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PREFACE

The real payoff for artificial intelligence (AI) is applications. It is applications that has thrust
Al into prominence and commercialization in the 1980’s. This report presents overviews of key
application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech In-
terfaces, and Problem Solving and Planning. The basic approaches to such systems, the state of
the art, existing systems and future trends and expectations are covered.

It is anticipated that this report will prove useful to engineering and research managers, poten-
tial users and others who will be affected by the rapidly growing area of Al applications.

This report is part of the NBS/NASA series of overviews on Al and Robotics. Due to the scope
of Al, Volume I — Artificial Intelligence — is issued in three parts (this report being Part B):

Part A: The Core Ingredients, NASA TM 85836, June 1983
I. Artificial Intelligence—What It Is
II. The Rise, Fall and Rebirth of Al
III. Basic Elements of Al
1V. Applications
V. The Principal Participants
VI. State-of-the-Art
VII. Towards the Future
Sources for Further Information
Glossary

Part B: Applications, NASA TM 85838, Sept. 1983
I. Expert Systems
II. Computer Vision
II1. Natural Language Processing
IV. Speech Recognition and Speech Understanding
V. Speech Synthesis
VI. Problem-Solving and Planning

Part C: Basic Al Topics, NASA TM 85839, Oct. 1983
1. Artificial Intelligence and Automation
II. Search-Oriented Automated Problem Solving and Planning
III. Knowledge Representation
IV. Computational Logic

iii
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FOREWORD

The opening of the decade of the 80’s saw Artificial Intelligence (Al) transition from a primar-
ily research topic to commercial applications. The full impact of this transition has yet to be felt.

Al has been designated by the U.S. Defense Science Board as one of the top 10 major payoff
areas for the military. It has been made the core ingredient of Japan’s Fifth Generation computer
research project by which they seek to catapult Japan into the dominant information society in
the 1990’s. Similar importance has been attached to Al in the U.S., Great Britain and France.

This report summarizes the key Al application areas of Expert Systems, Computer Vision,
Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. More
detailed information can be found in the following documents available from the National
Technical Information Service (NTIS), Springfield, VA 22161.

An Overview of Expert Systems, NBSIR 2505
May 1982 (Revised October 1982)

An Overview of Computer Vision, NBSIR 2582
September 1982

An Overview of Natural Language Processing
NBSIR 83-2687, April 1983
NASA TM 85635, April 1983

Two emerging Al topics — Automatic Programming, and Machine Learning — are not treated
separately in this report but are included under Expert Systems.
This document is Part B of the three part report:

An Overview of Artificial Intelligence and Robotics
Volume I — Artificial Intelligence

Part A — The Core Ingredients, NASA TM 85836, June 1983
Part B — Applications, NASA TM 85838, Sept. 1983
Part C — Basic AI Topics, NASA TM 85839, Oct. 1983

The important Al application areas of robotics and automated manufacturing are treated in
An Overview of Artificial Intelligence and Robotics
Volume II — Robotics, NBSIR 82-2479, March 1982.

xi






I. EXPERT SYSTEMS

A. Introduction

Expert Systems is probably the ‘‘hottest’’ topic in Artificial Intelligence (AI) today. Prior to the
last decade, in trying to find solutions to problems, Al researchers tended to rely on non-
knowledge-guided search techniques or computational logic. These techniques were successfully
used to solve elementary problems or very well structured problems such as games. However, real
complex problems are prone to have the characteristics that their search space tends to expand ex-
ponentially with the number of parameters involved. For such problems, these older techniques
have generally proved to be inadequate and a new approach was needed. This new approach em-
phasized knowledge rather than search and has led to the field of Knowledge Engineering and Ex-
pert Systems. The resultant expert systems technology, limited to academic laboratories in the
70’s, is now becoming cost-effective and is beginning to enter into commercial applications.

B. What is an Expert System?
Feigenbaum, a pioneer in expert systems, (1982, p.1) states:

An “‘expert system’’ is an intelligent computer program that uses knowledge and inference procedures to solve
problems that are difficult enough to require significant human expertise for their solution. The knowledge
necessary to perform at such a level, plus the inference procedures used, can be thought of as a model of the
expertise of the best practitioners of the field.

The knowledge of an expert system consists of facts and heuristics. The *‘facts” constitute a body of information
that is widely shared, publicly available, and generally agreed upon by experts in a field. The “‘heuristics’’ are
mostly private, little-discussed rules of good judgement (rules of plausible reasoning, rules of good guessing) that
characterize expert-level decision making in the field. The performance level of an expert system is primarily a
function of the size and quality of the knowledge base that it possesses.

It has become fashionable today to characterize any large, complex Al system that uses large
bodies of domain knowledge as an expert system. Thus, nearly all Al applications to real-world
problems can be considered in this category, though the designation ‘‘knowledge-based systems”’
is more appropriate.

C. The Basic Structure of an Expert System

An expert system consists of:

(1) a knowledge base (or knowledge source) of domain facts and heuristics associated with the
problem;

(2) an inference procedure (or control structure) for utilizing the knowledge base in the solu-
tion of the problem;

(3) aworking memory — ‘‘global data base’” — for keeping track of the problem status, the in-
put data for the particular problem, and the relevant history of what has thus far been
done.



A human ‘‘domain expert’’ usually collaborates to help develop the knowledge base. Once the
system has been developed, in addition to solving problems, it can also be used to help instruct
others in developing their own expertise.

It is desirable, though not yet common, to have a user-friendly natural language interface to
facilitate the use of the system in all three modes: development, problem solving, instruction. In
some sophisticated systems, an explanation module is also included, allowing the user to chal-
lenge and examine the reasoning process underlying the system’s answers. Figure I-1 is a diagram
of an idealized expert system. When the domain knowledge is stored as production rules, the
knowledge base is often referred to as the ‘‘rule base,’”’ and the inference engine as the ‘‘rule

interpreter.”’
An expert system differs from more conventional computer programs in several important
respects. Duda (1981, p. 242) observes that, in an expert system ‘. . . there is a clear separation of

general knowledge about the problem (the rules forming a knowledge base) from information
about the current problem (the input data) and the methods for applying the general knowledge
to the problem (the rule interpreter).’’ In a conventional computer program, knowledge pertinent
to the problem and methods for utilizing this knowledge are all intermixed, so that it is difficult to
change the program. In an expert system, ‘“. . . the program itself is only an interpreter (or

USER

NATURAL LANGUAGE INTERFACE

!

CONTROL
STRUCTURE

— g —————————

(RULE INTERPRETER)

Y Y

KNOWLEDGE
BASE GLOBAL
< > DATA INPUT
DATA
¢ KNOWLEDGE RULES BASE
* INFERENCE RULES
(KNOWLEDGE SOURCE) (SYSTEM STATUS)

Figure I-1. Basic Structure of an Expert System.



general reasoning mechanism) and (ideally) the system can be changed by simply adding or
subtracting rules in the knowledge base.”

D. The Knowledge Base

The most popular approach to representing the domain knowledge (both facts and heuristics)
needed for an expert system is by production rules (also referred to as “‘SITUATION-ACTION
rules”’ or “‘IF-THEN rules’’).* Thus, often a knowledge base is made up mostly of rules which are
invoked by pattern matching with features of the task environment as they currently appear in the
global data base.

E. The Control Structure

In an expert system a problem-solving paradigm must be chosen to organize and control the
steps taken to solve the problem. A common, but powerful approach involves the chaining of IF-
THEN rules to form a line of reasoning. The rules are actuated by patterns (which, depending on
the strategy, match either the IF or the THEN side of the rules) in the global data base. The ap-
plication of the rule changes the system status and therefore the data base, enabling some rules
and disabling others. The rule interpreter uses a control strategy for finding the enabled rules and
for deciding which of the enabled rules to apply. The basic control strategies used may be top-
down (goal driven), bottom-up (data driven), or a combination of the two that uses a relaxation-
like convergence process to join these opposite lines of reasoning together at some intermediate
point to yield a problem solution. However, virtually all the heuristic search and problem solving
techniques that the Al community has devised have appeared in the various expert systems.

F. Uses of Expert Systems
The uses of expert systems are virtually limitless. They can be used to: diagnose, repair,
monitor, analyse, interpret, consult, plan, design, instruct, explain, learn, and conceptualize.

G. Architecture of Expert Systems

One way to classify expert systems is by function (e.g. diagnosis, planning, etc). However,
examination of existing expert systems indicates that there is little commonality in detailed system
architecture that can be detected from this classification. A more fruitful approach appears to be
to look at problem complexity and problem structure and deduce what data and control struc-
tures might be appropriate to handle these factors.

The Knowledge Engineering community has evolved a number of techniques (presented in the
excellent tutorial by Stefik et al. (1982) and summarized in Gevarter (1982)) which can be utilized
in devising suitable expert system architectures.

The use of these techniques in four existing expert systems is illustrated in Table I-1-1 thru
1-1-4. Table I-1-1 thru I-1-4 outlines the basic approach taken by each of these expert systems and

*Not all expert systems are rule-based. The network-based expert systems MACSYMA, INTERNIST/CADUCEUS,
Digitalis Therapy Advisor, HARPY and PROSPECTOR are examples which are not. Buchanan and Duda (1982) state
that the basic requirements in the choice of an expert system knowledge representation scheme are extendibility,
simplicity and explicitness. Thus, rule-based systems are particularly attractive.



TABLE I-1-1. Characteristics of Example Expert Systems.

SYSTEM: DENDRAL
INSTITUTION: Stanford University
AUTHORS: Feigenbaum & Lederberg
FUNCTION: Data Interpretation
Key Elements of
Knowledge Global Data Control

Purpose Approach Base Base Structure
Generate 1. Derive constraints from the data. Rules for deriving Mass spectrogram data Forward chaining
plausible constraints on molec-
structural 2. Generate candidate structures. ular structure from Constraints Plan, generate and
representations experimental data test.

of organic mol-
ecules from mass
spectrogram
data

3. Predict mass spectrographs for
candidates.

4. Compare with data.

Candidate structures
Procedure for generat-
ing candidate struc-
tures to satisfy con-
straints

Rules for predicting
spectrographs from
structures




TABLE I-1-2. Characteristics of Example Expert Systems.

SYSTEM: AM
INSTITUTION: Stanford University
AUTHORS: Lenat

FUNCTION: Concept Formation

Key Elements of

Knowledge Global Data Control
Purpose Approach Base Base Structure
Discovery of Start with elementary ideas in set Elementary ideas in Plausible candidate Plan, generate, and
mathematical theory. finite set theory. concepts. test.
concepts
Search a space of possible conjectures Heuristics for generat-
that can be generated from these ing new mathematical
elementary ideas. concepts by modifying
and combining elemen-
tary ideas.
Choose the most interesting conjectures Heuristics of ‘‘interest-
and pursue that line of reasoning. ingness”’ for discarding
bad ideas.




TABLE I-1-3. Characteristics of Example Expert Systems.

SYSTEM: RI
INSTITUTION: CMU
AUTHORS: McDermott
FUNCTION: Design
Key Elements of
Knowledge Global Data Control

Purpose Approach Base Base Structure

Configure VAX | Break problem up into the following Properties of (roughly Customer order. “MATCH”’

computer sys-
tems (from a
customer’s
order of
components).

ordered subtasks:

1.

2.

3.

5.

6.

