
N AS.A Contractor Report 172219

ICASE
A METHODOLOGY FOR EXPLOITING PARALLELISM
IN THE FINITE ELEMENT PROCESS

Loyce Adams

Robert G. Voigt

Contract No. NAS1-17070 and NAS1-17130
September 1983

NASA -CR··1 72219
19840002763

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NJ\S/\
National Aeronautics and
Space I\dministration

Langley' Research Center
Hampton, Virginia 23665

111
NF02522

·lQ.8·'··\ ,. .j

MN,GlEY RESF.i\RCH CF.f'J.T.Ef';;:
LIBRARY, NASA

H/·\MPTQN, "IHI'INIA

A METHODOLOGY FOR EXPLOITING PARALLELISM

IN THE FINITE ELEMENT PROCESS

Loyce Adams
Institute for Computer Applications in Science and Engineering

Robert Voigt
Institute for Computer Applications in Science and Engineering

Abstract

In most ,efforts to design parallel computing systems the hardware is fixed

before consideration is given to the requirements of the applications that are

to bE! executed on that hardware. This paper describes a methodology for

developing a parallel system using a top down approach taking into account the

requirements of the user. Substructuring, a popular technique in structural

analysis, is used to illustrate this approach.

Support for this research was provided by the National Aeronautics and
Space Administration under NASA Contracts No. NASl-17070 and No. NASl-17130
while the authors were in residence at ICASE, NASA Langley Research Center,
Hampton, VA 23665.

i

INTROIIUCTION

The finite element method is an important technique for constructing

approximate solutions to boundary value problems. Very briefly,

(1) the region of interest is subdivided into elements,

(2) basis functions which span the subspace in which the approximate

solution is assumed to lie are chosen,

(3) the contribution of the elements is determined by integrating the

basis functions over each of the elements,

(if) the contributions of all of the elements are assembled into a single

system,

Kx f, (1.1)

(5) the system is solved for the approximate solution.

A complete description of the process may be found in a number of references

from the finite element literature such as Strang & Fix [1973].

Traditionally, the bulk of the computational work is contained in steps

(3) and (5) and researchers have tried many techniques in order to reduce the

required computational time. Some of these have involved improvements in

numerical algorithms and the underlying software systems.

A particular example which will be discussed in the next section is that

of substructuring or matrix partitioning, see for example Noor, Kamel and

Fulton [1978]. Another example is the FEARS project begun at the University

of Maryland, Zave and Rheinboldt [1979]. This latter effort attempts to

improve the efficiency of the solution process for two dimensional problems by

utilizing adaptive grids.

FEARS also uses another technique for Improving performance that is

becoming increasingly popular, namely, parallel computation. In its simplest

2

form, parallel computation means that relevant computations within the

solution process of a single problem are performed simultaneously. In the

FEARS project the parallelism is achieved by creating tasks for both the

assembly and the solution process which may be executed on independent

processors with a modest amount of communication, Zave and,Cole [1983]. This

suggests a computer organization of the multiple-instruction-multiple-data,

MIMD, type in the classification of Flynn [1966].

Another MIMD computer concept under investigation for finite element

analysis is the Finite Element Machine at the NASA Langley Research Center,

Jordan [1978]. Ultimately, the system will contain 36 l6-bit microprocessors

with each processor connected to its eight nearest neighbors in a plane and

connected to every other processor via a global communications bus. To date,

this system has been used primarily to investigate the parallel assembly of

(1.1) followed by its solution using iterative methods, Adams [1982].

Vector or pipeline computer organizations as manifested by the Control

Data Corporation Cyber 200 series and the Cray Research Inc. Cray 1 series

have also been used extensively for structural analysis. Much of this work

has centered on just the solution of (1.1), see for example Noor and Lambiotte

[1978]. In Section 3 we will point out some aspects of steps (3) and (4) that

inhibit optimal utilization of the vector concept at least as it has been

implemented to date.

Other architectural concepts have been proposed which may provide systems

appropriate for finite element analysis of structures. In particular, Law

[1982] discusses the use of systolic architectures, as introduced by Kung and

Leiserson [1979], for steps (3) and (5) of the process. A more general

partial differential equation solving system has been proposed by Gannon and

Van Rosendale [1983], which is intended for three dimensional elliptic partial

differential equations with a solution technique based on the multigrid

method.

The purpose of this paper is to provide a discussion of the parallelism

available in the finite element process applied to three dimensional

structural analysis problems. We use a top down methodology that allows the

speci:Eication of the necessary environments required to exploit and analyze

this parallelism. In particular, following a discussion of substructuring in

Section 2, various types of parallelism are considered and the difficulties

and opportunities of exploiting them are discussed in Section 3.

At this point many researchers would introduce a section on computer

architecture and discuss the implementation details of a particular solution

method. We will take a different tack.

We believe that it is essential to provide environments in which

scientists can study the different issues that relate to the overall system.

For example, calculating the stresses pn the wing of an aircraft or

investigating the inter-processor communication required by a numerical

algorithm are both important in determining the eventual architecture. A

methodology for developing the environments, the "virtual machine concept", is

introduced in Pratt, et al., [1983] and we will rely heavily on concepts given

there for the discussion in Section 4.

