done "offiine" for the initial configuration. As link

failures occur, certain paths might become closed off, in which case it will be

necessary to determine new paths. It is conjectured that this determination

of optimal paths can be accomplished in a local manner as follows: If cluster

A can no longer use B in communicating with C, it chooses to communicate

with C using that neighboring cluster D such that the distance between D

and C is smaller than the distance between any other neighbor and C. It

remains to verify this conjecture. Also, we must consider the impact of a

second failure while the new shortest path is being computed.

4. Synchronization in NETS: It will be necessary for the clusters to be synchron-

ized with each other, although more skew might be acceptable among clusters

than among tile processors within a cluster. Also the skew might not have to

be uniform over the network: clusters distant from each other might be able

to have more skew than clusters close to each other. It has been shown that

the fan-out must be at least 2 to allow the clusters to synchronize themselves.

5. Recovery of a Cluster After a Massive Transient: We are defining a massive

transient fault as a condition where one or more clusters suffer faults in

their processors to the point where their voting margins are insufficient to

mask the processor failures. When a cluster has suffered a massive transient

fault, it is likely to be unable to recover without assistance. In NETS, the

assistance can come from neighboring clusters. The tentative approach we

have developed for effecting recovery is as follows. The steps to be followed

are: checkpointing, failure detection, agreement on failure and rebooting. In

checkpointing, each cluster will keep a current record of the failure status
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of the processors in neighboring clusters (distance 1 away); it is noted that

this record is essential to determining which links are still working. Failure

detection involves noting that a cluster is misbehaving to the point where

it fails to deliver outputs or fewer than half of the processors in the cluster

are producing identical values; to distinguish between a massive transient

and a buildup of permanent failures, a sudden occurrence of errors is likely

to indicate a massive transient. Agreement on a cluster c having suffered a

massive transient is achieved by all neighbors of c carrying out an interactive

consistency procedure on the state of c. Rebooting is achieved by all working

neighbors of c restarting each of c's processors which were working before the

massive transient and indicating to each of them those processors that are

working and the links that are operative. It is conjectured that as long as the

interconnection graph remains connected (there is a path between each pair

of clusters), recovery can be obtained with the above mentioned procedure.
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Chapter 4

Asynchronous Voting

The need for reliable computation has induced many designs for fault tolerant

computer systems based on the replication of the processors and appropriate error

detection and masking algorithms. Typical of such systems are SIFT and FTMP,

which use majority voting for error masking, and Stratus, which uses a dual-dual

structure for error masking. It is clear that these approaches, coupled with the

steadily improving reliability of components, now allow the construction of very

reliable systems.

All fault tolerant systems depend on some form of error masking algorithm,

coupled with error detection to allow the repair of faults. Some such systems

depend on backward error correction, in which a result is computed, the accep-

tability of that result is checked, and in the event of error the computation of the

result is repeated. Typical of such systems are classical Checkpoint-Restart sys-

tems and Recovery Blocks. Backward error correcting algorithms necessarily incur

a significant overhead for repeating the computation when an error is detected,

and also involve an acceptance test on the results, a test that is usually system

and application specific. We do not consider backward error correcting systems

in this paper but rather we examine Forward Error Correcting systems, in which
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the results are computed in a redundant form that allows error masking without

repeating any computation.

Two forward error correcting algorithms are currently used for masking

processor errors in reliable systems, majority voting and dual-dual. The majority

voting approach can mask errors caused by one faulty channel out of three, while

a dual-dual approach masks one faulty channel out of four. Both approaches

have the advantage that they are completely application independent. Itowever

majority voting and dual-dual both depend for their operation on exact match

comparison between results of computations. Thus, for successful masking of

errors, it is essential that the fault free channels should generate identical results.

Both algorithms guarantee, with only a single faulty channel and with fault free

channels producing identical results, that fault free channels remain error free and

continue to generate identical results.

Two questions arise from this. The first concerns whether there are any

single point faults that could cause fault free channels to generate different results,

thus invalidating the presumptions of both majority voting and dual-dual. We

describe below a class of such faults and give algorithms for precluding them. The

second question relates to the possible increase in the risk of common mode faults

resulting from the need for all channels to perform exactly the same computation

on identical data at approximately the same time. We show below that error

masking algorithms can be devised that allow each channel to perform a different

computation on different data at different times.

