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ABSTRACT

Definitive orbit determination accuracy and orbit prediction accuracy for the D ynamic Explorer-'_

(DE-2) are studied using the Goddard Trajectory Determination System for the period within six

weeks of spacecraft re-entry. Baseline accuracies using standard orbit determination models and

methods are established. A promising general technique for improving the orbit determination

accuracy of high-drag orbits. estimation of random drag variations at perigee passages. is investi-

gated. This technique improved the tit to the tracking data by a factor of five and improved

the solution overlap consistency by a factor of two durin g a period in which the spacecraft

perigee altitude was below 200 kilometers. The results of the DE-2 orbit predictions showed

that improvement in short term prediction accuracy reduces to the problem of predicting future

drag scale factory ; the smoothness of the Solar 10.7-centimeter flux density suggests that this

may be feasible.
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ORBIT DETERMINATION AND PREDICTION STUDY

FOR DYNAMIC EXPLORER 2

SECTION 1 — INTRODUCTION

.n this study the accuracy of orbit determination and orbit prediction for a low-altitude spacecraft

are evaluated for the final weeks of drag decay prior to re-entry. For this project, the Dynamic

Lxplore-2 (DE-:) was more intensively tracked than was customary for operational. end-of-lifetime

m6it determination, and this additional tracking was intended to permit increased orbit accuracy

in operational-type solutions through local improvement in the drag force modeling. The results

of this study establish baseline navigation performance using the current orbit computation system,

for application to future projects and for comparison with future TDRSS performance for low-

altitude spacecraft.

Force model errors are the major source of orbit determination error for arc lengths in excess of

a few revolutions, when NASA S-band tracking data ( range and Doppler) is used. Of course, for

end-of-lifetime solutions it is expected that errors in drag force modeling will comprise the major

source of orbit determination and orbit prediction errors. During the periods of tracking studied,

the DE-2 orbit was at altitudes between 200 and 380 kilometers. In an earlier study (Reference 1)

for the High Energy Astronomy Observatory ( HERO-2). in which the spacecraft was at an altitude

of 500 kilometers. definitive orbit determination errors of about 50 meters were obtained usinz

readily available gravity and drag models. At the !ower DE-2 altitudes considered in this study.

the errors are substantially larger. and part of the purpose of this work was to establish these error

levels.

In Section 2 of this report. the available DE-2 tracking data and the orbit determination and orbit

prediction methods are described. In Section 3. rou gh estimates of the effects of gravity model

and drag model errors are presented. in Section 4. the numerical results of the stud y are given.
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For definitive orbit determination these include the effects of different gravity and atmosphere

models, the effects of definitive solution arc length, and the effects of modifying the force model

using impulsive perturbations in an attempt to reduce drag errors. For orbit prediction, numerical

results showing the effect of the predicted drag force scale factor a , a given. Finally, Section 5

contains the conclusion, indicating directions for future work suggested by the results.

I
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SECTION'_ — DATA AND METHODS

2.1 DE-? ORBIT CHARACTERISTICS AND TRACKING DATA

Orbital parameters for DE-2 are summarized in Table 1. The orbit is polar with low eccentricity,

and although the eccentricity is low, the variation in the altitude during one revolution is sufficient

to cause an order of magnitude difference in the drag force between apogee and perigee. Figure 1

shows the decrease in apogee and perigee altitudes prior to re-entry on February 19, 1983.

NASA Unified S- band range and Doppler tracking data was used to determine the orbits in this

study. The amounts of tracking available are shown in Figure 2. Approximately equal numbers of

range and Doppler observations were available and used. It was originally desired that about 18 to

20 passes of tracking per day be obtained, which was estimated as the maximum available with the

geometrical limitations of ground-based tracking; however, as indicated by Figure ?, the average

rate actually obtained was 10 to 12 passes per day. Consequently. only modest improvements in

orbit accuracy could be expected in the results of this study.

3.= ORBIT DETERMINATION AND PREDICTION METHODS

Four period, of time, each approximately three days in length. were selected for study. The rela-

tionship of these selected periods to the orbital altitudes and to the tracking data distribution is

shown in Figures I and 2. Orbit solutions within these periods were calculated using the Goddard

Trajectory Determination System (GTDS) (Reference '_). either the operational version or a slightly

modified operational version. Definitive orbit solutions were overlapping, by 6 hours for the 18-

hour solutions or by 8 hours in the case of a single gro , ip of 32-hour solutions. Maximum ephem-

eris differences within the overlap intervals were used as a gauge of definitive solution accuracv.

recognizing that reduced overlap differences are a necessary. but not sufficient condition for im-

proved orbit accuracy.

%I
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For the predictive orbit accuracy studies, predictive trajectories started at the epochs of definitive

orbit solutions in period 1 and were stopped at the end of period 2. The accuracy of the predicted

trajectories was measured by comparison with definitive solutions. In these comparisons. the

maximum position differences were calculated for 6-hour periods at repetitive intervals of one day,

so that the growth of the predictive error could be observed.

Two Earth gravity models were used and compared in this study: the Goddard Earth Model 9

(GEM9) ( Reference 3) truncated to maximum degree and order'_' 1, or truncated to maximum

degree and order 8 (as in GSFC orbit operations). and GEM l OB 36 X 36. GEM9 is derived from

satellite tracking data, while GEM I OB is derived from satellite tracking data. Earth surface gravim-

etry. and Geodynamics Experimental Ocean Satellite-3 (GEO3-3) altimetry. None of the satellites

used in deriving these gravity models had perigee altitudes below 400 kilometers, so that the DE-'

altitudes lie within an altitude range not well covered by the existing GSFC gravity models.

Two atmospheric density models were used and compared, a Harris-Priester model and a Jacchia-

Roberts model (Reference'_). The primary difference between these two models. in the colitext

of DE-'_ orbit determination. is that the Jacchia-Roberts model attempts to follow transienc density

effects correlated with the geomagnetic index Kp, while the Harris-Priester model does not use Kp.