In Section 5, we develop a numerical analyst's virtual machine; in Section

6 we introduce an example 3-dimensional problem; and in Section 7 we discuss

the laxample in light of the virtual machine. Finally, the benefits of this

approach are discussed in Section 8.

3

4

2. SUB STRUCTURING

The method of substructuring in structural analysis is based on dividing a

large structure or region into pieces. In particular, if one is interested in

displacements of a structure based on some external forces, the displacements

for the interfaces of these pieces are determined first. This information may

then be used to determine the values of the unknowns within each piece or

substructure, see Noor, Kamel and Fulton [1978].

Figure 1. Example Structure

We will now make these ideas more precise by using Figure 1 as an

example. The squares represent boundary points of the structure while the

solid dots are interior points. The line segments indicate dependencies

between points by defining the individual finite elements. Thus part 1 of

the figure consists of rectangular elements that might represent plates and

part 2 consists of triangular elements that might also be plates or some

other element such as beams. There is a natural interface between the two

parts of the structure indicated by the arrow. A structural engineer might

use this interface to separate the structure into two "substructures". Note

that these substructures are connected by only four points: two boundary

points and two interface points indicated by circles. The circled points also

become boundaries of the two substructures.

Now assuming that the elements are fixed and the basis functions are

chosen, the individual element contributions to the overall problem are

determined. These may be assembled into a global stiffness matrix once the

ordering of the points is determined. The interior points of each

substructure are numbered completely before considering the next

substructure. Then the boundary and interface are numbered. A substructure,

j, the,refore yields a matrix of the form

~
K (j)
ii

~i (j)

K (j)]
ib

~b (j)

where K (j)
ii represents the contribution from the interior points, ~b (j)

represents the contribution from the boundary and interface points, which for

simpli,city we will refer to as boundary points, and Kib (j) and ~i (j)

represents the dependencies or connections between interior points and

boundary points.

For the entire structure one obtains the global stiffness matrix,

K~~) K(l)
II ib

K~:) K(2)
II ib

- K

- --- ---

~~) ~~) ~b

5

6

If the structure in Figure 1 is under some force and we are interested in

the displacements we obtain a matrix equation (1.1) where

x (x. (1),
1.

and f = (f. (1), f (2)
1. i'

with xi' fi' and xb ' fb representing the displacements and external forces

at the internal and boundary points respectively.

For our purposes the most important feature of this matrix is that

K (1) d K (2)
ii an ii are decoupled. This suggests a block elimination scheme

for factoring the matrix K because

factored in parallel.

K (1)
ii

and K (2)
ii

may themselves be

Thus, substructuring can be viewed as a technique for decoupling the

global stiffness matrix in order to introduce parallelism in the solution

process. In general, we have system (1.1) with K of the form

I
K~:) I K(l)

1.1. I
ib

K(:~
I

K (2)
I 1.1. ib

• I •
• I • (2.1)

• I •
K ~::) I K(I)

1.1. ib
I - - --- - - -1---

~i) K(2) • • • K(I) 1 Kbb bi bi I

where for most applications of interest K is symmetric and positive definite.

The solution process then requires the following steps:

1) For all j = 1, ... ,1 form Kii (j) = LjUj ;

2) For all j = 1, ... ,1

and

Form ~b (j)

and (
K (j»)-l f (j)
ii i

L • U • (M.) K1~bj)
J J J

LU() f (.j) .. q.
J J J 1

= f (j)
b

- K.(j) q
-bi j

by solving

3) Form - - I - (j)
~b -. ~b

5)

J

where the I denotes the addition of the substructure boundary
j

contributions into the proper location in the global matrices.

For all j 1, 2, .•. ,1 solve LUx (j)
j j i

= -. K (j) x (j) + f (j)
ib b i

Algorithm 1. Solution via Substructuring

7

8

It is worth noting some distinguishing characteristics of the above

process:

a) Steps 1), 2), and 5) exhibit natural parallelism requiring no

cooperation among procesors.

b) The matrices K .. (j)
11

are banded but in general do not have the same

size or structure.

c) Step 3) produces fill in the matrix ~b and must be done with care

in a parallel computing environment since it may change existing non

zeroes in ~b or introduce new non zeroes.

d) The matrix ~b is banded.

Item b) points out the difficulty in using this solution technique on a

vector computer if one were to try to vectorize across the substructures or

K
(j)

ii • The diversity of the

processors.

K (j)
J-i suggests a collection of asynchronous

The activity described in c) can require multiple modifications to the

same location in ~b. This would occur, for example, in the structure given

in Figure 1 for all nodes on the line indicated by the arrow. In general, ~t

occurs for all nodes on the common boundary of two or more substructures.

This will be discussed further in the next section.

In Section 5 we will discuss a specific example which will provide insight

into the size and form of the block matrices in (2.1). We will also compare

the substructuring approach with a different ordering of the nodes which

yields a single banded matrix K for which the bandwidth is small.

9

3. PAlRALLELIBM IN SUB STRUCTURING

In this section, we discuss the parallelism that is inherent in the

substructuring procedure outlined in Section 2.