Correct mistakes in order.
Put components into CPU cabinets.

Put boxes into unibus cabinets and
put components in boxes.

. Put panels in unibus cabinets.

Lay out system on floor.

Do the cabling.

Solve each subtask and move on to the
next one in the fixed order.

500) VAX components.

Current task.
Rules for determining
when to move to next Partial configuration
subtask based on (System state).
system state.

Rules for carrying out
subtasks (to extend
partial configuration).

(Approximately 1200
rules total)

(data driven)
(no backtracking)




SYSTEM:
INSTITUTION:
AUTHORS:
FUNCTION:

Purpose

TABLE I-1-4.

MYCIN

Stanford University
Shortliffe

Diagnosis

Approach

Characteristics of Example Expert Systems.

Key Elements of

Knowledge
Base

Global Data
Base

Control
Structure

Diagnosis of
bacterial
infections and
recommendations
for antibiotic
therapy.

Represent expert judgmental reasoning
as condition-conclusion rules together
with the expert’s ‘‘certainty’’ estimate
for each rule.

Chain backwards from hypothesized
diagnoses to see if the evidence
supports it.

Exhaustively evaluate all hypotheses.

Match treatments to all diagnoses which
have high certainty values.

Rules linking patient
data to infection
hypotheses.

Rules for combining
certainty factors.

Rules for treatment.

Patient history and
diagnostic tests.

Current hypothesis.
Status.

Conclusions reached
thus, far, and rule

numbers justifying
them.

Backward chaining
thru the rules.

Exhaustive search.




shows how the approach translates into key elements of the Knowledge Base, Global Data Base
and Control Structure. An indication of the basic control structures of the systems in Table I-1-1
thru I-1-4, and some of the other well known expert systems, is given in Table I-2.

Table I-2 represents expert system control structures in terms of the search direction, the con-
trol techniques utilized, and the search space transformations employed. The approaches used in
the various expert systems are different implementations of two basic ideas for overcoming the
combinatorial explosion associated with search in real complex problems. These two ideas are:

(1) Find ways to efficiently search a space,

(2) Find ways to transform a large search space into smaller manageable chunks that can be

searched efficiently.

It will be observed from Table I-2 that there is little architectural commonality based either on
function or domain of expertise. Instead, expert system design may best be considered as an art
form, like custom home architecture, in which the chosen design can be implemented from the
collection of available Al techniques in heuristic search and problem solving.

In addition to the techniques indicated in Table I-2, also emerging are distributed knowledge
and problem solving approaches exemplified by the MDX expert system (Chandrasekaran, 1983)
and the object-oriented programming language, LOOPS (Stefik et al., 1983).

H. Existing Expert Systems

Table I-3 is a list, classified by function and domain of use, of most of the existing major expert
systems. It will be observed that there is a predominance of systems in the Medical and Chemistry
domains following from the pioneering efforts at Stanford University. From the list, it is also ap-
parent that Stanford University dominates in number of systems, followed by M.I.T., CMU,
BBN and SRI, with several dozen scattered efforts elsewhere.

The list indicates that thus far the major areas of expert systems development have been in
diagnosis, data analysis and interpretation, planning, computer-aided instruction, analysis, and
automatic programming. However, the list also indicates that a number of pioneering expert
systems already exist in quite a number of other functional areas. In addition, a substantial effort
is under way to build expert systems as tools for constructing expert systems.

I. Constructing an Expert System
Duda (1981, p. 262) states that to construct a successful expert system, the following prere-
quisites must be met:
¢ there must be at least one human expert acknowledged to perform the task well.
* the primary source of the expert’s exceptional performance must be special knowledge,
judgment, and experience.
e the expert must be able to explain the special knowledge and experience and the methods
used to apply them to particular problems.
¢ the task must have a well-bounded domain of application.
Using present techniques and programming tools, the effort required to develop an expert
system appears to be converging towards five man-years, with most endeavors employing two to
five people in the construction.



TABLE I-2. Control Structures of Some Well Known Expert Systems.
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System Function Domain
MYCIN Diagnosis Medicine X X
DENDRAL Data Interpr. Chemistry X X
EL Analysis Elec. Circuits X x| x
GUIDON C.A.L Medicine X
KAS Knowl. Acquis. Geology X b
META-DENDRAL | Learning Chemistry X X
AM Concept Formation | Math X X
VM Monitoring Medicine x| x
GAl Data Interpr. Chemistry X X
R1 Design Computers X X X
ABSTRIPS Planning Robots X X
NOAH Planning Robots X X X
MOLGEN Design Genetics X X[ x| x x| x X
SYN Design Elec. Circuits X X
HEARSAY II Signal Interpr. Speech Unders. X x| x X
HARPY Signal Interpr. Speech Unders. X X
CRYSALIS Data Interpr. Crystallography X X X
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Function

Diagnosis

Data Analysis
and Interpretation

Analysis

Design

TABLE I-3. Existing Expert Systems by Function.

Domain

Medicine
Medicine
Medicine
Medicine
Medicine
Medicine
Computer Faults
Computer Faults
Nuclear Reactor Accidents

Geology

Chemistry

Chemistry

Geology
Protein Crystallography
Determination of Causal Relationships in Medicine
Determination of Causal Relationships in Medicine
Oil Well Logs

Electrical Circuits
Symbolic Mathematics
Mechanics Problems
Naval Task Force Threat Analysis
Earthquake Damage Assessment
for Structures
Digital Circuits

Computer System Configurations
Circuit Synthesis
Chemical Synthesis

System*

PIP
CASNET

INTERNIST/CADUCEUS

MYCIN
PUFF
MDX
DART

IDT
REACTOR

DIPMETER ADVISOR

DENDRAL
GAl

PROSPECTOR

CRYSALIS
RX
ABEL
ELAS

EL
MACSYMA
MECHO
TECH
SPERIL

CRITTER
R1/XCON

SYN
SYNCHEM

Institution

M.L.T.
Rutgers U.

U. of Pittsburgh
Stanford U.
Stanford U.

Ohio State U.
Stanford U./IBM
DEC
E G & G Idaho Inc.

M.1L.T./Schlumberger
Stanford U.
Stanford U.

SRI
Stanford U.
Stanford U.

M.I.T.
AMOCO

M.L.T.
M.L.T.
Edinburgh
Rand/NOSC
Purdue U.

Rutgers U.
C.M.U./DEC

M.L.T.
SUNY Stonybrook

*References to these systems can be found in Duda (1981), Stefik, et al. (1982), Buchanan (1981), Buchanan and Duda
(1982), Barr and Feigenbaum (1982), 1JCAI-81, and AAAI-82.
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Function

Planning

Learning from
Experience

Concept Formation

Signal Interpretation

Monitoring

Use Advisor

Computer Aided
Instruction

TABLE I-3. Existing Expert Systems by Function. (cont.)

Domain

Chemical Synthesis
Robotics
Robotics

Planetary Flybys
Errand Planning
Molecular Genetics
Mission Planning
Job Shop Scheduling
Design of Molecular Genetics Experiments

Medical Diagnosis

Naval Aircraft Ops

Tactical Targeting

Chemistry
Heuristics

Mathematics

Speech Understanding
Speech Understanding
Machine Acoustics
Ocean Surveillance
Sensors On Board Naval Vessels
Medicine—Left Ventrical Performance
Military Situation Determination

Patient Respiration

Structural Analysis
Computer Program

Electronic Troubleshooting
Medical Diagnosis
Mathematics
Steam Propulsion Plant Operation
Diagnostic Skills
Causes of Rainfall
Coaching of a Game
Coaching of a Game

System*

SECHS
NOAH
ABSTRIPS
DEVISER
OP-PLANNER
MOLGEN
KNOBS
ISIS-1I
SPEX
HODGKINS
AIRPLAN
TATR

METADENDRAL
EURISKO

AM

HEARSAY II
HARPY
Su/X
HASP
STAMMER-2
ALVEN
ANALYST

VM
SACON

SOPHIE
GUIDON
EXCHECK
STEAMER
BUGGY
WHY
WEST
WUMPUS
SCHOLAR

Institution

U. of Cal. Santa Cruz
SRI
SRI
JPL
Rand

Stanford U.
MITRE
CMU
Stanford U.
M.L.T.
CMU
RAND

Stanford U.
Stanford U.

CMU

CMU
CMU
Stanford U.
System Controls Inc.
NOSC, San Diego/SDC
U. of Toronto
MITRE

Stanford U.
Stanford U.

B.B.N.
Stanford U.
Stanford U.

BBN
BBN
BBN
BBN

M.1.T.

BBN
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TABLE I-3. Existing Expert Systems by Function. (cont.)

Function Domain

Medical Diagnosis
Medical Consultation
Geology

Knowledge
Acquisition

Expert System
Construction

Medical Diagnosis
Medical Consultation
Electronic Systems Diagnosis
Medical Consultation Using Time-Oriented Data

Consultation/Intelligent Battlefield Weapons Assignments
Assistant Medicine
Radiology
Computer Sales
Medical Treatment
Nuclear Power Plants

Diagnostic Prompting in Medicine

Automated Factory
Project Management

Management

Automatic Programming Modelling of Oil Well Logs

Image Understanding

System*

TEIRESIAS
EXPERT
KAS

ROSIE
AGE
HEARSAY III
EMYCIN
OPS 5
RAINBOW
KMS
EXPERT
ARBY
MECS-AI

BATTLE
Digitalis Therapy Advisor
RAYDEX
XCEL
ONCOCIN
CSA Model-Based Nuclear
Power Plant Consultant
RECONSIDER

IMS
CALLISTO

INIX
CHI
PECOS
LIBRA
SAFE
DEDALUS
Programmer’s Apprentice

VISIONS
ACRONYM

Institution

Stanford U.
Rutgers
SRI

Rand
Stanford U.
USC/ISI
Stanford U.
CMU
IBM
U. of MD
Rutgers
Smart Sys. Tech.
Tokyo U.

NRL Al Lab
M.L.T.
Rutgers U.
CMU/DEC
Stanford U.
GA Tech

U. of CA, S.F.

CMU
DEC

Schlumberger-Doll Res.

Kestrel Inst.
Stanford U.
Stanford U.
USC/ISI
SRI
M.LT.

U. of Mass.
Stanford U.



J. Summary of the State-of-the-Art

Buchanan (1981, pp. 6-7) indicates that the current state of the art in expert systems is
characterized by:

e Narrow domain of expertise

Because of the difficulty in building and maintaining a large knowledge base, the typical do-
main of expertise is narrow. The principal exception is INTERNIST, for which the knowledge
base covers 500 disease diagnoses. However, this broad coverage is achieved by using a relatively
shallow set of relationships between diseases and associated symptoms. (INTERNIST is now be-
ing replaced by CADUCEUS, which uses causal relationships to help diagnose simultaneous
unrelated diseases.)

o Limited knowledge representation languages for facts and relations
e Relatively inflexible and stylized input-output languages
e Stylized and limited explanations by the systems

® Laborious construction

At present, it requires a knowledge engineer to work with a human expert to laboriously extract
and structure the information to build the knowledge base. However, once the basic system has
been built, in a few cases it has been possible to write knowledge acquisition systems to help ex-
tend the knowledge base by direct interaction with a human expert, without the aid of a
knowledge engineer.

e Single expert as a “‘knowledge czar.”’

