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Abstract 

In most ,efforts to design parallel computing systems the hardware is fixed 

before consideration is given to the requirements of the applications that are 

to bE! executed on that hardware. This paper describes a methodology for 

developing a parallel system using a top down approach taking into account the 

requirements of the user. Substructuring, a popular technique in structural 

analysis, is used to illustrate this approach. 

Support for this research was provided by the National Aeronautics and 
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INTROIIUCTION 

The finite element method is an important technique for constructing 

approximate solutions to boundary value problems. Very briefly, 

(1) the region of interest is subdivided into elements, 

(2) basis functions which span the subspace in which the approximate 

solution is assumed to lie are chosen, 

(3) the contribution of the elements is determined by integrating the 

basis functions over each of the elements, 

(if) the contributions of all of the elements are assembled into a single 

system, 

Kx f, (1.1) 

(5) the system is solved for the approximate solution. 

A complete description of the process may be found in a number of references 

from the finite element literature such as Strang & Fix [1973]. 

Traditionally, the bulk of the computational work is contained in steps 

(3) and (5) and researchers have tried many techniques in order to reduce the 

required computational time. Some of these have involved improvements in 

numerical algorithms and the underlying software systems. 

A particular example which will be discussed in the next section is that 

of substructuring or matrix partitioning, see for example Noor, Kamel and 

Fulton [1978]. Another example is the FEARS project begun at the University 

of Maryland, Zave and Rheinboldt [1979]. This latter effort attempts to 

improve the efficiency of the solution process for two dimensional problems by 

utilizing adaptive grids. 

FEARS also uses another technique for Improving performance that is 

becoming increasingly popular, namely, parallel computation. In its simplest 
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form, parallel computation means that relevant computations within the 

solution process of a single problem are performed simultaneously. In the 

FEARS project the parallelism is achieved by creating tasks for both the 

assembly and the solution process which may be executed on independent 

processors with a modest amount of communication, Zave and,Cole [1983]. This 

suggests a computer organization of the multiple-instruction-multiple-data, 

MIMD, type in the classification of Flynn [1966]. 

Another MIMD computer concept under investigation for finite element 

analysis is the Finite Element Machine at the NASA Langley Research Center, 

Jordan [1978]. Ultimately, the system will contain 36 l6-bit microprocessors 

with each processor connected to its eight nearest neighbors in a plane and 

connected to every other processor via a global communications bus. To date, 

this system has been used primarily to investigate the parallel assembly of 

(1.1) followed by its solution using iterative methods, Adams [1982]. 

Vector or pipeline computer organizations as manifested by the Control 

Data Corporation Cyber 200 series and the Cray Research Inc. Cray 1 series 

have also been used extensively for structural analysis. Much of this work 

has centered on just the solution of (1.1), see for example Noor and Lambiotte 

[1978]. In Section 3 we will point out some aspects of steps (3) and (4) that 

inhibit optimal utilization of the vector concept at least as it has been 

implemented to date. 

Other architectural concepts have been proposed which may provide systems 

appropriate for finite element analysis of structures. In particular, Law 

[1982] discusses the use of systolic architectures, as introduced by Kung and 

Leiserson [1979], for steps (3) and (5) of the process. A more general 

partial differential equation solving system has been proposed by Gannon and 

Van Rosendale [1983], which is intended for three dimensional elliptic partial 



differential equations with a solution technique based on the multigrid 

method. 

The purpose of this paper is to provide a discussion of the parallelism 

available in the finite element process applied to three dimensional 

structural analysis problems. We use a top down methodology that allows the 

speci:Eication of the necessary environments required to exploit and analyze 

this parallelism. In particular, following a discussion of substructuring in 

Section 2, various types of parallelism are considered and the difficulties 

and opportunities of exploiting them are discussed in Section 3. 

At this point many researchers would introduce a section on computer 

architecture and discuss the implementation details of a particular solution 

method. We will take a different tack. 

We believe that it is essential to provide environments in which 

scientists can study the different issues that relate to the overall system. 

For example, calculating the stresses pn the wing of an aircraft or 

investigating the inter-processor communication required by a numerical 

algorithm are both important in determining the eventual architecture. A 

methodology for developing the environments, the "virtual machine concept", is 

introduced in Pratt, et al., [1983] and we will rely heavily on concepts given 

there for the discussion in Section 4. 

In Section 5, we develop a numerical analyst's virtual machine; in Section 

6 we introduce an example 3-dimensional problem; and in Section 7 we discuss 

the laxample in light of the virtual machine. Finally, the benefits of this 

approach are discussed in Section 8. 