We begin by focusing on the creation of the matrices of (2.1). These

matrices can be generated simultaneously for all substructures by independent

tasks. The tasks must be of the HIMD type since the substructures normally

will contain different types of elements as shown in Figure 1, and hence will

requir,e different operations during the elemental integrations. Only when

each substructure is identical can we achieve parallelism by vectorizing

across the substructures. Each substructure may be composed of many elements,

and integrations over these elements may also be carried out asynchronously;

in essence, an element may be considered as the smallest possible

substructure.

It is the diversity of substructures and elements that make the assembly

process unattractive for vector computers such as the Cyber 200 or Cray 1, or

SIMD a.rra.ys. In both types of computer systems one needs to perform the same

arithmatic operations on a group of operands or vectors. This is generally

not possible either within a substrueture or across substructures.

During the solution process, several operations may be performed

asynchronously across the substructures. First, the matrix factorization in

Step 1 of the algorithm of Section 2 will para11e1ize across all j. Then the

formation of the new matrices indicated in Step 2 may also be done in parallel

for all j:

K (j) (K. (j»)-1 K (j)
-bi J.i ib

K (j) (K .. (j))-1 F (j)
-bi 11 b

10

In addition, within a given substructure, we have the flexibility to assume

that (3.1) is performed in a sequential manner, if we have limited available

parallelism or alternatively, we may choose to exploit the parallelism in any

one or all of the following:

(1) the solution of the systems

K (j)M (j) =
ii i

and

depending on the particular form of

K .. (j)qi(j)
11

f. (j)
1

K
(j)

ii ' followed by

(2) the parallel multiplication of the matrices

c ~i (j) M (j) d
i '

and finally

(3) the matrix and vector subtractions ~b (j) - C and fb (j) - d.

Second, the formation of the ~b in Step 3 of the algorithm can be done

in parallel phases as follows: If all substructures are "colored" such that

any two substructures that share a common interface node are different colors,

it is clear that all substructures of the same color will not have

contributions to the same location in the matrix ~b and therefore may be

assembled simultaneously without memory contention, (Berger, et. al., [1982]).

The creation of ~b may then be achieved in C parallel phases where C is

the number of colors.

So far, the parallelism in the formation of the matrices ~b and fb for

the solution for the boundary nodes has been described. We now turn to what

appears to be the sequential part of the algorithm, namely the solution of

11

As with the solution of (3.1), the characteristics of the matrix ~b

must he known to extract all the parallelism. However, some ohservataions can

be made now and will be made more precise for an example problem in Section

5. Pirst, ~b will be of size b x b where b is the total number of

boundary nodes in the structure; furthermore, b will generally be an order of

magnitude smaller than the number of interior nodes. The fill-in that occurs

in ~b will only be between the interface nodes of a given substructure.

Hence for most structures, the matrix ~b will be sparse and can be ordered

as a banded matrix with as small a bandwidth, S, as possible. If ~b is of

size q x q, the system ~b xb fb can be solved by factorization in q

steps using S tasks. These tasks, however, do not have the completely

asynchronous nature of the substructure tasks described earlier since they

must coopera.te during the decomposition of These techniques for

solving this system will be described in detail in Section 5 for a particular

example.

The operations in Step 5 are again completely asynchronous and may be done

in parallel across the substructures. This provides the solution for the

inter:ior nodes once the solution for the boundary nodes for the substructure

has been obtained. As was poi.nted out earlier, if we have limited

parallelism, the operations may be done sequentially for a given

substructure.. To describe all the parallelism in the step, we must know the

form of K (j) and K (j)
ii ib· This is problem dependent and also varies across

the substructures.

At this point, the parallelism in the substructuring technique has been

described, but many questions must be answered before an efficient overall

environment for specifying and extracting this parallelism can be

determined. In the next section, we give the methodology that will help us

12

begin to answer these questions and in Section 5 we demonstrate this

methodology with an example problem.

4. THE VIRTUAL MACHINE CONCEPT

It is often tempting to take the description of the parallelism in a given

solution process, like that described in Section 3, and propose a computer

hardware organization to support its implementation. We believe that

decisions about hardware should not be made until the user environment and the

several levels of software required to effectively implement the finite

element process have been carefully studied. This top-down approach to

design, or virtual machine concept, is described in Pratt, et ale [1983] and

will be briefly discussed below.

Each class of computer user would like to view the machine that runs his

problems in different ways.

levels:

To date we have considered the following four

User's Virtual Machine. The perspective of a structural engineer may

be that of a workstation that allows him to store the description of

his structural models, to use applications packages to analyze the

models, and finally to display the results.

Researcher's Virtual Machine. The numerical analyst or research

user may view his machine in terms of a high-level language (like

Fortran) that allows him to specify the data structures, operations

and their sequences, and the parallelism in the linear algebra

necessary to implement efficiently a structural engineer's

application.

Systems Programmer's Virtual Machine. By specifying the tasks,

thei.r scheduling, communication between them, and the storage

representation of the data, the system programmer's virtual machine

that implements the high level language can be defined.