During periods 1 and ' geomagnetic activity was low, but during periods 3 and 4 it reached moderate

values. The Jacchia-Roberts model was tested only during period I in January 1983: definitive

Jacchia-Roberts orbit solutions for February 1983 could not be computed because of the lag time

in the GTDS data b. a updates. In all definitive orbit solutions a drag force scale factor. ( I + RHO 1).

was estimated in addition to the epoch state vector. Solving for this factor nullities slowly varying

systematic differences between atmospheric models and corrects for other constant-factor errors

in the drag model, namely, errors in the spacecraft area to mass ratio and the drag coefficient CD-

Changes in the estimated values of RHO l generally follow charges in the atmospheric density.

which are correlated with the Solar 10.?-centimeter specific flux density. This flux density is



plotted in Figure 3 for the periods on study. It is noteworthy that the variations in this flux are

generally smooth over periods of several days, and thus the variation of RHO1 in consecutive de-

finitive solutions should be correspondingly smooth for very low-altitude orbits. This smoothness

may lead to a short-term predictability in RHO 1, increasing *he accuracy of short-term, operational

orbit predictions.

The spacecraft was model as a sphere for drag fcrce and Solar radiation force modeling, using an

area-to-mass ratio of 5.0038 X 10-9 km2 /kg. In the case of the Solar radiation force, the pertur-

bation is very small, anyway, and the error introduced by the sphere approximation is negligible.

During the four periods of study, the spacecraft altitude was, for the purpose of drag modeling,

constant relative to the orbit, with the cylinder axis oriented perpendicular to both the velocity

vector and the oroit plane. Thus, the error of the sphere model relative to a cylinder model is con-

stant with time and this error is corrected by estimation of the drag force scale factor, (1 ^' RHO 1).

Hence, the sphere model was adequate in this study.

NASA Spaceflight Tracking and Data Network (STDN) tracking station coordinates (Reference 5)

were used in modeling of the tracking observations. These coordinates differ by up to 20 meters in

comparison to more accurate coordinates (Reference 6). However. these differences do rot signif-

icantly affect definitive orbit accuracy until orbit errors are reduced to the 30-meter level. a level

well below that encountered in this study. Hence the STUN coordinates were sufficiently accurate

for DE-'_ orbit determination.

A special version of GTDS was prepared for computation of the solutions that are reported in

Sections 4.2.2 and 4.13. This version enables the specification and `or estimation of up to eight

impulsive forces in an orbit solution. The directions of the impulses could b= arbitrarily specified

in track-oriented (along-track. cross-track. radial) coordinates. Actually. each impulse could be

repeated in a solution an arbitrary number of times at any specified repeat interval: this feature

--3



was used for the results in Section 4.2.2. The formulation used in this study was a mild enhance-

ment of the formulation used in HEAO-2 definitive orbit determination (Reference 1), which was

used to model actual, intermittent spacecraft thrusting.
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SECTION 3 — ESTIMATES OF DE-2 ORBIT ERRORS

3.1 GRAVITY ERRORS

Since the precise gravity models that are used in orbit determination are expressed in spherical

harmonic expansions, it is necessary to have the errors in the ex; anion coefficients themselves in

order to perform orbit error analysis. Since, for example, the GEM I OB model contains more than

1000 coefficients, it is clear that simplification in the analysis is necessary. One conventional

method of simplification is to use a multiple of -,-he differ:nce between two similar, but uncor-

related, gravity models to estimate the gravity field error in formal orbit error analysis. This ap-

proach, containing only one adjustable scale factor, has the advantage of simplicity. but does not

directly provide identification of the portions of the model most responsible for the derived orbit

errors. At the other extreme. the GSFC Harmonic Analysis Program (HAP) provides very detailed

analysis of the sensitivity of an orbit to each of the Fourier components of each spherical harmonic

term. This approach give complete resolution but does not explicitly take into ac:ount the length

of an orbit determination arc (which may be much less than the periods of the perturbations in-

duced by some sph:rical harmonic terms), nor doe; it provide a simple means to combine the effects

of similar terms.

The approach used here lies between these two extremes. The spherical harmonic terms of the

GEM IOB model were divided into groups, according to the order m of the terms. m l G m s m,.

The effect on an 18-hour DE-: trajectory resulting from the terms in any one group was directly

measured by differencing two trajectories. one trajectory containing this group of terms in the

force model and the other trajectory omitting these terms. assuming linearity. this differencing

isolated the effects of the group of terms. Then. the effect of each group was multiplied by an

error scale factor that is representative of the error in the harmonic expansion coefficients of each

goup in order to estimate the orbit error for the group. Of course. the accuracy of the estimate

will depend on the accuracy of the error scale factor.

3-1
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The error scale factor, were computed in the following way. Reference 3 provides an error estimate

for each term in the GEM 10 model. lower and upper estimates for the error scale factor for e. _h

group of terms were computed from the formulas

ft 	 (3.1)

[ /	
S.

f,	2(3-2)
[;(C; + 52)],

where the summations extend over all N terms in a particular group and the ° i is the error for each

pair of coefficients (C, , S t ) in the group, as tabulated in Reference 3. These error scale factors

were based on the GEM 10 gravity model, because coefficient errors for the GEM 10B model were

not readily available. The smaller factor, f t , would be applicable if all of the coefficient errors in a

group were highly correlated with each other, while the larger factor, f, . apolie3 when the errors

in the individual coefficients are indepe-^ent. At best. these error scale factors merely provide a

reasonable range for rough estimates.

The results of this anal ysis are given in Table I Two sets of results are given. one for an 18-hour

arc on January 19 and the other for an 18-hour arc on February 12. The maximum perturbations

for each group of terms were measured by direct inspection of a plot of the perturbation kith time.