3 
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2. SUB STRUCTURING 

The method of substructuring in structural analysis is based on dividing a 

large structure or region into pieces. In particular, if one is interested in 

displacements of a structure based on some external forces, the displacements 

for the interfaces of these pieces are determined first. This information may 

then be used to determine the values of the unknowns within each piece or 

substructure, see Noor, Kamel and Fulton [1978]. 

Figure 1. Example Structure 

We will now make these ideas more precise by using Figure 1 as an 

example. The squares represent boundary points of the structure while the 

solid dots are interior points. The line segments indicate dependencies 

between points by defining the individual finite elements. Thus part 1 of 

the figure consists of rectangular elements that might represent plates and 

part 2 consists of triangular elements that might also be plates or some 

other element such as beams. There is a natural interface between the two 

parts of the structure indicated by the arrow. A structural engineer might 

use this interface to separate the structure into two "substructures". Note 

that these substructures are connected by only four points: two boundary 

points and two interface points indicated by circles. The circled points also 

become boundaries of the two substructures. 



Now assuming that the elements are fixed and the basis functions are 

chosen, the individual element contributions to the overall problem are 

determined. These may be assembled into a global stiffness matrix once the 

ordering of the points is determined. The interior points of each 

substructure are numbered completely before considering the next 

substructure. Then the boundary and interface are numbered. A substructure, 

j, the,refore yields a matrix of the form 

~
K (j) 
ii 

~i (j) 

K (j)] 
ib 

~b (j) 

where K (j) 
ii represents the contribution from the interior points, ~b (j) 

represents the contribution from the boundary and interface points, which for 

simpli,city we will refer to as boundary points, and Kib (j) and ~i (j) 

represents the dependencies or connections between interior points and 

boundary points. 

For the entire structure one obtains the global stiffness matrix, 

K~~) K(l) 
II ib 

K~:) K(2) 
II ib 

- K 

- --- ---

~~) ~~) ~b 

5 
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If the structure in Figure 1 is under some force and we are interested in 

the displacements we obtain a matrix equation (1.1) where 

x (x. (1), 
1. 

and f = (f. (1), f (2) 
1. i' 

with xi' fi' and xb ' fb representing the displacements and external forces 

at the internal and boundary points respectively. 

For our purposes the most important feature of this matrix is that 

K (1) d K (2) 
ii an ii are decoupled. This suggests a block elimination scheme 

for factoring the matrix K because 

factored in parallel. 

K (1) 
ii 

and K (2) 
ii 

may themselves be 

Thus, substructuring can be viewed as a technique for decoupling the 

global stiffness matrix in order to introduce parallelism in the solution 

process. In general, we have system (1.1) with K of the form 

I 
K~:) I K(l) 

1.1. I 
ib 

K(:~ 
I 

K (2) 
I 1.1. ib 

• I • 
• I • (2.1) 

• I • 
K ~::) I K(I) 

1.1. ib 
I - - --- - - -1---

~i) K(2) • • • K(I) 1 Kbb bi bi I 

where for most applications of interest K is symmetric and positive definite. 



The solution process then requires the following steps: 

1) For all j = 1, ... ,1 form Kii (j) = LjUj ; 

2) For all j = 1, ... ,1 

and 

Form ~b (j) 

and (
K (j»)-l f (j) 
ii i 

L • U • (M. ) K1~bj ) 
J J J 

LU() f (.j) .. q. 
J J J 1 

= f (j) 
b 

- K.(j) q 
-bi j 

by solving 

3) Form - - I - (j) 
~b -. ~b 

5) 

J 

where the I denotes the addition of the substructure boundary 
j 

contributions into the proper location in the global matrices. 

For all j 1, 2, .•. ,1 solve LUx (j) 
j j i 

= -. K (j) x (j) + f (j) 
ib b i 

Algorithm 1. Solution via Substructuring 

7 
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It is worth noting some distinguishing characteristics of the above 

process: 

a) Steps 1), 2), and 5) exhibit natural parallelism requiring no 

cooperation among procesors. 

b) The matrices K .. (j) 
11 

are banded but in general do not have the same 

size or structure. 

c) Step 3) produces fill in the matrix ~b and must be done with care 

in a parallel computing environment since it may change existing non 

zeroes in ~b or introduce new non zeroes. 

d) The matrix ~b is banded. 

Item b) points out the difficulty in using this solution technique on a 

vector computer if one were to try to vectorize across the substructures or 

K 
(j) 

ii • The diversity of the 

processors. 

