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SUMMARY

Two simple and improved models - energy-balance and spring-mass - were

developed to calculate impact force and duration during low-velocity impact of

circular composite plates. Both models include the contact deformation of the

plate and the impactor as well as bending, transverse shear, and membrane

deformations of the plate. The plate was a transversely isotropic graphite/

epoxy composite laminate and the impactor was a steel sphere.

In the energy-balance model, a balance equation was derived by equating

the kinetic energy of the impactor to the sum of the strain energies due to

contact, bending, transverse shear, and membrane deformations at maximum

deflection. The resulting equation was solved using the Newton-Raphson

numerical technique. The simple energy-balance model, yields only the maximum

force; hence a less simple spring-mass model is presented to calculate the

force history.

In the spring-mass model, the impactor and the plate were represented by

two rigid masses and their deformations were represented by springs. Springs

define the elastic contact and plate deformation characteristics. Equations

of equilibrium of the resulting two degree-of-freedom system, subjected to an

initial velocity, were obtained from Newton's second law of motion. The two

coupled nonlinear differential equations were solved using Adam's numerical

integration technique. Calculated impact forces from the twoanalyses agreed

with each other. The analyses were verified by comparing theresults with

reported test data.

*Research Associate Professor, Old Dominion University
**Senior Engineer



INTRODUCTION

Low-velocity impact of composite laminates has been a subject of impor-

tance since the last decade. The invisible damage caused by mild impacts was

found to decrease residual strengths. Many researchers have studied this

problem in different ways. Yet the problem still poses many challenges.

Methods reported [I-8] to date to predict the impact force, including the

effect of contact deformation, can be classified into two categories: (I) the

Hertz method; and (2) the modified Hertz method. The Hertz method, which

includes only the contact deformation for plates supported at the outer

boundary, overestimates impact force by several orders of magnitude [3]. The

modified Hertz method includes the plate flexural deflection in addition to

contact deformation. Impact of rectangular [5,6,7], circular [4], and canti-

liever [3] plates was studied based on small deflection thin plate theory.

Recent studies [8,9], however, have shown that the laminates (plates) undergo

large deflection and transverse shear deformation when the impact occurs at

low velocity. The modified Hertz method [3-7], which neglects these two

effects, underestimates the impact force for thin plates and overestimates the

force for thick plates. Hence, it is necessary to develop a more general

analysis that includes both large deflection and transverse shear effects, so

that a wider range of plate thickness and impact velocities could be analyzed

accurately. An exact solution for the low-velocity impact on composite lami-

nates involves a three-dimensional nonlinear dynamic analysis of a laminate

attached to a central mass through a Hertzian spring. Such an analysis is

mathematically highly complex and numerically intractable even with modern

computers. The objective of this paper is, therefore, to develop improved,

yet simple, analyses to calculate the impact force and duration for a low-

velocity impact on circular laminates.



The particular problem considered in this study was a circular laminated

plate impacted at its center by a stiff sphere. The plate was assumed to be

made up of a quasi-isotropic laminate having transversely isotropic material

properties. The plate boundary was either clamped or simply supported.

During impact, the plate and the impactor undergo contact deformation and the

plate further undergoes bending, transverse shear and membrane deformations.

Early studies [I,8,10] have shown that the impact duration is many times

longer than the time for generated stress waves to travel to the outer

boundary of the plate and to return. Furthermore, the effects of higher

modes, especially when the plate undergoes large deflection, are small and can

be neglected. Therefore, assuming the first mode vibration of the plate, two

simple models were proposed: (I) an energy-balance model and (2) a spring-

mass model. The energy-balance model (equating the kinetic energy of the

impactor before the impact to the deformation energies of the plate-impactor

system) yielded an energy equation which could be solved for maximum force

using a desk top calculator. However, to calculate the complete force history

during impact, the spring-mass model was developed. In the spring-mass model,

the impactor and the plate were represented by two rigid masses and the

associated deformation characteristics were represented by springs. Equations

of motion of the two masses were obtained using Newton's second law of motion.

The resulting coupled nonlinear differential equations then were solved using

Adam's numerical integration technique. The two analyses were compared with

each other and with reported data [4,9].



