
_<{

S\:'<":;',„;-•-̂ ',: V̂"DEVELOPMENT AND FABRICATION OF ' "7 -•'-">'Y^'-/"" '" •" ; *T<|
'_ AN AUGMENTED POWER TRANSISTOR

. J. Geisler, F. E. Hill, and'J. A. Ostop
""' y<?:-f.*~.t Viestinghouse R&D Center

f,-'"*7'''7"'"''.'':":̂ M<;KASA-Lewis Research Center
NAS3-22782

fiVJ*-77> ' '-""^^ ^""^ < Jrf "^ " ̂ * V . -*. f j^ ^ f ^t ^ .^ r " ; " _ ' * . •" ,' " /-i* ~*\ J^.. ' V ^ ' ^^^"'^ll

-CH-168262) OEVELOPflENT AND
FAaaiCATIOh OF A« AUGfiKUTEC fOkfEB TfiANSISIOB
Final fieport, 22 Jul. 1981 - 21 Feb. 1963
(Westlaghouse Electric Corp.) 65 p Uaclas
BC AOft/fiF &01 CSCL 09A G3/33 U23'j8
—_•-«... ^-C/^. ^^-^---^-^^^----^^^^-.^p-^p,^,,;^ ."W-^-JS^^



fS?R-168262 i-Gc^tAcc^No

Development and Fabrication of an
Augmented Power Transistor

7. Author(s)

M. J. Gtisler, F. E. Hill , and J. A. Ostop

9. Performing Organization Name and Address
Westinghouse R4D Center
1J10 Beulah Road
Pittsburgh, PA 15235

12 Sponsoring Agency Name ana Address

3 Recipient's Catalog No

5 Report Date
Aueust 1, 1983

6 Performing Organt/ation Code

8 Performing Organisation Report No

83-9F5-ATRAN-R1

10 Work Unit No

11. Contract or Grant No
NAS3-22782

13 Type of Report and Period Covered
" Final Report for period

7-22-81 to 2-21-83
14. Sponsoring Agency <joOt

16 Abstract

The main objectivp of this program has been the development of device design and
processing techniques for .he fabrication of an augmented power transistor capable of
fast-switching and high-voltage power conversion. The major device goals have been
sus:aining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at
a gain of 14. The transisl or switching rise and fall times were both to have been

than 0.5 psec.

An important aspect of this program has been the development of a passivating
glass technique to shield the device high-voltage junction from moisture and ionic
cent aminants. One other nsjor task has been the development of an isolated package
that separates the thermal and electrical interfaces. A new method has been found
to illoy the transistors tc the molybdenum disc at a relatively low temperature.

The measured electrical performance compares well with the predicted optimum
design specified in the original proposed design. A 40 mm diameter transistor has
been fabricated with seven times the emitter area of the earlier 23 mm diameter
device. ,

7 Key Words (Suggested by Author (»))

Development, design, fabrication,
augmentation, power, transistors, fast,
switching, high, voltage, conversion,
glass, passivation, packaging, isolation.

9. Security Oassif (of this report)

18. Distribution Statement

Unclassified - Unlimited

20. Security Clatuf (o< this page) 2». No of Pages

55 pp.

22 Pnce'

* For sale by the National Technical Information Service. Springfield. Virginia 22161

VASA-C-168(Rev 10-75)



NASA CR-168262
DYD-10892-CE

DEVELOPMENT AND FABRICATION OF
AN AUGMENTED POWER TRANSISTOR

M. J. Geisler, F. E. Hill, and J. A. Ostop '
Westinghouse R&D Center

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center
Contract NAS3-22782

!



CON7I.4TS

LIST OF FIGURES v

LIST OF TABLES vil

1. SUMMARY 1

2. INTRODUCTION 2

3. TRANSISTOR DESIGN 4

3.1 Background 4

3.2 Procedure 4

3.3 Mask Design 8

3.4 Junction Termination and Glass Passivation • 12

4. PROCESS INVESTIGATION 19

4.1 Diffusion 19

4.2 Junction Termination 19

4.3 Glass Passivation and Application 20

4.3.1 Glass Application 22

4.4 Alloying and Substrate Bonding 26

5. DEVICE FABRICATION 33

6. PACKAGING 36

7. ELECTRICAL PERFORMANCE 39

7.1 Current-Gain Data 39

7.2 Switching Measurements 39

7.3 Forward SOA Measurements 47

8. CONCLUSIONS 51

9 . REFERENCES 52

APPENDIX I. Solution of the Navier Equations for Radius of
Curvature 53

APPENDIX II. Measured Test Results 54

APPENDIX III. Target Characteristics for Augmented High-
Voltage Power-Switching Transistors 56

ACKNOWLEDGEMENTS 58

lit



Figure I.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

LIST OF FIGURES

Input and output parameters for 1000 V design

Maximized curve of collector current for
1000 V case 9

Sustaining voltage versus maximum current 10

Metallization mask chewing 40 ?nm layout 11

Substrate etch geometry for reducing
surface field 13

Breakdown before and after substrate etch rroove 14

Breakdown before and after glass passivation 15

Equipotential and equifield lines at V ' 1500 V
for glass with no charge 17

Equipotential and equifield lines at Vapp " 1500 V
for glass with negative charge 18