K (j) 
J-i suggests a collection of asynchronous 

The activity described in c) can require multiple modifications to the 

same location in ~b. This would occur, for example, in the structure given 

in Figure 1 for all nodes on the line indicated by the arrow. In general, ~t 

occurs for all nodes on the common boundary of two or more substructures. 

This will be discussed further in the next section. 

In Section 5 we will discuss a specific example which will provide insight 

into the size and form of the block matrices in (2.1). We will also compare 

the substructuring approach with a different ordering of the nodes which 

yields a single banded matrix K for which the bandwidth is small. 
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3. PAlRALLELIBM IN SUB STRUCTURING 

In this section, we discuss the parallelism that is inherent in the 

substructuring procedure outlined in Section 2. 

We begin by focusing on the creation of the matrices of (2.1). These 

matrices can be generated simultaneously for all substructures by independent 

tasks. The tasks must be of the HIMD type since the substructures normally 

will contain different types of elements as shown in Figure 1, and hence will 

requir,e different operations during the elemental integrations. Only when 

each substructure is identical can we achieve parallelism by vectorizing 

across the substructures. Each substructure may be composed of many elements, 

and integrations over these elements may also be carried out asynchronously; 

in essence, an element may be considered as the smallest possible 

substructure. 

It is the diversity of substructures and elements that make the assembly 

process unattractive for vector computers such as the Cyber 200 or Cray 1, or 

SIMD a.rra.ys. In both types of computer systems one needs to perform the same 

arithmatic operations on a group of operands or vectors. This is generally 

not possible either within a substrueture or across substructures. 

During the solution process, several operations may be performed 

asynchronously across the substructures. First, the matrix factorization in 

Step 1 of the algorithm of Section 2 will para11e1ize across all j. Then the 

formation of the new matrices indicated in Step 2 may also be done in parallel 

for all j: 

K (j) (K. (j»)-1 K (j) 
-bi J.i ib 

K (j) (K .. (j) )-1 F (j) 
-bi 11 b 
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In addition, within a given substructure, we have the flexibility to assume 

that (3.1) is performed in a sequential manner, if we have limited available 

parallelism or alternatively, we may choose to exploit the parallelism in any 

one or all of the following: 

(1) the solution of the systems 

K (j)M (j) = 
ii i 

and 

depending on the particular form of 

K .. (j)qi(j) 
11 

f. (j) 
1 

K 
(j) 

ii ' followed by 

(2) the parallel multiplication of the matrices 

c ~i (j) M (j) d 
i ' 

and finally 

(3) the matrix and vector subtractions ~b (j) - C and fb (j) - d. 

Second, the formation of the ~b in Step 3 of the algorithm can be done 

in parallel phases as follows: If all substructures are "colored" such that 

any two substructures that share a common interface node are different colors, 

it is clear that all substructures of the same color will not have 

contributions to the same location in the matrix ~b and therefore may be 

assembled simultaneously without memory contention, (Berger, et. al., [1982]). 

The creation of ~b may then be achieved in C parallel phases where C is 

the number of colors. 

So far, the parallelism in the formation of the matrices ~b and fb for 

the solution for the boundary nodes has been described. We now turn to what 

appears to be the sequential part of the algorithm, namely the solution of 
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As with the solution of (3.1), the characteristics of the matrix ~b 

must he known to extract all the parallelism. However, some ohservataions can 

be made now and will be made more precise for an example problem in Section 

5. Pirst, ~b will be of size b x b where b is the total number of 

boundary nodes in the structure; furthermore, b will generally be an order of 

magnitude smaller than the number of interior nodes. The fill-in that occurs 

in ~b will only be between the interface nodes of a given substructure. 

Hence for most structures, the matrix ~b will be sparse and can be ordered 

as a banded matrix with as small a bandwidth, S, as possible. If ~b is of 

size q x q, the system ~b xb fb can be solved by factorization in q 

steps using S tasks. These tasks, however, do not have the completely 

asynchronous nature of the substructure tasks described earlier since they 

must coopera.te during the decomposition of These techniques for 

solving this system will be described in detail in Section 5 for a particular 

example. 

The operations in Step 5 are again completely asynchronous and may be done 

in parallel across the substructures. This provides the solution for the 

inter:ior nodes once the solution for the boundary nodes for the substructure 

has been obtained. As was poi.nted out earlier, if we have limited 

parallelism, the operations may be done sequentially for a given 

substructure.. To describe all the parallelism in the step, we must know the 

form of K (j) and K (j) 
ii ib· This is problem dependent and also varies across 

the substructures. 

At this point, the parallelism in the substructuring technique has been 

described, but many questions must be answered before an efficient overall 

environment for specifying and extracting this parallelism can be 

determined. In the next section, we give the methodology that will help us 
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begin to answer these questions and in Section 5 we demonstrate this 

methodology with an example problem. 