SYMBOLS

a plate radius, m

ac contact radius, m
a

AII,AI2,A22 contact stiffness constants

E Young's modulus, MPa

Ec contact deformation energy, N-m

Em membrane deformation energy, N-m

Ebs bending-shear deformation,energy, N-m

G shear modulus, MPa

h plate thickness, m

Kb plate bending stiffness, N/m

Km plate membrane stiffness parameter, N/m

Ks plate shear stiffness, N/m

Kbs equivalent bending-shear stiffness, N/m

KI,K2 constants

M mass, kg

n contact deformation stiffness

P impact force, N

RI impactor radius, m

r-z plate coordinate system

t time, seconds

VO impact velocity, m/sec

w plate total transverse deflection at the center, m

wb plate bending deflection, m

ws plate transverse shear deflection, m
#

XI impactor displacement response, m

x2 plate displacement response, m



contact deformation of impactor and plate, m

_,6 contact stiffness constants

v Poisson's ratio

• p material density, kg/m3

Subscripts:

I impactor

p plate

r radial direction

z transverse direction

DESCRIPTION OF THE PROBLEM

Figure I (top) shows a spherical impactor of radius RI, mass MI, and

velocity Vo striking the center of a circular plate of radius a and thick-

ness h. The plate is assumed to be made up of a quasi-isotropic laminate

having transversely isotropic material properties. A cylindrical coordinate

system with the origin at the center of the plate is assumed. A representa-

tive @ = constant section of the plate is shown in the Figure I. During

impact (t > 0), the impact force induces two types of deformations [4]: (I)

contact deformation e in the impactor and the plate (see fig. I), and (2)

transverse de£1ection w of the plate, which is measured from its mid-surface

(see fig. I). The deformation u is the measure of how the centers of the

plate and the impactor approach each other. The impact force P and the

contact deformation are related by the well-known Hertz law [2,11]. The

transverse deflection w is the sum of bending wb and transverse shear

• ws deformations of the plate. (From hereon "transverse shear" is referred to

as 'shear.') Furthermore, the membrane deformation is caused by the stretch-

ing associated with the deflection w of the plate. If w is small compared

to plate thickness (w/h _ 0.2), the membrane effects could be neglected [12].
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After the plate-impactor contact, the impact force P (see fig. I) acts

over an area of contact between the impactor and the plate. The area of

contact depends on the force and moduli of the impactor and plate. The plate

load and deflection are related by the stiffness associated with bending,

shear and membrane deformations. Because the area of contact is small, it was

assumed that the impact force was centrally concentrated. The expressions for

bending stiffness Kb and membrane stiffness Km parameters were derived

using the Babunov-Galerkin variational method [13]. These stiffness expres-

sions for Kb and Km are given in Table I for the four plate boundaries,

namely, clamped (edge moveable or immoveable) and simple supported (edge

moveable or immoveable). The transverse shear stiffness Ks expression was

derived assuming the impact force to be distributed over the region of con-

tact [14]. This Ks expression was verified by comparing the calculated

shear deformation with Woinowsky-Krieger's [12] results for isotropic plates.

The formulation and results of the proposed two models, energy-balance model

and spring-mass model, are presented in the following sections.

ENERGY-BALANCE MODEL

Analysis

The energy-balance (E-B) model was based on the principle of conservation

of total energy of the plate-impactor system In this analysis, the kinetic

energy of the impacting mass was equated to the sum of the energies due to

contact, bending, shear, and membrane deformations. The energy losses from

material damping, surface friction, and higher mode vibrations [I0] were

neglected. The resulting equation was solved for the impact force using the

standard Newton-Raphson numerical technique.

The maximum kinetic energy of the impactor before impact, at t = o, is

MIVo2. After t = o, the plate-impactor system undergoes contact,I/2



bending-shear, and membrane deformations. The corresponding stored defor-

mation energies are Ec, Ebs, and Em, respectively. Then, from the principle

of conservation of total energy, the energy-balance equation of the plate-

impactor system is

I 2
MIVo = Ec + _s + Em (I)

The energies Ec, Ebs, and Em were calculated using the corresponding force-

deformation relations as follows.

