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ABSTRACT

The theory of spectral methods for time dependent partial differential

equations is reviewed. When the domain is periodic Fourier methods are

presented while for nonperiodic problems both Chebyshev and Legendre methods

are discussed. The theory is presented for both hyperbolic and parabolic

systems using both Galerkin and collocation procedures. While most of the

review considers problems with constant coefficients the extension to

nonlinear problems is also discussed. Some results for problems with shocks

are presented.
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INTRODUCTION

We begin by describing how to construct spectral approximations to tlme-

dependent mixed initlal-boundary value problems. We shall study differential

equations of the form

_u
- Lu + f (I.i)_t

UN(0)= u0

where for each t, u(t) belongs to a Hilbert space H such that u

satisfies homogeneous boundary conditions. For simplicity we assume that L

is an unbounded time independent linear operator.

Numerical methods can be characterized by specifying a finite dimensional

subspace BN C H and a projection operator PN : H . BN. We require that

the sequence {PN } satisfies

lim IJPNU- uH = 0.
N+_

We shall concentrate on semi-discrete approximations to (i.i), i.e., time

is still a continuous variable. Such a semi-discrete approximation can be

written as

8uN

8t = PN LPN UN + PN f

(i.2)

UN(0) = PN u0

where uN g BN. The numerical approximation (1.2) converges to the solution

of (I.I) if

lim lluN - PN uU = 0. (1.3)
N+=



Combining (I.i) and (1.2) and assuming PN is independent of t, the error

satisfies the equation

(UN - PNu) = PN LPN(UN - PN u) + PN(LPN - L)u. (1.4)

Now, PN LPN is an operator from BN to BN and so can be viewed as a

matrix. In particular, exp(P N LPN) is well defined. Hence the solution to

(1.4) can be written as

t

UN - PN u = f exp(P N LPN(t - r))PN(LP N - L)u(T)dT. (1.5)
0

We call a scheme consistent if

lim JJPN(L - LPN)Ull = 0 0 < t < T, (1.6)
N+_

while the scheme is stable if

exp(P N LPN t) < K(t), (1.7)

where K is independent of N, the dimension of BN, i.e., exp(P N LPN t) is

uniformly bounded for all 0 _ t < T. It then follows from (1.5) that if a

scheme is consistent and stable then the scheme converges.

For spectral methods we choose BN as the finite space of polynomials

(or trigonometric polynomials) of degree at most N. The rationale behind

this choice is that one can approximate arbitrary functions f by such

polynomials and the rate of convergence is only governed by the smoothness of

the function f. Hence we hope to obtain highly accurate approximations to



the solutions of (I.I). Different choices of the projection operator PN

lead to different subclasses of spectral methods.

In these lectures we shall only consider one-dlmenslonal differential

equations.

2. FOURIERMETHODS

We first considerperiodic problems with period 2_. For this case it

is naturalto let BN be {eijX},-N < j < N.

(a) GalerkinMethod

Let v(x) £ H then

inx (2.1)v(x)=[ ae •n
n = .-¢o

The Galerkin method is characterized by the projection operator PN where

N

PN v = _ a einx. (2.2)n
n=-N

We now rewrite the approximation (1.2) in the form

_uN
PN(_--_- - LUN - f) = 0

or using the definition of PN

_UN einX)(t_- LUN - f' = 0 -N < n < N (2.3)

where
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N

= t)einxUN [ an(
n=-N

UN(0) = PN u0 "

This can be interpreted as a system of 2N+I ordinary differential equations

for the coefficients a (t). Equivalently one can expand the solution ton

(I.i) in a finite Fourier series and then truncate LuN. Hence, the Galerkin

method is equivalent to solving the system (i.i) in Fourier space rather than

physical space.

An alternative basis is to expand u(x) in terms of cos nx,

0 < n < N, and sin nx, 1 < n < N-I. This is equivalent to demanding that

a = a in (2.1).
-n n

(b) Pseudospectral Method

The pseudospectral or collocation method is defined by letting PN

be an interpolation operator. If f(x) is a periodic function then PN f is

the trigonometric interpolation of f at the collocation points xj, i.e.,

PN f(xj) = f(xj) and PN f _ BN"

The following sets of points are the most commonly used collocation points

_j
x. - j = 0,--.,2N-I (2.4a)
3 N

2=j
Yj - 2N+I J = O,-..,2N. (2.4b)



The xj are useful when operating with a FFT based on an even number of

points while the yj are useful for an odd number of points. We shall only

describe the collocationmethod based on the xj. In this case the operator

PN is given by
2N-I

PN f(x) = [ f(xj)gj(x) • (2.5)
j=0

The gj(x) are trigonometric polynomials of degree at most N and

gj(xk) = 6jk. These polynomials are given explicitly by

i [N(x-xj)]cot x - xjgj(x) =-_ sin 2 " (2.6)

The fact that gj(x) is a trigonometric polynomial of degree N follows

from the equivalent representation

i N i i£(x-xj)

gj(x) - 2N £=[-N_£ e (2.7)

where c£ = i (I£1#N), cN = c_N = 2. Thus we can represent PNf(x) either as

2N-I x - x.

PN f(x) - 2NI [ f(xj)sln[N(x-xj)]cot 2 3 (2.8)
j=0

using (2.5) or as

2N-I N ig(x-xj)

PN £(x) = [ 1 £ IN ij=0 £(xj) _ =- _ e

2N-I -iAxj
N 1 lax 1 _ f (2.9)

= I Cq e 2--N (xj)e£=-N j=0



using (2.7). Defining

2N-I -lAx.