Hardware Virtual Machine. The last level of virtual machine which

implements the system programmer's low level language may be the

hardware itself. ("Virtual" because it may be implemented by micro

programs on yet lower level hardware.)

By formally specifying the data objects, operations on these data objects,

control mechanisms, and storage management techniques of each virtual machine,

a detailed hardware/software design can be obtained that specifies the

function of each level as well as its implementations on the next lower

level.. Our research uses the methods of H-graph semantics, Pratt [1981], for

making this formal specification. Simulations can then be used to test the

feasibility and efficiency of the overall system before commitment to hardware

is made.

In the next section, we will give some insight into this approach by

showing how the numerical analyst's virtual machine can be designed (not

formally specified) using Algorithm 1 for the substructuring technique of the

last section.

5. A NDKERIC:AL ANALYST'S VIRTUAL MACHINE

In this section we introduce the data objects, the operations on those

data objects, and the sequence controls required to define the virtual machine

13

14

for Algorithm 1 of Section 3. The data objects are listed in Table 1. We

have also included the storage required by these data objects for a particular

example to be introduced in Section 7. The variables t, a, etc. in Table 1

are parameters of that example. The data object T.
J

is a table of integers

needed for an operation explained later and the data object K is a matrix

that will be discussed later.

Table 1. Data Object and Their Required Storage in Terms of
Floating Point Numbers for the Example of Section 6.

DATA OBJECT

K (j) (L U)
ii j j

K (j)
ib

- (j)
~b

~b

M.
J

Qj'
F (j)
b

Xb , Fb

Tj

K

TYPE

Banded Sym.
Matrix Band:
6t2 + t+l2

Sparse-Blocked
Matrix

Dense Matrix

Banded Sym.
Matrix 2
Band: 6n + 6s

Dense Matrix

Dense Vectors

Dense Vectors

Dense Integer
Matrix

Banded Sym.
Matrix Band:
6n2 + 6n + 12

SIZE

q x 1

N x N

STORAGE

72t S (after fill)

1944t 2

36n4d (after fill)

l2(a 3- t 3)
integers

The secon.d step in describing the numerical analyst's virtual machine is

to list the operations that must occur on these data objects. At this point,

we make the assumption that the operations within a given substructure, that

is a particular j in steps 1), 2), and 5), will be done sequentially. As

mentioned in Section 3, more parallelism can be obtained within a given

substructure by exploiting available matrix operations, but for simplicity we

do not consider that here. On the other hand, we assume that factorization

and solution with ~b in Step 4) will be done in parallel. This will be

described in detail later. The necessary operations are summarized below.

Table 2. Operations on Data Objects

OPERATION on DATA OBJECT creates DATA OBJECT

Sequential De,compose Symmetric Banded Matrix

Sequential Forward Solve Lower Triangular Banded System

Sequential Backward Solve Upper Triangular Banded System Dense Vector

Replace/Add (Matrix) Dense Matrix/Banded Sym Matrix

Replace/Add (Vector) Dense Vector/Dense Vector

Parallel Decompose Symmetric Banded Matrix

Parallel Forward Solve Lower Triangular Banded System Dense Vector

Parallel Backward Solve Upper Triangular Banded System Dense Vector

Select Dense Vector Dense Vector

Sequence of Operations

A control mechanism appropriate to specify the sequence of operations in

A1gor:tthm 1 is the FORALL statement which has the form

15

16

FORALL J in SET DO

BEGIN

STATEMENT 1

STATEMENT n

END

STATEMENT n + 1

STATEMENTS 1, ••• ,n will be executed for each J simultaneously, to the extent

possible, and STATEMENT n + 1 will not be executed until all instances of J

are completed.

The meaning of the operations in Table 2 will now be explained. The first

three are the standard operations associated with the Cho1esky solution

technique. The replace/add operation of any dense matrix A into a symmetric

banded matrix B where both are visualized as being organized by rows and

columns requires the following steps:

(1) A lookup in table Tj (of Table 1) to find the

subscripts i' and j' corresponding to the subscripts i and j

of a
ij

•

(2) Adding a ij to the value of b ij and replacing this sum into

b ij • Note that if B were organized by bands, a similar lookup

would be required where i' would be the band number and

j' the element within the i'th band. The select operation must

involve a similar table lookup, for instance, to extract a

substructure's boundary values ~ (J) from \.

At this point a high level version of the numerical analyst's virtual

machine has been sketched; however, it is likely that a researcher might want

to study some or all of the operations in Table 2 in further detail. To

demonstrate how this might be done we will foeus on the "Parallel Decompose"

operation. The approach we will discuss involves the generation of parallel

tasks, and we will address the question of how the tasks must communicate and

synchronize with each other. This begins to raise issues at the level of the

system programmer's virtual machine and even at the level of the actual

hardware. VIe will leave a detailed discussion of these levels along with a

comparison of other techiques for implementing the "Parallel Decompose" for a

future paper.