Slice edge profile showing substrate etch and
junction isolation groove 21

Methods of glass application 24

Screen printer for applying glass passivation 25

Glass-firing cycle 27

Reverse breakdown characteristics and their
probable cause 28

Amount of bow and stress versus molybdenum
thickness 29

Effect of diameter and moly substrate thickness
on device bow.... 30

PRECEDING PAGE BLANK NOT FILMED



Figure 17. Alloy temperature and time cycle.... 31

Figure 18. Ultrasonic scans and their corresponding bonds 32

Figure 19. Process flow diagram 34

Figure 20. A 40 mm fusion 35

Fif-ure 21. T7SO Semiconductor Package 37

Figure 22. Collector characteristics for the 800 V device 40

Figure 23. Collector characteristics for the 1000 V device 41

Figure ^4. Current gain versus collector current for 1000 V
and 800 V device 42

Figure 25. Measured and theoretical current gain product
versus sustaining voltage....................... 43

Figure 26. Turn-on and turn-off waveforms 45

Fijure 27. Turn-on delay and storage time for typical
transistor • 46

Figure 28. Power turn-off waveforms for typical transistor. 47

Fig-.ire 29. Turn-on and turn-off energies versus collector
current • 48

Figure 30. Forward SOA for different pulse times 50

vt



LIST OF TABLES

1. Program Parameters....

2. Glass Characteristics.

3. T7SO Specifications...

7

23

38

Vii



1. SUMMARY

The main objective of this program has been the development of

device design and processing techniques for the fabrication, of an

augmented power transistor capable of fast-switching and high-voltage

power conversion. The ma.ior device goals have been sustaining voltages

in the range of «00 to I0f)0 V at 80 A and 50 A, respectively, at a gain

of 14. The transistor switching rise and fall times were to have been

both less than 0.5 psec.

An important aspect of this program has been the development of

a passivating glass technique to shield the device high-voltage junction

from moisture and ionic contaminants. One other ma^or tnsk has been the

development of an isolated package that separates the thermal and

electrical interfaces. A new method has been found to alloy t^e

transistors to the molybdenum disc at a relatively low temperature.

The measured electrical performance compares well with the

predicted optimum design specified in the original proposed design. A

40 mm diameter transistor has been fabricated with seven times the

emitter area of the earlier 23 mm diameter device.



2. INTRODUCTION

It has been well established that the bipolar transistor Is the

preferred power-switching component for a large number of power electronics

applications. It is a fast and efficient switch and relatively easy to

manufacture when compared with other devices which have similar perfor-

mance capabilities. Presently, there are two important trends in the

transistor industry. One trend is to increase the device area so that

high currents and higher voltages can be achieveJ. The second trend

Involves improvements in characterization methods and an understanding

of the turn-on and turn-off process. Only a few years ago the bipolar

power transistor was viewed as a mature device with little opportunity

f?r major technical advancements. Since the late 1970s, high-voltage
• 2

fast-switching transistor's have progressed from the 1 cm (060)
2

conducting area to the present 7 cm area, which represents an increase

in current-handling capa illity of seven times. Increases in sustaining

voltage can also be made using this area factor, although the factor is

governed by a square law relationship which makes it more economical to

switch power at high currents than at high voltages.

This report describes work which makes uss of results obtained

under previous NASA contracts, NAS3-18916, NASS-21380, and NAS3-21949,

to develop a 40 mm diameter bipolar transistor. The device uses the

well-developed triple-diffused process which combines high current

densities with the ability to operate at high switching frequencies.

With a collector-emitter sustaining voltage VCEO(SUS) between 800 V and

1000 V, the device Is capable of a power-switching product of

approximately 60 KVA with an h of 14 at SO amperes.

A new glass passivation method has been developed for this

device, capable of shielding against ionic contaminarts with excellent



humidity resistance. In addition, the glass passivant, containing a

negative charge, permits a,large bevel angle at the slice edge resulting

in a considerable saving in fusion area.

An added feature of the design is the encapsulation of the

transistor into a power module that separates the electrical and thermal

interfaces and dissipates at least 1100 watts of power.

This fast-switching device is expected to be used in high-power,

pulsewidth-modulated applications where efficiency, size, and weight are

at a premium. Some typical applications are motor speed control, 20 KHz

arc welding, and pulsewidth-modulated voltage regulators. Transistors

with very large current-voltage products are also desirable for urban

mass transit vehicle auxiliary power supplies where small size and low

weight improve the competitive position.



3.2 Design Procedure

The design of a high-power cransistor sw'tch must neet a number

of requirements besides those of hijjh-current gain and sustaining

voltage. Limits must be imposed on switching times, peak (urrent gain,

reverse junction currents, steady-state power dissipation, and second

breakdown performance. Many of these requirements can be met by making

adjustments in the device design or processing, leaving the transistor

optimization primarily dependent on the base impurity density, the

collector concentration and width, and acsittcr area. With the transis-

tor design model that was used, the optimization technique has been

narrowad.to a simple quadratic equation. This, along with the collector

breakdown voltage relation, is used to find the minimum emitter area for

a particular combination of device vpriables. The minimum area in some

cases may conflict with switching times and peak current gain and, when

applicable, priorities must be assigned.