The impact force P and contact deformation _ relation for impact of

two bodies of revolution is given by the Hertz law [2],

3/2
P = n_ (2)

where n is the contact stiffness parameter, which depends on material and

geometrical properties of the plate and the impactor. The expression for n,

for an isotropic impactor and transversely isotropic composite plate, is given

by [11]

n = 3_(K1 + K2 ) (3)

where

. K I _EI /



and

K2 = -- 2
2_Gzr (AlI_2 - A12)

All = S I1 - V )_z r

Er_I1 - V2zr6)
A22 = (1 + v )r

A12 = ErVzr_

1
6=

1 - v - 2v2 6
r zr

6= E /Er z

The constants EI and vI are, respectively, Young's modulus and Poisson's

ratio of the impactor. The constants E, G, and v are, respectively,

Young's modulus, shear modulus, and Poisson's ratio of the plate, while the

subscripts r and z refer to radial and thickness directions, respectively.

The contact energy Ec is then the integral of the product of the impact

force and contact deformation:

E = P duc

The impact force P is replaced by the function _ from equation (2), then

after integration and simplification Ec becomes
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2 p5/3
E = ---- (4)
c 5 2/3

n

The reactive force P from the plate can be resolved into two components

P = Pbs + Pm (5)

where Pbs is the force associated with bending and shear deformations and

the Pm is the force associated with membrane deformation. Using the force-

deflection relation reported in reference 13, the force P is written as

P= KbsW+Kmw3 (6)

K_s
where Kbs = _ + K is the effective stiffness due to bending and shear.s

The constants Kb, Ks, and Mm are bending, shear, and membrane stiffnesses,

respectively, of the target. Expressions for Kb and Km for the four plate

boundary conditions are given in Table I. The shear stiffness Ks was

derived starting from the shear stress-strain relation for transverse loading

of a circular target [14]. It is given by

K = zr I (7)
Er - _vrs 3 zGz /3 + log a/ac

The contact radius ac is the radius of contact between the impactor and the

target, which depend on the force P, and which is expressed as [4]

)R_ 1/3
• 3_ + (8)ac= q P{KI



The impact force P is initially unknown, hence an initial value of ac = h/2

was used in equation (7) for the estimation of P. the bending-shear energy

Ebs , and membrane energy Em of the target, were obtained by integrating the

forces Pbs and Pm (from equations (5} and (6)) with respect to w.

Therefore,

i 2
Ebs= _ KbsW (9)

and

I 4
Em = _ KmW (10)

Substituting equations (4), (9), and (10) in equation (I), and then

simplifying using equation (6), the energy-balance equation becomes

4 w3K w

MIVo2 m 4 sw + Km= w2+-3-+g 2 €11)
n

The deflection w is calculated solving equation (11), using the Newton-

Raphson numerical technique. The inverse procedure of calculating the impact

velocity for a chosen value of w can also be followed. The impact force

P is then calculated by substituting the value of w into equation (6). The

analysis was repeated for different plate configurations and impact veloci-

ties. Typical results for the E-B model are presented in the next section.

Results

The impactor was a steel sphere of radius 19 mm, and the plate was a

quasi-isotropic graphite/epoxy laminate of radius 38 mm. Material properties

10



of the impactor and the laminate used in the analysis and given in Table 2.

Clamped and simply-supported plate boundaries were examined.

Figure 2 shows impact force versus impact velocity for three different

plate thicknesses: 3.2, 1.6, and 0.8 mm for a plate radius of 38 mm. The

plate boundary was clamped and edge immoveable. The case of h = 3.2 mm

(a/h = 12) was a moderately thick plate, wherein the transverse shear defor-

mation is significant, and h = 0.8 mm was a thin plate wherein the membrane

stretching is large. The solid lines represent the E-B model results and the

broken lines represent Greszczuk's [4] results, in which both large deflection

and shear deformation effects were neglected. The two analyses agree over

only limited velocity ranges, depending on the plate thickness. The E-B model

predicts lower impact force for thick plates (h = 3.2 mm) than Greszczuk's

analysis due to transverse shear flexibility (plate deflections were in the

small deflection range). At higher velocities, the plate deflection becomes

larger and the associated membrane stiffening counteracts shear flexibility;

hence, the two results approach each other before crossing at Vo = 8.5 m/sec.

For thin plates, the two analyses agree only at very low velocities (less than

I m/sec, which is not of practical interest); at higher velocities the E-B

model predicts higher impact force than the Greszczuk, due to membrane

stiffening.