_ i _ f(xjle 3 (2.10)
a_ 2NcA j=0

(2.9) becomes
N

Pn f = _ aAe i_x. (2.11)
A=-N

When applying the pseudospectral Fourier method, either the explicit

interpolatory formula (2.8) or the complex-Fourier representation (2.10) -

(2.11) may be used. The operator L is a differential operator and so it is

useful to obtain dkf(xJ) in terms of f(xj). One way is simply to
dxk

differentiate (2.8) and to evaluate the resulting expression at the points

xj. dn UN(Xj) 2N-I dn gk(Xj)l
UN(X k) - (Dn u)j, (2.12)dxn k=0 dxn

where Dn is an 2N × 2N matrix with elements

dn gk(xj)
(Dn) jk -

dxn

+

and u is the column vector

_u(x2N_ I)

Explicitly,

(-i)j+k cot J 2 j # k

(DI) jk = (2.13)

j=k
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II/2 (_I)j+k+l I

x -x k j_ k

sin2 J 2 . (2.14)
(D2)jk =

2N2 + i

6 j=k

More generally

D = (Dl)n (2.15)n

which easily follows from the properties of gj(x). D1 is a real,

antisymmetric matrix. In general D2k is a real, symmetric matrix while

D2k+l is a real, antisymmetric matrix.

Computationally, the evaluation of derivatives using (2.13) - (2.15)

+

involves the multiplication of an 2N-component vector u by an 2N × 2N

matrix, Dn, which typically requires 0(N 2) arithmetic operations. However,

since the matrix product is actually a convolutional sum, it is possible to

use the FFT to evaluate (2.13) - (2.15) in only order N log N operations

when N is a highly composite integer (like 2p or 3q). Nevertheless

direct matrix multiplication can be quite efficient if N is not too large or

if a highly parallel computer is used.

It is also possible to evaluate derivatives using (2.10) - (2.11).

Indeed, (2.11) gives

dn PN f ikx.

dxn (xj) = IkI_N_ (ik)n ak e J, (2.16)

where ak is given by (2.10). In this approach, ak is first evaluated by

(2.10) and then derivatives at xj are evaluated by (2.16). If N is a
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highly composite integer, the two discrete Fourier transforms (2.10) and

(2.16) can be efficiently evaluated by the FFT algorithm in O(N log N)

operations. Thus, evaluation of derivatives requires just two FFTs together

with the complex multiplication by (ik)n in (2.16).

3. POLYNOMIAL METHODS

We now consider equation (I.I) in a finite interval -I < x < I. Since

the problem is not periodic, Fourier expansions do not yield high order

approximations. Instead, it is preferable to use orthogonal polynomials. We

thus take _0,''',_N as the basis of BN where lj is a polynomial of

degree j and _. is zero at the appropriate boundaries. We only consider
3

homogeneous boundary conditions. As before we have different spectral methods

by choosing different {_j} and different projection operators.

(a) Galerkin Method

Let f(x) be a sufficiently smooth function defined in -I _ x _ I

where f(x) vanishes at the appropriate boundaries which yields a well-posed

problem for (1.1). Define
N

PN f(x) = _ ak _k(X) (3.1)
k=0

where the ak's are chosen so that

i

f m(x)(e N f - f)_j(x)dx = 0 j = 0,...,N (3.2)-I

for some nonnegative weight m(x). We write the numerical approximation (1.2)

as

I DuN

f _(x) (_ L uN - f)_j(x)dx = 0 j =O,--.,N (3.3)-i



where
N

uN = _ ak(t)_k(X)
k=0

UN(0) = PN u0"

As before, this gives rise to a system of N+I ordinary differential

equations for ak(t ). An equivalent way is to express the p.d.e. (I.I) in

@-space and then truncate after N terms.

The Legendre-Galerkin method is obtained by choosing the weight

_(x) = i. The Chebyshev-Galerkin method uses the weight

m(x) = (I - x2) -I_.

(b) Pseudospeetral Chebyshev Method

In the most common pseudospeetral Chebyshev method, the

interpolation points in the interval (-I,i) are chosen to be the extrema

_J ,N) (3.4)x. = cos-- (j= 0,...
3 N

of the Nth-order Chebyshev polynomials TN(X ). Here the Chebyshev polynomial

of degree N is defined by

-I
TN(X) = cos(N cos x). (3.5)

It follows that

TN(Xj) _J (3.6)= COS T '

which indicates a close relation between the pseudospeetral Chebyshev and the

pseudospeetral Fourier method. In order to construct the interpolant of
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f(x) at the point x we define the polynomials

(l-x2)T_(x)(-l) j+l

gj(x) = 7j _(x-xj) (J = 0,...,N) (3.7)

with T0 = _N = 2, 7j = i (I _ j < N-I). It is readily verified that

gj(xk) = _jk"

The Nth-degree interpolation polynomial PN f(x)to f(x) is given by

N

PN f(x) = Z (3.8)
j=0 f(xj) gj(x).

A different way of representing PN f(x) is to use the identity

N )Tk(X ) (I-x2)T_(x)
Tk(Xj = (-l)J+I '

k=0 _k 2N(x-xj)
giving

N 2 _ f(xJ) _ Tk(Xj)Tk(X)
J[0 f(xj)gj(x) = _
"= j=0 7j k=0 7k

N N )

= _ [ Tk(X ) 1 [ f(xj)Tk(Xj

N k=0 _k j=0 _j

Thus,
N

PN f(x) = _ ak Tk(X), (3.91
k=0

where

2 1 N
ak- N _ f(xj)rk(xj) • (3.10)

ck j=0 7j

It should be noted that the coefficients ak in (3.10) can be evaluated using
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the FFT. In fact, using (3.6) in (3.10) gives

_ 2 i _ f(xj) cos _ •__ _jk (3.11)

ak N ck j:0 _.3

The second step in getting a pseudospectral approximation is to express

the derivatives of PN f in terms of f(x) at the collocation points xj.