3. TRANSISTOR DESIGN

3.1 Background ;

The power-handling capability of a bipolar transistor is limited i
i

by Its sustaining voltage and current-handling capacity. Its perfor- j

mance when operated as a high-power switch can be characterized by the \

device current gain, current density, saturation voltage, and switching

times. A transistor design model developed during previous NASA

programs has been used to predict minimum emitter area and collector j

material parameters for the designated voltage and current range. Newer j

design models have also been developed to predict forward iafe-operatlng j

area, edge-termination field characteristics due to glass passivation, I

and device packaging and mounting constraints. J
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Under conditions of base widening for a highly interdigitated

emitter, the current gain in the common emitter configuration is given

by Equation l'1' as

, FF.O ,. ,

'̂ 'î v"
where Io is the maximum collector current, GR is the total acceptors per

cro^ iii the metallurgical base region, and hp_ is the peak current gain.

The quantities I0 and Q0 are related to the collector-emitter voltage VCf

where:

Ae < "n ND VCB/Wn

and

°0 • *0 Wn <q VCR/AKT> • [3]

in the above expressions' Ag is the effective emitter area, ND is the

collector impurity concentration, WN is the collector-basewidtl- , and UN

the electron mobility. The collector voltage Vp^ is then:

VCE ' VCB - VBE [/t]

where V^ is the has^-emitter voltage.

Substitution of Equations 2, "i, and 4 into 1 yields the

quadratic in AF_ which can be solved to yield an optimum emitter area for

a given collector current and gain. The input data and optimum design

are shown in the computer output of Figure I. In the output listing it

can be seen that for the 1000 V sustaining voltage design, the effective

emitter area is 7,68 cm . Table 1 shows the complete listing of

material variables for both the 1000 V and 800 V design. A compromise

In the design has to be made to be able to fabricate devices in the



New Input Data

V C E =2.5V Ic = 50.0 A

VC E Q(SUS) = 1000.0 V 11^=14.0

Tj = 25.0°C T = 50.0 us

DC = 23.0cm2/s AE = .050eV

At Ref. Temp, the Program Uses:

MCO(25.0°C) = 1300.0 cm2/V-s

Ge = 7.48E + 013cnT4/s

At T. These Values Apply:

UCO(25.0°C) = 1300.0cm2/V-s

Ge =-. 7.48E + 013cnf4/s

Optimum Design

AE = 7.68E + 000 cm2 h = 28.9

NC = 5.69E + 013cm 3 m = .750

Wc = 133.6pm BVCBQ = 2093V

Rho. C = 84.5 Ohm-cm T = 50.0 ps

Figure 1. Input and output parameters for 1000 V design.

range of voltage and desired curre1 .. since the collector material

parameters are different for each voltage and current range. The higher

resistivity was chosen for the background material so that the larger

voltage was achievable and both collector-base thicknesses were

processed to obtain the desired current levels at a gain of 14.

In the interest of knowing what performance can be obtained with

the existing fusion area, an optional analysis was performed for this

device by determining the maximum current possible for a current gain of
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14 and 1000 V sustaining voltage. Figure 2 shows the computer output

for the fixed emitter area showing the required collector parameters to

obtain this maximum collector current. Using this analysis then, a

curve of maximum collector current with respect to sustaining voltage

was determined and is shown in Figure 3. The dotted curve shows the

penalty that must be paid in current to offset the effect of current

crowding in the emitter. The curve shows the famijy of devices possible

with this fusion diameter; however, at currents above 100 A, some

alteration of the emitter fingers must be made along with a means of

reducing the voltage drop in the base due to the very high base

currents. A narrowing of the emitter fingers would also require an

adjustment in the emitter preform and the base drop could be reduced by

the addition of a base insert (see contract 0 NAS3-18916). Photolitho-

graphy and emitter patterning techniques also become more difficult as

the maximum Ic Is increased and emitter fingers become narrower.

3.3 Mask Design

To determine the mask layout for a high-current transistor it is

necessary to know how the emitter current density varies over the fusion

area; this is determined in first-order approximation by the sheet

resistances of the base and emitter metallization and base diffusion.

In reality, a uniformly .current-distributed etnit-ter never occurs because

base current flow under the emitter results in current crowding at very

high collector currents. An optimally designed emitter will be widf

enough to be within the resolution of the photoresist and accommodate

the emitter preform, and narrow enough to make the fingers efficient in

the current-crowded mode. For the 80 A device which has a current
2

density ot 11.5 A/cm , an emitter finger width of 20 mils will make the

most efficient use of the available area and be able to accommodate an

emitter preform with fingers slightly narrower than the emitter metalli-

zation. For no change in the 7.68 cm emitter area, any increase at all

in the emitter current must be accompanied by a decrease in emitter

finger width depending on the current value. The periphery of the total
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New Input Data

VCEO"U*
1000.0V

Ae

H

7.6cm

= M.O

TJ = 25.0 Dcg. C
DC = 23.0 '.nT2/s

At Ref. Temp, the Program Uses
uCtt 25.00 = 1300.0 CHT2/V-S
Ce = 7.48E i-013 cm"

FE
T = 50.0 MS
AE = .050 eV

At TJ These Va!u« Apply-
pCOi25.0C» = 1300.0 em-2/V-s
Ce = 7.4SE +013 cm'

Optimum Design

1C = 4.95E + 001 Amps

WC =133.6pn
Rho. C = 84.5CCim-cm

"FED - 2i9

m = .750
BVCBO = 2093V
T = SO.OuJ

1C (5 Amps/Div)

Figure 2. Maximized curve of collector current for 1000 V case.