4. THE VIRTUAL MACHINE CONCEPT 

It is often tempting to take the description of the parallelism in a given 

solution process, like that described in Section 3, and propose a computer 

hardware organization to support its implementation. We believe that 

decisions about hardware should not be made until the user environment and the 

several levels of software required to effectively implement the finite 

element process have been carefully studied. This top-down approach to 

design, or virtual machine concept, is described in Pratt, et ale [1983] and 

will be briefly discussed below. 

Each class of computer user would like to view the machine that runs his 

problems in different ways. 

levels: 

To date we have considered the following four 

User's Virtual Machine. The perspective of a structural engineer may 

be that of a workstation that allows him to store the description of 

his structural models, to use applications packages to analyze the 

models, and finally to display the results. 

Researcher's Virtual Machine. The numerical analyst or research 

user may view his machine in terms of a high-level language (like 

Fortran) that allows him to specify the data structures, operations 

and their sequences, and the parallelism in the linear algebra 

necessary to implement efficiently a structural engineer's 

application. 



Systems Programmer's Virtual Machine. By specifying the tasks, 

thei.r scheduling, communication between them, and the storage 

representation of the data, the system programmer's virtual machine 

that implements the high level language can be defined. 

Hardware Virtual Machine. The last level of virtual machine which 

implements the system programmer's low level language may be the 

hardware itself. ("Virtual" because it may be implemented by micro 

programs on yet lower level hardware.) 

By formally specifying the data objects, operations on these data objects, 

control mechanisms, and storage management techniques of each virtual machine, 

a detailed hardware/software design can be obtained that specifies the 

function of each level as well as its implementations on the next lower 

level.. Our research uses the methods of H-graph semantics, Pratt [1981], for 

making this formal specification. Simulations can then be used to test the 

feasibility and efficiency of the overall system before commitment to hardware 

is made. 

In the next section, we will give some insight into this approach by 

showing how the numerical analyst's virtual machine can be designed (not 

formally specified) using Algorithm 1 for the substructuring technique of the 

last section. 

5. A NDKERIC:AL ANALYST'S VIRTUAL MACHINE 

In this section we introduce the data objects, the operations on those 

data objects, and the sequence controls required to define the virtual machine 

13 
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for Algorithm 1 of Section 3. The data objects are listed in Table 1. We 

have also included the storage required by these data objects for a particular 

example to be introduced in Section 7. The variables t, a, etc. in Table 1 

are parameters of that example. The data object T. 
J 

is a table of integers 

needed for an operation explained later and the data object K is a matrix 

that will be discussed later. 

Table 1. Data Object and Their Required Storage in Terms of 
Floating Point Numbers for the Example of Section 6. 

DATA OBJECT 

K (j) (L U ) 
ii j j 

K (j) 
ib 

- (j) 
~b 

~b 

M. 
J 

Qj' 
F (j) 
b 

Xb , Fb 

Tj 

K 

TYPE 

Banded Sym. 
Matrix Band: 
6t2 + t+l2 

Sparse-Blocked 
Matrix 

Dense Matrix 

Banded Sym. 
Matrix 2 
Band: 6n + 6s 

Dense Matrix 

Dense Vectors 

Dense Vectors 

Dense Integer 
Matrix 

Banded Sym. 
Matrix Band: 
6n2 + 6n + 12 

SIZE 

q x 1 

N x N 

STORAGE 

72t S (after fill) 

1944t 2 

36n4d (after fill) 

l2(a 3- t 3 ) 
integers 



The secon.d step in describing the numerical analyst's virtual machine is 

to list the operations that must occur on these data objects. At this point, 

we make the assumption that the operations within a given substructure, that 

is a particular j in steps 1), 2), and 5), will be done sequentially. As 

mentioned in Section 3, more parallelism can be obtained within a given 

substructure by exploiting available matrix operations, but for simplicity we 

do not consider that here. On the other hand, we assume that factorization 

and solution with ~b in Step 4) will be done in parallel. This will be 

described in detail later. The necessary operations are summarized below. 

