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GEOMETRIC MODELS, ANTENNA GAINS, AND PROTECTION RATIOS
AS DEVELOPED FOR BC SAT-R2 CONFERENCE SOFTWARE

Edward F. Miller

National Aeronautics and Space Administration

Lewis Research Center
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SUMMARY

This paper gives an overview of mathematical models used in the software

package developed for use at the 1983 Regional Administrative Radio Conference
on broadcasting satellites. The models described are those used in the Spec-
trum Orbit Utilization Program (SOUP) analysis. The geometric relationships
necessary to model broadcasting satellite systems are discussed. Antenna
models represent co-polarized and cross-polarized performance as functions of
the off-axis angle. The protection ratio is modelled as a co-channel value
and a template representing systems with frequency offsets.

INTRODUCTION

The computer software that has been developed for use at the 1983 Regional

Administrative Radio Conference incorporates a series of mathematical models
to represent broadcasting satellite systems. The various models are combined
by the software to allow the synthesis and analysis of proposed systems. Based
upon a set of specified system characteristics ( including desired signal-to-
noise ratio, antenna characteristics, geographical coverage areas, and receiver
characteristics), the software can determine required satellite powers, satel-
lite positions, channel assignments, and carrier -to-interference ratios.
Repeated use of these software models can lead to the specification of systems
of broadcasting satellites that may meet the requirements of the administra-
tions of Region 2. This paper describes some of the mathematical models used
to represent the elements of broadcasting satellite systems. A brief descrip-
tion of the modelling techniques used and the inherent assumptions are given.
The goal of the paper is to impart a general understanding of the models and 	 <^
to indicate the flexibility of the models to represent whatever characteristics
might be decided upon by the Conference. Consequently, complex equations are

not discussed in detail. Full documentation of the models is available in
reference 1. Unless otherwise stated, the models described are those used in
the analysis program called the Spectrum Orbit Utilization Program ( SOUP).

i,

The models implemented in the software are fully consistent with the
Conference Preparatory Meeting ( CPM) report ( ref. 2), and additionally have
the flexibility to represent other characteristics such as those in the Con- 	
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sultative Committee on International Radio ( CCIR) reports and those used at
WARC - 77.



GEOMETRIC MODELS

There are a number of calculated geometric quantities that are necessary

to model broadcasting satellites operating in geostationary orbits. These
include ranges, angles, and latitudes and longitudes of antenna aim points,
for both downpaths and feederlinks. Fundamental assumptions and constants

used are given in table I. A sketch of the geometry for the transmit and

receive earth stations in the equatorial plane is shown in figure 1.

Feederlink Calculations

From each feederlink earth station (FES) location, the following quan-

tities are calculated:

(1) Slant range R, and elevation angle E to the desired satellite.

(2) Slant range R, elevation angle, and off-axis angle T1 to every

other satellite where interference may occur (out to the second adjacent
channel. (see fig. 2)).

From each satellite location, for each beam, the following quantities are
calculated:

(1) Latitude and longitude of the antenna boresight (calculated in BEAM-
FIT program).

(2) Off-axis angle 92 to every transmit ground point in the desired

feederlink service area and to every other transmit ground point from which
interference may come.

(3) Orientation angle of antenna beam ellipse major axis 'relative to a

line determined partly by a projection of the ground oint, for each ground
point, of concern. This angle allows calculation of the gain of an elliptical
beam satellite antenna in the direction of a specific ground point.

Downpath Calculations

From each satellite location, for each beam, the following quantities are
calculated:

(1) Latitude and longitude of the antenna boresight (calculated in BEAM-
FIT program).

(2) Slant range R and off-axis angle V2 toward every ground receive

point in the desired service area and toward every other ground receive point
which may be subject to interference (similar to fig. 2).

(3) Orientation angle of antenna beam major axis, similar to the calcu-

lation used on the feederlink.