IL
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Curve 743957-A

Sustaining Voitage
vs Maximum Current
for 40 mm Diam Fusion

Emitter Width = 20 mi Is

50 100 150 200 250 300
I Amps
\*

350 400 450 500

Figure 3. Sustaining voltage versus maximum current.

area for the 80 A design is approximately 3 meters in total length;

therefore, any decrease in emitter width will require an increase in

this periphery to accommodate the same effective area as calculated in

the original computer output.

A 40 mm mask set has been designed using the above 80 A design

rules, although this set can also be used on the 50 A device since the

current level is lower. The metallization mask shown in Figure 4 is

designed with A mil wide base fingers, a 3 mil separation between base

and emitter, and a 30 mil trunk width. These are adequate to reduce the

base contact voltage drop and deliver the required current to the emitter

region. A 10 Mm thick aluminum metallization is also required to

implement the above design rules. This metallization is approximately

10
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Figure 4. Metallization mask showing 40 mm layout.
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twice the thickness of the aluminum used on previous fusions fabricated

by the bipolar process. An allowance in mask dimension was made to

compensate for the etch factor on this thickness of aluminum. A

reinforcement bar was also included on the emitter preform mask for

added support of the larger molybdenum disc.

3.4 Junction Termination

Power semiconductors with base regions extending to the device

edge require some method for reducing the electric field and passivatln^

the junction at the semiconductor surface. Various junction terminatiot

methods are available that reduce the surface avalanct.e breakdown below

that of the semiconductor bulk breakdown. Contouring or shaping of the

edge of the semiconductor has been done by many in the past to spread

the voltage and reduce the field at the junction surface. With a

negative bevel, the surface is mechanically grouna so that it intersects

the plane of the junction at an acute angle, usually 6° or less for

breakdown voltages less than about 800 V, depending on the resistivity

of the background material. Foi higher breakdown voltages, however,

much shallower bevel angles are required and these tend to be very

wasteful of surface area. For example, a 1° bevel which is required for

a 1000 VCEO(SUS) bipolar transistor ^ill consume approximately 2 en'
2

more area than a 6 bevel. Since the total emitter area for this device
2

is 7.68 cm , this represents an approximately 25% increase in the

current rating of the transistor if a 6° bevel is used rather than the

1° bevel.

One method that requires very little area of the available

top surface of the fusion is the substrate etch technique shown in Figure 5.

The etch technique proceeds from the substrate side of the wafer requiring

only a very narrow isolation etch at the top surface of the device. Figure 6

shows the breakdown voltage of a junction with and without the substrate etch

groove. The upper curve is the breakdown of the junction with the isolation

groove only and the lower shows the improvement in breakdown voltage nrovided1

by the substrate etch.

12
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Dwg. 9347A53

Figure 5. Sobstrite etch geometry for reducing surface field.

The ro-iin disadvantage of this method is the high loss in yield

attributed to breakage at the edge of the wafer. This breakage is due

primarily to the strain put on the fusion during the compressive force

applied when the devices are packaged. A number of devices were made

using this technique with sustaining voltages above 1200 V, but yields

were very low due to the breakage described above.

A higher yield process achieves the same high blocking voltage

using a 6° bevel and a negatively charged passivating glass. The glass

contains several metallic oxides and when fired to the silicon surface

produces a spreading of the voltage at the surface reducing the maximum

field. This has the same effect as a negative bevel such that in

reducing the field it transfers the breakdown of the junction to the

bulk-limiting condition. When used in conjunction with the 6° bevel, a

breakdown voltage at the junction of 1800 V is possible for a background

resistivity of 85 ohm-cm. An example of the improvement in breakdown

voltage using this glass is shown in Figure 7, which shows the junction

13
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With Isolation
Groove Only

With Isolation
Groove and
Substrate Etch
Groove

Figure 6. Breakdown before and after substrate etch groove.
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Edge Termination With Bevel Only

Edge Termination With Bevel and Glass
Figure 7. Breakdown before and after glass passivation.
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breakdown before and alter the application of the glass. As seen, the

breakdown voltage Is increased from 1300 V to 1800 V bv the negative

charge In the glass.

The effect of this glass can be analyzed further by calculation

of the potential distribution at the junction coa:ed with glass with the

edge perpendicular to the plane of the junction. The objective is to

solve the Polsson equation in two dimensions using

E0

nx,y - A, ,

S

In the semiconductor hulk, and

is the glass,

wtiere en Is the dielectric constant of free space, Cj. Is the dielectric

constant of silicon, e~ is the dielectric constant of glass, and Op Is

the charge density In the- glass. Standard numerical methods are used In

the calculation of the potential distribution In a glass with zero charge

and a glass with negative charge. Potential distributions calculated for j

the two cases are shown ii Figure R and Figure 9, which also show the ']
1

equlfleld lines. In Figure 8 for a glass dielectric constant of 10, J

reverse hias voltage of 150C V, and zero glass charge, Qfi = 0, the

maximum field occurs at the surface so that breakdown will occur there

rather than In the bulk. In Figure 9, QG - -2 x 10
1* cm"3 and the

maximum field occurs witbln the bulk; thus, the breakdown will take

plac° in the bulk. As for an exact breakdown voltage determination, It

is difficult to predict a specific f.'ciH distribution; however, we Ho

know how the field Is distributed for a particular negative charge.