Gel trally. orbital frequency oscillations were observed in these plots. within a time-varying envelope

and sometimes superimposed on a linear or quadratic secular variation. T^.!cP secular variations

were ignored. since small corrections to the orbital elements or the phOI in orbi t solutions would

compensate for the secular variations. The perturbations tabulated are the lar gest cansectttive

maximum to minimum . xcursions observed at the orbital frequency oscillations. iin _e it %k as

3-'
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assumed that the oscillations within the time varying envelopes would not be well-corrected by

element or RHO1 adjustment.

Overall, the error estimates in Table 2 suggest that the gravity errors in 18-hour DE orbit solutions

should be, at most, on the order of 100 to 200 meters. The largest component of the error arises

from the near-resonant, m = 16, terms. The orbit -rrors for these terms are large since most of the

satellite orbits used to determine the GEM 1 OB model had resonances with orders 13, 14, or 15,

but not 16. It should be noticed that the estimated level of orbit error is only very mildly increased

at the later date, seven days prior to re-entrv.

3.2 DRAG FORCE ERRORS

Figures 4 and 5 indicate the time variation in the DE-2 drag force. The product of the Hams-Priester

model density multipued by the solved-foc value of (1 y RHO l) is plotted for several Hams-Priester

models for various Solar 10.7-centimeter flux densities. Figure 4 is derived from 18-hour orbit

solutions beginning at Oh on January 19, 1983. wale Figure 5 is derived from 18-hour solutions

beginning at Oh on February 1'_. 1983. The drag force will be nearly proportional to the quantity

plotted in these figures since the variation in the square of the spacecraft velocity is small. t;cure 4

shows about a 20 to 1 drag variation from perigee to apogee, while figure 5 shows about a 10 to 1

variation. The Harris-Priester models for large 10.7-centimeter Solar flux densities show smaller

perigee-apogee drag variations because the model scale heights are larger than those for lower flux

densities.

The drag variations shown in Figures 4 and 5 are, of course. the modelled variations. which are in

error to some degree. To improve the drag force modeling. correction of three features is con-

sidered in this report. These three features are the following:

(I)	 Perigee-Apogee Variation. In an orbit solution. this variation is determined by the scale

height and diL.mal variation in the atmosphere model and by the orbital elements. Correcting

3-3
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the perigee-apogee variation in each orbit solution assumes that systematic errors exist during

the time span of the orbit solution. The detailed shape of the drag variation from perigee

to apogee is likely to be of minor importance since this shape is represented by variations

occurring on a time scale very much shorter than the orbital period, that is, this shape is

represented by high-frequency Fourier components.

(II) Linear Variation in the Overall Level of Drag. As a result of changing orbital elements and

the time dependence of the actual atmosphere density, the general level of drag may vary

slowly during the timespan of an orbit solution. in a way different than the drag model, and

this may require correction.

(III) Random Variations in E.:mospheric Density. Transient phenomena in the upper atmosphere,

for example, gravity waves, are known to produce 10 to 20 percent changes in the local

density. In addition, model errors of 10 to 20 percent, which vary rapidly with position.

have been reported for the best atmosphere models (Reference 7). With the type of drag

variation that is shown in Figures 4 and 5, random density changes can be approximately

modeled as rant'-)m along-track impulses in the force, positive or negat ;ve. occurring at the

times of perigee.

In order to estimate the sizes of the orbit position effects resulting from drag variations I and H.

the following simplified drag model is introduced. The total along-track drag force. f, is represented

by the superposition of a slowly varying term. fo . and a sinusoidal term of amplitude f l :

f =fo +ft Cos ( w o t+p)
	

(3-3)

where w o is the orbital frequency. t is the time. and 0 is an arbitrary phase. The slowly varying

term will be represented as a linear variation:

f =a	 I +a Ct	 ?"0	 U ( T
	 (.3-4)

3-4
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where a is the maximum .ractional variation in the drag level and t is the time from the start of a

trajectory of duration T. On the basis of elementary linear orbit perturbation theory, the dominant

effects of these drag variations can be readily calculated. The dominant along-track effects for the

second and fourth periods of study are displayed in Table 3. Note that in this table, the amplitude

of the oscillating term is estimated to be equal to the constant term ao.

Table 3 indicates that for a linear time variation error of 10 percent of the average drag force, the

along-track effect is substantial in magnitude, 3.5 or 9.3 kilometers for the two epochs. However,

much of the effect varies as t 2 and will be absorbed into estimation of RHO 1. Also. much of the

t3 variation will be absorbed by RHO I. For the oscillating component, Table 3 suggests the

systematic errors in the oscillation amplitude will lead to marginally important along-track effects.

A 10 percent error in the amplitude would lead to 180-meter and 500-meter along-track effects in

periods ? and 4 respectively.

In order to estimate the effects of random drag variations. an  impulsive. rather than continuous,

model of the drag force is adopted. Drag at apogee is neglected and the peaks near perigee will be

approximated as a sequence of delta function impulses, each of strength Av i :

N

f=	 AVi 6(t—ti)
	

(3-5)

i=1

where t i is the time of the i-th perigee. Neglecting periodic effects. linear perturbation theory

yields the following estimate for the along-track displacement, Q i (t), for the i-th impulse

	

Q i (t) _ —3 IvV $(t — t i )	 (3-6)

where the function g is defined by

-(x)=x. for 	 ;;t0,
i 3-7)

g(x) = 0. for x < 0

and where oscillatin g terms have been omitted.