Table 2. Operations on Data Objects 

OPERATION on DATA OBJECT creates DATA OBJECT 

Sequential De,compose Symmetric Banded Matrix 

Sequential Forward Solve Lower Triangular Banded System 

Sequential Backward Solve Upper Triangular Banded System Dense Vector 

Replace/Add (Matrix) Dense Matrix/Banded Sym Matrix 

Replace/Add (Vector) Dense Vector/Dense Vector 

Parallel Decompose Symmetric Banded Matrix 

Parallel Forward Solve Lower Triangular Banded System Dense Vector 

Parallel Backward Solve Upper Triangular Banded System Dense Vector 

Select Dense Vector Dense Vector 

Sequence of Operations 

A control mechanism appropriate to specify the sequence of operations in 

A1gor:tthm 1 is the FORALL statement which has the form 

15 
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FORALL J in SET DO 

BEGIN 

STATEMENT 1 

STATEMENT n 

END 

STATEMENT n + 1 

STATEMENTS 1, ••• ,n will be executed for each J simultaneously, to the extent 

possible, and STATEMENT n + 1 will not be executed until all instances of J 

are completed. 

The meaning of the operations in Table 2 will now be explained. The first 

three are the standard operations associated with the Cho1esky solution 

technique. The replace/add operation of any dense matrix A into a symmetric 

banded matrix B where both are visualized as being organized by rows and 

columns requires the following steps: 

(1) A lookup in table Tj (of Table 1) to find the 

subscripts i' and j' corresponding to the subscripts i and j 

of a
ij 

• 

(2) Adding a ij to the value of b ij and replacing this sum into 

b ij • Note that if B were organized by bands, a similar lookup 

would be required where i' would be the band number and 

j' the element within the i'th band. The select operation must 

involve a similar table lookup, for instance, to extract a 

substructure's boundary values ~ (J) from \. 



At this point a high level version of the numerical analyst's virtual 

machine has been sketched; however, it is likely that a researcher might want 

to study some or all of the operations in Table 2 in further detail. To 

demonstrate how this might be done we will foeus on the "Parallel Decompose" 

operation. The approach we will discuss involves the generation of parallel 

tasks, and we will address the question of how the tasks must communicate and 

synchronize with each other. This begins to raise issues at the level of the 

system programmer's virtual machine and even at the level of the actual 

hardware. VIe will leave a detailed discussion of these levels along with a 

comparison of other techiques for implementing the "Parallel Decompose" for a 

future paper. 

If the symmetric N x N matrix K has bandwidth f3 as shown below, 

1 

Pivot row 

i 
Task i 

Task i + I 

Task 
B 

i + S + S - 1 

N -- S 

N 

17 
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the basic algorithm consists of N-l steps. At step i, ~ tasks numbered 

i •. i + ~ - 1 simultaneously operate on the rows, one task per row, 

directly below the pivot row i, updating the components of K in region A 

as shown. To perform step i, each of the ~ tasks must have access to the 

(~ + 1) coefficients of the pivot row. In addition, task j must have access 

to row j + 1 of K and this row will be called task j' s computation row. 

Furthermore, after step i is completed task i terminates, and task j continues 

to operate on the same computation row for j - i more steps at which time 

row j + 1 will become the pivot row and task j will terminate. This 

description is not correct from step N - ~ to step N, but this special case 

will be ignored here. 

The following issues must be considered: 

(1) How and when are the tasks created and destroyed. In particular, do 

the same ~ tasks move through the array K (or array K move 

through these tasks) or are new tasks created and old ones destroyed 

from step to step of the process? 

(2) Does the creator (parent) task also perform any operations on the 

pivot row or is a (~+l)st task required to do this? Which 

approach leads to less communication? 

(3) How do these tasks get access to the pivot row and their current 

computation row? 

We will not attempt to answer all of these questions here, but rather we 

will discuss one approach in which a parent task is in control of the 

process. The parent task "owns" the array K, and initiates ~ sub tasks with 

the data for their computation row and then executes the following repeatedly: 
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o perform any necessary operations on the pivot row, 

o "broadcast" the pivot row to these tasks, 

o initiate a new task for the last row in the next step, 

o wait for the first subtask to complete and send back its completed 

computation row (the new pivot row). 

o broadcast this row to the 8 tasks. 

The 8 Bubtasks on a given step are more passive. In general, they 

execute the following 8 times 

o receive a pivot row from the parent. 

o perform computation on their computation row using this pivot row 

o wait until the next pivot row is received. 

After E: pivot rows are used, the subtask sends the parent a terminate 

signal and also the values of its computation row which will become the new 

pivot row. Note that only one subtask can be sending the parent task the new 

pivot row at a given time. This approach requires addition of the operations 

given in Table 3 to our virtual machine: 

Table 3. Operations for Parallel Decompose 

OPERATION EFFECT 

INITIATE Initiates a task with a Dense Vector as initial 

SEND 

RECEIVE 

BROADCAST 

data. 

Sends a Dense Vector to a particular task. 