For each earth station receive (ESR) test point the following quantities
are calculated:

(1) Elevation angle c to the desired satellite.

(2) Off-axis angleto every other satellite which may cause inter-

ference (similar to fig. 2}.

General Remarks on Geometric Calculations

If a ground point and a satellite are determined to be over the horizon

with respect to each other, no subsequent interference calculations are
performed.

Antenna pointing errors are taken into account by increasing the off-axis

angle by pointing error when carrier signals are calculated, and by decreasing
the off-axis angle when interferences are calculated. This results in conser-
vative or worst-case calculations of carrier-to-interference (C/I) ratios.

Rotation errors of elliptical antennas are not modelled.

A more complete description of the geometric models is given in Chapter

III of reference 1.

ANTENNA GAINS

For the calculation of carrier-to-interference (C/I) ratios in broadcast-

ing satellite systems, several characteristics of the transmit and receive
antennas arc. required. These include the beamwidth, the on-axis gain, and
the off-axis gain as a function of the off-axis angle. The four different
antennas in the system (i.e., ground transmit, spacecvaft receive, spacecraft
transmit, and earth station receive antennas) can each be modelled in a form
flexible enough to accommodate any decision that might be reached by the Con-
ference. The following sections describe the main feature of those models.

Antenna Beamwidth

The half-power beamwidth of an antenna is defined as the angular measure

of the width of the antenna beam at the half power (-3 d3) points. This quan-
tity (yo) is expressed in radians or degrees.



where

G+

s

A	 wavelength, m
0	 antenna diameter, m
f	 frequency, GHz

The satellite antenna beamwidths calculated by the program BEAMFIT are

the beamwidths at a specified gain contour of aG dB. For an elliptical
antenna, both the major and minor axis beamwidths are calculated. Internal to
the analysis program SOUP 5, all satellite antenna beamwidths are converted to
3 dB beamwidths by the following formula:

'Po =woY^JTA-u

where

90	 3 dB (half—power) beamwidth, rad or deg

q'o	 beamwidth at contour aG, rad or deg

aG	 gain contour specified in BEAMFIT program, an input variable, dB

For the analysis program, all ground station antenna beamwidths must be

specified as 3 dB (half—power) beamwidths. For ground antennas, the software
accepts either beamwidth or diameter as the antenna specification. Spacecraft
antennas must be described by their beamwidths.

Spacecraft antennas may be limited in size due to packaging and cost con-

straints. The analysis model has minimum antenna beamwidth limits for both
spacecraft transmit and receive antennas. Presently, these limits are set to
0.8%

On—Axis Gains

The on—axis gain G	 of an antenna is specified as the maximum power gain
of the antenna relative io an isotropic radiator. The direction of maximum

gain is kEawn as the boresight axis.

The on—axis gain is given by

Go = EAP - 2	 .A4 . AXR
0

GAO - 10 log1 Q Go

where

G0 	numerical on—axis gain
EAP	 antenna aperture efficiency, (0 < EAP < 1)
9 0	 antenna beamwidth, rad
AXR	 axial ratio (major/minor) for an elliptical anta_nna. T̂  is the

major axis beamwidth for an elliptical antenna.
GOA	 on—axis gain, dB



+0

Cross-Polarized Gains

The previous sections have discussed the performance of antennas operating
with copolarized signals. When an antenna operates with cross-polarized sig-
nals, it generally has lower gain to these signals and hence provides a dis-
crimination agaiist cross-polarized signals. Details of antenna performance
with cross-polarized signals are given in later sections.

Off-Axis Gain

In general, points in a communication system do not lie exactly on the
boresight axes of the antennas, where the antenna gains are at their maximum
values. Performance measurements of many antennas have resulted in the devel-
opment of mathematical models to represent antenna performance at angles off
the boresight. Figure 3 is a graph of the model suggested by the CPM for the
feederlink transmit antenna. The following sections describe models available
for the several antennas required in broadcasting satellite systems.