If the symmetric N x N matrix K has bandwidth f3 as shown below,

1

Pivot row

i
Task i

Task i + I

Task
B

i + S + S - 1

N -- S

N

17

18

the basic algorithm consists of N-l steps. At step i, ~ tasks numbered

i •. i + ~ - 1 simultaneously operate on the rows, one task per row,

directly below the pivot row i, updating the components of K in region A

as shown. To perform step i, each of the ~ tasks must have access to the

(~ + 1) coefficients of the pivot row. In addition, task j must have access

to row j + 1 of K and this row will be called task j' s computation row.

Furthermore, after step i is completed task i terminates, and task j continues

to operate on the same computation row for j - i more steps at which time

row j + 1 will become the pivot row and task j will terminate. This

description is not correct from step N - ~ to step N, but this special case

will be ignored here.

The following issues must be considered:

(1) How and when are the tasks created and destroyed. In particular, do

the same ~ tasks move through the array K (or array K move

through these tasks) or are new tasks created and old ones destroyed

from step to step of the process?

(2) Does the creator (parent) task also perform any operations on the

pivot row or is a (~+l)st task required to do this? Which

approach leads to less communication?

(3) How do these tasks get access to the pivot row and their current

computation row?

We will not attempt to answer all of these questions here, but rather we

will discuss one approach in which a parent task is in control of the

process. The parent task "owns" the array K, and initiates ~ sub tasks with

the data for their computation row and then executes the following repeatedly:

19

o perform any necessary operations on the pivot row,

o "broadcast" the pivot row to these tasks,

o initiate a new task for the last row in the next step,

o wait for the first subtask to complete and send back its completed

computation row (the new pivot row).

o broadcast this row to the 8 tasks.

The 8 Bubtasks on a given step are more passive. In general, they

execute the following 8 times

o receive a pivot row from the parent.

o perform computation on their computation row using this pivot row

o wait until the next pivot row is received.

After E: pivot rows are used, the subtask sends the parent a terminate

signal and also the values of its computation row which will become the new

pivot row. Note that only one subtask can be sending the parent task the new

pivot row at a given time. This approach requires addition of the operations

given in Table 3 to our virtual machine:

Table 3. Operations for Parallel Decompose

OPERATION EFFECT

INITIATE Initiates a task with a Dense Vector as initial

SEND

RECEIVE

BROADCAST

data.

Sends a Dense Vector to a particular task.

Receives a Dense Vector from a particular task

Sends a Dense Vector to a given set of tasks.

20

Now, the implementation of this approach in the virtual machine we have

designed to this point is given below in Algorithm 2.

PROCEDURE PARENT:
2 K: symmetric banded matrix (N, 6n + 6n + 12)

BEGIN

FORALL i in 1 •• S DO

BEGIN

INITIATE SUBTASK (i) WITH ROW (i + 1) OF K;

END;

E~;

FOR i in 1 •• N - 1 DO

BEGIN

-- DO NECESSARY COMPUTATIONS ON ROW (i) OF K

BROADCAST ROW (i) OF K TO ALL SUBTASKS;

INITIATE SUBTASK (i + S) WITH ROW (i + S + 1) of K;

RECEIVE ROW (i + 1) OF K FROM SUBTASK (i);

END;

TASK SUBTASK (id, V);

V: dense vector (S + 1);

PIVOT-ROW: dense vector (S + 1);

BEGIN

END;

FOR i in 1 •• S DO

BEGIN

RECEIVE PIVOT-ROW from PARENT;

--COMPUTE ON PIVOT-ROW AND V

END;

SE~ V TO PARENT:

Algroithm 2. Parallel Decompose

(*computation row*)

Algorithm 2 requires three communications per step; namely, the parent

must receive~ the next pivot row, broadcast it to the f3 sub tasks , and the

subtasks must receive this pivot row before computation can begin. Hence, the

required communication is O(3N) where we are assuming these three types of

communication cost the same amount and the unit of cost is that required to

communicate f3 + 1 elements. Clearly, a system that requires time largely

independent of f3 for this communication is desired.

This now completes the discussion of the numerical analyst's virtual

machine. In the next section we introduce a three dimensional example, and in

Section 7 we analyze the example in light of the virtual machine.

6. THREE nTIIffiNSIONAL EXAMPLE

In this section we introduce a model structure with which to study the

substructuring process as given in Algorithm 1. The model is an n-cube

composed of d
3

individual a-cubes as shown in Figure 2.

We consider each a-cube to be a substructure composed of finite

elements. The exact type of finite element(s) is not important to our

analysis, nor is the exact form of the partial differential equation; instead,

we focus on the connectivity of the nodes which determines the structure of

the matrices and data obj ects of Sections 3 and 5. In particular, we assume

that each node in an a-cube is connected to its eight nearest neighbor nodes

in its x-y plane as well as its nine nearest neighbors in x-y planes directly

above and below.

The authors are indebted to P:iyush Mehrotra for developing Table 3 and
Algorithm 2.

21

22

Figure 2. n-cube

To determine the structure and sizes of the data objects in Table 1, we

assume there are 6 equations at each node (for example 3 displacements and 3

rotations) and set

N 6n3

t a - 2

Y 6t
3

x = 6(a 3 _ t 3)

3 6d 3t 3 q 6n -

s = (d+l) (2n - (d + 1)).