3-5
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Equation (3-6) will be used to make numerical estimates. The magnitudes of the OVi can be

determined numerically from Figures 4 and S. Integrating under the F# 150 curves, between the

half-maximum points, yields values of 3.3 and 11.5 centimeters per second, respectively, for

perigee passages in periods 2 and 4. In order to make precise along-track perturbation estimates.

a lengthy, but straight-forward statistical calculation would be required. Rather than attempt this,

here it will simply be assumed that a 10 percent error in vV occurs for a single impulse at a perigee

passage near the middle of an 13-hour trajectory. With this assumption, application of Equation

(3-6) yields along-track displacements of 0.3 and 1.1 kilometers, respectively, for periods 2 and 4.

From these estimates, it is clear that random fluctuations in the drag force can lead to significant

orbit solution errors for DE-'_, when errors from several perigee passages are superimposed.



SECTION 4 — RESULTS

4.1 ORBIT DETERMINATION USING STANDARD METHODS

4.1.1 EFFECT OF GRAVITY MODEL

Three sets of orbit solutions were computed, one set using the GEM9 8 X 8 gravity model and the

F* 150 Hams-Priester model, one set using the GEM9 21 X -1 1 gravity model and the F# 225

Hams-Priester model, and one set using the GEM 10 36 X 36 gravity model and the F# 225 Harris-

Priester model. The RMS weighted residuals for these solutions are shown in Table 4. For periods

1 and 2, much better fits to the tracking data are obtained as the gravity model is improved, but

this trend is not observed in periods 3 and 4.

The 6-hour solution overlap differences are shown in Table 5. Mild reductions in the overlap dif-

ferences are found for periods 1 and 2 (although these reductions are not as strong as the reductions

in the RMS weighted residuals) but no consistent trends are observed in periods 3 and 4.

Comparisons between the 18-hour GEM9 8 X 8 solutions and the corresponding GEM I OB solutions

yielded maximum position differences which werelypically 200 to 300 meters in period 1 and 400

to 600 meters in period 2.

The natural interpretation of these results is that gravity errors are significant in periods 1 and =,

but in periods 3 and 4, drag errors are very much larger than gravity errors, making gravity improve-

ments undiscernable in the results. The overlap differences observed in periods 1 and 2 are consist-

ent with the gravity error estimate of 100 to 200 meters in Section 3.1. evidently, solutions in these

two periods contain a comparable amount of drag error.

4. 1.2 EFFECT OF ATMOSPHERIC DENSITY MODEL

Four sets of GEM l OB 36 X 36 orbit solutions were calculated. one set in period 1 using the Jacchia-

Roberts model. and three com plete sets using the F= 75. FT 150. and F-t'_25 Harris-Pri;!sters. As

D
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with all orbit solutions for this report, RHO 1 was solved for in each individual solution. As indi-

cated by Figures 4 and 5, the primary effect, on short orbit solutions, of varying the F# is to

change the atmosphere scale height and, hence, to perigee-apogee variation in the drag force. The

Jacchia Roberts model introduces time dependence into the model density, but these effects are

expected to be small for period 1.

The RIMS weighted residuals for these solutions are shown in Table 6 and the solution overlap com-

parisons are given in Table 7. The solutions in periods 1 and '_ show a slightly better fit with the

F* 150 Harris-Priester model. This value for the Solar flux is near the actual values for these periods.

(See Figure 3.) A preference for the actual values of the Solar flux is not evident in periods 3 and 4.

The overlap differences in Table 7, except for period 4, roughly match the trends in the RIMS

weighted residuals. Typical differences between Jacchia-Roberts and Harris-Priester solutions were

100 to 300 meters. Typical differences between corresponding Harris-Priester solutions of different

flux numbers were 100 to 200 meters in period 1 and 400 to 800 meters in period 4.

As in many other orbit accuracy studies, the more complex Jacchia-Roberts model does not yield

more accurate orbit solutions.

4.1.3 EFFECT OF LENGTH OF ORBIT SOLUTION

In operational GSFC orbit determination for DE-2, the lengths of orbit solutions were generally

about 32 hours long, with 8-hour overlaps, except during the last two weeks. when shorter solut?ons

were computed. Operational solutions used the GEM9 8 X 8 gravity model with estimation of

RHO 1 in each solution.

The effects of the longer solution length are shown in Table 8. As expected, both the RMS weighted

residuals and the overlap differences are substantially higher for the 32-hour solutions: she R,b1S

weighted residuals are about a factor of two larger. ,vhile the increase in the overlap differences is

not quite so large.

4-,
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4.2 ORBIT DETERMINATION USING FORCE :MODEL ADJUSTMENT

4.2.1 ADJUSTMENT OF THE LINEARLY VARYING DRAG SCALE FACTOR

In these solutions an attempt was made to correct for systematic changes in the drag force level,

which may possibly occur during the period covered by an orbit solution. This is variation II

described in Section 3.2. Eight parameters were solved for in each solution, six orbital elements

and two coefficients in a linear polynomial for RHO I . This capability is available in the standard

version of GTDS.

A summary of these solutions is shown in Table 9. Compared with corresponding solutions in

which only a constant RHOI was estimated (Tables 4 and 5), these solutions show a much better

tit to the tracking data, particularly in period 4. However, the period 2 overlap differences were

not improved and the period 4 overlap differences became an order of magnitude larger. The be-

havior observed in period 4 was also noted in the HEAO-'_ study. In Table 9, the solved-for values

of RHOI at the starting times and ending times of consecutive solutions show some degree of

continuity, but there are glaring exceptions, indicating that the technique is responding to errors

that are not linearly varying drag errors.

Empirically, the procedure of solving for the linearly varying drag factor has performed very poorly

in a time period, period 4. in which it might be thought to be most useful. This may be related to

the fact that each solution contained only. typically. eight passes of tracking.