Earth Station Transmit (EST) Antenna

The co- and cross-polarized gain characteristics suggested by the CPM for
this antenna are shown in figure 3. The equations describing this antenna are:

Co-polar component (dBi relative to isotropic source)

36 - 20 log 9	 for 0.1 0 < w < 46.6 a/Dmin

8 + 20 log ( D min/a ) - 2.5 x 10- 3 (Dmin 4)/a)2

for 46.6 A/Dmin < 9 < junction with next segment

29 - 25 log 9	 f:r junction with previous segment < v < 36*
-10	 for ip > 36*

Cross-polar component (dBi relative to isotropic source)

Gmax - 30	 for 9 < 35 a/D

9 - 20 log y,	 for 35 a/D < V < 8.70

-,10	 for 9 > 8.70

where

Dmin	 diameter of the smallest antenna to be accommodated in the plan, 2.5 m

D	 diameter of the antenna used, >2.5 m

Gmax	 on-axis co-polar gain of the antenna used - 8 + 20 log (D/a)
(efficiency - 65 percent)

5



for 0<9 /90<0.5

for (0.40/90 ) + x < 9/9 0 
<	 (1.155/90 ) + x

for (1.155/ 90) + x < 9/90 < (1.60/9 0) + x

for (1.60/90) + x < 9/90 < (4.0/9 0) + x

for (4.0/ 90) + x < 9 /90 
< (6.91/ 90) + x

for (6.97/ 90 ) + x
< 9/90

for f > Go

FOA_

In the software model of this antenna, k ^^ is an input variable, and
thus can easily be changed to any value decided upon by the Conference. The
EST antenna is assumed to have a circular beam.

Satellite Receiving Antenna

The CPM recommended, for planning, that the broadcast-satellite receiving
antenna reference patterns be identical to the broadcast-satellite transmitting
antenna patterns except for degraded crass-polarizatijn characteristics inside
the main beam.

The software implemented can accept independent specifications of satel-

lite receive and transmit antenna characteristics. Thus the model can operate
with any choice of satellite receiving antenna characteristics. This antenna
may have an elliptical beam.

Satellite Transmitting Antenna

The CPM discussed two models for this antenna. They are shown in figures
4 and 5.

The following equations were recommended by the CPM for the general refer-

ence pattern corresponding to figure 5.

G ((v /9 0 ) = Go - f

f = 12 (9/90)2

f = 18.75 ^ 2 [(T /9 0 ) - x]2

f = 25

f - 17.5 + 25 log (( 90/0.8)[( 9 /90 ) - x])

f = 35

f = 11.5 + 25 log (( 90/0.8)[( 9 / 90 ) - xJ)

f = Go

where

9	 off-axis angle, deg

cpqq	 half-power beamwidth of main lobe, deg, (90 > 0.80)
Gl9/9 0 )	 gain as function of off-axis angle, dB
Go	 on-axis gain, dB
f	 relative gain, dB below on-axis gain
x	 0.5 [1 - 0.8/ 90] by definition

Figure 5 shows a plot of the recommended reference pattern for the case
when 90 = 2 * and Go = 38.8 dB.

The models of both figures 4 and 5 have been implemented.

6
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Earth Station Receiving (ESR) Antenna

The CPM discussed ESR antennas of the types shown in figures 6 and 7.
Both of these models have been implemented. The ESR antenna is assumed to
have a circular beam.

Software Implementation of the Models

The off-axis gain for a particular antenna may be represented by the fol-
lowing function:

GW - GOA - f

where

G(,p)	 nff-axis gain, dB, as a function of the off-axis angle, 9
GOA	 on-axis gain, dB
f	 90a fall-off function, dB

The function f is re presented by different mathematical functions over
different domains of the variable 9. Thus, the segments of an arbitrary
off-axis gain function (fig. 7, for example) can easily be represented mathe-
matically. In the software, f is typically a constant, a polynomial, an expo-
nential function, or a logarithmic function. In the analysis program SOUP 5,
the off-axis gain is computed as a numerical quantity. A more complete de-
scription of the antenna gain modelling is given in Chapter IV of reference 1.