Figure 3 shows the variation of contact deformation energy with impact

velocity for the same plates The contact energy is normalized with respect

to the kinetic energy of the impactor, i.e., Ec/I1/2 MIVo2). As before,

solid lines represent the E-B model results and broken lines represent the

Greszczuk analysis. The E-B model results show that the contact deformation

energy initially decreases with increase in impact velocity, and finally

increases at higher velocities, whereas Greszczuk's analysis shows a monotonic
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decrease in contact energy. This difference is due to neglecting the effect

of large deflection (membrane stiffening) in the Greszczuk's analysis. But

the two results agree very well for thin targets at very low impact velocities

(a region of academic interest). Examining the contact energy for thin plates

in figure 3, one can conclude that contact effects may be neglected for very

thin plates.

Figure 4 shows maximum impact force versus velocity for the same plates

but with simply-supported edges (roller supports). The E-B model and the

Greszczuk analysis agree well for h = 3.2 mm, due to the counteracting effect

of membrane stiffening and the transverse shear flexibility in the plate.

Furthermore, the two analyses agree for thin plates at very low velocities.

But at higher velocities, the E-B model predicts higher impact force than the

Greszczuk analysis. Comparison of results from figures 3 and 5 show that for

a given impact velocity, the clamped plate (due to higher bending and membrane

stiffness) experiences higher impact force than the simply-supported plate.

Figure 5 compares the predicted and measured [4] impact forces for a

simply-supported plate of radius 38 mm and thickness of 36 mm. Notice that

the ordinate scales in figure 5 are linear, whereas in figure 5 they were

logarithmic. Calculated impact forces are represented by curves, and the test

results [4] by symbols. The broken line (w_m) is from the spring-mass

model, which will be explained in the next section. Results from the E-B

model agree well with test data at low velocities, and reasonably well at

higher velocities. The discrepancy may be due to plate damage during the

impact (P = 1.6 KN, Vo = 2.54 m/sec). However, predictions from the present

E-B model are closer to test data than are Greszczuk's predictions.
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SPRING-MASS MODEL

Analysis

The energy-balance model presented in the previous section estimates the

impact force fairly accurately. But it does not predict the history of force,

velocity or displacement throughout the impact. So an alternate model, namely

a "spring-mass" model (S-M model), is presented here. The S-M model is an

extension of Lee's spring-mass model for impact of beams [I]. In the present

S-M model (fig. 6), the impactor and the plate were represented by two rigid

manes MI and Mp, respectively. The early studies [15] on free vibrations

of plates with an attached central concentrated mass have indicated that the

effective mass of the plate contributing to inertial effects is one-fourth of

its total mass. Hence, in the present analysis also, the effective plate mass

Mp was taken as one-fourth of the total mass of the plate. The two masses

were connected through a Hertzian spring that represented the contact load-

deformation characteristics [11]. The transverse load-deformation behavior of

the plate was represented by a combination of bending, shear, and membrane

springs (see fig. 6(a)). The spring combination below the plate mass satisfy

the following conditions: impact force is shared by bending shear and mem-

brane deformations of the plate; for thin plates the spring combination

reduces to the thin plate theory due to relatively low bending stiffness

1

I_s = i/Kb + i/Ks = _I; for small plate deflections (w < 0.2 h), the spring

combination reduces to the small deflection theory due to relatively small

force carried by membrane stretching (P = KmW3). Bending and membrane

stiffness expressions for four types of plate boundaries are given in Table I;

the shear stiffness expression is given by equation (7). Again, material

damping, plate damage, and surface friction were neglected.
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Let x1(t) and x2(t) (see fig. 6(a)) represent the displacement

responses of the two masses at any time t after impact. The corresponding

velocities were represented by _1(t) and _2(t). The dot indicates the b

differentiation with respect to time t. The transverse deflection of the

plate is given by w = x2(t) and the contact deformation is given by

= It(t) - x2(t). Throughout the analysis the impactor mass MI was assumed

to be in contact with the plate. Applying Newton's second law of motion,

equations of equilibrium of the two degree-of-freedom (TDOF) spring-mass

systems are written as (see fig. 2(b))