4.2.2 ADJUSTMENT OF THE PERIGEE-APOGEE DRAG VARIATION

In these solutions the ratio of the drag force at perigee to the drag force at apogee was adjusted.

in addition to the drag force parameter RHO I. This is variation I in Section 3.2.1. A special version

of GTDS was used for these calculations. At each apogee. an  along-track impulse was applied and

estimated. the same impulse at each apogee. For these eight-parameter solutions the GEM 1 OB

36 X 36 model and the F= 150 Hams-Priester model were used.
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These solutions are summarized in Table 10. Compared to corresponding results in Tables 6 and 7.

the fit to the tracking data is not much changed in period 1, but moderately improved in period 2.

However, as judged by the solution overlap differences, estimation of the accuracy did not improve

the solution accuracies, overall. The strengths of the estimated impulses are given in Table 10;

these are about 10 percent and 7 percent of the perigee drag effects in periods 1 and 4 respectively.

Also, Table 10 indicates that the new solve-for parameter is strongly correlated with the RHO1

solve-for parameter, although not strongly enough to damage the numerical accuracy of the

solutions.

The results suggest that, although the perigee-apogee drag variation should be a parameter with a

significant effect on DE-2 solution accuracy, it is probably not the largest error source and reduc-

tion of some other error must first be obtained before correction of this effect can become signif-

icant.

4.3.3 ADJUSTMENT OF RANDOM DRAG FORCES

Here, an attempt was made to estimate, at least partially, some of the random variations in the drag

force, variation III described in Section 3.2. To accomplish this, along-track impulses were placed

at selected perigee points in each solution, and the magnitudes of these impulses were individually

estimated, along with RHO I and the orbital elements in each solution. For periods 1 and 2, solu-

tions having one, two, three. and four estimated impulses were calculated. All of the solutions

included the GEM l OB 36 X 36 model and the FT 150 Harris-Priester model.

An 18-hour solution contains about 12 DE-2 perigee passages. It is clear, that with the amount of

tracking available (Table 4), an impulse at each perigee passage cannot be estimated. Furthermore,

since data is not available between all consecutive perigees, impulses between distinct perigees may

not be distinguishable in orbit solutions. in this pilot study, the impulses were placed so as to divide

each solution into rou ghly equal segments. taking care to ensure the presence of trackin g data

between estimated impulses.
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The RMS weighted residuals are shown in Table 11. A, clear, strong decrease as more impulses are

added is observed. (The RMS weighted residuals for a particular case may increase as more im-

pulses are added, because the impulses are added at different perigee passages.) Table 12 shows

the overlap differences. Compared to the corresponding differences in Table 7, period 1 differences

with impulses show a mild decrease, consistent with the estimate of 100 to 200 meters of gravity

error. However, the overlap differences for period 4 show a much larger improvement, from 1100

meters to about 500 meters.

The sizes of the estimated impulses are shown in Table 13. The average magnitudes (disregarding

the sign) are also given. These averages are physically reasonable. In period 1 the averages range

from 19 to 26 percent of the average perigee drag impulse, and for period 4 the averages range from

10 to 22 percent of the total. Surprisingly, there was no difficulty is estimating ten or eleven

parameters with the available tracking data. Table 14 shows the correlation coefficients for the

three-impulse solutions of period 4. Even though each of these solutions contained about eight

passes of tracking, the largest correlation coefficient among the solved-for impulses and RHO1 was

O.97, and typically much smaller.

Differences between corresponding solutions calculated with and without impulses were typically

100 to 300 meters during period 1 and 500 to 1500 meters during period 4.

4.3 ORBIT PREDICTION

Operational orbit prediction is concerned with prediction periods of. typically. five days. For DE-2.

the major factor controlling prediction error is the magnitude of the average drag force: errors in

this cause along-track prediction errors to grow as the square of the elapsed time. This will out-

grow effects of errors in the elements. which lead to along-track error growth which is proportional

to the elapsed time. In addition. gravitational resonance effects for DE-2 are small for the periods



considered here. Hence, prediction accuracy will depend crucially on the value of the drag scale

factor (1 + RHO 1) used in the prediction.

For predictions in periods 1 and 2, two types of predicted values for RHO1 are considered, constant

values and linearly varying values.

4.3.1 CONSTANT DRAG SCALE FACTOR

Current GSFC operational orbit prediction procedures use the last value of RHOI obtained in

definitive solutions for the predicted orbit. This procedure was followed to obtain the results in

Tables IS and 16. A different value of RHO 1 was used in each prediction, obtained from the cor-

responding definitive solution. The results in Table 15 were obtained using initial elements and

RHO1 values from GEM9 21 X 21 definitive solutions, while the results in Table 16 correspondingly

used GEM9 8 X 8 definitive solutions.

The prediction accuracies are about the same, typically 200 kilometers after five days, regardless

of the gravity model.

In order to further study the effects of the predictive value of RHO 1, an additional set of predic-

tions was computed. Here, the average value of RHO 1 during the prediction interval was used.

This average value was obtained from existing definitive solutions within the prediction interval.

Of course, this could not be an operational procedure, but this test was performed to determine

whether an average value of RHO 1 would lead to better prediction accuracy.

The results of this test are shown in Table 17. The five-day prediction error was observed to in-

crease slightly, relative to the errors in Tables 16 and 17. This is probably the result of errors

building up early during the prediction period for the predictions using the avera ge RHO I.
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4.3.2 LINEARLY VARYING DRAG SCALE FACTOR

The results just described indicated the need for more accurate RHOI values in prediction. More

accurate values were provided by the sectioned, linear approximation shown in Figure 6. This

linear approximation was simply an eye fit to the definitive values of RHO 1 obtained for period 1

and period 1 solutions. The capability to include a sectioned, linear RHO 1 approximation is in-

cluded in the current operational version of GTDS.