We are currently limited in our ability to maintain consistency among overlapping items in the
knowledge base. Therefore, though it is desirable for several experts to contribute, one expert
must maintain control to insure the quality of the data base.

* Fragile behavior

In addition, most systems exhibit fragile behavior at the boundaries of their capabilities. Thus,
even some of the best systems come up with wrong answers for problems just outside their do-
main of coverage. Even within their domain, systems can be misled by complex or unusual cases,
or for cases for which they do not yet have the needed knowledge or for which even the human ex-
perts have difficulty. '

® Requires Knowledge Engineer to Operate

Another limitation is that for most current systems only their builders or other knowledge
engineers can successfully operate them - a friendly interface not having yet been constructed.
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Nevertheless, Randy Davis (1982) observes that there have been notable successes. A
methodology has been developed for explicating informal knowledge. Representing and using
empirical associations, five systems have been routinely solving difficult problems — DENDRAL,
MACSYMA, MOLGEN, R1 and PUFF — and are in regular use. The first three all have serious
users who are only loosely coupled to the system designers. DENDRAL, which analyzes chemical
instrument data to determine the underlying molecular structure, has been the most widely used
program (see Lindsay et al., 1980). R1, which is used to configure VAX computer systems, has
been reported to be saving DEC twenty million dollars per year, and is now being followed up
with XCON. In addition, as indicated in Table I-3, dozens of systems have been constructed and
are being experimented with.

K. Future Trends

Figure I-2 lists some of the expert systems applications currently under development.

It will be observed that there appear to be few domain or functional limitations in the ultimate
use of expert systems. However, the nature of expert systems is changing. The limitations of rule-
based systems are becoming apparent. Not all knowledge can be readily structured in the form of
empirical associations. Empirical associations tend to hide causal relations (present only implicit-
ly in such associations). Empirical associations are also inappropriate for highlighting structure
and function.

Thus, the newer expert systems are adding deep knowledge having to do with causality and
structure. These systems will be less fragile, thereby holding the promise of yielding correct
answers often enough to be considered for use in autonomous systems, not just as intelligent
assistants.

The other change is a trend towards an increasing number of non-rule based systems. These
systems, utilizing semantic networks, frames and other knowledge representations, are often bet-
ter suited for causal modeling and representing structure. They also tend to simplify the reasoning
required by providing knowledge representations more appropriate for the specific problem
domain.

* Medical diagnosis and prescription * Air traffic control
¢ Medical knowledge automation ¢ Circuit diagnosis
* Chemical data interpretation ¢ VLSI design
¢ Chemical and biological synthesis * Equipment fault diagnosis
* Mineral and oil exploration ¢ Computer configuration selection
* Planning/scheduling ¢ Speech understanding
¢ Signal interpretation ¢ Intelligent Computer-Aided Instruction
e Signal fusion—situation interpretation * Automatic Programming
from multiple sensors ¢ Intelligent knowledge base access and
e Military threat assessment management
e Tactical targeting ¢ Tools for building expert systems

Space defense

Figure I-2. Expert System Applications Now Under Development.

14



Figure I-3 (based largely on Hayes-Roth IJCAI-81 Expert system tutorial and on Feigenbaum,
1982) indicates some of the future opportunities for expert systems. Again no limitation is
apparent.

It thus appears that expert systems will eventually find use in most endeavors which require
symbolic reasoning with detailed professional knowledge — which includes much of the world’s
work. In the process, there will be exposure and refinement of the previously private knowledge
in the various fields of applications.

On a more near-term scale, in the next few years we can expect to see expert systems with
thousands of rules. In addition to the increasing number of rule-based systems we can also expect
to see an increasing number of non-rule based systems. Also anticipated are much improved ex-

Building and Construction _
Design, planning, scheduling, control
e Equipment
Design, monitoring, control, diagnosis, maintenance, repair, instruction.
Command and Control
Intelligence analysis, planning, targeting, communication
Weapon Systems
Target identification, adaptive control, electronic warfare
Professions
(Medicine, law, accounting, management, real estate, financial, engineering)

Consulting, instruction, analysis
Education
Instruction, testing, diagnosis, concept formation and new knowledge development from
experience.
* Imagery
Photo interpretation, mapping, geographic problem-solving.
Software
Instruction, specification, design, production, verification, maintenance
Home Entertainment and Advice-giving
Intelligent games, investment and finances, purchasing, shopping, intelligent information
retrieval
Intelligent Agents
To assist in the use of computer-based systems
Office Automation
Intelligent systems
Process Control

Factory and plant automation
Exploration
Space, prospecting, etc.

Figure I-3. Future Opportunities for Expert Systems.
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planation systems that can explain (make ‘‘transparent’’) why an expert system did what it did
and what things are of importance.

By the late 80’s, we can expect to see intelligent, friendly and robust human interfaces and
much better system building tools.

Somewhere around the year 2000, we can expect to see the beginnings of systems which semi-
autonomously develop knowledge bases from text. The result of these developments may very
well herald a maturing information society where expert systems put experts at everyone’s
disposal. In the process, production and information costs should greatly diminish, opening up
major new opportunities for societal betterment.
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II. COMPUTER VISION

A. Introduction

Computer Vision — visual perception employing computers — shares with ‘‘Expert Systems”’
the role of being one of the most popular topics in Artificial Intelligence today. The computer
vision field is multifaceted, having many participants with diverse viewpoints, with many papers
having been written. However, the field is still in the early stages of development — organizing
principles have not yet fully crystalized, and the associated technology has not yet been complete-
ly rationalized. However, commercial vision systems have already begun to be used in manufac-
turing and robotic systems for inspection and guidance tasks, and other systems (at various stages
of development) are beginning to be employed in military, cartographic and image interpretation
applications.

B. Definition
Computer (computational or machine) vision can be defined as perception by a computer
based on visual sensory input. Barrow and Tenenbaum (1981, p. 573) state:

Vision is an information-processing task with well-defined input and output. The input consists of arrays of
brightness values, representing projections of a three-dimensional scene recorded by a camera or comparable
imaging device. Several input arrays may provide information in several spectral bands (color) or from multiple
viewpoints (stereo or time sequence). The desired output is a concise description of the three-dimensional scene
depicted in the image, the exact nature of which depends upon the goals and expectations of the observer. It
generally involves a description of objects and their interrelationships, but may also include such information as
the three-dimensional structures of surfaces, their physical characteristics (shape, texture, color, material), and
the locations of shadows and light sources . . .

C. Relation to Human Vision

MIT’s Marr and Nishihara (1978, p. 42) take the view that ‘‘Artificial Intelligence is (or ought
to be) the study of information processing problems that characteristically have their roots in
some aspects of biological information processing.’” They developed a computational theory of
vision based on their study of human vision. Figure II-1 represents the transition from the raw im-
age through the primal sketch to the 2-1/2D sketch (exemplified by Figure 11-2), which contains
information on local surface orientations, boundaries, and depths.

The primal sketch, reminiscent of an artist’s hurried drawing, is a primitive but rich description
of the way the intensities change over the visual field. It can be represented by a set of short line
segments separating regions of different brightnesses. A list of the properties of the lines
segments, such as location, length, and orientation for each segment can be used to represent the
primal sketch.

The late Dr. Marr and his associates’ development of a human visual information processing
theory (Marr, 1982) has had a substantial impact on computational vision.

There are strong indications (see, e.g., Gevarter, 1977) that the interpretative planning areas of
the human brain set up a context for processing the input data. (This viewpoint is captured by
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The computations begin with representations of the intensities in an image —first the image itself,
{e.g., the gray-level intensity array) and then the primal sketch, a representation of spatial variations
in intensity. Next comes the operation of a set of modules, each employing certain aspects of the
information contained in the image to derive information about local orientation, local depth, and
the boundaries of surfaces. From this is constructed the so-called 2-1/2 dimensional sketch. Note
that no “high-level” information is yet brought to bear: the computations proceed by utilizing only
what is available in the image itself.

After: Marr and Nishihara, 1978, p. 42.

Figure II-1. A Framework for Early and Intermediate States in A Theory of Visual Information
Processing.
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A candidate for the so-called 2- ¥z -dimensional sketch, which encompasses local determinations of
the depth and orientation of surfaces in an image, as derived from processes that operate upon the
primal sketch or some other representation of changes in gray-level intensity. The lengths of the
needles represent the degree of tilt at various points in the surface; the orientations of the needles
represent the directions of tilt. . . Dotted lines show contours of surface discontinuity. No explicit
representation of depth appears in this figure.

Source: Marr and Nishihara, 1978, p. 41.

Figure II-2. An Example of a 2-1/2D Sketch.

Minsky’s (1975) Al “‘frame’’ concept for knowledge representation.) The brain then uses visual
and other cues fromthe environment to draw in past knowledge to generate an internal represen-
tation and interpretation of the scene. This knowledge-based expectation-guided approach to
vision is now appearing in advanced AI computer vision systems.

D. Basis for a General Purpose Image Understanding System

Barrow and Tenenbaum (1981, p. 573) observe that in going from a scene to an image (an array
of brightness values) that the image encodes much information about the scene, but the informa-
tion is confounded in the single brightness value at each point. In projecting onto the two-
dimensional image, information about the three-dimensional structure of the scene is lost. In
order to decode brightness values and recover a scene description, it is necessary to employ a
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priori knowledge embodied in models of the scene domain, the illumination, and the imaging
process.

As indicated by Figure 11-3, computer vision is an active process that uses these models to inter-
pret the sensory data. To accommodate the diversity of appearance found in real imagery, a high-
performance, general-purpose system must embody a great deal of knowledge in its models.

’ N

WORLD

IMAGE

FORMATION PHYSICS

IMAGE

MODELS OF
IMAGE WORLD,
INTERPRETATION PHYSICS,

IMAGE
FORMATION

DESCRIPTION ‘@

Source: Barrow and Tenenbaum, 1981, p. 573.

SCENE @

Figure I1I-3. Model-based Interpretation of Images.
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E. Basic Paradigms for Computer Vision*

In broad terms, an image understanding system starts with the array of pixel amplitudes that
define the computer image, and using stored models (either specific or generic) determines the
content of a scene. Typically, various symbolic features such as lines and areas are first deter-
mined from the image. These are then compared with similar features associated with stored
models to find a match, when specific objects are being sought. In more generic cases, it is
necessary to determine various characteristics of the scene, and using generic models determine
from geometric shapes and other factors (such as allowable relationships between objects) the
nature of the scene content.

A variety of paradigms have been proposed to accomplish these tasks in image understanding
systems. These paradigms are based on a common set of broadly defined processing and
manipulating elements: feature extraction, symbolic representation, and semantic interpretation.
The paradigms differ primarily in how these elements (defined below) are organized and con-
trolled, and the degree of artificial intelligence and knowledge employed.

1. Hierarchical Bottom-up Approach

Figure 11-4A is a block diagram of a hierarchical paradigm of an image understanding system
that employs a bottom-up processing approach. The hierarchical bottom-up approach can be
developed successfully for domains with simple scenes made up of only a limited number of
previously known objects.

2. Hierarchical Top-down Approach

This approach (usually called hypothesize and test), shown in Figure 1I-4B, is goal directed, the
interpretation stage being guided in its analysis by trial or test descriptions of a scene. An example
would be using template matching — matched filtering — to search for a specific object or struc-
ture within the scene. Matched filtering is normally performed at the pixel level by cross correla-
tion of an object template with an observed image field. It is often computationally advan-
tageous, because of the reduced dimensionality, to perform the interpretation at a higher level in
the chain by correlating image features or symbols rather than pixels.