Mix1 + knl(x I - x2)11"5 = 0 (12)

1.5.+

_x 2 + 5osX2 + Kmx23 - Xnl(×1 - x2) I -- 0 (13)

and

k = 1 for xI > x2

k = -1 for x 1 < x2

Initial conditions of the two masses are: x1(0) = 0 and It(0) = VO for the

mass MI; and x2(0) = x2(0) = 0 for the plate mass Mp. The coupled non-

linear differential equations were solved using Adam's numerical integration

technique. Calculations were stopped when the plate displacement x2(t)

became zero or negative. The impact force experienced by the plate was

calculated by substituting x2(t) in place of w in equation (6).

14



If the effective plate mass Mp is less than 0.071 times the impactor

mass (or impactor mass MI is greater than 3.5 times the total plate mass),

reference 15 suggested that the plate mass could be neglected. The two

degree-of-freedom system then reduces to a single degree-of-freedom (SDOF)

system as shown in figure 6(b). Then the equation of equilibrium of MI is

written as

"" 1.5
MlXI + Kbsw + KmW3 + no = 0 (14)

and

xI = w + a (15)

Initial conditions are t = 0, x1(0) = 0, and x1(0) = Vo. Equations (14)

and (15) were solved numerically for x1(t) and P as before.

Results

Impact force and the duration due to an impact of a steel ball on a

circular plate were calculated using the S-M model. Two impactor sizes 19 mm

and 12.8 mm, and two types of plate materials, aluminum and graphite/epoxy,

were used in the analysis. The analysis was first verified by comparing the

calculated impact durations with reported test results [4] for aluminum
P

plates. Then, impact force and the duration were calculated for graphite/

epoxy laminates, and compared with reported results.

Figure 7 shows velocity, displacement, and force responses of impactor

and plate when a steel ball of radius 19 mm impacted on an aluminum plate

(a = 38 mm) at a velocity of 2.54 m/sec. Solid lines represent the two

degree-of-freedom (TDOF) spring-mass results and broken lines represent the

single degree-of-freedom (SDOF) spring-mass results. In figure 7(a), the

15



velocity of the impactor decreases from an initial velocity of 2.54 m/sec to

zero and then to -2.54 m/sec. The incident and the rebound velocities were

equal because energy losses in the system were neglected. The time elapsed

b

during the impactor velocity excursion from +2.54 m/sec to -2.54 m/sec is

defined as the impact duration. The duration was 0.607 msec from both TDOF

and SDOF analyses. The perturbations in the TDOF results are due to

interacting inertial forces of the two masses.

Figure 7(b) shows the displacement response of the impactor (xI) and the

plate (x2) masses calculated from the two spring-mass models. The impactor

and target displacements were zero initially and then attained maximum when

the impactor velocity reached zero, before becoming zero again. In the case

of the TDOF analysis, the plate displacement x2 was higher than the impactor

xI for a few micro-seconds in the early part and later part of the impact

event. The separation of masses was not allowed, since the impactor was

assumed in contact with the plate throughout the analysis. These small

distrubances were due to inertial effects of the plate; inclusion of material

damping would have reduced these disturbances.

Figure 7(c) shows variation of plate reaction with time. The absolute

maximum reaction experienced by the plate during the impact event is defined

as the impact force. The SDOF curve passes through the mean of the TDOF

results. In figures 7(a) - 7(c) (MI/MP = 23), the TDOF and SDOF agree very

well; hence, for large ratio of impactor mass to plate mass, the inertial

effects of the plate may be neglected.

Figure 8 compares predicted and measured [4] impact durations on aluminum

plates of various thicknesses. The solid line represents the TDOF S-M model

results and symbols are from test data [4]. The analysis agrees reasonably

well with test results. The discrepancy may be due to two main assumptions in
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the analysis: the plate is perfectly elastic, whereas in the tests local

plastic deformation is possible; and the boundary is perfectly clamped,

whereas, actually, rubber grip pads were used in the test [4]. The figure

shows that the impact duration decreases with increase in plate thickness.

Returning to figure 5, it shows the comparison of impact force calculated

from spring-mass model, energy-balance model, and Greszczuk's analysis and

test data [4] for simply-supported composite plates. Calculated forces from

the spring-mass model and energy-balance model agree very well, and both agree

with test data, except at the higher impact velocity.