Furthermore, we assume that all interior nodes of a given a-cube are numbered

left to right, front to back in a given horizontal plane with planes

consi.dered bottom to top. After all a-cubes are numbered, the remaining

boundary points are numbered the same way by considering them to be on

horizontal planes. Then, each K (j)
. ii is a 6t 3

x 6t 3 matrix with the

following tXt block tridiagonal structure,

1 2 • • • t

1 A A

•
K~~) 2 A • •

11 • • • •
• • A • • •
t A A

with

1 2 • • • t 1 2 • • • t

1 B B 1 C C

• 2 C •
2 B • • • • A B6t x 6t

• •
6t

2 2 • • • • • • x 6t • ,. • • B C • • • • • ,.
t B B t C C

and C a 6 x 6 matrix.

Each A matrix specifies the connectivity present in two adjacent x-y planes;

each B matrix, the connectivity of two horizontal rows in a given plane; and

each C matrix represents the connectivity of any two nodes in a row. During

(")
the factorization in Step 1), Kii J doesn't fill outside the bandwidth of

6t2 + 6t + 1.2. Similarily, each K (j) matrix is a 6t 3 x 6(a 3 _ t 3)
ib

matrix with the following structure,

23

24

1 2 3 t + 1 a

1 D E E

2 E E E

K(j) • • E
ib • • •

• • • •
t E E D

and represents the connectivity of the t interior planes to the a planes

containing boundary points. The D matrices are of size 6t
2

x 6a
2

and the E

matrices are of size 6t
2

x 6(4a - 4). They can be broken down further to

reflect the connectivity between rows in a given plane and finally between

nodes. For simplicity we assume Kib (j) = (~i (j») T. Note that in general

because of varying elements and connectivity, the matrices denoted by the

A's, B's, C's, D's and E's have neither the same numerical values nor

the same zero, non-zero structure.

Each ~b (j) is a
3 3 3 3

6(a - t) x 6(a - t) block tridiagonal matrix

representing the connectivity of the boundary nodes on the a planes to each

other. However, during the process of eliminating ~i (j) in Step 2 this

matrix fills and for our purposes we assume that it becomes dense.

Lastly, of particular note, ~b is a q x q block tridiagonal matrix of

the form,

25

I R V

2 V
T

W W

• • • W • • • W • • •
V

T
W W
--- - --- -

v I R V I
I T I
IV w w I •

~b

I w • • I • • • w I I • •
I • I w w

I- I -,-- ----
•

•
•

R V

V
T

W W

• • • •
• II

V
T •

• •
n V R

where the indicated blocks R, V, and Ware of sizes
2 2 2 6n x 6n ,6n x 6s,

and 6s x 6s, respectively. This matrix provides the connectivity of the

boundary nodes to each other on all n planes after the fill-in from Step 3.

The bandwidth of ~b is
2

6n + 6s and we assume storage is required within

the E!ntire "band due to the fill·-in caused in Step 3 and the subsequent

factorizatioIll in Step 5. The storage requirements are summarized in Table 1

where for simplicity we include only the highest order term.

If we order the nodes of the original n-cube left to right, front to back,

bottom to top with no substructuring the resulting matrix denoted by K in

Table 1, is N x N and will be discussed later. Since t = O(n/d), as n

26

becomes large, the maximum storage required for Algorithm 1 is either

or 0(36n4d) depending on the value d. Nevertheless, this

storage will be less than that for K, 0(36n5) , whenever d < O(n). Note

that we do not specify how this data is to be stored or what kind of memory

system is provided since these decisions should be made at a lower level of

the virtual machine. Our purpose here is simply to provide the magnitude and

form of the data.

7. ANALYSIS OF THE EXAMPLE

We now summarize the amount of parallel arithmetic and communication, and

the required number of tasks for the substructuring technique of Algorithm 1

(using Algorithm 2 for the solution of ~b xb = f b) and for the traditional

band solver (also using Algorithm 2). We then give conditions for when one

technique might be preferred over the other.

Table 4 summarizes this information where a denotes the amount of

arithmetic in units of floating point multiplication/addition pairs, c denotes
. ";:.

the number of times a bandwidth of numbers are communicated, and t

represents the number of tasks.

The number of sequential operations for either method is 0(n 7).

METHOD

Substr.

Banded

FACTOR

Kii
(j)

7
a: 108 n7

d

c o

3
t: d

FILL-IN

~b
(j)

a: (36)2

c : 0

3
t: d

Table 4. Operation Counts

7 n

d7

FACTOR

Kbb

a: 108n 4d

2
c: 54n d

2
t: 6n + l2nd

5 a: 36n

3 c: l8n

TOTAL

2 7
a: (36) E.... if d<n3/ 8

d7

4 108 n d otherwise

c:

2 3
t: 0(6n +6s,d)

5 a: 36n

3 c: l8n

For simplicity, we have omitted the time required for the forward and backward

substitutions. If they are done in parallel, both the arithmetic and

communication complexities are less than that of the factorizations. However,

for a complete design these must be considered since the type of communication

required is slightly different than that for factorization and would add more

operations to the virtual machine.