3. Heterarchical Approach

Hierarchical image understanding systems are normally designed for specific applications.
They thus tend to lack adaptability. A large amount of processing is also usually required. Pratt
(1978) (pp. 572-573) observes that often much of this processing is wasted in the generation of
features and symbols not required for the analysis of a particular scene. A technique to avoid this
problem is to establish a central monitor to observe the overall performance of the image
understanding system and then issue commands to the various system elements to modify their
operation to maximize system performance and efficiency.

Figure 11-4C is a block diagram of an image understanding system that achieves heterarchical
operation by distributed feedback control.

*This section is primarily based on Pratt, 1978, pp. 570-574.
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Figure II-4. Basic Image Understanding Paradigms.

SEMANTIC
INTERPRETATION

DATA
STORAGE

22

SYMBOLIC
REPRESENTATION




4. Blackboard Approach

Another image understanding system configuration called the blackboard model has been pro-
posed by Reddy and Newell (1975). Figure I11-4D is a simplified representation of this approach in
which the various system elements communicate with each other via a common working data
storage called the blackboard. Whenever any element performs a task, its output is put into the
common data storage, which is independently accessible by all other elements. The individual
elements can be designed to act autonomously to further the common system goal as required.
The blackboard system is particularly attractive in cases where several hypotheses must be con-
sidered simultaneously and their components need to be kept track of at various levels of
representation.

F. Levels of Representation

A computer vision system, like human vision is, commonly considered to be naturally struc-
tured as a succession of levels of representation.

Tenenbaum, et al. (1979, pp. 254-255), sketch in Figure II-5, a way in which to view an
organization of a general-purpose vision system. They divide the figure into two parts. The first is

LOW LEVEL SENSOR
ICONIC
DOMAIN INDEPENDENT
DATA DRIVEN
INTENSITY
IMAGE

;

IMAGE FEATURES |
(EDGES, REGIONS)

- b

INSTRINSIC IMAGES
(DISTANCE, ORIENTATION, REFLECTANCE,. . .)

S A e

HIGH LEVEL
SEGMENTATION
SYMBOLIC
DOMAIN SPECIFIC
GOAL DRIVEN

INTERPRETATION

v

Figure II-5. Organization of a Visual System.

Source: Tenenbaum et al., 1979, p. 255.
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image oriented (iconic), domain independent, and based on the image data (data driven). The
second part of the figure is symbolic, dependent on the domain and the particular goal of the
vision process.

The first portion takes the image, which consists of an intensity array of picture elements (*‘pix-
els,” e.g., 1000 x 1000), and converts it into image features such as edges and regions. These are
then converted into a set of parallel ‘‘intrinsic images,”’ one each for distance (range), surface
orientation, reflectance,* etc.

The second part of the system segments these into volumes and surfaces dependent on our
knowledge of the domain and the goal of the computation. Using domain knowledge and the
constraints associated with the relations among objects in this domain, objects are identified and
the scene analyzed consistent with the system goal.

G. Research in Model-Based Vision Systems

Most research efforts in vision have been directed at exploring various aspects of vision, or
toward generating particular processing modules for a step in the vision process rather than in
devising general purpose vision systems. However, there are currently two major U.S. efforts in
general purpose vision systems. The ACRONYM system at Stanford University under the leader-
ship of T. Binford, and the VISIONS system at the University of Massachusetts at Amherst under
A. Hanson and E. Riseman.

The ACRONYM system, outlined in Table II-1-1, is designed to be a general purpose, model-
based system that does its major reasoning at the level of volumes rather than images. The system
basically takes a hierarchical top-down approach as in Figure II-4B. ACRONYM has four essen-
tial parts: modeling, prediction, description and interpretation. The user provides ACRONYM
with models of objects (modeled in terms of volume primitives called generalized cones) and their
spatial relationships; as well as generic models and their subclass relationships. These are both
stored in graph form. The program automatically predicts which image features to expect.
Description is a bottom-up process that generates a model-independent description of the image.
Interpretation relates this description to the prediction to produce a three-dimensional under-
standing of the scene.

The VISIONS system outlined in Table II-1-2, can be considered to be a working tool to test
various image understanding modules and approaches. Rather than using specific models, its
high level knowledge is in the form of framelike ‘‘schemas’’ which represent expectations and ex-
pected relationships in particular scene situations. VISIONS is based on monocular images and
does its reasoning at the ievel of images rather than volumes.

Other research efforts in model-based vision systems are summarized in TABLES 111 in Appen-
dix I of Gevarter (1982A). All the research computer vision systems are individually crafted by the
developers — reflecting the developers’ backgrounds, interests and domain requirements. All, ex-
cept ACRONYM (and to an extent, 3-D Mosaic, Kanade, 1981), use image (2-D) models and are
viewpoint dependent. Models are mostly described by semantic networks though feature vectors
are also utilized. The systems, capitalizing on their choice to limit their observations to only a few

*Fraction of normal incident illumination reflected.
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TABLE II-1-1. Model-Based Vision Systems.

Developer: Brooks et al. (1979), Brooks (1981)
System: ACRONYM
Purpose: General Purpose Vision System

Example Domains: Identifying Airplanes on a Runway in Aerial Images
Simulation for Robot Systems and for Automated Grasping of Objects

Image Feature
Approach Modeling Extraction & Representation

Hierarchical top down appoach. Represents object classes Ribbons and curves obtained
from which subclasses  from an edge mapper.
Reasons between different levels of  and specific objects are
representation based on a hierarchy represented by numeric Surfaces obtained from a

of representations. constraints. stereo mapper.

High level modeler provides a high ~ Models 3-D objects Nodes of the Picture Graph
level language to manipulate models using volume (symbolic version of image)
using symbolic names. primitives: generalized  correspond to ribbons,

cones and ribbons. surfaces and curves.

Predictor and Planner Module is a Arcs and relations indicate
rule-based system to generate an Spatial relations of spatial relations between
Observability Graph from the volume elements within nodes.

Object Graph (3-D object repre- an object defined
sentation consisting of nodes and hierarchically.

relational arcs).
Can model both specific

Makes predictions (which are view- and generic volume
point insensitive) in the form of elements and relations
symbolic constraint expressions between them.

with variables.
Models are part/whole
Makes a projective transformation graphs.
from models.
Volume primitives have
Predicts appearances of models in local rather than viewer-
images in terms of ribbons and centered primitives.
ellipses.

Search & Matching Remarks

Matcher does an inter- Aims to be a
pretation matching by general vision
mapping the Observ-  system.
ability Graph into the
Picture Graph. Insensitive to

viewpoint.

Matcher works in a
coarse to fine order. A goal is to make

use of total

Combines local matches information for
of ribbons into interpretation.
clusters.

Feature extraction

Searches for maximal (e.g., finding
subgraph matches in lines and regions)
the Observability still weak.
graph.

Interpretation is

Performs major inter-  limited to scenes
pretation at the level ~ with few objects.

~ of volumes rather

than at the level of Substantial

images. progress has
been achieved in
past few years.
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TABLE II-1-1. Model-Based Vision Systems (cont.)

Approach

Incorporates translation and rotation
into observable representations.

Searches for instances of models in
images. It employs geometric reason-
ing in the form of a rule based
problem-solving system.

It interprets (matches) in 3-D by
enforcing constraints of the 3-D
model.

Modeling

Image Feature
Extraction & Representation

Search & Matching

Remarks
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Developer:
Systems:
Purpose:

VISIONS

TABLE II-1-2. Model-Based Vision Systems.

Hanson & Riseman (1978a,b)

Interpreting static monocular scenes

Can be considered to be a working tool to test various image understanding modules and

approaches

Example Domains: House scenes from ground level
Road scenes from ground level

Approach

Uses hierarchical modular approach
to representation and control.

Tries to be as general as possible to
allow both bottom-up and top-
down solution hypotheses as well
as various intermediate combina-
tions

Incorporates the flexibility to utilize
various feature extraction modules
and multiple knowledge sources as
required

Allows for the possibility of gener-
ating and verifying hypotheses
along many paths

Modeling
Hierarchical structure

Scene schemas (like
frames) are the highest
representation

Hierarchy is:
—schemas
—objects
—volumes
—surfaces

Image Feature

Extraction & Representation

Uses both edge finding and

region growing to segment
the image into a layered

directed graph of regions,
line segments and vertices

Uses a hierarchical proc-

essing cone (pyramid) to
be able to handle image
data at various levels of
resolution

Proposed representations Uses a relaxation approach

of 3D surfaces and
volumes include:
—generalized cylinders
—surface patches with
cubic B-splines to
represent boundary

and blending functions

Employs semantic

networks

—nodes represent
primitive entities
(objects, concepts
situations, etc.)

—Labeled arcs rep-
resent relationships
between them

to organize edges into
boundaries, and pixel
clusters into regions,
using high-level system
guidance (interpretation
guided segmentation)

Search & Matching Remarks

Generates and stores
partial models in 1980) did
‘‘contexts’’ (of the reasonably well
CONNIVER program- in making a
ming language) which crude segmenta-
provide a history of tion of a house
decisions to be used scene
when backtracking is
necessary

System (Parma,

Viewpoint
dependent

Uses a multiple knowl-
edge source heter-
archical approach
which generates
partial models in the
search space of
models. Attempts,
using top-down and
bottom-up relaxation
techniques, to con-
verge on a most
probable solution.

Schema used
depends on
specific scene.

Uses rules for focusing
on an element of a
task, expanding that
element by generating
new hypotheses and
verifying new
hypotheses.



objects, use predominantly the top-down interpretation of images approach, relying heavily on
prediction,

H. Industrial Vision Systems
1. General Characteristics

The prominent aspect of industrial vision systems, in distinction to more general vision
systems, is that they operate in a relatively known and structured environment. In addition, the
situation (such as placement of cameras and lighting) can be configured to simplify the computer
vision problem. Usually, the number and nature of possible objects will tend to be restricted, and
the visual system will be tailored to the function performed. Thus many of them are based on a
pattern recognition, rather than an image understanding, approach. Industrial vision systems are
characteristically used for such activities as inspection, manipulation and assembly.

A popular organization for industrial computer vision is a two-stage hierarchy with a bottom-
up control flow. The lower level segments the image into regions corresponding to object sur-
faces. The higher level used this segmentation to identify objects from their surface descriptions.

In practice, most successful systems incorporate aspects of both bottom-up and top-down con-
trol. The bottom-up processing is used to extract prominent features of a part to determine its
position. Then, top-down control is used to direct a search to determine if the part satisfies an
inspection criterion.

Industrial inspection and assembly operations are well suited to model-based analysis, because
of the well-defined geometric descriptions associated with manufactured items. CAD/CAM
technology allows the specification of objects using either volumetric or surface-based models.
These geometrically based models are particularly appropriate to the hypothesis-verify approach,
in which low-level image features are extracted and matched to an appropriate computer-
generated 2-D representation.

In addition to geometric models, objects may also be represented by graphs. In this case,
recognition becomes a graph-matching process.