\Hien the negative bevel Is added along with the negative glass, the

distribution also Hecomes verv complicated and It becomes even more

difficult to predict the breakdown voltage of the junction.

16
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i 150 -

Glass

Curve 743950-A

Electric Charge
in Glass = 0

Figure 8. Equipotennial and equifleld lines at V = 1500 V for
glass with no charge.
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4. PROCESS INVESTIGATION

4.1 Diffusion

The ability to combine a high-voltage breakdown and high current

density while switching at high speed stems for the most part from the

triple diffusion process. Two different methods of base diffusion were

investigated during the course of this program with the aim of using the •

process giving the highest yield and best device characteristics. The j

closed-tube aluminum gallium process was used primarily because of the \

success obtained with this process in the diffusion of bipolar transis- 4,
t

tors on previous developnent programs. An alternate diffusion method, 4

the open-tube gallium process, was also investigated because of its

potential saving in process steps. This process also has the added

advantage of higher yield because of the limited amount of slice

handling as compared to the closed-tube process. The disadvantage with

this process, however, is the low lifetime that is usually obtained.

Lifetimes such as 50 usec and 100 Msec are routinely obtained with the

closed-tube process, but lifetimes over 20 Msec are difficult to obtain

wirh the open-tube process. A minimum of 25 usec is required in order

for the emitter to be efficient enough to produce the desired current

gain. Getterirg methods which increase lifetime by removing impurities

from the bulk material have been used with some success, although time

did not allow further study of this diffusion.

4.2 Junction Termination

In order to avoid the problem of premature surface breakdown

while using the least amount of surface fusion area, two different

junction termination schemes were investigated. Tn one method, ~the

substrate etch technique, a group of slices of 90 ohm-cm resistivity

19



were first diffused with a 3 mil deep phosphorus diffusion, then lapper!

to remove the N* region from one of the sides. Tnto this N~ region a

30 u deeo p-type region was diffused to form a lunctlon in the N~ region

capable of supporting 1800 volts when breakdown is not limited bv the

surface edge. By means of a photoresist mask, a narrow isolation groove

was etched into the top surface to a depth of 3 mils. An edge profile

of the etched slice in Figure IP shows both the isolation groove and the

lower substrate etch. For the lower substrate etch groove to he

effective it must be deep enough to penetrate the upper depletion layer

before the layer reaches the lower N* diffused region and must be at

least as vide as the N region. The y pararaeter and x parameter must

then both be greater than 3 mils. The primary advantages of this method

are that the technique requires no more surface area than needed for the

upper isolation groove and also that the lower etch groove can be

mechanically etched with no need of registration with other surface

geometries. The main disadvantage is the loss of device yield because

of breakage at the edge of tlie slice when pressure is applied at the

surface during encapsulation. This strain is concentrated at the etch

grooves when the slice Is alloyed and the slice and molybdenum backinp

disc are placed in compression and the combination assumes approximately

a 1 mil bow.

An alternate junction edge-termination technique which also does

not require an unusually large amount of fusion area is a negative bevel

used in conlunction with a negatively charged glass. The glass has the

effect of repelling electrons near the surface thereby lowering the

electric field. This effect has been described in Section 3.4.

4.3 Olass Passivation

Class passivation has been utilized fn the past at the

Semiconductor Division production facility for passlvating high-voltage-

diodes and thyristors; however, conventional types of organir resini

(aliscrin, RTV, etc.) are still hetne used to passivate the high-voltage

bipolar transistor. Due primarily to the high cost ar.d processing

20
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Figure 10. Slice edge profile showing substrate etch and junction
isolation groove.

complexities, this process has not been used although it is highly

desirable. There are a number of requirements for a glass passivant to

be an effective barrier against ionic contaminants and moisture, yet not

be sensitive to device temperature and processing procedures. Alkali

ions in concentrations as low as a few hundredths of one percent,

especially adjacenc to the junction, result in serious instability of the

junction. Along with this the coefficient of thermal expansion of the

glass must match as closely as possible that of silicon to prevent

cracking of the glass at the silicon interface. An ordinarily useful

silicon dioxide film has a glass network structure that is very porous

and is not a good barrier against moisture or alkali ions. If we were

to use lust simple glass, this substance would be attacked very easily

because of its porous structure. With the addition of several metallic

21



oxides such as PbO and ZnO, Che glass network Is marie very fine and

mobile ionic free carriers and moisture can he kept free of the surface-

Glasses that contain a high percentage of zinc oxide have been

used successfully as a passivating glass in the fabrication of the 40 mm

transistor. The glass is a composite and also contains proportional

amounts of boron oxide, alumina, and lead oxides to make it very closely

match the thermal coefficient of expansion of silicon. The thermal
,

expansion of silicon is very low (3.3 x 10 /°K) and, generally, glasses

matching this thermal expansion have melting temperatures far too high

for semiconductor devices. The thermal coefficient of expansion of this

composite glass is 3.6 x 10 ,'°K and can be fired at 720°C with no harm

to the silicon. Table 2 shows different glass tvpes and some of their

characteristics that make them attractive as silicon surface passivants.