This can be done by differentiating either (3.8) or (3.9). With (3.8) we

obtain

dn PN f(x) N dn

= --gj(x) (3.12)
dxn j_0 f(xj) dxn

so that

dnpN f(xk) N

= _ f(xj)(Dn)kj (3.13)
dxk j=0

where

dn J

(Dn)jk
- dxn gk(x) .[x=xj " (3.14)

For example

_ cj (_l)J+k

(Dl)jk _ xj - xk (k € j) (3.15)

xj 2N2 + I
2 ' (DI)O0 6 (DI)NN

(DI)JJ 2(1 - xj)

and

Dn = (Dl)n. (3.16)
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It should be noted from the explicit formula (3.15) that the matrix D1 is

not antisymmetric; also D2 is not symmetric. These facts introduce both

theoretical and practical difficulties in the pseudospectral Chehyshev method.

A different way to obtain an expression for the derivative of PN f is

to differentiate (3.9) to get

dn N _n)PN f = _ ak r (x), (3.17)
dxn k=0

where the coefficients ak are given by (3.10). For example,

dPN f N N

dx- _ ak rk(x) = _ bk rk(x), (3.18)
k=0 k--0

where

bN = 0, bN_ 1 = 2N aN

and

ck bk = bk+ 2 + 2(k+l)ak+ I (0 < k < N-2). (3.19)

In evaluating the first derivative at the collocation points xj the FFT is

used to evaluate

n

d (PN f) N

- _ bk(n) rk(x )
dx n k;O

where

bk(0) = ak, 0 _ k _ N, bk(1) - bk,

and
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b n k+2.
(3.20)

bN(n) = 0; h(n) = 2NbN(n-l)-N-I

The set of points xj defined in (3.3) is not the only set used with

pseudospectralChebyshevapproximation. For hyperbolicproblems,a convenient

alternativeset of collocationpoints is

_j
yj = cos N+---i- (j = 0,..',N). (3.21)

Two other sets of points that are sometimes used are

_I) 2_jz = cos 2N+I (J = 0,-..,N) (3.22)

and

_(2j+l)z 2) = cos 2N+I (J = 0,...,N). (3.23)

(c) Pseudospectral Legendre Method

An attractive alternative to Chebyshev polynomial expansions is

Legendre polynomial expansions. It suffices to explain how to construct a

pseudospectral Legendre polynomial approximation to a derivative.

Let x0 = -I, xN = I, and let xi(i = 1,...,N-I) be the roots of

q_(x), where qN(x) is the Legendre polynomial of degree N. Given the

values of any function f(x) at the points xj, (j = 0,...,N), we construct

the interpolating polynomial

N

PN f = [ f(xj)gj(x) (3.24)
j=0
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where

I (l-x2)qN (x)

gj(x) aNqN(xj) x - x.3

with

aN = N(N+I).

Therefore,

d£ 1 = N _ gk(xj) _ N
PN f x=xj _x _ k=Odx£ j_0 f(xk) _ (D%)jk f(xk). (3.25)

For example

qN(xj ) i

(Dl)jk - qN(Xk) xj - xk (J # k)

I
(DI)00 = _ aN = - (DI)NN (3.26)

(DI)jj = 0 (j # 0, j # N).

The difference between the Chehyshev and Legendre methods is evident here.

The matrix DI for Legendre polynomials is nearly antisymmetric, in contrast

to the Chebyshev matrix given in (3.15).

By the same method, we obtain

qN(xj ) I I < j,k < N-I,

(D2)jk = - 2 Xk)2 ,qN(Xk ) (xj - j # k

i N I < j < N-I. (3.27)
(D2)jj 3 1 - x.2

3

D2 = A S A-I, where A is a diagonal matrix and S is
This shows that

symmetric.
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4. ERROR EQUATION

The differentialequationwe wish to solve is

Bu
- Lu. (4.1)Bt

The numerical approximation given by (1.2) is

DuN

Bt - PN LPN UN" (4.2)

We define the error equation as

DuN
B--f--L uN = (PN LPN - L)UN = (PN L - L)uN. (4.3)

In the finite difference literature this is frequently called the modified

equation. We shall now give explicit formulas for the right-hand-side of

(4.3) for several cases of interest.

We first consider the model hyperbolic equation

Bu _ Bu -i < x < I u(l,t) 0, (4.4)Bt Bx ' = u(x0)= u0(x)"

Even though this problem has constant coefficients, nevertheless

PN LUN # L uN because of the presence of boundaries.

= _J
We first consider Chebyshev collocation at the points xj cos --_ ,

(see (3.4)). The method described previously satisfies (4.4) at the points

Xl,..-,XN while at x = x0 we impose the boundary condition. Since uN is
DuN

a polynomial of degree N and Bx is a polynomial of degree N-I we have

that
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_uN _uN
_t _x - QN(x)T(t)' (4.5)

where QN is a polynomial of degree at most N and QN(Xj) = 0, J = I,-..,N,

hence QN(X) = (l+x)T_. Comparing the coefficient of TN for both sides of

(4.5) we see that

I daN(t)

T(t) = N dt "

Alternatively, comparing both sides of (4.5) at x = x0,

Ux(l,t)
_(t)

N2

In conclusion the error equation for the points xj is

_uN 8uN aN (I+X)TN _uN u (l,t)_ _ x (l+x)T N • (4.6)
8t 8t + _ _x 2N2

Similarly the error equation for the points yj (3.21) is

SUN SUN aN TN+I SUN Ux(l 't)

8t - _x + N+I - _t (N+I)2 T_+I, (4.7)

and the error equation for {zhl)},t(3.22) is3

SUN _UN I (l+x)T" 2Ux(l )

- + = aN (t) i + 2N "8t 8x 2 [TN + N N]T(t) T (4.8)

We now claim that (4.8) is also the error equation for the Galerkin

method for (4.4). The Galerkin method satisfies (4.5) where Q and T are

chosen so that
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i Q(x)(Tj(x) - i)
A = _(t) f d = 0 j = 0,''',N (4.9)X

-I _I - x2

TN (l+x)TN TOWe show that if Q(x) = _-- + _-_ - _ + Tk(X ) then (4.9) is
k=l

satisfied.