More commonly at present, rather than using geometric models or graphs, industrial vision
systems are taught by being presented sample parts to be recognized in each of their expected
stable states. Aspects of the resulting images are typically stored as templates, and recognition
becomes template matching. The objects can also be represented in terms of their characteristic
features, such as area, number of holes, etc., and the resulting feature vector stored to be
matched (via a search process) to the corresponding extracted feature vector of the image during
system operation.

To simplify industrial vision systems, the input is usually reduced to a binary (black and white)
image, so that objects appear as silhouettes. Simplicity is important in industrial vision systems
because the computation time is limited, as most systems are expected to operate in near real time.

2. Examples of Efforts in Industrial Visual Inspection Systems

Kruger and Thompson (1981) discuss some example efforts of vision systems designed for in-
spection. The systems reviewed are primarily for the inspection of printed circuit boards and IC
chips, with template matching being the predominant inspection approach.
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Chin (1982) has recently published an extensive bibliography on automated visual inspection
techniques and applications.

3. Examples of Efforts in Industrial Visual Recognition and Location Systems

Table 1I-2 (largely derived from Kruger and Thompson, 1981) lists some example efforts of vi-
sion systems designed for industrial part recognition and location. All these systems use a bottom-
up approach. It will be observed that (except for Vamos 1979, and Albus, et al., 1982) these
systems utilize template or feature vector matching. Vamos does work from a 3D wire frame
mode which utilizes computer graphics type techniques to transform a model projection into
alignment with observed lines in the image.

Albus’ Machine Vision Group in the NBS Industrial Systems Division is using simplified 3D
surface models of machined parts to generate expectancy images from needed viewpoints. The
group is seeking to achieve real-time, hierarchical, multi-sensory, interactive robot guidance.

4. Commercially Available Industrial Vision Systems

Gevarter (1982A) surveys many of the Industrial Vision Systems that are currently commercial-
ly available. Most of the systems require special lighting.

Many of the systems designed for verification and inspection use pattern recognition, rather
than Al techniques. The systems tend to be bottom-up (see Figure 11-4A) because of the speed
required to achieve real-time operations. Often unique edge and feature extraction algorithms are
programmed in hardware or firmware.

The more sophisticated systems tend to utilize variations and improvements on the SRI Vision
Module described in Table I1-2.

A few systems make good use of structured light for 3D sensing. A number of efforts in visual
guidance of arc welding also utilize this technique.

I. Who Is Doing It

Rosenfeld, at the University of Maryland, issues a yearly bibliography, arranged by subject
matter, related to the computer processing of pictorial information. The issue covering 1981
(Rosenfeld, 1982) includes nearly 1000 references.

The following is a list by category of the U.S. “principal players’ in computer vision.

1. Research Oriented

Universities

Funded Under DARPA IU Program Other Active Universities
CMU U of Texas at Austin

U of MD VPI

MIT Purdue

U. of Mass. U of PA

Stanford U U of IL

U of Rochester Wayne State U

USC JHU

U of Rhode Island RPI
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TABLE II-2. Example Research Efforts in Industrial Visual Recognition and Location Systems.

Developer
Purpose
Sample Domains

Approach

Modeling and
Representations

Agin (1980)
SRI Vision Module

Locate, identify and guide
manipulation of industrial
parts

Engine Parts

SRI

Bottom-up approach
Uses thresholding to convert to a binary image

Each line is sequentially scanned and edge points (where pixels change
from 1 to 0 or 0 to 1 recorded). Each resulting segment on a line
is matched to the previous line to determine their overlapping
relationships. Using these relationships, the program traces the
appearance and disappearance of blobs (regions) as the image is
processed from top to bottom.

Using blob descriptors, the system can recognize parts regardless of
their position or orientation. The descriptors are matched using
either a binary decision tree or a normalized nearest-neighbor
method.

The system is trained by repeatedly showing the object to the TV camera
resulting in all potentially useful shape descriptions being automatically
calculated and stored

Blob descriptors include:

—max. and min.
x and y values

—Holes

—Area

—Moments of inertia
—Perimeter length
—Linked list of

coordinates on
the perimeter

Holland Rossol & Ward (1979)
Consight 1

Industrial part location,
recognition and manipulation

Engine parts

GM

Two linear light sources superimpose a line of light on a conveyor belt
perpendicular to its direction of motion. The two lines separate,
proportional to the part passing by. Point of separation determines
part boundary; degree of separation determines part thickness.

The scene is imaged with a linear array camera and a silhouette
automatically generated.

Uses same feature vector approach as SRI Module.

Feature vector of part
image characteristics
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TABLE I1-2. Example Research Efforts in Industrial Visual Recognition and Location Systems. (cont.)

Developer
Purpose
Sample Domains

Approach

Modeling and
Representations

NBS: Albus et al. (1982)

Visual servoing for robot
guidance (real-time
location and identification
for manipulation)

Machined parts

National Bureau of Standards

Employs a point light source, a sheets-of-structured-light generator
and a camera, all mounted on the wrist of a robot arm.

Uses alternate frames of:
1. A regular point source illumination of the entire object, and
2. Two parallel planes of structured light.

System determines location and orientation based on triangulation
associated with relative height of intersection of light sheets with
part, and recognition based on shape and size of observed lines that
the planes of light make as they intersect part. Uses this information
to interpret outline seen in image produced by the point source
illumination.

Analysis of vision input is performed with a hierarchically organized
group of microprocessors. At each level of the hierarchy, an analytic
process is guided by an expectancy-generating modeling process. The
modeling process is in turn driven by a store of a priori knowledge, by
knowledge of the robot’s movements, and by feedback from the analytic
process. Each such level of the hierarchy provides output to guide a
corresponding level of the robot’s hierarchical control system.

Uses quadratic
approximations to
surfaces of idealized
3-D objects.
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TABLE II-2. Example Research Efforts in Industrial Visual Recognition and Location Systems. (cont.)

Developer
Purpose
Sample Domains

Approach

Modeling and
Representations

Perkins (1978)
Industrial parts recognition
Engine components

GM

Operates on 32 gray levels
Bottom-up scene segmentation approach
1. Reduce 256 x 256 pixel image to an ‘‘edge gradient’’ image
2. Link edges with similar gradient magnitudes to form chains
3. Characterize chains as either straight lines or circular arcs.
(This reduces 65,000 pixel image to about 50 concurves.)

System matches observed concurves with model generated concurves using:

1. A preset control structure to select the order in which
combinations of model and scene concurves are to be matched.

2. Starts by matching one model and one scene concurve

3. The stored model is spatially transformed and rotated to fit
associated scene concurves

System interactively trained by generating concurves of sample parts

Can identify parts partially occluded by other parts

Concurve models of
sample parts




€€

TABLE II-2. Example Research Efforts in Industrial Visual Recognition and Location Systems. (cont.)

Developer
Purpose
Sample Domains

Approach

Modeling and
Representations

Yachida and Tsuji (1978)
Industrial parts recognition

Nonoccluded parts of a
small gasoline engine

Osaka Univ.

Uses a boundary detection and isolation of parts in a binary image
approach similar to SRI Vision Module

Recognition system based on a structured step-by-step analysis with
the previously stored models

Uses a series of special feature detectors

—hole detector
—line finder
—texture detector
—small hole detector

System training involves interactive man-machine examination of the
identification task

Stable orientation
models of parts

—part name

—orientation

—list of primitive
features

—polar coordinate
boundary
representation

Vamos (1979)

Recognition of 3D objects
Bearing housings
Assembly

Sheet metal parts to be
painted

Neural nets in microscopic-
section in neural research

Hungarian Acad. of Science

Finds edges using a simplified version of the Hueckel-operator using
only two linear templates

Lines are then fitted to edges

Wire-frame model transformed (and hidden line elimination used) to
correspond to image—yielding recognition and part orientation

Objects are interactively taught to system either by building a
geometric model or by a computer-aided transformation of viewed
samples

3D Wire Frame Models




Non-Profits

SRI International, Al Center
JPL

ERIM

U.S. Government

NBS, Industrial Systems Div., Gaithersburg, MD
NOSC (Naval Ocean Systems Center), San Diego
NIH (National Institutes of Health)

2. Commercial Vision Systems Developers
Hundreds of companies are now involved in vision systems, a partial listing being given in
Gevarter (1982A).

J. Summary of the State-of-the-Art

1. Human Vision

Human vision is the only available example of a general purpose vision system. However, thus
far not many Al researchers have taken an interest in the computations performed by natural
visual systems, but this situation is changing.

The MIT vision group (among others) believes that, to a first approximation, the human visual
system is subdivided into modules specializing in visual tasks. There is also evidence that people
do global processing first and use it to constrain local processing.

Considerable information now exists about lower level visual processing in humans. However,
as we progress up the human visual computing hierarchy, the exact nature of the appropriate

representations becomes subject to dispute. Thus, overall human visual perception is still very far
from being understood.

2. Low and Intermediate Levels of Processing

Though methods for powerful high-level understanding visual analysis are still in the process of
being determined, insights into low-level vision are emerging. The basic physics of imaging, and
the nature of constraints in vision and their use in computation is fairly well understood. Detailed
programs for vision modules, such as ‘‘shape from shading’’ and “‘optical flow,”’ have begun to
appear. Also, the representational issues are now better understood.

However, even for well understood low-level operations such as edge detection, (see, e.g.,
Ballard, 1982) there has been no convergence among the many techniques proposed, and no
method stands out as the best. In general, edge detectors are still unreliable, though Marr and
Hilbert’s approach, based on the zero crossing of the second derivative of the intensity gradient,
appears promising. ‘

In industrial vision, the primary technique for achieving robust edge finding and segmentation
is to use special lighting and convert to a silhouette binary image in which edges and regions are
readily distinguishable.
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At intermediate levels, edge classification and labelling have been very successfully used in the
blocks world.

Binford (1982) in reviewing existing research in model-based vision systems observed that most
systems first segment regions then describe their shape. None of the systems makes effective use
of texture for segmentation and description. In general, shape description is primitive and inter-
pretation systems have not yet made full use of even these limited capabilities.

As yet, the extraction of useful information from color is extremely rudimentary. The percep-
tual use of motion (optical flow) has been a focus of attention recently, but findings are
preliminary.

For low level processing, many recent algorithms take the form of parallel computations in-
volving local interactions. One popular approach having this character is ‘‘relaxation,”” in which
local computations are iteratively propagated to try to extract global features. These locally
parallel architectures are well suited to rapid parallel processing techniques using special purpose
VLSI chips.

3. Industrial Vision Systems
Barrow and Tenenbaum (1981, p. 572) observe that:

Significant progress has been made in recent years on practical applications of machine vision. Systems have been
developed that achieve useful levels of performance on complex real imagery in tasks such as inspection of in-
dustrial parts, interpretation of aerial imagery, and analysis of chest x-rays. Virtually all such systems are special
purpose, being heavily dependent on domain-specific constraints and techniques.

It has been estimated that as of mid-1982, though less than 50 sophisticated industrial vision
systems were actually in use in the U.S., approximately 1000 simple line-scan inspection systems
were in regular operation. Though special purpose systems have thus far been the most effective,
successful vision applications are now becoming commonplace and are expanding. Vision
manufacturers are now beginning to provide easier user programming, friendlier user interfaces,
and systems engineering support to prospective users. Many firms are now entering the industrial
vision field, with technical leap-frogging being common due to rapidly changing technology.