As seen in the table, one of the disadvantages in the use of this glass

is the susceptibility to attack by acids. These are normally present in

the aluminum and oxide removal steps, and the glass must be protected by

some covering such as photoresist to prevent attack and in soii.e cises a

dry etch (plasma) must be used. The photoresist is then removed by a

dry plasma etch or burned off during the final aluminum sintering step.

Another process constraint when using glass is that the rwlting

temperature of the glass cannot be exceeded during the subsequent alloy

step that bonds the fusion to the molybdenum backing disc. Reflowing of

the glass tends to upset the firing-annealing cycle, which would be

difficult to control during the alloy steo. TMs problem can be avoided

if the glass firing is done before the alloy and the alloy is carried

out at a lower temperature.

4.3.1 Glass Application

The application of the glass to the silicon interface can be

done in any of the number of ways shown in Figure 11. Silkscreenin? has

been found to be the most efficient means of applying the glass for the

following reasons:

22

(



ORIGINAL PAG£ [3
OF POOR QUALITY

i

<D
u

I*
0)

kl
CO

6
to
m
n

CM

4)
r-l
JO

S

a>

U

8 ^
CJ <«>

II

QJ

•§

f

I

1 S01 ./i tS

3CO

X
irt

OL
UN

O
o
S

oo
S

o
o

o Is
^ o ra
FM O CO

0~

ô
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- Spinning

- Doctor Blading

- Sedimentation

- Centrifuging

- Electrophoresis

- Screen Printing

- Hypo Needle

Figure 11. Methods of glass application.

1. selective application,

2. low incidence of voids in the mixture, and

3. production-oriented process.

An automatic thick-film screen printer which is used to apply

the glass to the slice edge is shown in Figure 12. The glass is

transferred to the slice in the form of a 1.5% solution of cellulose in

butyl carbltol mixed with the glass powder. A small printing void in

the glass near the junction can have a serious effect on the breakdown

voltage of the junction. Given below are some of the common screen-

printing problems along with their solutions.

• Composition of Material. Voids and pinholes are caused by
poor screen, snap-off and clogged screens. Low-viscosity
glass will result in poor screen peel from the surface as
well as pinholes. Clogged screens are the result of allowing
the glass to dry on the screen between applications.
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Figure 12. Screen printer for applying glass passivation.
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• Printing Screen. The principal way to obtain correct glass
thickness is to use the screen with the correct mesh count,
wire diameter, and emulsion thickness. Generally speaking, a
wider mesh will give a thicker glass but image resolution is
better on narrower meshes.

The glass film screen-printing process contains many variables

that must be controlled to obtain optimum results.

After the glass is applied to the surface and baked, the mixture

is fired to bind it to the silicon interface. The temperatu~e firing

cycle and time interval are shown in Figure 13. The critical parts of

the cycle are the glass-firing step and the annealing step, which

relieves the stresses formed during cooling. Annealing of the glass is

only needed to improve electrical results and lower current leakage

levels. Shown in Figure 14 are some rev&rse breakdovn characteristics

relative to the firing cycle and their probable cause. The breakdown

voltage characteristics of the junction before and alter glass

application are shown in Figure 7. It can be seen that the breakdown

voltage is raised from 600 V to 1200 V after application of the

negatively charged glass.

4.4 Alloying and Substrate Bonding

After the glass has been fired, an 80 mil thick~molybdenum disc

is then fastened to the bottom of the fusion by means of an alloyed

alusinua contact. Aluminum 10 pm thick is evaporated onto the mating

surfaces of the fusion and molybdenum then alloyed at a temperature

below the glass-firing temperature. The attachment of the molybdenum

disc to the fusion produces a warping or bime;allic effect between the

two members that is dependent on molybdenum thickness, silicon thick-

ness, and solder-freezing temperature. The optimum thickness for the

molybdenum can be determined from solution of the Navier equation as

shown in Appendix I. Figure 15 shows the amount of bow and the

resulting stresses in the silicon plotted against the molybdenum

substrate thickness. The silicon interface stress remains relatively

constant no matter what the molybdenum thickness, but the surface stress

v«rics> gteat^y. Iv is actually zero at a moly thickness of 15 mils when
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80%
720°C

*450°C
450°C

CritLcl
3-4°C/Min

Figure 13. Glass-firing cycle.

it changes from being in tension tc being in compression. Figure 16

shows the amount of bow versus moly thickness with the device diameter

as a running parameter. A measured reading of .001 inch on the 1.5 inch

diameter combination compares favorably well with calculations.