The prediction errors obtained using the sectioned linear approximation are given in Table 18. The

increase in accuracy is marked; five-day prediction errors have been reduced from the 200-kilometer

level to the 20-kilometer level. These results show that orbit prediction accuracy can be substantially

increased provided good linear predictions of RHO 1 can be made. RHO 1 tends to follow the Solar

10.7-centimeter flux density and as indicated in Section 2, this flux density varies smoothly over

five- to 20-day periods, so that RHO1 may be predictable. Further study of this question is required.

i
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SECTION 5 — CONCLUSION

Definitive orbit determination accuracy levels for DE-2 were established. For the slightly elliptical

orbit, ranging from 230 to 380 kilometers altitude, an accuracy level of 200 to 300 meters was

obtained using the GEM I OB gravity model in 18-hour solutions. In the altitude range 190 to 270

kilometers, accuracies of about 1000 to 1500 meters were obtained. These accuracies were derived

using standard gravity and atmosphere models. In the latter case, atmospheric drag errors appeared

to form most of the total error. For both altitude ranges, the accuracy levels obtained using a much

less precise GEM9 8 X 8 gravity model were similar to the GENII OB accuracies.

A technique for estimating random drag force errors was tested. At the lowest altitude range, the

technique significantly improved the quality of the fit to the tracking data and appeared also to

substantially improve the solution accuracies. The application of this technique was limited by the

availability of tracking passes; with approximately 20 passes of ground tracking data per day, or

equivalent amounts of Tracking Data Relay Satellite S ystem (TDRSS) data, this technique could

be more fully tested.

The DE-'_ orbit prediction study showed that improvement in low-altitude orbit prediction reduces.

essentially. to prediction of the drag force scale adjustment parameter RHO 1. Substantial improve-

ments in orbit prediction accuracy were shown to be possible if good, piecewise-linear predictions

of RHO1 can be made for periods of five to ten days. The predictability of RHO1 in operational

orbit determination is suggested as a question for future study.
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FIGURE CAPTIONS

Figure I. Altitude History of DE-2 Before Re-entry.

Figure 2. DE• 2 Tracking Data Distribution Before Re-entry.

Figure 3. 10.7-Centimeter Solar Flux Censity During DE-'_ Orbit Determination Periods.

Figure 4. Variation in DE-2 Drag Force for Period 2.

Figure 5. Variation in DE-2 Drag Force for Period 4.

Figure 6. DE-' Definitive Va!ues of RHOI and the Sectioned Linear Approximation Used in

Prediction.
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Table 1
Osculating Keplerian Orbital Elements for DE-2

Orbital Element
Epoch

Oh January 14; 1983 Oh February 12, 1983

Semimajor Axis (km) 6693.3 6631.9

Eccentricity 0.0112 0.0054

Inclination (Degrees) 89.99 89.92

Argument of Perigee (Degrees) 3.89 233.03

Right Ascension of Ascending
Node (Degrees) 157.98 158.08

Mean Anomaly (Degrees) 45.41 136.07
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Table 3
Estimates of Drag Effects for DE-2

Maximum Along-Track Position
Type of Drag Dominant Variat+ T! 	!	 ^

'r'"iatitin Along-Track Effect
January 19, 1983 February 12, 1983

Constant 3	
ao t2 100. 280.

ao

Linear in Time ( 3 T_t 1 0.35 0.93
( t_ 1.
``
	 J

aaot

2
``T (for a=0.01) (for aa0.01)

ciao
(T1

Oscillating
2 ao t

a	 cos (w t + 0)0	 0 wo	
sin (wo t + Q) 1.8 5.0

*For 18-hour propapdom
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Table 4
RMS Weighted R e-siduals from DE-2 Orbit Solutions

(Gravity Model Varied)

RMS Weighted Residual
Solution Passes of
Interval' Tracking GEM9 GEM9 GEM l OB

8X8 21X21 36X36

IA 10 16.6 9.5 8.0

1 B 8 8.1 8.2 4.6

1C 9 12.0 11.2 8.2

1 D 15 19.4 9.0 6.6

1E 11 11.4 12.1 13.1

1 F 10 17.7 20.0 15.5

Averages . 14.2 11.7 9.3

2A 7 - 7.6 _'.9

2B 9 - 10.4 7.0

X 9 - 11.3 7.5

2D 10 - 11.4 11.3

2E 10 - 10.5 5.4

2F 11 - 9.1 5.0

Averages: 10.1 6.5

3A 5 - 3.7 2.0

3B 6 - 12.7 9.3

3C 7 - .1.9 22.6

3 D 7 - 26.2 3:.0

3E 6 - 7.8 7.1

3F 5 - 12.3 9.6

Averages: 14.1 13.8

4A 8 46.3 30.3 41.5

4B 9 61 .4 48.7 47.5

4C 8 25.5 14.0 17.8

4D 8 :1.8 31.4 30.9

4E 8 19.8 19.8 24.9

4F 8 17.6 17.9 15.8

Averages: 32.1 :7.0 :9.'

`Consecutive, overlapping orbit solutions are identified by a two-character labei The rust character
indicates the period number and the second character indicates the relative postucn of the solution
within the penod.
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Table 5
Ephemeris Differences Between Overlapping DE -2 Orbit Solutions

(Gravity Model Varied)

Maximum Overlap Difference (Meters)
Compari,:on

Interval GEM9 GEM9 GEM l OB
8X8 21X 21 36x36

IA-1B* 400 422 293
1B-1C 264 342 320
IC-ID 417 224 250
I D-1 E 161 206 260
lE-1F 327 348 306

Averages: 314 308 286

2A-2B — 361 257
2B-2C — 269 211
2C-2D — 750 449
2D-2E — 234 287
2E-2F — 236 135

3A-3B —
3B-3C —
3C-3D —
3D-3E —
3E-3F —

Averages:

4A-4B 1489
4B-4C 825
4C-4D 912
4D-4E 1639
4E-4F 831

Averages:	 1139

702 856
531 440

1506 1285
381 419
897 650

803 730

'_134 2083
534 564

1330 1508
1710 1612
1768 1--_

1495 1508

*Indicates that solution IA is compued with soluti 	 1 B in the overlap interval.
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Table 6
RMS Weighted Residuals for DE -2 Orbit Solutions