4.1 Loss of Consistency

Figure 10 shows a majority voted three channel system, with one faulty and
two working channels. The successive levels of the diagram might represent dis-
tinct units within the channel, but equally they can represent successive iterations

of a computation performed by the same units. It is clear that, provided that the

two working channels generate identical results initially, each voting operation
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will receive as inputs two identical values and one erroneous value. The voters

in the two workin_ channels will therefore both produce the same value for the

majority. Thus the working channels continue to generate identical results, and

consistency between working channels is maintained. However, if at any time the

three channels generate different results, the voters can find no majority and the

system fails.

WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNEL

1 I I I I

VOTE

VOTE

Figure 10. A Three Channel Majority Voted System
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Consider Figure 11, which shows a system of three working channels and an

input to that system from a single faulty source. The nature of the fault is that
tile source distributes different values to each of the three channels (the values A,

B, and C). Even on a broadcast bus, such faults can result from marginal timing

faults or from a marginal transmitter at the source and receivers with slightly

different, but within specification, characteristics. More complex communication

mechanisms, particularly where software is involved, permit many more such

faults. The figure shows that, if the faulty source distributes different values to

each channel, the three channels generate different results, the voters can find no

majority, and the system fails.

WORKING WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNEL SOURCE

A .-:

VOTE

Figure 11. Distribution of Information fr_:_rna Single Faulty Source to a Three Channel System
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Figure 12 shows a three channel system with two working and one faulty

channels. Here information present in just one of the channels is to be distributed

to all tllree channels and be used in a replicated calculation. The faulty source

distributes different values to the two working channels, and compounds the prob-

lem by repeating the same erroneous values (suitably transformed if necessary)

in the next, voted, stage of the system. Note that not only do the two working

channels continue to receive inconsistent values, even after voting, but also each

of the two working channels can be mislead into believing that it is the other

working channel that is faulty.

WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNEL

A

?

Figure 12. Distribution of Information from a Single Channel to Three Channels
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The existence of this problem was discovered during the design of SIFT, a

reliable aircraft control system, and is discussed in [4], where it is shown that no

solution is possible in a purely three channel system. An algorithm, called the

interactive consistency algorithm, is given for a four channel system containing a

single faulty channel, and extended to the masking of N faults in a 3N+l channel

system.

REPLICATING SOURCE

CHANNEL CHANNEL

Figure 13. The Interactive Consistency Algorithm
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The basic interactive consistency algorithm is given in Figure 13. One of

the four channels is the single point source of the information, and the three

other channels are used to replicate that information. Once the information is

replicated, any or all of the channels can vote the replicated information with

confidence that all voters in working channels will produce the same majority

value, or alternatively all working voters will find no majority and will return a

default value. For this algorithm to be effective against all faults, the channel
that is the source of the information must be distinct from the three channels

that perform the replication.

Consider the possibility that the source channel is faulty. It may then

distribute different values to the other channels. The three replicating channels

must all be working, and thus every working voter must get the same set of inputs.

If at least two of the replicating channels have the same value, every working

voter will find that value as its majority, while if all three replicating channels

have different values, every working voter will return the default value. (If the

source is faulty, the interactive consistency algorithm cannot of course guarantee

a correct value from that source, but only a value that is consistent across all

working channels.)

Consider the possibility that one of the three replicating channels is faulty.

Now the source is necessarily working and will distribute the same correct value

to each of the two working replicators, which will replicate it. Thus each working

voter obtains at least two correct inputs and is able to produce the correct value
as its result.

In SIFT, four circumstances were found in which a value from a single source

had to be distributed to three replicated channels, namely:

p, input from a sensor,

D.error reports from a voter,

interfaces between unreplicated and replicated tasks,

_, synchronization of processor clocks.
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The first three of these require the use of the interactive consistency algorithm

to protect the system against malicious faults. The fourth is of special interest in

that exact agreement is not necessary for clock synchronization, and thus slightly

simpler algorithms guaranteeing approximate agreement suffice.

4.2 Maintenance of Approximate Consistency

In SIFT, as in many other fault tolerant systems, each processor has its own

clock and operation of the system depends on these clocks remaining synchronized

(to within 50ms in SIFT). Many prior systems used three channels, three clocks,

and a clock synchronization algorithm based on each clock synchronizing itself

periodically to the median clock of the three. It is instructive to consider why this

"obviously sound" approach is invalid.