Alloy bonding of the slice to the molybdenum disc also presents

the problem of an uneven solder penetration. The temperature and time

cycle are shown in Figure 17 with the process being performed in a

vacuum furnace. To reduce the penetration of aluminum into the silicon,

the temp

possible

the temperature excursion from 570 C to 600 C must be made as quickly as

Excellent physical and electrical bonds have been made with this

method shown by the ultrasonic scans in Figure 18. Good bonds are

evidenced by an all-black image; any voids in the alloy appear as white

spots in the scan. On the left the silicon wafer broken away from the

moly verifies these particular measurements.
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Figure 14. Reverse breakdown characteristics and their probable cause,
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Figure 15. Amount of bow and stress versus molybdenum thickness.
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Figure 16. Effect of diameter and moly substrate thickness on
device bow.
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Figure 17. Alloy temperature and time cycle.
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5. DEVICE FABRICATION

The 40 mm device fabrication process consists of a four-mask

sequence with the process that essentially was developed under previous

contracts such as NAS3-18916. Changes have been made in this process to

accommodate the different glass passivation and alloy steps explained in

the previous sections. A flow diagram indicating the various steps and

appropriate cross sections is shown in Figure 19. The starting material

in this case is an 85 yhm-cm n-type substrate 15 mils thick. The slices

are as sawed and do not require any special surface finish. Into this

slice is diffused a 3.D mil deep phosphorus dopant which serves as the

lower n collector Contact. After deep diffusion, one 3 mil region is

removed by lapping and polishing to expose the n region for diffusion

of an Al-Ga bate diffusion. This is followed by a boron diffusion to

increase the surface cancentration and prevent conversion of the surface

during the emitter diffusion. After the base diffusion, the slices

undergo a photoresist step and phosphorus emitter diffusion deep enough

to provide the desired hpEg of 30.

After the diffusions are completed, the slices are edge beveled

to a 6 angle then spin etched and put through a screen-printing glass

deposition step. Processing thp slices further, the glass is fired

after which an aluminum evaporation is performed on the back of the

slice and one surface of the molybdenum disc. The slice and moly are

next alloyed and another photoresist mask is used to open base and

emitter contacts. An aluminum evaporation is again performed on the

surface of the slice and anotner photoresist mask is applied to

delineate the device contacts. Sintering of the contacts takes place at

550 C, then a molybdenum preform is attached to the emitter contacts to

complete the process. A picture of the completed fusion is shown in

Figure 20.
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Figure 20. A 40 mm fusion.
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O. PACKAGING

One of Che main contract goals was that of packaging the device

into an encapsulation that pnysically separates the transistor thermal

and electrical interfaces. Originally the packaging task was contracted

out to an outside vendor, Thermal Associates, Inc., to encapsulate the

fusion into their size-18 isolated, modular, epoxy-bonded package. Th'-d

vendor after a considerable lengtn of time was not able to deliver a

packaged device within the electrical specification; the contract

agreement was therefore terminated.

As ar alternate approach, the following device delivery

conditions were agreed to by NASA.

(a) Delivery ot ten devices packaged into a modified
Westinghouse T7SU unit that will conform to the original
packaging contract goals.

(b) Delivery of 3U fusions packaged in a Westinghouse y-size
flat package to pass ail specifications other than the
isolation requirement.

(c) Delivery ot ten unpackaged devices to pass all specifica-
tions as measured in the fusion test package.

The modular power semiconductor described in (a) provides

electrical isolation of the contained semiconductor while providing

thermally conductive paths to the case. A snetcn ot the modified unit,

which utilizes the "CBL" approach to mounting the fusion, double-side

cooling, and an insulation system to provide up to 250U VAC (inin), Hi-

pot case isolation is shown in Figure 21. A photograph of the package

is also shown in Figure 21, and the specifications for this unit are

shown in Table 3. For option (b) the cathode of the 9-size package was

machined to fit the emitter pretoriu ot tlte 4U ran device and a teflon

locator was added to center the device on the anode stage. -
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Figure 21. T7SO Semiconductor Package.
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Tfble 3

T7SO Device Specifications

1. Hi-pot (case isolation) 2500 VAC (min.)

2. CDIV (corona) 1000 V̂ g (min,)

3. ROJQ (air-cooled design) l°C/watt (max.)

4. Size (air-cooled) 3.7" W x 2.75" H x 5.33" L

5. Other Features

• Thermistor temperature monitor each device, isolated (2500
VAC) penetrations)

• .50" dia. electrical connections (penetration)
e Gate, gate potential leads (penetrations)
• Internal hermetic devices
• > 1" stride and creep between terminals

6. Air-cooled design to be capable of 250 through 550 ARMS, < 1600
volt device

7. Design must use UL materials
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7. ELECTRICAL PERFORMANCE

7.1 Current-Cain Data

The electrical characteristics were measured for each device to

reveal the hpE, VCEQ(SUS), VCE<sat), and VCBQ. Switching measurements ,

and FSOA were also made on typical devices and were found to be '

reasonably close from run to run. '
i

Figures 22 and 23 show three levels of current transistor

characteristics for the 80 A and 50 A, respectively. The curves were |

obtained using a 576 Techtronix curve tracer and high-power puls?

attachment. It can be seen that a gain of 14 is evident at both the •
V

80 A and 50 A level. For both curves it can also be seen that the I
v
CE(sat) is less than the 1 V design goal that is specified. f

To show how these transistor parameters compare with the design '

goals, a curve of measured current gain versus collector current for :

both devices is shown in Figure 24, and for comparison the G = hfE I- j

asymptote for each device is also shown. As can be seen, the measured ]

curves are above the asymptote at the 50 A and 80 A current levels.