(Atmosphere Model Varied)

RMS Weighted Residual
Solution
Interval" Harris-Priester Harris-Priester Harris-P iester

Jacchia-Roberts F* 75 F* 150 F# 225

1 A 6.8 6.7 6.2 8.0

iB 5.4 8.0 4.2 4.6

iC 11.8 5.4 5.2 8.2	 f

1D 16.1 13.3 5.6 6.6

1 E 12.6 8.0 12.2 13.

1 F 9.0 17.4 13.9 15.5

Averages: 3 9.8 7.9 9.3

2A - 4.1 2.6_.9

,B - 6.2 6.2 7.0

2C - 5.3 6.2 7.5

2D - 10.2 10.5 11.3

2E - 4.6 4.2 5.4

2F - 6.2 4.5 5.0

Averages: 6.1 5.7 6.5

3A - 8.9 3.1 2.0

3B - 7.7 5.5 9.3

3C - 22.8 21.1 _2.6

3D - 38.1 34.8 32.0

3E - 15.3 8.7 7.1

3F - 14.6 8.9 9.6

,averages: 17.9 13.7 13.8

4A - 69.2 52.4 41.5

4B - 51.2 45.9 47.5

4C - 45.1 18.8 17.8

4D - 36.0 16.3 31.0

4E - 33.5 6.6 :5.0

4F - 55.4 30.5 15.8

Averages: 48.4 28.4 29.8

'See Table 4 footnote.
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Table 7
Ephemeris Differences Between Overlapping DE-2 Orbit Solutions

(Atmosphere Model Varied)

Maximum Overlap Differences (Meters)
Comparison

Interval* Jacchia-Roberts Harris-Priester' Harris-Priester Harris-Priester
F# 75 F# 150 F# 225

IA 1B	 202	 126	 158	 293

IB-1C	 194	 266	 191	 320

1C-I1)	 56%	 188	 228	 250

113-1E	 272	 322	 160	 260

lE-1F	 169	 604	 189	 306

Averages:	 281	 301	 185	 286

2A-2B	 —	 331	 174_57
2B-2C	 —	 57	 113	 211

2C-2D	 —	 376	 349	 449

2D-2E	 —	 287	 266	 287

2E-2F	 —	 77	 78	 135

Averages:	 226	 196	 268

3A-3B	 —	 985	 700	 856
3B-3C	 —	 808	 597	 440

3C-3D	 —	 1092	 498	 1285
3D-3E	 —	 1150	 731	 419
3E-3F	 —	 1007	 260	 650

Averages:	 1008	 557	 730 

4A-4B	 — 1999 1817 2083

4B -4C	 — 1771 752 564
4C-4D	 — 1088 1048 1508

4D-4E	 — 1568 692 1^;2

4E-4F	 — 1393 1368 177.1
Averages: 1564 1135 1508

*See Table 5 footnote.
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Solution Epoch 
(1983) 

Jan 14, oh 
Jan 14, 12h 

Jan 15, oh 
Jan 15, 12h 

Jan 16, oh 
Jan 16, 12h 

Jan 14, rJt 
Jan 15, rJt 
Jan 16. rJt 

Table 8 
Comparison of 18·Hour and 32·Hour O~it 

Solutions for DE·2 

Passes of RMS Weighted 
Tracking Residual 

18-Hour Solutions 

10 16.6 

8 8.1 

9 12.0 

15 19.4 

11 11.4 

10 17.7 

Averages: 14.2 

32·Hour Solutions 

18 30.8 

20 30.2 

18 28.7 

Averages: 29.9 

Note: All solutions used the GEM9 8 X 8 gravity model. 

Maximum Overlap 
Difference (Meters) 

400 

264 

417 

161 

327 

-
314 

669 

408 

-
~39 



Table 9
Summary of DE-2 Orbit Solutions Including Estimation

of a Linearly-varying Drag Scale Factor

Solution RMS Weighted Maximum Overlap Drag Scale Factor*

Interval Residual Difference (Meters) Start End

IA 7.3 139 .081 .017

IB 4.5 367 .059 .071

1C 6.3 273 .105 .215

ID 6.5 453 .188 .201

l E 13.0 395 .129 .112

1 F 9.2 — .301 .064

Averages:	 7.8 325

4A 20.3 12809 .040 .226

4B 14.2 8869 .291 .169

4C 15.2 6103 .141 .207

4D 18.2 1761_5 .307 .087

4E 11.8 9958 .049 .165

4F 15.4 — .164 .177

Averages:	 15.9 110703

*A linearly-varying RHO1 was estimated in each 18-hcur solution. The values tabulated correspond to the start
and end of each solution. The GEM10B 36 X 36 gravity model and the F= 225 Harris-Priester model were used
for solutions in this table.
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Table 10
Summary of DE-2 Orbit Solutions in Wtich the Perigee-Apogee

Drag Variatiou Was Estimated

Solution
Interval

RMS Weighted
Residual

Maximum Overlap
Difference (Meters)

Impulse
Strength (cm(s)

Correlation
Coefficient*

IA 5.0 151 0.24 .993

I B 3.9 19 —0.81 .996

1C 4.3 ;71 0.15 .988

ID 5.0 1 1 8 0.15 .996

1 E 11.3 367 0.30 .997

1 F 13.1 — 0.23 .987

Averages:	 7.1 208 0.31

4A 30.4 1367 —1.40 .977

Q 33.2 602 1.29 .992

4C 11.5 I	 1121 —0.52 .986

4D 15.9 696 —0.14 .983

4E 6.6 1719 —0.25 .946

4F 16.7 — —1.10 .985

Averages:	 19.1 1101 0.78

*Between RH01 and the impulse strength.
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Table I 1
RIMS Weighted Residuals for DE -2 Orbit Solutions That Included