27

28

Now, if we let

C cost of one floating point multiply/add
a

C cost of broadcasting or receiving S + 1 floating point numbers,
c

the total amount of work, Ws and Wb required by the substructuring and

banded methods is

C (108)n4d + C (54)n2d otherwise
a c

(5.1)

C (36)n5 + C (18)n3
a c

respectively.

First, observe from (5.1) that the substructuring technique requires less

communication than the banded solver if d < n/3. Second, the arithmetic for

substructuring is also less than that of the banded solver whenever d is in

the following approximate range.

(5.2)

or

n3/ 8 < d < n/3 (5.3)

The inequality (5.2) can be satisfied only for n > 280, and if n = 280 the

underlying problem contains 132 million equations. Since problems of such

size are beyond serious consideration at this time, we will focus on the

second inequality. Note that when d satisfies (5.3) the arithmetic and

communication work increases linearly with d; thus the optimal operation count

occurB for the smallest d greater than 3/8 n • Some representative values of

important parameters for substructuring are compared with those for the simple

banded matrix approach in Table 5.

n d

1') ,. Banded

3

18 Banded

3

2LI Banded

4

Table 5. Size of Key Parameters for Typical Problems

(Entries x 10 6)

Arithmetic Storage Communications

Parallel Floating Floating Point (number of

Point Operations Numbers bandwidths)

9 9.0 .310

7 6.2 .023

68 68.0 .10

34 30.1 .05

287 287 .25

143 109 .12

Inequality (5.3) can be interpreted as meaning that d must be at least

o (n2 /7) so that the parallelism at the substructure level overcomes the

sequential operations within a given substructure, but on the other hand, d

can not be more than 0 (n/3) so that the work of putting the substructures

together (solving ~b xb = fb) is not too large. Note that in the limit as

d + n, the Bubstructuring technique requires three times more arithmetic and

three times more communication than does the band solver. This is due to the

extra fill-in in the matrix ~b that results from the substructure ordering.

29

30

Of course ~b could be ordered in a variety of ways in order to decouple

it and to introduce more parallelism. For example, the red/black ordering

could be applied to the x-y boundary planes. However, an argument similar to

the one above indicates that this approach will introduce more work as d + n.

A possible important advantage is that fewer tasks may be required. For

example, the red/black ordering requires 0 (24nd) tasks rather than the

o (6n
2 + 12nd) tasks reported in Table 4 for the banded ordering.

In summary, the substructuring and banded solver techniques have been

programmed using the data objects, operations, and sequence control mechanisms

of our virtual machine. If the implementation of this virtual machine on the

other levels of virtual machine is "free" we cari make the statements below:

(1) For the range of d in (5.3), the subs truc turing technique is more

promising than the banded solver technique.
C

c
(2) For both' techniques, as long as C > --2-' the amount of time for

a 2n
arithmetic exceeds that for communication.

We realize that this analysis must be expanded to include costs of the

lower levels of machine before the best method is really determined. Here, we

have only attempted to give a flavor of the design process.

8. CONCLUSIONS

Many projects are under various stages of development to investigate

parallel computer architectures. In almost all such efforts the basic

hardware decisions are fixed at an early stage, long before the software

organization and external environment have been considered and certainly

before any application programs have been planned. This approach often leads

to major difficulties at later stages when the software system must be made

operational on the fixed hardware. It is also difficult to measure and judge

the useful computational power of such a design because of the masking effect

of the layers of software that may be required to make the hardware

accessible. Typically the realized computational effectiveness is far below

what was expected based on hardware speeds and compromises must be made in the

software development that inhibit performance on realistic problems. It is

hoped that the use of the virtual machine concept will help identify the

requirement of the users before the hardware is determined.

Within the framework of finite element analysis we have demonstrated how

the numerical analyst can use the virtual machine to specify requirements for

a solution technique based on substructuring. This led to the identification

of a variety of data types and of operations on those data types. The virtual

machine also provided a framework in which to study and compare parallel

computation and communication. This study indicated when substructuring

compared favorably to the more traditional method. In particular, inequality

(5.3) showed that adding more substructures beyond a certain number resulted

in more overall computation due to the added work in computing the boundary

nodes. Also :In the analysis of the solution for the boundary nodes, it became

clear that it does not pay to introduce parallelism without understanding its

ramifications.. In the example studied such parallelism led to more fill-in

and hence more work.

It should be noted that we are not suggesting that substructuring is the

only alternative for this problem. We chose to analyze it as an example

becausE~ it induces parallelism naturally and is a favorite among structural

engineE~rs. Other methods, particularly nested dissection, George and Liu

[1981J:1 with its minimum operation counts, and iterative methods with their

natural parallelism should be investigated.

31

32

This paper has focused on the numerical analys t' s virtual machine. We

feel that the other virtual machines as discussed in Section 4 are equally

important and we anticipate developing those machines in the near future.

Acknowledgement

This paper is a preliminary report on the activities of a group of

researchers and would not have been possible without the contributions of all

the group, which includes, in addition to the authors, Merrell Patrick of Duke

University, Terrence Pratt of the University of Virginia and Piyush Mehrotra

and John Van Rosendale of leASE. The group has benefitted immeasurably from

discussions with Robert Fulton and Olaf Storaasli of the Structures and

Dynamics Division of the NASA Langley Research Center, Ahmed Noor of George

Washington University and Tom Crockett and Judson Knott of the Finite Element

Machine project at the NASA Langley Research Center.