Receives a Dense Vector from a particular task 

Sends a Dense Vector to a given set of tasks. 
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Now, the implementation of this approach in the virtual machine we have 

designed to this point is given below in Algorithm 2. 

PROCEDURE PARENT: 
2 K: symmetric banded matrix (N, 6n + 6n + 12) 

BEGIN 

FORALL i in 1 •• S DO 

BEGIN 

INITIATE SUBTASK (i) WITH ROW (i + 1) OF K; 

END; 

E~; 

FOR i in 1 •• N - 1 DO 

BEGIN 

-- DO NECESSARY COMPUTATIONS ON ROW (i) OF K 

BROADCAST ROW (i) OF K TO ALL SUBTASKS; 

INITIATE SUBTASK (i + S) WITH ROW (i + S + 1) of K; 

RECEIVE ROW (i + 1) OF K FROM SUBTASK (i); 

END; 

TASK SUBTASK (id, V); 

V: dense vector (S + 1); 

PIVOT-ROW: dense vector (S + 1); 

BEGIN 

END; 

FOR i in 1 •• S DO 

BEGIN 

RECEIVE PIVOT-ROW from PARENT; 

--COMPUTE ON PIVOT-ROW AND V 

END; 

SE~ V TO PARENT: 

Algroithm 2. Parallel Decompose 

(*computation row*) 



Algorithm 2 requires three communications per step; namely, the parent 

must receive~ the next pivot row, broadcast it to the f3 sub tasks , and the 

subtasks must receive this pivot row before computation can begin. Hence, the 

required communication is O(3N) where we are assuming these three types of 

communication cost the same amount and the unit of cost is that required to 

communicate f3 + 1 elements. Clearly, a system that requires time largely 

independent of f3 for this communication is desired. 

This now completes the discussion of the numerical analyst's virtual 

machine. In the next section we introduce a three dimensional example, and in 

Section 7 we analyze the example in light of the virtual machine. 

6. THREE nTIIffiNSIONAL EXAMPLE 

In this section we introduce a model structure with which to study the 

substructuring process as given in Algorithm 1. The model is an n-cube 

composed of d
3 

individual a-cubes as shown in Figure 2. 

We consider each a-cube to be a substructure composed of finite 

elements. The exact type of finite element(s) is not important to our 

analysis, nor is the exact form of the partial differential equation; instead, 

we focus on the connectivity of the nodes which determines the structure of 

the matrices and data obj ects of Sections 3 and 5. In particular, we assume 

that each node in an a-cube is connected to its eight nearest neighbor nodes 

in its x-y plane as well as its nine nearest neighbors in x-y planes directly 

above and below. 

The authors are indebted to P:iyush Mehrotra for developing Table 3 and 
Algorithm 2. 

21 
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Figure 2. n-cube 

To determine the structure and sizes of the data objects in Table 1, we 

assume there are 6 equations at each node (for example 3 displacements and 3 

rotations) and set 

N 6n3 

t a - 2 

Y 6t
3 

x = 6(a 3 _ t 3) 

3 6d 3t 3 q 6n -

s = (d+l) (2n - (d + 1)). 

Furthermore, we assume that all interior nodes of a given a-cube are numbered 

left to right, front to back in a given horizontal plane with planes 



consi.dered bottom to top. After all a-cubes are numbered, the remaining 

boundary points are numbered the same way by considering them to be on 

horizontal planes. Then, each K (j) 
. ii is a 6t 3 

x 6t 3 matrix with the 

following tXt block tridiagonal structure, 

1 2 • • • t 

1 A A 

• 
K~~ ) 2 A • • 

11 • • • • 
• • A • • • 
t A A 

with 

1 2 • • • t 1 2 • • • t 

1 B B 1 C C 

• 2 C • 
2 B • • • • A B6t x 6t 

• • 
6t

2 2 • • • • • • x 6t • ,. • • B C • • • • • ,. 
t B B t C C 

and C a 6 x 6 matrix. 

Each A matrix specifies the connectivity present in two adjacent x-y planes; 

each B matrix, the connectivity of two horizontal rows in a given plane; and 

each C matrix represents the connectivity of any two nodes in a row. During 

(") 
the factorization in Step 1), Kii J doesn't fill outside the bandwidth of 

6t2 + 6t + 1.2. Similarily, each K (j) matrix is a 6t 3 x 6(a 3 _ t 3 ) 
ib 

matrix with the following structure, 
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1 2 3 t + 1 a 

1 D E E 

2 E E E 

K(j) • • E 
ib • • • 

• • • • 
t E E D 

and represents the connectivity of the t interior planes to the a planes 

containing boundary points. The D matrices are of size 6t
2 

x 6a
2 

and the E 

matrices are of size 6t
2 

x 6(4a - 4). They can be broken down further to 

reflect the connectivity between rows in a given plane and finally between 

nodes. For simplicity we assume Kib (j) = (~i (j») T. Note that in general 

because of varying elements and connectivity, the matrices denoted by the 

A's, B's, C's, D's and E's have neither the same numerical values nor 

the same zero, non-zero structure. 