In the case of an elliptical spacecraft antenna, the off-axis gain is
calculated by first determining an equivalent 3 dB beamwidth in the off-axis
direction. Then the gain is computed by using that 3 dB beamwidth in the
appropriate antenna gain model.

PROTECTION RATIOS

A key technical parameter that needs to be specified in planning
broadcasting-satellite systems is the television protection ratio defined as
the ratio at the receiver input of the wanted signal to the aggregate inter-
fering signal power required to meet a subjectively assessed picture quality.

The required orbital spacing between adjacent broadcasting satellites and
the optimal frequency spacing between adjacent television channels in a plan
will be dependent primarily on the co-channel and adjacent channel (i.e., fre-
quency off-set) protection ratio requirements that are adopted for planning
purposes.

The analysis program SOUP 5 can accommodate the protection ratio models
discussed in the CPM report. The following discussion applies to interference
between two frequency modulated television signals.

7
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Co-channel Protection Ratio

The co-channel protection ratio PRO is the carrier-to-interference
ratio required when all the interferers are co-channel (i.e., operating at the
same frequency). Previous CCIR work and inputs to the CPM have indicated
that PR	 is a function of the frequency deviation of the wanted and inter-
fering signals, the desired quality of the wanted signal, the types of tele-

vision pictures being transmitted, and possibly the signal-to-noise ratio of
the wanted signal. Consideration of all these factors leads to a determina-
tion or choice of a specific value for PR O. The developed software has
PRO as an input parameter. Separate protection ratios can be specified for
the feederlink, the downpath, and the entire system, which combir.2s both the

feederlink and downpath interferences. Numerical values used for the downpath

have been in the range 25 to 30 dB.

To account for multiple interferers, the interfering signals are assumed

to add on a power basis.

Protection Ratios at Offset Frequencies

For cases other than co-channel interference, the protection ratio is de-

fined by a template which gives the fall-off (in dB) from the co-channel value
as a function of normalized frequency offset. The normalized frequency offset
is the frequency offset divided by the Carson's rule bandwidth (peak-to-peak

deviation + 2 x top-baseband-frequency). The protection ratio template pro-
posed by the CPM is shown in figure 8. The frequency offset is one channel
separation for upper and lower adjacent channel interference, and two channel

separations for second upper and second lower adjacent channel interference.

In the software package developed for use at the Conference, the template

is modelled as a series of straight line segments. The number of segments can

be as great as ten. The frequency offsets at the breakpoints of the template
are input variables. The template is not required to be symmetric.

General Remarks on Protection Ratios

The co-channel and offset frequency protection ratios discussed in this

paper were determined for frequency modulated television signals. It is pos-
sible that the Conference might decide to plan for other types of signals,
such as for sound broadcasting or high definition television, which might re-
quire different protection ratios. The analysis software could properly treat
such systems merely by the input specification of the appropriate PR O and
template.

Several administrations are currently conducting measurements that may

suggest the use of a different protection ratio template for frequency modu-
lated television. Any revised template could easily be accommodated merely by
changing the values of the input variables that describe the template segments
and their associated domains.

In a complete interference environment, there may exist simultaneously

multiple co-channel interferers as well as multiple interferers at the adjacent

8
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and second adjacent channels. The combination of these multiple interferers

is treated in another paper under the subjects "Aggregate and Total Interfer-
ence" (ref. 3).