If j = 0, Tj - i = 0 and the result is trivial.

For j ) 1

i i To(T j - I) N I - i)A = T(t) _ dx + _ _ Tk(Tj dx
_ _ 2

1 1 T0dx _ N N

= _(t) -2-i_ _2 +_ k=l_" _kj = _-2r(t) - i + k=l_" _kJ = O.

It thus follows that for the constant coefficient problem (4.3) that the

Galerkin Chebyshev and the Chebyshev collocation at the point z_I)
are

identical.

We next consider the heat equation

u t = Uxx, -I _ x < I,

u(-l,t) = u(l,t) = 0, u(x,0) = u0(x ). (4.10)

_J
We now collocate at the points x. = cos j = i,- ..,N-I with

j --_,

boundary conditions imposed at x0 and xN. Similar to the above procedure

we find that the error equation for the Chebyshev collocation method is
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_uN _2u N Uxx(l,t)(l + x)T_ + (-I)N+I Uxx(-l,t)(l - x)T_
- + (4.11)

Bt _x2 2N2 "

For the Galerkin method

_uN _2uN
- + Q(x)T(t),

_t _x 2

where Q(x) is chosen to be orthogonal to $1(x), j = O,-..,N in the

Chebyshev inner product. For (4.10) we choose

(l+x) (-l)J(l-x) It then follows that the error equation is
_j = rj(x) 2 2 "

_uN _2uN
- + I- cx--_+ B)T_ + CTN, (4.12)

_t _x2

with

Uxx(l,t) - (-I)N Uxx(-l,t)
b = -

2N2

Uxx(l,t) + (-I)N Uxx(-l,t)

2(N 2- i)

5. HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

Before discussing stability properties of various schemes it is helpful

to review the properties of hyperbolic partial differential equations. We

begin with the model problem

ut u -I < x < I, 0 < t < Tx

(5.1)

u(x,O) = f(x), u(l,t) = g(t).
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Integration by parts leads to the inequality

d fluff2 g2 u2d--t = (t) - (-l,t),

or

T T

IIu2(',r)11+ f u2(-l,t)dt = 1If211+ f g2(t)dt. (5.2)
0 0

The norms in this case are L2 norms in space and the generalization to

Sobolev norms is immediate. We next consider the system of equations

ut A ux -I < x < i, (5.3)

where A is a p x p constant matrix. Assuming the system is strongly

hyperbolic we can diagonalize the matrix A. Hence we replace (5.3) by

ut = D Ux -I < x < I, (5.4)

where D = diag(dl,d2,.--,dp) = (dl,dll). We order the eigenvalues dj so

that dI dII (dk+I ,dp)= (dl,''',dk) is positive and = ,... is negative.

The appropriate initial boundary value problem is

u =Du -I < x< I
t x

u(x,0) = f(x)

(5.5)

I SIu (l,t) = ull(l,t) + gl(t)

II(_ 1 SIIu ,t) = _I(-l,t) + gII(t),
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where uI is the corresponding vector of length k and uII is of length

p-k and det(S I) # 0, det(S II) # 0. We then obtain the a priori estimate

T

,lu2(-,T)It2 + KI f [ulI-l,t)) 2 + [ull(l,t))2]dt
0

(5.6)
T

< llf(x)U2 + K2 f [(gl(t))2 + (gll(t))2]dt,
0

for appropriate constants KI, K2 which depend on the matrices D, SI, SII.

The above estimate holds only if the boundary conditions are dissipative,

i.e.,

(SI)*D I SI + DII < 0

(5.7)

(SII) * DII SII + DI > 0,

in other words, if SI and SII are sufficiently small. When (5.7) does not

--st
hold we sometimes can consider a new variable v(x,t) = e u(x,t) and then

obtain an estimate of type (5.6) for v. Hence u(x,t) satisfies the

inequality

T

sT 2 2ct )2 ulle llu(.,r)u + KI f e ((ul(-l,t) + (l,t))2dt
0

(5.8)
T

llf(x)ll2 + K2 f e2_t((gl(t)) 2 + (gll(t)))2dt
0

for constants KI, K2 and c > cO. Sometimes we also need to consider a norm

with a kernel that depends on x.

The above estimates were all obtained for L2 (or Sobolev) norms with a

weight of K(x) = I. On the spectral level this is appropriate for expansions
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in Legendre polynomials. Indeed, if one uses a Legendre pseudospectral method

one can obtain estimates similar to (5.2), (5.6) and (5.8). However, when

using a Chebyshev pseudospectral method it is more appropriate to consider

Sobolev norms with a weight K(x) = (I - x2) - I_ . We next show that one no

longer gets a priori estimates of the type considered until now. Instead, one

must rely on a weaker a priori estimate.

We again begin with the scalar equation but with homogeneous boundary

conditions

u =u -I_ x< i
t x

(5.9)

u(x,0) = f(x) u(l,t) = 0.