Each ~b (j) is a 
3 3 3 3 

6(a - t ) x 6(a - t ) block tridiagonal matrix 

representing the connectivity of the boundary nodes on the a planes to each 

other. However, during the process of eliminating ~i (j) in Step 2 this 

matrix fills and for our purposes we assume that it becomes dense. 

Lastly, of particular note, ~b is a q x q block tridiagonal matrix of 

the form, 



25 

I R V 

2 V
T 

W W 

• • • W • • • W • • • 
V

T 
W W 
--- - --- -

v I R V I 
I T I 
IV w w I • 

~b 

I w • • I • • • w I I • • 
I • I w w 

I- I -,-- ----
• 

• 
• 

R V 

V
T 

W W 

• • • • 
• II 

V
T • 

• • 
n V R 

where the indicated blocks R, V, and Ware of sizes 
2 2 2 6n x 6n ,6n x 6s, 

and 6s x 6s, respectively. This matrix provides the connectivity of the 

boundary nodes to each other on all n planes after the fill-in from Step 3. 

The bandwidth of ~b is 
2 

6n + 6s and we assume storage is required within 

the E!ntire "band due to the fill·-in caused in Step 3 and the subsequent 

factorizatioIll in Step 5. The storage requirements are summarized in Table 1 

where for simplicity we include only the highest order term. 

If we order the nodes of the original n-cube left to right, front to back, 

bottom to top with no substructuring the resulting matrix denoted by K in 

Table 1, is N x N and will be discussed later. Since t = O(n/d), as n 
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becomes large, the maximum storage required for Algorithm 1 is either 

or 0(36n4d) depending on the value d. Nevertheless, this 

storage will be less than that for K, 0(36n5 ) , whenever d < O(n). Note 

that we do not specify how this data is to be stored or what kind of memory 

system is provided since these decisions should be made at a lower level of 

the virtual machine. Our purpose here is simply to provide the magnitude and 

form of the data. 

7. ANALYSIS OF THE EXAMPLE 

We now summarize the amount of parallel arithmetic and communication, and 

the required number of tasks for the substructuring technique of Algorithm 1 

(using Algorithm 2 for the solution of ~b xb = f b ) and for the traditional 

band solver (also using Algorithm 2). We then give conditions for when one 

technique might be preferred over the other. 

Table 4 summarizes this information where a denotes the amount of 

arithmetic in units of floating point multiplication/addition pairs, c denotes 
. ";:. 

the number of times a bandwidth of numbers are communicated, and t 

represents the number of tasks. 

The number of sequential operations for either method is 0(n 7). 



METHOD 

Substr. 

Banded 

FACTOR 

Kii 
(j) 

7 
a: 108 n7 

d 

c o 

3 
t: d 

FILL-IN 

~b 
(j) 

a: (36)2 

c : 0 

3 
t: d 

Table 4. Operation Counts 

7 n 

d7 

FACTOR 

Kbb 

a: 108n 4d 

2 
c: 54n d 

2 
t: 6n + l2nd 

5 a: 36n 

3 c: l8n 

TOTAL 

2 7 
a: (36) E.... if d<n3/ 8 

d7 

4 108 n d otherwise 

c: 

2 3 
t: 0(6n +6s,d ) 

5 a: 36n 

3 c: l8n 

For simplicity, we have omitted the time required for the forward and backward 

substitutions. If they are done in parallel, both the arithmetic and 

communication complexities are less than that of the factorizations. However, 

for a complete design these must be considered since the type of communication 

required is slightly different than that for factorization and would add more 

operations to the virtual machine. 
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Now, if we let 

C cost of one floating point multiply/add 
a 

C cost of broadcasting or receiving S + 1 floating point numbers, 
c 

the total amount of work, Ws and Wb required by the substructuring and 

banded methods is 

C (108)n4d + C (54)n2d otherwise 
a c 

(5.1) 

C (36)n5 + C (18)n3 
a c 

respectively. 

First, observe from (5.1) that the substructuring technique requires less 

communication than the banded solver if d < n/3. Second, the arithmetic for 

substructuring is also less than that of the banded solver whenever d is in 

the following approximate range. 