The model used for the protection ratio template has no limits on the

domain of the normalized frequency offset (as suggested by the CPM). However,
the protection ratio at the second adjacent channel is typically below 0 dB

and seems to have little practical impact on planning.
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TABLE I. — FUNDAMENTAL ASSUMPTIOVS AND CONSTANTS FOR

GECMETRIC CALCULATIONS

Symbol Item Value

Spherical Earth:

RE Earth radius, m 6.3800x106
Ro Radius of geostationary orbit, m 6.6094xREE

a4:2168467
H Height of satellite above equator, m 1 3.5188401

aAlternate value.

f
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Figure 1. - Simplified geometry of satellite relative to feederlink earth
station 1 and receive earth station 2

R - slant range
E - elevation angle

Figure 2. - Simplified geometry for calculation of range (R) ano off-axis angles lml.

01 -Off-axis angle to non-target satellite.

mt - Off-axis angle to test point in desirC service area.

402 . Off-axis angle to test point in non-target service area.
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Figure 3. - s uggested antenna reference patterns for planning of the feeder links.
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Figure A. - Referenre patterns for co-polar and cross-polar com-
ponents for a single-teed satellite transmitting antenna
producing a beam of circular or elliptical cross-section.

CURVE A: Co-polar component IdB)
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B: Cross-polar component 8181
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AFTER INTE..SECiION WITH CURVE C: AS CURVE C
C: Minus the on-axis gain RIB)
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Figure 5. - Shaped-foam co-polar reference pattern.
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Figure G. - Reference patterns for co-polar and cross-polar cwr -
ponents for receiving antennas for individual reception In
Region 2.

Antenna diameter:	 D -1 m
Half-power heamwidth: go .1.8o
Nominal on-axis gain: GO AD. 2 dB

CURVE A: Co-polar component without side-lobe suppression INVARC-BS-T)
B: Co-polar component without side-lobe suppression (suggested)

0	 for	 9 <0.25PO
-%V	 far 0. awO<fa <0.94po
-r

2
1L lag 1p/fool] for 0. 9490< PD< & 8BPO

	

dB t-3 dB D	 for	 9e >1& Soo
C: Cross-polar component WARC-BS-771
D: Cross-polar componenttsuggested)

for	 00<0.25vo
-30+10log^ipe/9'e-10for (.25PO<9+< .44P0

for 0.44 fP0« 'T.240
- 11.3+a log 0/00) for 1.2890<P a22VO
- 30 until intersection with co -polar component curve; tMn as

for co-polar component

Note 1. - The flat portion of the curves up to it/go - 0. a takes
account of the pointing error of the antenna.

Nate 2. - These patterns should determine the Wools exceeded
by low of the Stile-100 peeks brPW the first
antenna side-lobe.
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Figure 7. - Reference petlerns for ub-polar and cross-polar com-
ponents for receiving antennas for individual reception in
Region 2.

CURVE A: Co-polar component without side-lobe
suppression MARC-BC-77)

B . Co-polar component without side-lobe
suppression Isuggesfed)

0	 for	 0 <9 <0. 2590
-12110 + qr^ 	 for o. 259+0 <9+ <^1. 707(00
- 4. 0 + 20 og W ov for 0.707vo<pD.26po

-[8.5+30log i(0/voi] for 1.26v0<q <9.6f00
d6	 for	 9>9.600

C: Cross-polar component MARC-BS-771
D . Cross-polar component (suggested) (same as Fig.6)

Note 1. - The flat portion of the curves up to p/wpo- 0. 25
Was account of the pointing error dine antenna.

Note 2 - These pattems should determine the levels exceeded
by 10% at the side-lobe peaks beyond the first
antenna side-lobe. However, derivation was done
on the basis of peak values.


	GeneralDisclaimer.pdf
	0060A02.pdf
	0060A03.pdf
	0060A04.pdf
	0060A05.pdf
	0060A06.pdf
	0060A07.pdf
	0060A08.pdf
	0060A09.pdf
	0060A10.pdf
	0060A11.pdf
	0060A12.pdf
	0060A13.pdf
	0060A14.pdf
	0060B01.pdf
	0060B02.pdf