Following Gottlieb and Orszag [17] we consider the initial condition

I 0 Ix- x01 >
+€(x'x0)= Ix- x01 , (5.10)

i € Ix- x01 < €

i.e., _ is zero everywhere except for a € neighborhood of x0 where _

.is a triangular function with height 1. A straightforward calculation shows

that

llic(x,O)ll _ = 0(_) m = (1 - x2)-I/2,

but that ll_(x,-I + _)II2_= 0(E I_ ). Thls shows that initially the u-norm

of u is of order _ 112 . However, at time 1 - €, u(x,t) = f(x+t) and so

u(x,t) has m-norm of order _ I/4. Hence, one cannot bound u(x,t)

uniformly in terms of the initial conditions for the Chebyshev norm with
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weight (l-x2) - 1/2 For this simple case one can overcome this difficulty by

(l_x2) _ i_ lq_x 1/2
considering an alternative norm _l(X) = (l+x) = IT-L-_) , see

Gottlieb and Orszag [17]. Heuristically, this norm helps since it is no

longer singular at x = -I. Since the differential equation (9) only allows

left moving waves, no difficulties arise. However, this heuristic reasoning

also demonstrates that this cure will no longer work if there is a

nonhomogeneous boundary condition. Waves are now created at x = I where the

kernel _l(X) is still singular. In particular we consider the initial

boundary problem

u =u -I < x< i
t x

(5.11)

u(x,O) = O, u(l,t) = Ig(t,to) for some to < T.

T
2

By the same argument as before f g (t)dt = 0(€). However, at a time
0

t = to + s llu(-,t)ll_" and llu(. t)H 2 are both of order € I/2. Hence, an
' ' _i

estimate of type (5.6) cannot exist in either the _ or the _I norm.

Heuristically any norm which has a singular weight at either +i or -I will

lead to difficulties, should the weight be zero at both ends its derivative is

nonpositive which shows that integration by parts will not be useful.

The same example shows that for a system of equations even with

homogeneous boundary conditions we cannot get an a priori estimate of type

(5.8). Consider the system

ut = u -i < x < i (5.12a)x

vt = -Vx (5.12b)
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u(x,0)= +€(x,0) v(x,0)= 0

u(l,t) = ev(l,t), v(-l,t) = Bu(-l,t), _6 # O.

The solution for u is a left moving wave until t = 1 while v remains

zero. At time 1 + _, u(x,t) is identically zero while

v(x,t) = #€(x, - I + £). At this point v = 0(_ I/2) in the norm

= (1 - x2) -l_ or _2 = (1-x)(1-x2) -1/2 which are appropriate for

(5.12b). Hence, again one cannot bound v(x,t) uniformly in terms of initial

condition.

We finally show that the nonhomgeneous problem (5.1) is well-posed in any

norm with an integrable kernel when integrations are done over x-t space.

Define

T

Q(x) = f u2(x,t)dt, (5.13)
0

then

T T

dxdQ_ f (U2)x dt = f (u2)t dt = u2(x,r) - f2(x).
0 0

Hence

1 2 I T
Q(x) = - _ u (y,r)dy + _ f2(y)dy + _ g2(t)dt. (5.14)

x x 0

Now integrating in space with a weight K(x)

T 1 1 1

f m(x)u2(x,t)dx dt = - _ m(x)dx _ u2(y,T)dy
0 -I -I x

1 1 1 T

+ _ K(x)dx _ f2(y)dy + f K(x)dx _ g2(t)dt,
-i x -i 0

or

T i i T

f K(x)u2(x,t)dx dt _ K1 _ f2(x)dx + K1 f g2(t)dt. (5.15)
0 -i -I 0
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Furthermore setting x = -I in (5.14) we have

T 1 T

f u2(-l,t)dt < f f2(x)dx + f g2(t)dt. (5.16)
0 -I 0

Adding (5.15) and (5.16) we have

T i T i T

_ K(x)u2(x,t)dx dt + _ u2(-l,t)dt < K0 f f2(x)dx + K0 f gm(t)dt, (5.17)
0 -i 0 -I 0

I

if _ K(x)dx is finite. Furthermore, one usually has the inequality
-i

i 2

f f2(x) dx < K2 _ K(x)f2(x)dx. In particular, this is true for the
-I -i

Chebyshev norm. Thus we have the a priori estimate

;lull,x,t2 + llu(-l,t)ll2t< C[ilfll2m,x+ ilgll2]t" (5.18)

6. STABILITY ANALYSIS OF PSEUDOSPECTRAL SCHEMES - HYPERBOLIC EQUATIONS

In the first section we described different spectral methods. In this

section we shall concentrate on the collocation method and refer the reader to

[17] for the Galerkin approach.

For periodic domains the pseudospectral Fourier method is the most

appropriate. We consider the model problem

ut --a(x) u 0 _ x < 2_x

(6.1)

u(x,0) = f(x) u is 2_ periodic.
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The semi-dlscreteFourieris given by

duN 2N-I

at (xj,t) = a(xj) _ (Dl)jk UN(Xk,t). (6.2)k=0

DN is the 2N x 2N matrix given by (2.13). When a(x) is positive for

all x we have

[IUNll2

d [____] = 2(DI UN,UN)dt

Since DI is antisymmetric it follows that

2

2N-I UN(X, t)d--I -o.
dt j=0 a(xl)

It is then straightforward to obtain an error estimate of the type

E[u(t)- UN(t)11a,0 < C(I+N2) I/2- q llflla,q ,

where 11.11 denotes the Sobolev q norm with weight a(x).
a,q

When a(x) changes sign in the interval (0,2_) the situation is less

clear. A number of numerical studies have shown {hat when one uses a fixed

number of modes then the numerical solution becomes unbounded as one

increases t. We wish to stress that this does not mean that the numerical

method is unstable. Stability concerns itself with a fixed time interval

0 • t • T and lets the number of modes increase. We first consider a

concrete example (Gottlieb, Orszag, and Turkel [15])

ut = a(x)ux
(6.3)

a(x) = _ sin x + 8 cos x + y.
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One can now obtain the estimate

ilUN(t)lll< el/2(I=I+ lsl)tllUN(0)lll" (6.4)

We see explicitly that for 0 < t < T, we have

llUN(t)llI < CiluN(O)iI1,

however as T increases C increases exponentially. We note that for this

example with a = I, B = Y = 0, the analytic solution is

u(x,t) = f[2 tan-l(e t tan 2)].