(5.2) 

or 

n3/ 8 < d < n/3 (5.3) 

The inequality (5.2) can be satisfied only for n > 280, and if n = 280 the 

underlying problem contains 132 million equations. Since problems of such 

size are beyond serious consideration at this time, we will focus on the 

second inequality. Note that when d satisfies (5.3) the arithmetic and 



communication work increases linearly with d; thus the optimal operation count 

occurB for the smallest d greater than 3/8 n • Some representative values of 

important parameters for substructuring are compared with those for the simple 

banded matrix approach in Table 5. 

n d 

1') ,. Banded 

3 

18 Banded 

3 

2LI Banded 

4 

Table 5. Size of Key Parameters for Typical Problems 

(Entries x 10 6) 

Arithmetic Storage Communications 

Parallel Floating Floating Point (number of 

Point Operations Numbers bandwidths) 

9 9.0 .310 

7 6.2 .023 

68 68.0 .10 

34 30.1 .05 

287 287 .25 

143 109 .12 

Inequality (5.3) can be interpreted as meaning that d must be at least 

o (n2 /7) so that the parallelism at the substructure level overcomes the 

sequential operations within a given substructure, but on the other hand, d 

can not be more than 0 (n/3) so that the work of putting the substructures 

together (solving ~b xb = fb ) is not too large. Note that in the limit as 

d + n, the Bubstructuring technique requires three times more arithmetic and 

three times more communication than does the band solver. This is due to the 

extra fill-in in the matrix ~b that results from the substructure ordering. 
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Of course ~b could be ordered in a variety of ways in order to decouple 

it and to introduce more parallelism. For example, the red/black ordering 

could be applied to the x-y boundary planes. However, an argument similar to 

the one above indicates that this approach will introduce more work as d + n. 

A possible important advantage is that fewer tasks may be required. For 

example, the red/black ordering requires 0 (24nd) tasks rather than the 

o (6n
2 + 12nd) tasks reported in Table 4 for the banded ordering. 

In summary, the substructuring and banded solver techniques have been 

programmed using the data objects, operations, and sequence control mechanisms 

of our virtual machine. If the implementation of this virtual machine on the 

other levels of virtual machine is "free" we cari make the statements below: 

(1) For the range of d in (5.3), the subs truc turing technique is more 

promising than the banded solver technique. 
C 

c 
(2) For both' techniques, as long as C > --2-' the amount of time for 

a 2n 
arithmetic exceeds that for communication. 

We realize that this analysis must be expanded to include costs of the 

lower levels of machine before the best method is really determined. Here, we 

have only attempted to give a flavor of the design process. 

8. CONCLUSIONS 

Many projects are under various stages of development to investigate 

parallel computer architectures. In almost all such efforts the basic 

hardware decisions are fixed at an early stage, long before the software 

organization and external environment have been considered and certainly 

before any application programs have been planned. This approach often leads 

to major difficulties at later stages when the software system must be made 



operational on the fixed hardware. It is also difficult to measure and judge 

the useful computational power of such a design because of the masking effect 

of the layers of software that may be required to make the hardware 

accessible. Typically the realized computational effectiveness is far below 

what was expected based on hardware speeds and compromises must be made in the 

software development that inhibit performance on realistic problems. It is 

hoped that the use of the virtual machine concept will help identify the 

requirement of the users before the hardware is determined. 

Within the framework of finite element analysis we have demonstrated how 

the numerical analyst can use the virtual machine to specify requirements for 

a solution technique based on substructuring. This led to the identification 

of a variety of data types and of operations on those data types. The virtual 

machine also provided a framework in which to study and compare parallel 

computation and communication. This study indicated when substructuring 

compared favorably to the more traditional method. In particular, inequality 

(5.3) showed that adding more substructures beyond a certain number resulted 

in more overall computation due to the added work in computing the boundary 

nodes. Also :In the analysis of the solution for the boundary nodes, it became 

clear that it does not pay to introduce parallelism without understanding its 

ramifications.. In the example studied such parallelism led to more fill-in 

and hence more work. 

It should be noted that we are not suggesting that substructuring is the 

only alternative for this problem. We chose to analyze it as an example 

becausE~ it induces parallelism naturally and is a favorite among structural 

engineE~rs. Other methods, particularly nested dissection, George and Liu 

[1981J:1 with its minimum operation counts, and iterative methods with their 

natural parallelism should be investigated. 
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This paper has focused on the numerical analys t' s virtual machine. We 

feel that the other virtual machines as discussed in Section 4 are equally 

important and we anticipate developing those machines in the near future. 
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