Figure 9(a) shows the comparison of predicted and measured [9] impact

duration for a clamped composite plate at various velocities, the plate was

an 8-ply graphite/epoxy composite with quasi-isotropic laminate and 45 mm

radius. The TDOF spring-mass model results agree with test data [9], except

at low velocities. Calculated impact forces (fig. 9(b)) for the same configu-

rations agree reasonably well with test data [9]. Results from the energy-

balance model are also shown and are very close to the TDOF spring-mass model

results.

CONCLUSIONS

Two simple and improved models, an energy-balance model and a spring-mass

model, were developed to calculate impact force and duration associated with

low-velocity impact on circular composite plates. Both models include the

contact deformation of the plate and the impactor as well as the bending,

shear, and membrane deformations of the plate. The plate materials were

transversely isotropic graphite/epoxy laminate or aluminum and the impactor

was a steel sphere

The energy-balance model was based on the principle of conservation of

total energy This analysis yielded a simple energy-balance equation, which

17



was used to calculate maximum impact force. The spring-mass model was based

on the response analysis of tileplate and the impactor assuming them as a

combination of rigid masses and springs. The resulting equations were solved

to calculate the impact force history. The analysis led to the following

conclusions:

I. The energy-balance model is simple, and accurately predicts the maximum

impact force; the spring-mass model, which is less simple, predicts the

complete force history.

2. Impact forces calculated from the two models agreed with each other and

with reported data. Also, impact durations from the spring-mass model

agreed with reported test data.

3. Thin plates undergo membrane stretching and the calculated impact forces

are greater than those based on small deflection theory.

4. Thick plates undergo significant transverse shear deformation that must be

accounted to predict the impact force accurately.

5. When the impactor mass is greater than 3.5 times the plate mass, the

inertial effects of the plate are negligible. Hence, the plate-impactor

system could be represented by a single degree-of-freedom system.
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Table 1. Bending and Hembrane StiffnessParameters of Centrally Loaded Plates

Boundary Edge Bending stiffness, Membrane stiffnessparameters,

conditions conditions Kb Nm

h3 (353 - 191vr)_Erh4_ r
Clamped* Immovable

3(I - Vr2)a2 648(I - Vr}a2
., ,.,,

4_ h3 191_E h
r r

Movable

_ 3(1 - Vr2}a2 648a2

• 4_E h3 KE h _191
Simply Immovable r r Vr)4 41 Vr)3 32 Vr|2 40 8

:. supported*_ 3(3 + vr)(1 - Vr)a2 (3 + Vr)4a2 _648 (I + + _ (I + + _- (I + + _- (I + vr) +

1 111 + Vr) Vr}3+ (1 - Vr)_ 4 + 2(1 + + 8(1 + Vr }2 + 16(1 + Vr) + 16

4_E h3

Movable r _Erh [191 (1 + Vr)4 + 41 3 32
3(3 + Vr}(1 - Vr}a2 a2(3 + Vr)4L648 _ (1 + vr) + _--(I + Vr)2

+_- (1 + vr) +

*From reference 13.
**Derived using Babuno-Galerkinvariationalmethod, as reported in reference 13.



Table 2. MaterialProperties

Graphite/Epoxy
Properties Steel Aluminum (T300/5208)

Er, GPa 199.95 68.95 50.81

Ez, GPa 199.95 68.95 11.78

Gr, GPa 75.17 25.92 19.38

Gzr, GPa 75.17 25.92 4.11

vr 0.33 0.33 0.31

Vzr 0.33 0.33 0.06

p, density, kg/m3 7971.8 2768.0 1611

*Quasi-isotropic laminate



Elastic ball interface

_ t

rlid-surface
Rigid ball interface

(b) During impact, t > O.

Figure i.- Central transverse impact on a circular plate.
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Figure 3.- Predicted contact energy ratio for clamped composite plate.
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Figure 5.- Test-analysescomparisonof impact force versus impactvelocity for
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Figure 6.- Spring-mass models for low-velocity impact of a circular plate.
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Figure 7.- Impact response of an aluminum plate using sprlng-mass models.

(a = 38 mm, h = 3.2 mm, steel impactor, RI = 19 ram)
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