4. General Purpose Vision Systems

Though many practical image recognition systems have been developed, Hiatt (1981, pp. 2, 8)
observes that, “‘In current vision applications, the type of scene to be processed and acted upon is
usually carefully defined and limited to the capability of the machine . . . General purpose com-
puter vision has not yet been solved in practice.”” This domain specificity makes each new applica-
tion expensive and time consuming to develop.

Binford (1982) in reviewing current model-based research vision systems concludes that most
systems have not attempted to be general vision systems, though ACRONYM does demonstrate
some progress toward this goal. Existing vision systems performances are strongly limited by the
performance of their segmentation modules, their weak use of world knowledge and weak
descriptions, making little use of shape.

With the exception of ACRONYM (and to an extent 3-D Mosaic), the systems surveyed depend
on image models and relations, and therefore are strongly viewpoint-dependent. To generalize to
viewpoint-insensitive interpretations would require three-dimensional modeling and interpreta-
tion as in ACRONYM.
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Binford concludes that though the results of these and other efforts are encouraging as first
demonstrations, nevertheless as general vision systems, they have a long way to go.

K. Applications and Future Trends

Brady (1981, p. 2) states that, ‘“There is currently a surge of interest in image understanding on
the part of industry.” Examples of current computer vision applications are indicated in
Figure II-6.

As the field of computer vision unfolds, we expect to see the following future trends.*

1. Techniques

Though most industrial vision systems have used binary representations, we can expect in-
creased use of gray scales because of their potential for handling scenes with cluttered
backgrounds and uncontrolled lighting.

Recent theoretical work on monocular shape interpretation from images (shape from
shading, texture, etc.) make it appear promising that general mechanisms for generating
spatial observations from images will be available within the next 2 to 5 years to support
general vision systems.

Successful techniques (such as stereo and motion parallax) for deriving shape and/or motion
from multiple images should also be available within 2 to 5 years.

The mathematics of Image Understanding will continue to become more sophisticated.
Enlargement will continue of the links now growing between Image Understanding and
Theories of Human Vision.

2. Hardware and Architecture

We are now seeing hardware and software emerging that enables real-time operation in sim-
ple situations. Within the next 2 to 5 years we should see hardware and software that will
enable similar real-time operation for robotics and other activities requiring recognition, and
position and orientation information.

Fast raster-based pipeline preprocessing hardware to compute low-level features in local
regions of an entire scene are now becoming available and should find general use in com-
mercial vision systems in 2 to 4 years.

As at virtually all visual levels, processing seems inherently parallel, parallel processing is a
wave of the future (but not the entire answer).

Relaxation and constraint analysis techniques are on the increase and will be increasingly
reflected in future architectures.

3. AI and General Vision Systems

Computer vision will be a key factor in achieving many artificial intelligence applications. The
goal is to move from special-purpose visual processing to general-purpose computer vision. Work
to date in model-based systems has made a tentative beginning. But the long-run goal is to be able

*These trends have been largely derived from statements by Brady (1981A, 1981B), Binford (1982), Kruger and Thomp-
son (1981), Agin (1980), Arden (1980), Rosenfeld (1981), Hiatt (1981), and Barrow and Tenenbaum (1981).
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AUTOMATION OF INDUSTRIAL PROCESSES

Object acquisition by robot arms, for example, for sorting or packing items arriving on con-
veyor belts.

Automatic guidance of seam welders and cutting tools.

VLSI-related processes, such as lead bonding, chip alignment and packaging.

Monitoring, filtering, and thereby containing the flood of data from oil drill sites or from
seismographs.

Providing visual feedback for automatic assembly and repair.

INSPECTION TASKS

The inspection of printed circuit boards for spurs, shorts, and bad connections.

Checking the results of casting processes for impurities and fractures.

Screening medical images such as chromosome slides, cancer smears, X-ray and ultrasound
images, tomography.

Routine screening of plant samples.

Inspection of alpha-numerics on labels and manufactured items.

Checking packaging and contents in pharmaceutical and food industries.

Inspection of glass items for cracks, bubbles, etc.

REMOTE SENSING

Cartography, the automatic generation of hill-shaded maps, and the registration of satellite
images with terrain maps.

Monitoring traffic along roads, docks, and at airfields.

Management of land resources such as water, forestry, soil erosion, and crop growth.
Detecting mineral ore deposits.

MAKING COMPUTER POWER MORE ACCESSIBLE

Management information systems that have a communication channel considerably wider than
current systems that are addressed by typing or pointing.

Document readers (for those who still use paper).

Design aids for architects and mechanical engineers.

MILITARY APPLICATIONS

Tracking moving objects.
Automatic navigation based on passive sensing.
Target acquisition and range finding.

AIDS FOR THE PARTIALLY SIGHTED

Systems that read a document and speak what they read.
Automatic ‘‘guide dog”’ navigation systems.

Figure II-6. Examples of Applications of Computer Vision Now Underway.
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to deal with unfamiliar or unexpected input.* Reaéoning in terms of generic models and reason-
ing by analogy are two approaches being pursued. However, it is anticipated that it will be a
decade or more before substantial progress will be made.

4. Modeling and Programming

Now emerging is 3D modeling, arising largely from CAD/CAM technology. 3D CAD/CAM
data bases will be integrated with industrial vision systems to realistically generate synthe-
sized images for matching with visual inputs.

[llumination models, shading and surface property models will be increasingly incorporated
into visual systems.

Volumetric models which allow prediction and interpretation at the levels of volumes, rather
than images, will see greater utilization.

High level vision programming languages (such as Automatix’s RAIL) that can be integrated
with robot and industrial manufacturing languages are now beginning to appear and will
become commonplace within 5 years.

Generic representations for amorphous objects (such as trees) have been experimentally
utilized and should become generally available within 5 years.

5. Knowledge Acquisition

Strategies for indexing into a large database of models should be available within the next 2
to 5 years.

“Training by being told”” will supplement “‘training by example’’ as computer graphics
techniques and vision programming languages become more common.

6. Sensing

An important area of development is 3D sensing. Several current industrial vision systems
are already employing structured light for 3D sensing. A number of new innovative tech-
niques in this area are expected to appear in the next 5 years.

More active vision sensors such as lidar are now being explored, but are unlikely to find
substantial industrial application until the last half of this decade.

7. Industrial Vision Systems

We will see increased use of advanced vision techniques in industrial vision systems,
including gray scale imagery.

We are now observing a shortening time lag between research advances and their applica-
tions in industry. It is anticipated that in the future this lag may be as little as one to two
years.

Advanced electronics hardware at reduced cost is increasing the capabilities and speed of in-
dustrial vision, while simultaneously reducing costs.

*As computer vision systems move toward this goal, they will increasingly incorporate Expert System components
using multiple knowledge sources. Gevarter (1982B) provides An Overview of Expert Systems, in which ACRONYM
and VISIONS are considered to be examples of Expert Systems.
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e It is anticipated that special lighting and active sensing will play an increasing role in
industrial vision.

e Common programming languages and improved interface standards will within the next 3 to
10 years enable easier integration of vision to robots and into the industrial environment.

8. Future Applications

e It is anticipated that about one quarter of all industrial robots will be equipped with some
form of vision system by 1990.

e It is likely that in the order of 90% of all industrial inspection activities requiring vision will
be done with computer vision systems within the next decade.

e New vision system applications in a wide variety of areas, as yet unexplored, will begin to ap-
pear within this decade. An example of such a system might be visual traffic monitors at in-
tersections that could perceive cars, pedestrians, etc., in motion, and control the flow of
traffic accordingly. '

e Computer vision will play a large role in future military applications. The Defense Mapping
Agency intends to achieve fully automated production for mapping, charting and geodesy
by 1995, utilizing ‘‘expert system’’-guided computer vision facilities.

L. Conclusion

In conclusion, the amount of activity and the many researchers in the computer vision field
suggest that within the next 5 to 10 years, we should see some startling advances in practical com-
puter vision, though the availability of practical general vision systems still remains a long way
off.
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III. NATURAL LANGUAGE PROCESSING (NLP)*

A. Introduction

One major goal of Artificial Intelligence (Al) research has been to develop the means to in-
teract with machines in natural language (in contrast to a computer language). The interaction
may be typed, printed or spoken. The complementary goal has been to understand how humans
communicate. The scientific endeavor aimed at achieving these goals has been referred to as com-
putational linguistics (or more broadly as cognitive science), an effort at the intersection of Al,
linguistics, philosophy and psychology.

Human communication in natural language is an activity of the whole intellect. Al researchers,
in trying to formalize what is required to properly address natural language, find themselves in-
volved in the long term endeavor of having to come to grips with this whole activity. (Formal lin-
guists tend to restrict themselves to the structure of language.) The current Al approach is to con-
ceptualize language as a knowledge-based system for processing communications and to create
computer programs to model that process.

Communication acts can serve many purposes, depending on the goals, intentions and strate-
gies of the communicator. One goal of the communication is to change some aspect of the
recipient’s mental state. Thus, communication endeavors to add or modify knowledge, change a
mood, elicit a response or establish a new goal for the recipients.

For a computer program to interpret a relatively unrestricted natural language communication,
a great deal of knowledge is required. Knowledge is needed of:

— the structure of sentences

— the meaning of words

— the morphology of words

— a model of the beliefs of the sender

— the rules of conversation, and

— an extensive shared body of general information about the world.

This body of knowledge can enable a computer (like a human) to use expectation-driven
processing in which knowledge about the usual properties of known objects, concepts, and what
typically happens in situations, can be used to understand incomplete or ungrammatical sentences
in appropriate contexts.

B. Applications
There are many applications for computer-based natural language understanding systems.
Some of these are listed in Table III-1.

*A more complete treatment of NLP is given in Gevarter (1983).
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TABLE III-1. Some Applications of Natural Language Processing.

Discourse Interaction with Intelligent Programs
Speech Understanding Expert Systems Interfaces
Story Understanding Decision Support Systems

. Explanation Modules for Computer Actions
Information Access

Interactive Interfaces to Computer Programs

Information Retrieval
) . Interacting with Machines
Question Answering Systems

Computer-Aided Instruction Control of Complex Machines

Information Acquisition or Transformation Language Generation

Machine Translation Document or Text Generation
Document or Text Understanding Speech Output
Automatic Paraphrasing Writing Aids: e.g., grammar checking

Knowledge Compilation

Knowledge Acquisition

C. Approach

Natural Language Processing (NLP) systems utilize both linguistic knowledge and domain
knowledge to interpret the input. As domain knowledge (knowledge about the subject area of
communication) is so important to understanding, it is usual to classify the various systems based
on their representation and utilization of domain knowledge. On this basis, Hendrix and
Sacerdoti (1981) classify systems as Types A, B, or C,* with Type A being the simplest, least
capable and correspondingly least costly systems.

1. Type A: No World Models

a. Key Words or Patterns

The simplest systems utilize ad hoc data structures to store facts about a limited domain. Input
sentences are scanned by the programs for predeclared key words, or patterns, that indicate
known objects or relationships.

b. Limited Logic Systems

In limited logic systems, information in their data base was stored in some formal notation, and
language mechanisms were utilized to translate the input into the internal form. The internal form
chosen was such as to facilitate performing logical inferences on information in the data base.