For all t the solution is bounded when f is bounded. However, for large

t there is a steep gradient near x = 0. Hence, when one uses a fixed number

of modes N and lets t increase, one eventually reaches a time for which

the mesh can no longer resolve the gradient. Hence, the main problem is not

one of stability but rather one of resolution.

One can show that the growth with" time is not only a difficulty with the

collocation method but the same difficulty occurs with the Galerkin method.

Nevertheless, Galerkin methods are used for long term meteorological

calculations using nonlinear equations where the eigenvalues change sign.

Hence, one may conclude that in some sense (6.1) is a harder problem than the

nonlinear Euler equations (with smooth solutions) since (6.1) develops a sharp

gradient as t increases.

We also note that one can stabilize the pseudospectral algorithm for

(6.1) by rewriting (6.1) as
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+ au a u
(aU)x x x

ut = 2 2 ' (6.5)

and discretizing by

a x u

dUN - ½[D(au) + aDu] -_ (6 6)" •

The approximation is now clearly axisymmetric plus a lower order term and

hence stable for all a(x). Nevertheless computations indicate that there is

no advantage to (6.6) over (6.2).

Returning to (6.1) Tal-Ezer [48] has also shown that the solution is

stable when a(x) = sin 2x. Computations show that the eigenvalues have a

bounded (independent of N) real part for a(x) = sin kx. Presently there is

no proof that (6.1) is stable for any a(x) using the Fourier pseudospectral

methods. Nevertheless many computations indicate that the difficulty is one

of growth in time and lack of resolution and not stability and convergence.

One can alleviate the growth in time by filtering the higher modes in the

expansion of uN. Specifically one modifies the collocation method by

considering (Kreiss and Oliger [23] and Majda, McDonough, and Osher [31]).

N
ikx

UN= _ ak Ok e ,
k=-N

where (1 Ikl < k0

Ok =I Ikl - k0 4 . (6.7)e- _--ko.) Ikl > ko

One can consider this as a type of artificial viscosity in Fourier space which

does not alter the spectral accuracy of the scheme.

For the Chebyshev method we begin with the model scalar homogeneous

equation
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ut = u -a < x < I
x (6.8)

u(x,0) = f(x) u(l,t) = 0.

We consider an expansion of u in terms of Chebyshev polynomials

N

UN(X,t) = [ ak(t)Tk(X), (6.9)
k=0

where the ak(t ) are chosen so that the equation is exact at the collocation

points. We consider two sets of collocation points, see (3.2), (3.24)

_j
x. = cos- j = 0,''',N
3 N

and

y_J cos N+---i- j = 0,-..,N.

Hence, we can consider uN to be a polynomial of degree N.

To prove stab111ty we first choose an appropriate norm. A natural norm

would be

N

IIuNII N
k=0

When u is a polynomial of degree N or less this is equivalent to

2
I UN(X,t )

IIUNII_ = f dx.

-I _l - x2

However, we have already seen that even for the partial differential equation

one cannot find an estimate of the type

llu(x,t)ll< Cllf(x)ll.
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Hence, we shall instead consider the norm

ITuiT21 II(l+x)ull2 _ N= = N k=0_ (l+xj)u(xj,t). (6.10)

I

Again when u _ PN-I' tlu112 = f (l+x)u2(x't)dx • For simplicity we shall
_ 2_i -i _I x

consider the collocation points yj and simply state the results for the xj.

Since uN is a polynomial of degree N which satisfies u at the

points yj, uN must satisfy the differential equation

8uN 8uN TN+I(X)
_t _x N+I Ux(l't) u(l,t) = 0, (6.11)

UN(X,0)= f(x)

before proceeding we state the following lemma which is an extension of one by

Rivlin [45].

Let u = _ ak Tk(X) , then
k=0

! f u dx I N _ CO CN 2- N _ U(Xk) _ ,(6.12)

_ £=I Cj = I otherwise-i _ k=0 Ck a2£N

in particular, if u is a polynomial of degree 4N - I or less

I
I e udx I N

J -- N _ U(Xk)-- - a2N. (6.13)
-I X - x2 k--0 Ck
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We now multiply (6.11) by (l+yj)u and sum over j to get

N+I N+I

(l+yj)u 2 2d _ (yj,t) - w _ (l+yj)[u (Yj)]x' (6.14)
2(N+I) at j=0 2(N+I) J=0

since the equation is exact at the points yj, j =0,...,N while at j =

N+I, l+yj = 0. Using (6.13) we replace the sum by an integral, and so

d N )u2(yj i I (14_x)(U2)x2(N+I) dt _ (l+yj ,t) = _ f dx
j=0 -i _i - x2

i 2

=_'if u dx <0, (6.15)2

-I (l-x)_l - x2

or using the lemma again

i d /I (l+x)u 2 dx = I I 2

2 dt -I _i - _ __ f u dx < 0. (6.16)-1 (1- x)_

Hence,

IIUN(t)ll_l<llfllml"

If we now integrate both sides of (6.15) with respect to t we have

T I u2 dx dt I (l+x)u2(x,T) I
f f __ = - f dx + f (i + x) f2(x) dx

0-I (I -x) _i- x2 -I _I- x2 -i _i -x 2

but

I u2 dx I u2 dx
f '2f

-x x) +xand (I -

I f2 I
(i + x) dx < C f f2(x)

x x
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so

T I _ dx dt I f2
f f < cf (X) dx.

_ 2 -I _I x20 -I _I x

Hence uN satisfiesthe followinga priori estimate.

Theorem

Let u _ PN be a solution of (6.8) using the collocation points yj

then for some constant C

IlUN(t)llml < Cllfll 1

and (6.17)
T

f IlUN(t)ll _ dt _ Cllfll 2 .0 m

One can also prove this theorem By using the matrix representation for

DI that is appropriate for the points yj.