Figure 14 shows a system with two working clocks (A and B) and a faulty

clock (C). We may assume that clock A runs slightly faster than clock B. Clock

C presents to clock A an erroneous clock value indicating that clock C is running

faster even than clock A, causing clock A to assume that it is the median clock.

Thus clock A makes no correction to its value. Similarly, clock C presents to

clock B a value indicating that it is behind even clock B, causing clock B to

assume that it is the median clock and make no correction to its clock value. By

this strategy, the faulty clock C can induce clocks A and B to operate without

correcting their clock values as they gradually drift apart until the system fails.

Single point component faults that could cause this "malicious" behavior have

been found even in purely analog clock systems.
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C A B
SEEN BY

A B C
SEEN BYc,ocK. I I I

APPARENT TIME

Figure 1_. A Failure Mode of the Median Clock Synchronization Algorithm

It is tempting to attempt minor corrections to the three channel clock synch-

ronization algorithms, aimed at preventing this behavior. As yet we have no

rigorous mathematical proof that no three channel algorithm can exist, but we

believe that the approximate agreement needed for clock synchronization requires

the same number of channels as the exact agreement discussed above.

In SIFT, a four channel clock synchronization algorithm is used in which each

clock is periodically resynchronized to the mean of the four clocks. To protect

against wildly erroneous clock values, the algorithm imposes a bound within which

a clock value must lie to be included in the averaging calculation. For n processors

of which at most m are faulty, with R as the resynchronization interval and S as

the time taken for resynchronization, and if _ is the maximum clock reading error

and p the maximum rate of clock drift, it can be shown that the maximum skew

between working clocks will not exceed

n 2(n- m)S

(,,-3.,)(2_+ p(R + ,, )).

A similar problem has been examined by L. Webster [7, 8] in closed loop

control systems. He found that use of a median voting algorithm in a three

channel system favors the median channel, effectively disconnecting the two other

channels from the closed loop. Without cross coupling between the integrators
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of the three channels, this results in uncontrolled accumulation of error terms in

the integrators of two of the channels, rendering them useless for error masking.

With cross coupling, the integrators are vulnerable to precisely the same problem

as the clocks above.

The possibility of failure to maintain approximate consistency appears to

exist in any three channel system containing embedded integrators.

4.3 Asynchronous Multichannel Systems

Existing fault tolerant multichannel systems using forward error correction,

whether majority voted or dual-dual, depend on an exact equality between the

result values of the various channels. To ensure this exact equality of their outputs,

the various channels must all perform exactly the same calculation on exactly the

same input values at approximately the same time. This exposes such systems

to an unquantifiable risk of correlated faults generating errors simultaneously in

several channels. Such correlated faults might result from some external influence,

such as lightning or cosmic rays, or from accumulation of latent faults not within

the coverage of tile diagnostics, or from design faults in the hardware logic or the

software.

A much higher degree of confidence in the resilience of the system to corre-

lated faults would result from a system design in which each channel performs

its calculation at different times, on different input values, and obtains different

outputs. It is even possible to consider the use of different algorithms in each of

the channels. Unfortunately, as exhibited above, without an exact match between

channels, standard voting techniques are vulnerable to faults that cause loss of

consistency between channels and thus system failure. We seek here to provide

alternative algorithms that permit differences between channels without risk of

loss of consistency.

The first thoughts on an approach to such asynchronous error masking

envisage a system of four channels. Each channel operates at the required iteration
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rate but completely unsyschronized with the other channels, thus minimizing
interaction between channels. Each result produced would carry a timestamp.

A processor, when voting such a result, would have access to the four most recent

values, one from each channel, together with their timestamps. From these it

would be possible to extrapolate to a most probable current value, as shown in

Figure 15.

VALUE

©
J

,J
J

J
, J,

J

NOW
_ TIME

Figure 15. Extrapolation from Past Values to a Most Probable Current Value

More formally, if Ri,p is the i'th broadcast result from processor p, containing

a value vi,p and a timestamp ti,p, and if the most recent result so far received from

processor p is rip, the algorithm can be expressed as:

consensus value -- F(v(n. ,a), t(n. ,a), V(n, ,b), t(n,,b), V(no,c), t(no,c), V(n_,d), t(n_,d))

where F is some function to be determined, and a, b, c, d are the four processors.