*Other system classifications are possible, e.g., those based on the range of syntactic coverage.
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2. Type B: Systems That Use Explicit World Models

In these systems, knowledge about the domain is explicitly encoded, usually in frame or net-
work representations (discussed in a later section) that allow the system to understand input in
terms of context and expectations. Cullingford’s work (see Schank and Ableson, 1977) on SAM
(Script Applier Mechanism) is a good example of this approach.

3. Type C: Systems that Include Information about the Goals and Beliefs of Intelligent Entities.

These advanced systems (still in the research stage) attempt to include in their knowledge base
information about the beliefs and intentions of the participants in the communication. If the goal
of the communication is known, it is much easier to interpret the message. Schank and Abelson’s
(1977) work on plans and themes reflects this approach.

D. The Parsing Problem

For more complex systems than those based on key words and pattern matching, language
knowledge is required to interpret the sentences. The system usually begins by ‘‘parsing’’ the in-
put (processing an input sentence to produce a more useful representation for further analysis).
This representation is normally a structural description of the sentence indicating the relationship
of the component aparts. To address the parsing problem and to interpret the result, the com-
putational linguistic community has studied syntax, semantics, and pragmatics. Syntax is the
study of the structure of phrases and sentences. Semantics is the study of meaning. Pragmatics is
the study of the use of language in context.

E. Grammars

Barr and Feigenbaum (1981, p. 229) state, ‘‘A grammar of a language is a scheme for specify-
ing the sentences allowed in the language, indicating the syntactic rules for combining words into
well-formed phrases and clauses.’”’ The following grammars are some of the most important.*

1. Phrase Structure Grammar — Context Free Grammar

Chomsky (see, e.g., Winograd, 1983) had a major impact on linguistic research by devising a
mathematical approach to language. He defined a series of grammars based on rules for rewriting
sentences into their component parts. He designated these as 0, 1, 2, or 3, based on the restric-
tions associated with the rewrite rules, with 3 being the most restrictive.

Type 2 — Context-Free (CF) or Phrase Structure Grammar (PSG) — has been one of the most
useful in natural-language processing. It has the advantage that all sentence structure derivations
can be represented as a tree and practical parsing algorithms exist. Though it is a relatively natural
grammar, it is unable to capture all the sentence constructions found in most natural languages
such as English. Gazder (1981) has recently broadened the applicability of CF PSG by adding
augmentations to handle situations that do not fit the basic grammar. This generalized Phrase
Structure Grammar is now being developed by Hewlett Packard (Gawron et al., 1982).

*Charniak and Wilks (1976) provide a good overview of the various approaches.
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2. Transformational Grammar

Tennant (1981, p. 89) observes that ‘“The goal of a language analysis program is recognizing
grammatical sentences and representing them in a canonical structure (the underlying structure).”’
A transformational grammar (Chomsky, 1957) consists of a dictionary, a phrase structure gram-
mar and a set of transformations. In analyzing sentences, using a phrase structure grammar, first
a parse tree is produced. This is called the surface structure. The transformational rules are then
applied to the parse tree to transform it into a canonical form called the deep (or underlying)
structure. As the same thing can be stated in several different ways, there may be many surface
structures that translate into a single deep structure.

3. Case Grammar

Case Grammar is a form of Transformational Grammar in which the deep structure is based on
cases - semantically relevant syntactic relationships. The central idea is that the deep structure of a
simple sentence consists of a verb and one or more noun phrases associated with the verb in a par-
ticular relationship. These semantically relevant relationships are called cases. Fillmore (1971)
proposed the following cases: Agent, Experiencer, Instrument, Object, Source, Goal, Location,
Type and Path.

The cases for each verb form an ordered set referred to as a ‘‘case frame.”’ A case frame for the
verb “‘open’’ would be:

(object (instrument) (agent))

which indicates that open always has an object, but the instrument or agent can be omitted as in-
dicated by their surrounding parentheses. Thus the case frame associated with the verb provides a
template which aids in understanding a sentence.

4. Semantic Grammars

For practical systems in limited domains, it is often more useful, instead of using conventional
syntactic constituents such as noun phrases, verb phrases and prepositions, to use meaningful
semantic components instead. Thus, in place of nouns when dealing with a naval data base, one
might use ships, captains, ports and cargos. This approach gives direct access to the semantics of
a sentence and substantially simplifies and shortens the processing. Grammars based on this
approach are referred to as semantic grammars (see, e.g., Burton, 1976).

5. Other Grammars _

A variety of other, but less prominent, grammars have been devised. Still others can be ex-
pected to be devised in the future. One example is Montague Grammar (Dowty et al., 1981) which
uses a logical functional representation for the grammar and therefore is well suited for the
parallel-processing logical approach now being pursued by the Japanese (see Nishida and
Doshita, 1982) for their future Al work as embodied is their Fifth Generation Computer research
project.
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F. Semantics and the Cantankerous Aspects of Language

Semantic processing (as it tries to interpret phrases and sentences) attaches meanings to the
words. Unfortunately, English does not make this as simple as looking up the word in the dic-
tionary, but provides many difficulties which require context and other knowledge to resolve.
Examples are:

1. Multiple Word Senses

Syntactic analysis can resolve whether a word is used as a noun or a verb, but further analysis is
required to select the sense (meaning) of the noun or verb that is actually used. For example,
“fly’* used as a noun may be a winged insect, a fancy fishhook, a baseball hit high in the air, or
several other interpretations as well. The appropriate sense can be determined by context (e.g.,
for “fly”’ the appropriate domain of interest could be extermination, fishing or sports), or by
matching each noun sense with the senses of other words in the sentence. This latter approach was
taken by Reiger and Small (1979) using the (still embryonic) technique of *‘interacting word ex-
perts,” and by Finin (1980) and McDonald (1982) as the basis for understanding noun
compounds.

2. Pronouns

Pronouns allow a simplified reference to previously used (or implied) nouns, sets or events.
Where feasible, using pragmatics, pronoun antecedents are usually identified by reference to the
most recent noun phrase having the same context as the pronoun.

3. Ellipsis and Substitution

Ellipsis is the phenomenon of not stating explicitly some words in a sentence, but leaving it to
the reader or listener to fill them in. Substitution is similar — using a dummy word in place of the
omitted words. Employing pragmatics, ellipses and substitutions are usually resolved by matching
the incomplete statement to the structures of previous recent sentences — finding the best partial
match and then filling in the rest from this matching previous structure.

G. Knowledge Representation*®

As the Al approach to natural language processing is heavily knowledge based, it is not surpris-
ing that a variety of knowledge representation (KR) techniques have found their way into the
field. Some of the more important ones are:

1. Procedural Representations — The meanings of words or sentences being expressed as
computer programs that reason about their meaning.

*More complete presentations on KR can be found in Chapter 111 of Barr and Feigenbaum (1981), and in Part C of this
volume.
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2. Declarative Representations
a. Logic — Representation in First Order Predicate Logic, for example.
b. Semantic Networks — Representations of concepts and relationships between concepts as
graph structures consisting of nodes and labeled connecting arcs.

3. Case Frames — (covered earlier)

4. Conceptual Dependency — This approach (related to case frames) is an attempt to provide a
representation of all actions in terms of a small number of semantic primitives into which input
sentences are mapped (see, e.g., Schank and Riesbeck, 1981). The system relies on 11 primitive
physical, instrumental and mental ACT’s (propel, grasp, speak, attend, P trans, A trans, etc.),
plus several other categories or concept types.

5. Frame — A complex data structure for representing a whole situation, complex object or
series of events. A frame has slots for objects and relations appropriate to the situation.

6. Scripts — Frame-like data structures for representing stereotyped sequences of events to aid in
understanding simple stories.

H. Syntactic Parsing
Parsing assigns structures to sentences. The following types have been developed over the years
for NLP. (Barr and Feigenbaum, 1981).

1. Template Matching: Most of the early (and some current) NL programs performed parsing by
matching their input sentences against a series of stored templates.

2. Transition Nets:

Phrase structure grammars can be syntactically decomposed using a set of rewrite rules such as
indicated in Figure I1I-1. Observe that a simple sentence can be rewritten as a Noun Phrase and a
Verb Phrase as indicated by:

S—>NP VP
The noun phrase can be rewritten by the rule

‘ NP— (DET)(ADJ*)N(PP*)
where the parentheses indicate that the item is optional, while the asterisks (associated with the
adjectives and prepositional phrases) indicate that any number of items may occur.

An example of an analyzed noun phrase is shown in Figures III-2 and III-3.

As the transition networks analyze a sentence, they can collect information about the word pat-
terns they recognize and fill slots in a frame associated with each pattern. Thus, they can identify
noun phrases as singular or plural, whether the nouns refer to persons and if so their gender,
etc., needed to produce a deep structure. A simple approach to collecting this information is to
attach subroutines to be called for each transition. A transition network with such subroutines at-
tached is called an ‘‘augmented transition network,’’ or ATN. With ATN’s, word patterns can be
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GRAMMAR

S —» NP VP
NP —— (DET) (ADJ*) N (PP*}
PP —>» PREP NP
VP —» VTRAN NP

Figure III-1. A Transition Network for a Small Subset of English.

Each diagram represents a rule for finding the corresponding word pattern. Each rule can call on
other rules to find needed patterns.

After Graham (1979, p214.)
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NP
”~ " N

The payload on a tether under the shuttle

DET N PP

”~ TN

The payload on a tether under the shuttle

PREP NP

e

—

on a tether under the shuttle

DET N PP

a tether under the shuttle

PREP NP

under the shuttle

DET N
the shuttle

Figure I1I-2. Example Noun Phrase Decomposition.

DET
DET N
The payload on a tether under the shuttle

Figure III-3. Parse Tree Representation of the Noun Phrase Surface Structure.
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recognized. For each word pattern, we can fill slots in a frame. The resulting filled frames provide
a basis for further processing.

3. Other Parsers

Other parsing approaches have been devised, but ATN’s remain the most popular syntactic
parsers. ATN’s are top-down parsers in that the parsing is directed by an anticipated sentence
structure. An alternative approach is bottom-up parsing, which examines the input words along
the string from left to right, building up ail possible structures to the left of the current word
as the parser advances. A bottom-up parser could thus build many partial sentence structures that
are never used, but the diversity could be an advantage in trying to interpret input word strings
that are not clearly delineated sentences or contain ungrammatical constructions or unknown
words. There have been recent attempts to combine the top-down with the bottom-up approach
for NLP in a similar manner as has been done for Computer Vision.

For a recent overview of parsing approaches see Slocum (1981).

I. Semantics, Parsing and Understanding

The role of syntactic parsing is to construct a parse tree or similar structure of the sentence to
indicate the grammatical use of the words and how they are related to each other. The role of the
semarntic processing is to establish the meaning of the sentence. This requires facing up to all the
cantankerous ambiguities discussed earlier.

Charniak (1981) observes that there have been two main lines of attack on word sense ambi-
guity. One is the use of discrimination nets (Reiger and Small, 1979) that utilize the syntactic
parse tree (by observing the grammatical role that the word plays, such as taking a direct object,
etc.) in helping to decide the word sense. The other approach is based on the frame/script idea
(used, e.g., for story comprehension) that provides a context and the expected sense of the word
(see e.g., Schank and Abelson, 1977).

Charniak indicates that the semantics at the level of the word sense is not the end of the parsing
process, but what is desired is understanding or comprehension (associated with pragmatics).
Here the use of frames, scripts and more advanced topics such as plans, goals, and knowledge
structures (see, e.g. Schank and Riesbeck, 1981) play an important role.