REFERENCES

1. Adams, Loyce, [1982], "Iterative Algorithms for Large Sparse Linear

Systems on Parallel Computers," NASA Contractor Report No. 166027. Also

published as a Ph.D. Thesis in the Department of Applied Mathematics and

Computer Science at the University of Virginia, Charlottesville, VA in

1983.

2. Berger, Ph., P. Brouaye and J. C. Syre, [1982], "A Mesh Coloring Method

for Effictent MIMD Processing in Finite Element Problems," Proceedings of

the 1982 International Conference on Parallel Processing, IEEE Catalog

No. 82CH 1794-7, pp. 41-46.

3. Flynn, Miehael, [1966], "Very High-Speed Computing Systems," Proceedings

IEEE, Vol.. 54, pp. 1901-1909.

4. Gannon, Dennis and John Van Rosendale, [1983], "Parallel Architectures

for Iterative Methods on Adaptive Block Structural Grids," Proceedings of

thla Monterey Elliptic Conference, G. Birkhoff, editor, Academic Press.

5. George, Alan and Joseph Liu, [1981], "Computer Solution of Large Sparse

P08itive Definite Systems," Prentice Hall, Englewood Cliffs, NJ.

6. Jordan, Harry, [1978], "A Special Purpose Architecture for Finite Element

Analysis," Proceedings of the 1978 International Conference on Parallel

Processing, IEEE Catalog No. 78CH132l-9C, pp. 263-266.

33

34

7. Kung, H. T. and Charles Leiserson, [1979], "Systolic Arrays (for VLSI),"

Sparse Matrix proceedings 1978, I. S. Duff and G. W. Stewart, editors.

Society for Industrial and Applied Mathematics, pp. 256-282.

8. Law, Kincho, [1982] "Systolic Schemes for Finite Element Methods,"

Department of Civil Engineering Report No. R-82-l39, Carnegie-Mellon

University, Pittsburg, PA.

9. Noor, Ahmed, Hussein Kamel and Robert Fulton, [1978]. "Substructuring

Techniques - Status and Projections," Computers and Structures, Vol. 8,

pp. 621-632.

10. Noor, Ahmed and Jules Lambiotte, Jr., [1979], "Finite Element Dynamic

Analysis on CDC STAR 100 Computer," Computers and Structures, Vol. 10,

pp. 7-19.

11. Pratt, Terrence, [1981], "H-Graph Semantics," Department of Applied

Mathematics and Computer Science Reports Nos. 81-15 and 81-16, University

of Virginia, Charlottesville, VA.

12. Pratt, Terrence, Loyce Adams, Piyush Mehrotra, Merrell Patrick, John Van

Rosendale and Robert Voigt, [1983] , "The FEM-2 Design Method,"

Proceedings of the 1983 International Conference on Parallel Processing,

IEEE Catalog No. 83CH1922-4, pp. 132-134.

13. Strang, G. and George Fix, [1973], An Analysis of the Finite Element

Method, Prentice-Hall, Englewood Cliffs, NJ.

14. Zave, Pamela and George Cole, Jr., [1983] "A Quantitative Evaluation of

the Feasibility of, and Suitable Hardware Architecture for, an Adaptive,

Parallel Finite Element System," ACM Trans. Math Software, to appear.

15. Zave, Pamela and Werner Rheinbo1dt, [1979], "Design of an Adaptive,

])arallel Finite-Element System," ACM Trans. on Math. Software vol. 5, pp.

1-17.

35

1. Report No.

I
2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-172219
4. Title and Subtitle 5: Report Date
A Methodology for Exploiting Parallelism September 1983
in the, Finite Element Process

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Loyce Adams and Robert G. Voigt 83-33
10. Work Unit No.

g. Performing Organization Name and Address
Institute for Computer Applications in Science

and Enginee:ring 11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASl-17070 & NASl-17130
Hampton, VA 23665 13. Type of Report and Period Covered

12. Sponsorin1 Alency Name and Address
Nationa eronautics and Space Administration Contractor Report
Washington, DC 20546 14. Sponsoring Agency Code

1 t SuRP.Lemen\fJ ~otE~ I ang ey c n: ca Monitor: Robert H. Tolson
Final Report

16. Abstract

In most efforts to design parallel computing systems the hardware is fixed
before consideration is given to the requirements of the applications that are to be
executed on that hardware. This paper describes a methodology for developing a
parallel systlO!m using a top down approach taking into account the requirements of the
user. Substructuring, a popular technique in structural analysis, is used to
illustrate th:Ls approach.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

parallel syst,ems 62 Computer Systems
vertual machine 64 Numerical Analysis
linear algebra Unclassified-Unlimited

190 Secrity Clarl- ~f this report) 2% Sec:rrity Cl1if. ~f this page) It No. of Pages 22. Price
ne aelsi e ne assi e 37 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161 NASA-Lang1 ey, 1983

End of Document