Unfortunately, it is easy to show that the timestamps do not assist in the

maintenance of consistency in the absence of any constraints on the times at which

results are calculated. If greater weight is given to more recent values, those values

may be erroneous values increasing the vulnerability of the system. In particular,
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consider the case in which three good values are reported approximately simul-

taneously and subsequently an erroneous value is reported. Any preference given
to recent values can only render the consensus less reliable than that obtained by

ignoring the timestamps.

Consideration can also be given to the clock synchronization algorithm de-

scribed above, ttere, if processor a is considering the values generated by proces-

sors b,c, d, with current values va, Vb,vc and Vd,

_-ifvl > va-l-5 Vvi <v_-For i in b,c,d" v i

then Va

else vi

e e ve

and then: consistent result -- vo+v,+vo+ ,4

That algorithm does indeed maintain consistency between channels, but the

rate of convergence is very weak and the drift and error signals that can be in-

troduced by undetected faulty clocks are much larger than the permitted drift

and jitter of working clocks. In the clock synchronization application this is not
critical for the individual clocks have performance characteristics much better

than those required for typical system applications. For a control system applica-

tion however, the errors introduced by a faulty channel can easily overwhelm the
control action of the system, and thus such an algorithm is clearly unacceptable.

A possible alternative approach requires that the four channels compute their
results at uniform phases within the iteration interval, one channel generating a

value at the start of the interval, a second channel generating its result a quarter

of the interval later, etc., as shown in Figure 16. This additional information

allows the algorithm an improved ability to compute a most probable current
value and to reject erroneous values. The uniform spacing at which results are

generated through the interval greatly simplifies calculations compared with a
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system in which such spacings are arbitrary, and thus assists in reducing the

voting calculation overhead.

A

D

C

B

A

I I I I I
TIME

Figure 16. Calculation of Results at Uniform Phases within an Interval

An initial evaluation of such a system was made, using the arithmetic mean of

the four values for the most probable current value, as in the clock synchronization

algorithm. Each channel uses fixed limits for the acceptable deviation of the

values computed by other channels from its own most recent value, but those
limits can differ for each of the other channels. Thus if 6 is an appropriate

acceptable deviation for the channel whose result was computed one quarter of

an iteration l_ter, then 1.35 is an appropriate limit for the channel computing

half an iteration later and 1.25 for the channel computing three quarters of an

iteration later. These slightly larger values are permissible because the algorithm

gives greater weight to more recent values, though this must be balanced against

the effect of an earlier erroneous value augmenting its disturbance by influencing

the intermediate values.

Ilere, if processor a is considering the values generated by processors b, c, d,

with current values va, Vb,vc and Vd,
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v_--ifvb>v_T5 Vvb _v_--5

then va

else Vb

vcl__ if v._ > va+1.35 Vvc < v_ --1.35

then v_

else vc

v_ --_ if vd > va + 1.25 V Vd < Va -- 1.25

then Va

else Vd

I I I
v. +v_+v_+v_

and then: consistent result ---- 4

Unfortunately, while this algorithm appears to be better than the basic clock

synchronization algorithm, it is only slightly so and the drift and error signals

introduceable by a fault are still at least comparable to the maximum permissible

control action of the system. Thus the algorithm is still unacceptable.

We can refine the algorithm by giving different weights to each of the values,

for instance:
I I #

consistent result t"'{-2v*'b3vcT4vd-- 10

but the effect is marginal and still far from providing acceptable margins for

control purposes.

Error masking algorithms such as these act as filters and, like all filters,

necessarily introduce delay into the control loop. The algorithms above introduce a
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delay of :d)out 2/3 of an iteration. To maintain the same margins of loop stability,

the introduction of such a delay would require an increase in the iteration rate of

about 33_5.

A number of possible improvements to the algorithm are under consideration.

We are currently working on algorithms that make better use of the relative timing

of results, both by giving greater weight to more recent results in estimating the

most probable current value, and also by considering the values generated by other

channels when determining the acceptability of a result. A further possibility is

the use of a five channel system fully capable of rejecting tile most malicious faults

which degrades on the first reconfiguration to a four channel system capable of

rejecting all faults except those malicious faults in which different information
is delivered to different destinations by the broadcast mechanisms. Since the

probability of a second fault during a mission is low, and the probability of a

malicious fault is also low, such a system might be judged to be adequately reliable.
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