J. Natural Language Processing (NLP) Systems
As indicated below, various NLP systems have been developed for a variety of functions.

1. Kinds

a. Question Answering Systems

Question answering natural language systems have perhaps been the most popular of the NLP
research systems. They have the advantage that they usually utilize a data-base for a limited
domain and that most of the user discourse is limited to questions.

b. Natural Language Interfaces (NLI’s)
These systems are designed to provide a painless means of communicating questions or instruc-
tions to a complex computer program.
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c. Computer-Aided Instruction (CAI)
Arden (1980, p. 465) states:

One type of interaction that calls for ability in natural languages is the interaction needed for effective teaching
machines. Advocates of computer-aided instruction have embraced numerous schemes for putting the computer
to use directly in the educational process. It has long been recognized that the ultimate effectiveness of teaching
machines is linked to the amount of intelligence embodied in the programs. That is, a more intelligent program
would be better able to formulate the questions and presentations that are most appropriate at a given point in a
teaching dialogue, and it would be better equipped to understand a student’s response, even to analyze and
model the knowledge of the student, in order to tailor the teaching to his needs.

d. Discourse

Systems that are designed to understand discourse (extended dialogue) usually employ
pragmatics. Pragmatic analysis requires a model of the mutual beliefs and knowledge held by the
speaker and listener.

e. Text Understanding

Though Schank (see Schank and Riesbeck, 1981) and others have addressed themselves to this
problem, much more remains to be done. Techniques for understanding printed text include
scripts and causative approaches.

f. Text Generation

There are two major aspects of text generation: one is the determination of the content and tex-
tual shape of the message, the second is transforming it into natural language. There are two ap-
proaches for accomplishing this. The first is indexing into canned text and combining it as ap-
propriate. The second is generating the text from basic considerations. McDonald’s thesis (1980)
provides one of the most sophisticated approaches to text generation.

2. Research NLP Systems
Until recently, virtually all of the NLP systems generated were of a research nature. These NLP
systems basically were aimed at serving five functions:
a. Interfaces to Computer Programs
. Data Base Retrieval
Text Understanding
. Text Generation
. Machine Translation
Gevarter (1983) includes a survey of research NLP systems.

o oo o

3. Commercial Systems:
The commercial systems available today (together with their approximate price) are listed in
Table III-2. Several of these systems are derivatives of past research NLP systems.
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TABLE III-2. Some Commercial Natural Language Systems.

System

INTELLECT
(Derivative of ROBOT)
$50K/System

(also distributed as
ON-LINE ENGLISH
and GRS Executive)

PEARL (Based on
SAM and PAM)
$250K /system

Straight Talk
(Derivative of LIFER)
$660

SAVVY
$950

Weidner System

$16K/language
direction

ALPS

Organization

Artificial Intelligence Corp.

Waltham, Mass

(Culliane)
(Information Sciences)

Cognitive Systems
New Haven, Conn

Dictaphone,
Written by Symantec
Sunnyvale, CA

SAVVY Marketing Inter-
national
Sunnyvale, CA

Weidner Communications
Corp. Provo, UT

ALPS
Provo, UT

Purpose

NLI for Data Base
Retrieval

(Other extensions
underway)

Custom NLI’s

The first system—
Explorer—is an inter-
face to an existing

map generating system.

Others are interfaces
to data bases.

Highly portable NLI
for DBMS for micro-
computers.

System Interface
for micro-computers

Semi-Automatic
Natural Language
Translation.

Interactive Natural
Language Translation
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Comments
o Several hundred systems sold
¢ Takes about 2 weeks to

implement for a new data
base.

Written in PL-1

Available for mainframes

Large start-up cost in build-
ing the knowledge base.

Several systems have been,
and are being, built.

* Written in LISP

Written in PASCAL.
Designed to be very compact
and efficient. Available
about Nov. 1983.

User customized.

Not linguistic. Uses adaptive
(best fit) pattern matching
to strings of characters.

Released 3/82

User customized

Linguistic approach. Written in
FORTRAN 1V.

Translation with human editing
is approximately 100 words/hr
(up to eight times as fast as
human alone).

Approx. 20 sold by end of 1982,
mainly to large multi-national
corporations.

Linguistic Approach

¢ Uses a dictionary that provides
the various translations for
technical words as a display to
human translator, who then
selects among the displayed
words.



TABLE III-2. Some Commercial Natural Language Systems (cont.)

System Organization
NLMENU Texas Instruments, Inc.
Dallas, TX

K. State of the Art

Purpose

NLI to Relational
Data Bases

Comments

® Menu Driven NL Query System

* All queries constructed from menu
fall within linguistic and conceptual
coverage of the system. Therefore,
all queries entered are successful.

® Grammars used are semantic
grammars written in a context-free
grammar formalism.

® Producing an interface to any
arbitrary set of relations is automated
and only requires a 15-30 minute
interaction with someone knowledge-
able about the relations in question.

* System will be available late in
1983 as a software package for a
micro-computer.

It is now feasible to use computers to deal with natural language input in highly restricted con-
texts. However, interacting with people in a facile manner is still far off, requiring understanding
of where people are coming from — their knowledge, goals and moods.

In today’s computing environment, the only systems that perform robustly and efficiently are
Type A systems — those that do not use explicit world models, but depend on key word or pat-
tern matching and/or semantic grammars. In actual working systems, both understanding and
text generation, ATN-like grammars can be considered the state of the art.

L. Principal U.S. Participants in NLP

1. Research and Development*

Non-Profit

SRI
MITRE

*A review of current research in NLP is given in Kaplan (1982).
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Universities

Yale U. — Dept. of Computer Science

U. of CA, Berkeley — Computer Science Div., Dept. of EECS.
Carnegie-Mellon U. — Dept. of Computer Science

U. of Illinois, Urbana — Coordinated Science Lab.

Brown U. — Dept. of Computer Science

Stanford U. — Computer Science Dept.

U. of Rochester — Computer Science Dept.

U. of Mass., Amherst — Department of Computer and Information Science
SUNY, Stoneybrook, Dept. of Computer Science

U. of CA, Irvine, Computer Science Dept.

U of PA — Dept. of Computer and Infor. Science

GA Institute of Technology — School of Infor. and Computer Science
USC — Infor. Science Institute.

MIT — AI Lab.

NYU — Computer Science Dept. and Linguistic String Project
U. of Texas at Austin — Dept. of Computer Science

Cal. Inst. of Tech.

Brigham Young U. — Linguistics Dept.

Duke U. — Dept. of Computer Science

N. Carolina State — Dept. of Computer Science

Oregon State U. — Dept. of Computer Science

Purdue U.

Industrial

BBN

TRW Defense Systems

IBM, Yorktown Heights, N.Y.

Burroughs

Sperry Univac

Systems Development Cdrp., Santa Monica
Hewlett Packard

Martin Marietta, Denver

Texas Instruments, Dallas

Xerox PARC

Bell Labs

Institute of Scientific Information, Phila., PA
GM Research labs, Warren, M1

Honeywell
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2. Principal U.S. Government Agencies Funding NLP Research
ONR (Office of Naval Research)
NSF (National Science Foundation)
DARPA (Defense Advanced Research Projects Agency)

3. Commercial NLP Systems
Artificial Intelligence Corp., Waltham, Mass.
Cognitive Sytems Inc., New Haven, Conn.
Symantec, Sunnyvale, CA
Texas Instruments, Dallas, TX
Weidner Communications, Inc., Provo, Utah
Savvy Marketing International, Sunnyvale, CA
ALPS, Provo, UT

4. Non-U.S.
U. of Manchester, England
Kyoto U., Japan
Siemens, Corp., Germany
U. of Strathclyde, Scotland
Centre National de la Recherche Scientifique, Paris
U. di Udine, Italy
U. of Cambridge, England
Phillips Res. Labs, The Netherlands

M. Forecast

Commercial natural language interfaces (NLI’s) to computer programs and data base manage-
ment systems are now becoming available. The imminent advent of NLI’s for micro-computers is
the precursor for eventually making it possible for virtually anyone to have direct access to
powerful computational systems.

As the cost of computing has continued to fall, but the cost of programming hasn’t, it has
already become cheaper in some applications to create NLI systems (that utilize subsets of
English) than to train people in formal programming languages.

Computational linguists and workers in related fields are devoting considerable attention to the
problems of NLP systems that understand the goals and beliefs of the individual communicators.
Though progress has been made, and feasibility has been demonstrated, more than a decade will ‘
be required before useful systems with these capabilities will become available.

One of the problems, in implementing new installations of NLP system:s, is gathering informa-
tion about the applicable vocabulary and the logical structure of the associated data bases. Work
is now underway to develop tools to help automate this task. Such tools should be available
within 5 years.

For text understanding, experimental programs have been developed that *‘skim’’ stylized text
such as short disaster stories in newspapers (DeJong, 1982). Despite the practical problems of suf-
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ficient world knowledge and the extension of language required, practical tools emerging from
these efforts should be available to provide assistance to humans doing text understanding within
this decade.

The NRL Computational Linguistic Workshop (1981) concluded that text generation tech-
niques are maturing rapidly and new application possibilities will appear within the next five
years.

The NRL workshop also indicated that:

Machine aids for human translators appear to have a brighter prospect for immediate application than fully
automatic translation; however, the Canadian French-English weather bulletin project is a fully automatic
system in which only 20% of the translated sentences require minor rewording before public release. An am-
bitious common market project involving machine translation among six European languages is scheduled to
begin shortly. Sixty people will be involved in that undertaking which will be one of the largest projects under-
taken in computational linguistics.* The panel was divided in its forecast on the five year perspective of machine
translation but the majority were very optimistic.

Nippon Telegram and Telephone Corp. in Tokyo has a machine translation Al project under-
way. An experimental system for translating from Japanese to English and vice versa is now being
demonstrated. In addition, the recently initiated Japanese Fifth Generation Computer effort has
computer-based natural language understanding as one of its major goals.

In summary, natural language interfaces using a limited subset of English are now becoming
available. Hundreds of specialized systems are already in operation. Major efforts in text
understanding and machine translation are underway, and useful (though limited) systems will be
available within the next five years. Systems that are heavily knowledge-based and handle more
complete sets of English should be available within this decade. However, systems that can handle
unrestricted natural discourse and understand the motivation of the communicators remain a dis-
tant goal, probably requiring more than a decade before useful systems appear.
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IV. SPEECH RECOGNITICN AND SPEECH UNDERSTANDING

A. Introduction

Speech is our fastest means of discourse communication, being about twice as fast as the
average typist. It is also nearly effortless: speech doesn’t need visual or physical contact and it
places few restrictions on the use of the hands or the mobility of the body. Speech is thus well
suited to communication with a machine when the individual is engaged in other activities. Its ef-
fortlessness also makes it desirable for operating a computer, and it is a long term candidate for
direct text preparation (automatic dictation).

Speech understanding systems have all the difficulties of natural language understanding plus
the problem of interpreting the speech signal with all its noise and variability. As a result, speech
understanding is one of the most difficult Al subjects, being a perception task related to the scene
understanding problem in computer vision. Though the constraining aspects of natural language
help reduce the magnitude of the task, it remains a major problem area.

Speech systems can be categorized into speech recognition systems and speech understanding
systems, the former task being considerably easier. In addi