Estimation of Random Drag Forces

RMS Weighted Residual
Solution

One Impulse Two Impulses Three Impulses Four ImpulsesInterval*

IA 6.2 5.3 4.6 3.8

1B 3.9 3.4 3.3 0.9

1C 4.7 1.8 2.1 1.9

ID 4.9 4.5 4.5 3.7

lE 9.3 9.8 4.4 3.7

1 F 13.4 4.5 4.6 2.9

Averages:	 7.1 4.9 3.9 2.8

4A 47.5 13.5 6.6 3.0

4B 42.0 17.5 12.5 9.6

4C 18.6 7.9 14.7 5.2

4D 10.8 12.2 7.1 5.5

4E 5.5 5.8 5.4 5.2

4F 28.7 18.2 11.2 3.2

Averages:	 25.5 14.6 9.6 5.3

*See Table 4 footnote.
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Table 12
Ephemeris Differences Between Overlapping DE-2 Orbit Solutions

That Included Estimation of Random Drag Forces

Comparison Maximum Overlap Differences (Meters)

One Impulse Two Impulses Three Impulses Four ImpulsesInterval*

IA-1B 138 125 215 320
1B-1C 243 151 119 159
1C-11) .78 135 143 105
ID-1E 184 89 97 55
lE -1F 387 146 217 257

Averages:	 226 129 158 179

4A-4B 2035 998 974 561
4B-4C 835 226 210 446
4C-4D 1123 764 807 711
4D-4E 624 838 437 506
4E-4F 1337 888 I	 385 263

Averages:	 1191 743 563 497

*See Table 5 footnote.
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r

O v

.o

^n

i^^



Table 14
Correlation Coefficients from a DE-2 Orbit Solutions in

Which Three Perigee Impulses Were Estimated

Solution
Interval*

Correlation Coefficient

(RHO 1, S1) (RHO I, S2) (RHO 1, S3) (Sl, S2) (Sl, S3) (S2, S3)

4A .965 .925 .911 .820 .900 .789

4B .947 .869 .737 .692 .823 .344

4C .958 .939 .806 .812 .843 .649

4D .702 .965 .810 .524 .473 .761

4E .769 .950 .897 .608 .878 .759

4F .770 .947 .970 .695 .759 .864

*See Table 4 footnot:.
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Table 15	
OF POOR QUALITY

DE-2 Prediction Accuracy Using the Last Definitive
Values of RHO 1(GEM9 21 X 21)

Maximum Along-Track Error (Kilometers)
Epoch

Prediction Interval (Days)

1 2 3 4 5 6 7 8
Jan 14, Oh 3 30 X X 175 186 156 X
Jan 14, 12h 17 56 X X 162 193 186 129
Jan 15, 0h —1 X X —93 —222 —435 X X
Jan 15, 12h —10 X X —114 —249 —471 —795 X
Jan 16, Oh X X —15 —88 —227 X X X

Jan 16. 12h X X	 I —65 —170 —356 —637 X X

Jtc: I ne tirmy 11 x 21 and the F# 225 Harris-Priester models were used. The last definitive value of RH01was used in each prediction.



Table 16
DE-2 Prediction Accuracy Using the Last Definitive

Values of RHOI (GEM9 8 x 8)

Maximum Along-Track Error (Kilometers)

Epoch
(1983) Prediction Interval (Days)

1 2 3 4 5 6 7 8

Jan 14, Oh 3 28 X X 159 163 123 X

Jan 14, 12h 16 54 X X 150 173 158 89

Jan 15, Oh 3 X X —78 —200 —405 X X

Jan 15, 12" —11 X X —123 —265 —496 —832 X

Jan 16, Oh X X —28 —110 —261 X X X

Jan 16, 12h X X —63 —164 —345 —621 X X

Note: The GEM9 8 x 8 and the F# 150 Harris-Priester models were used in each prediction. The last definitive
value of RHO1 was used in each prediction.



Table 17
DE-2 Prediction Accuracy Using the Average Value of RHO I

for the Prediction Interval

Maximum Along-Track Error (Kilometers)

Epoch
(1983) Prediction Interval (Days)

1 2 3 4 5 6 7 8

Jan 14, Oh 17 64 X X 330 401 431 X

Jan 14, 12h 32 93 X X 278 365 42C 431

Jan 15, Oh 56 X X 327 404 441 X X

Jan 15, 12h 64 X X 236 323 382 399 X

Jan 16, Oh X X 202 265 298 X X X

Jan 16, 12h X X 130 198 246 260 X X

Yote: The GEM9 21 X 21 and the FT 225 Harris-Priester models were used. The value of RHO1 used in each
prediction was the average of the definitive values of RHO 1, obtained from the definitive solutions during
the prediction interval.
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OF POOR QUALITY,

Table 18
DE-2 Prediction Accuracy Using a Sectioned Linearly Varying

Value of RHOI in the Prediction Interval

Maximum Along-Track Error (Kilometers)

Epoch
(1983) Pre-fiction Interval (Days)

1 2 3 4 5 6 7 8

Jan 14. 0h 1.5 1.1 X X —5.3 6.2 4.8 X

Jan 14, 12h —2.3 —4.8 X X —5.4 —2.5 —4.1 —4.6

Jan 15, 0h 3.9 X X 19.1 23.4 26.1 X X

Jan 15, 12h —1.7 X X 3.1 7.0 8.2 10.4 X

Jan 16, 0h X X —5.9 —6.6 —9.1 X X X

Jan 16, 12h X X 16.0 25.1 31.7 39.7 X X

'Dote: The GEM9 8 X 8 and the F#150 Harris-friester models were used in each prediction. A linearly-varying
approximation for RHOI, based upon the definitive values of RHOI during the prediction interval. was
uied in each prediction.
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