We also have a similar theorem for the points xj.

Theor(_

Let u g PN be a solution of (6.8) using the collocation points xj.

Then

_ X')u2(x j _(2N - I)_-_ (l+xj)(l - _ ,t) + t) - (t)]2
j=0 32N [2aN( aN-I

(6.18)

_ X .)f2(xj)_-_ (I - (I --_ + _(2N - i)
j=0 Xj) - 32N [2aN(0) - aN-I (0)]2"

The left hand side of (6.18) is indeed a norm. The sum is strictly positive

for nontrivial u2 unless u2(xj,t) = 0 for j = 0,...,N-1 and

u2(xN,t) # 0 but in this case u = C(1 - x)T_ and so 2aN - aN_ 1 # 0.



32

7. STABILITY ANALYSIS OF PSEUDOSPECTRAL CItEBYSREV SCltEHES

-- PAI_BOLIC EQUATIONS

The analysis of the pseudospectral Fourier method is straightforward and

is similar to the discussion of the previous section. For the Chebyshev

method we consider the equation

ut = Uxx (7.1a) -i < x < I

u(l,t) = u(-l,t) = 0 (7.1b)

u(x,0) = f(x). (7.1c)

We now only consider the collocation points xj (3.4). The proof that the

Chebyshev method is stable for (7.1) for these xj is similar to that of the

previous section. When (7.1h) is replaced by Neumann data we derive the same

error equation as in (4.11). We then differentiate (4.11) to obtain an

equation for v = ux with Dirichlet boundary conditions. The same energy

estimates can be used for v. We thus have

1_[leorem

Using the Chebyshev collocation method for (7.1a-c) with the points

= _J
xj cos-_ , J = 0,''',N, we have

N N

_ 2 t) _ _ f2(xj)UN(Xj, g _ . (7.21j o j=0

When (7.1b) is replaced by Ux(l,t ) = Ux(-l,t ) we have
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DUN 2 N2 a2(t) < _ _ 2,r_f_2 N2
_ j=0 (I- xj)2(_x) + N j=0 (I- xj)L_x) + a2N(0), (7.3)

where as before aN is the highest coefficient of the expansion of uN in

terms of Tj.

We now consider (7.1) with the boundary condition (7.1b) replaced by the

more general case

au(l,t) + _ Ux(l,t) = 0
(7.1c)

_u(-l,t)+ _ u (-l,t)= 0.
x

In this case a stability proof is not yet known for the Chebyshev collocation

method. However, one can explicitly find the eigenfunctions. Furthermore, if

and _ have the same sign while 7 and _ have opposite signs then the

eigenvalues are real, negative and distinct [I0].

8. TIME DISCRETIZATIONS AND ITZRATIVE METHODS

In the preceding sections we have described the construction of spectral

approximations to the spatial operator L in (1.2). In this section we

present some of the difficulties one faces in solving the time-dependent

equation

_uN

_t - PN LPN UN " (8.1)

There are three distinct situations that arise in practice. At times one is

only interested in the steady state version of (8.1). For such problems one

can use a temporarily inaccurate or even inconsistent method but one wishes to

reach the steady state quickly. When the operator L is an elliptic operator
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one can solve the steady state equation directly using multigrid or conjugate

gradient methods. An efficient method for hyperbolic equations will be

presented later.

A second possibility is that the solution to (8.1) changes in time at a

much slower scale then it changes in space. For these types of problems one

may use a comparatively low order scheme to discretize the time. When the

temporal changes are on the same scale as the spatial changes, which is

typical of many wave propagation problems, it is not useful to use a low order

time integration scheme.

We now present several recent developments in the construction of time

integration formulas for the Fourier method. In one case we consider

hyperbolic equations where we are only interested in the steady state. The

second case occurs when the time and space dimensions are of equal importance.

We consider the periodic problem

_u

- gy(U)_t fx(u) + , 0 < x < _. (8.2)

Let Dlx denote the Fourier derivative operator in the x-direction while

Dly represents the y Fourier derivative. Define

n n 2u_ + u (8.3)H2x u. = u - n3 j+l,k 3,k j-l,k"

We solve (8.2) by a multi-step procedure. The first two steps is a modified

Euler approximation to (8.2). We thus have
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n+I/2 n + At n n
Uj,k = Uj,k --2 (Dlx fj,k + Dly gj,k )

and (8.4)

-- = un At(Dlx fn+l/2 n+l/2)Uj,k J,k + j,k + Dl,y gj,k "

It is readily verified that this part of the scheme is unconditionally

unstable. We thus add a correction term which is similar to one suggested by

Lerat [27]. Thus, the final step is

2 2

(I a .At.2 _ .At.2 n+l un k) =- - u_ (8.5)--_ i_x) H2x)(l- _--i_y) H2.y)(Uj,k - 3, uJ, k ,k"

nq-] • n

It is clear that once a steady state is reached that u'_i_J,..= uj, k = uj, k. It

fn+ 1/2+ n+ 1/2
follows from (8.4) that Dlx Dly g = 0 and so the steady state

solution is independent of the time step. We note that this is not true if

the standard Lax-Wendroff finite difference formula is used instead of

(8.4). We next show that (8.4) - (8.5) is linearly unconditionally stable if
2 2

2 _ 2(A ) a2 _ 2 _t and B - _f
_--_ p , _ --_ p (B) where A - _u _ . We now consider

the scalar two- dimensional equation

U = U @'U •
t x y

Since the problem is periodic we can take the Fourier transform of (8.4) -

^

(8.5): let u be the Fourier transform of u and (_,n) the Fourier

At At

variables,.X = _x --_ we have

^ _ X2 2]un(8.6 )(i + am X2 sin2 _)Ii . a2 X2 sin 2 _)lun+l _ un) = [i%(_+n) _-- (_+n)

for -_ < _,_ < _.

Hence, the amplification matrix is
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_ X2
11 + 2 12 sin2 _)(i + 2 k2 sin2 _) --_(_+n2) + il(_+_)

__ n .(8.7)G($,_) = (I + 2 12 sin2 )(I + a2 %2 sin2 _ )

By algebra it follows that [G(_,n)[ < 1 if and only if

1 )2 n
(_+_ _ 2(sin2 _ + sin 2 _) + 4 sin2 _ sin2 . (8.8)

A sufficient condition for (8.8) to hold is that

I (_+n)2 _2 + n2 2< 2 < (sin2 + sin2 _)'

i.e.

i
_2 < 2 2 sin2 2 for -_ _ _ < _.

2

It is straightforward that this inequality holds when 2 o

We next consider the other extreme when the time and space variations are

of the same order of magnitude. We again start with the scalar equation

ut = u (8.9)x

u(x,O) = f(x) u is periodic.

We solve this using a Fourier method with 2N+I modes. Since we wish

spectral accuracy we wish to be able to represent the waves

_ikt
e , k = -N,...,O,...,N. Specifically, we assume that the solution to

i_N(x+t)
(8.9) is u(x,t) = e . Using leapfrog in time and letting v be the

Fourier transform to u, the spectral leapfrog approximation to (8.9) is
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n+l n-I n

vN - vN = 2_iAtN vN 18.10)

where for stability

N A t < I/_. (8.11)

Solving (8.10) we find that

ins

VN(t) = e where sin _ = _iAtN,

while the exact solution to (8.9) satisfies v(t) = eiNt. Comparing VN(t )

and v(t) Tal-Ezer [48] found that the phase error behaves like (At)2 N3.

This shows that if we wish to resolve the high modes we require

2 3
(At) < C(Ax) , (8.12)

which is more stringent than (8.11). Hence, the accuracy requirements demand

a much smaller At than is allowed by stability.

In other words if we wish to resolve N modes with a leapfrog-Fourier

method we need not 2N+I modes But many more modes and hence the Fourier

method is not efficient. To resolve this difficulty it is necessary to use a

higher order accurate time integration formula. Tal-Ezer [48] has presented a

scheme which is efficient and has spectral accuracy in time as well as

space. The solution to

ut = PN LPN u (8.13)

u(0) = u0

is given by
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PN LPN t

u = e u0. (8.14)

We approximate the solution operator by

uN = Hm(P N LPN t)u0, (8.15)

where

m

Hm(iSR) [ ik= Jk(R) re(S),
k=0

i.e. i k
Tk(8) is a function of le which we call Vk(I8 ) then

m

Hm(P N LPN t)u0 = _ Jk (R) Vk(PN LPN t)u 0,
k=0

where Tk is the k-th Chebyshev polynomial, Jk is the Bessel function of

order k and R is larger than the difference of the largest and smallest

eigenvalues of PN LPN" Tal-Ezer [48] has found efficient ways of

implementing (8.15) which do not require any complex arithmetic. He also

shows that it is more efficient to use 2N+I modes coupled with (8.15) in

i_Nx
time in order to resolve e rather than using more modes and leapfrog in

time •
m

9. COMPRESSIBLE FLOW

We now consider the application of spectral methods to the Euler

equations, i.e., compressible inviscid fluid dynamics. The main feature of

this system of equations is that they constitute a nonlinear conservative

system of hyperbolic equations. Hence, the solutions will frequently include
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shocked flows. One might suspect that global methods are not suitable for

problems with discontinuities. However, we shall see that it is still

possible to use spectral methods for such problems.

Majda, McDonough and Osher [31] have shown that for a linear system of

equations, even with constant Coefficients the existence of discontinuities

reduces the accuracy of the Fourier method if one does not specially treat the

initial data. They also show that if one truncates the initial data using a

Galerkln procedure one retains the spectral accuracy. For equations with

variable coefficients one must also filter the higher modes at every time

step. These results imply that discontinuities may reduce the global accuracy

using an LP norm. Lax [25] on the other hand has argued that although the

formal accuracy is lost nevertheless one can recover a highly accurate

solution. This occurs since the numerical solution contains many small scale

oscillations. Although this destroys local accuracy one can remove the

oscillations by an appropriate post-processor and recover the spectral

accuracy. Thus, spectral methods have high order resolution, even in the

presence of discontinuities. It may also be shown [14] that the spectral

method automatically satisfies the conservation form and hence the Ranklne-

Hugoniot conditions. It is also shown in [14] that one can then extend the

theorem of Lax and Wendroff [26] and prove that if the spectral method

converges it will converge to a weak solution of the differential equation.

There are indications that filter (6.7) suggested by Majda, et al. [31],

introduces an entropy condition into the numerical solution.

At present there are three trends in dealing with shocks. The simplest

approach is to use a finite difference artificial viscosity to reduce the

oscillations caused by the shock. This method reduces the formal accuracy and

gives smeared profiles of the shock. Nevertheless, reasonable results have
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been obtained by Taylor, et al. [51] and Hussalnl and Zang [20]. A different

approach is to use shock fitting as recommended by Morettl. Salas, Zang, and

Hussalnl [47] have used this technique for a bow shock which was mapped onto

the boundary of the domain. Other applications are discussed in [21] and

[22]. A third possibility [14] is to truncate the high modes at each time

step and then to locate the shock and to filter the solution on each side of

the shock only at the final time. It is possible to use the structure of the

spectral method to locate the shock. Thus, we compare the given numerical

solution in Chebyshev space with a step function in order to locate the shock

and estimate its strength. This gives a much better shock locater than is

possible with finite difference methods. The shock locator is based on the

fact that spectral methods give sharp discontinuities. Hence, any art_flclal

viscosity that smears discontinuities will destroy the usefulness of the shock

locator.
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