Figure 25 shows the distribution of h _ I versus V (sus) for
r E* C C>C«U

two runs each of different collector-base.thickness. The curve shows

the profound influence of the collector-base thickness on the high

current gain and sustaining voltage. More importantly it is also

evident that these values agree very closely with the predicted values

from the computer readout of Figure 1. ,
v

*.

7.2 Switching Measurements I
*

Switching measurements were made on these devices using a test }

circuit which simulates the waveforms seen in a typical switching j
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Figure 22. Collector characteristics for the 800 V device.
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Figure 23. Collector characteristics for the 1000 V device.
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Figure 24. Current gain versus collector current for 1000 V and
800 V device.
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Figure 25. Measured and tVieoretical current gain product versus
sustaining voltage.
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regulator circuit. The base-switching square wave pulses are at low duty

cycle permitting steady-state conditions to he reached In the Inductor

during switching and keeping turn-on and turn-off losses and temperature

fluctuations very low. Turn-on and turn -off switching waveforms are shown

In Figure 26. Both curves show the 10X to 90% rise an'd fall times to he

less than the contract goal of O.S ysec. Measurements were made at

VCC * 30° V» IC " 50 A» and IBOM and ^BOFF = 5 A as specified by the

test. Figure 27 shows the turn-on delay and storage ti"se for.the same >'
5

device. The upper curve shows ty.rn-on delay to be less than .1 usec; j

however, storage time Is approximately 5 iisec, which Is somewhat higher 7

than the design goal. High storage times can be attributed to the ,•

exceptionally high lifetime characteristic of the closed-tube, triple- j

diffusion process. The low-llfetlme/low-storage time combination con- (
}

flicts with the need for high-lifetime/high-emitter efficiency. A compro- \

mlse must be made here sinre lifetimes greater than 50 psec only serve to j
t

increase storage time with very little increase in emitter efficiency. j

For a more realistic picture of device performance, switching *

energies were also measured. The switching energies are more descriptive J

df device performance because measurement does not need to take Into j

account tho shape of the collector current and voltage waveforms.

Measurement is made by integrating the power curve. The power turn-off ;
-•5

waveform shown in Figure 28 is a worst-case situation in which the peak *

power is in excess of IS kW (50 A at 300 V). The energy dissipated here ''

during turn-off is approximately 5 mJ, which permits switching frequencies •'

to 50 KHz at 50 A collector current. {
i

The turn-on and turn-off energies have been measured for values of j

peak collector current up to 80 A as shown in Figure 29. •!

It has been shown in previous work* ' that the safe operating

frequency for a transistor can he defined by

SOF
T - T
JMAX A

Rejc + RecA
[7]

I
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Turn-Off Waveforms for Transistor 12D1-10

Figure 26. Turn-on and turn-off waveforms.
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Figure 27. Turn-on delay and storage time for typical transistor.
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Ic = 20 A/Div

^ 2 KW/Div

t = lus/Div

Figure 28. Power turn-off waveforms for typical transistor4

where

- Junction temperaturi

- ambient temperature

- junction to case th.-rmal resistance

= case to ambient

=• conduction power

- .9

As an example we consider the case where IQ = 50 A, Tj nax * 150 C, and

Vcf.(sat) - .5 at 150°C; then SOF = 50 KHz, which assumes a conduction

power of 22 watts. For the 80 A device the SOF » 30 KHz because of

increases in EOFP and EON- as well as conduction losses. It must be

remerabered that EQN and as well as the conduction losses are all

subject to the IRnN and Ig0pF base currents.

7.3 Forward Safe-Operat ..ig Area Measurements

The device parameters which are important in determining the

forward safe-operating area are the emitter and base resistance, the

47
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Figure 29. Turn-on and turn-ofC energies versus collector current.



magnitude and temperature dependence of hpg> and the thermal resistance

of the device and heat sink. The theoretical FSOA curves for the 8-size

bipolar transistor are shown in Figure 30. These curves were calculated

using measured transient thermal impedance data assuming that the device

becomes unstable at a designated junction-to-case temperature. A two-
(4)

dimensional model has been developed by Hower which gives good

agreement with measured results. Figure 30 shows the calculated forward

SOA for a typical device as well as a measured point at low current.

These curves were calculated for Rg = .55 raft and a RQJQ = -023, both of

which have been verified by measurement.
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Figure 30. Forward SOA for different pulse times.
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8. CONCLUSIONS

We have successfully fabricated bipolar transistors with

VQ-O(SUS) in the range of 800 to 1000 V at current levels of 80 A and

50, respectively, at an hpF of 14. A permanent-type passivation glass

has been developed that will not only shield the device from ionic

contaminants and moisture but will also aid in obtaining higher voltages

and current by reducing the amount of area needed for junction

contouring. In addition, a new low-temperature molybdenum to silicon

alloy has been developed that will decrease wafer bow and thereby

increase yield. A visible package has been used to provide heat transfer

and the electrical isolation of the collector up to 2500 V RMS.

A total of 50 transistors have been supplied that meet the

target goals and a complete listing of the measured test results is

given in Appendix II.
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APPENDIX I

Solution of the Navier Equation for Radius of Curvature

The radius of curvature R is given by:

6 a (t + t ) ' s m' (zt-.it
s m

where:

tg,tm = thickness silicon, moly

a - (expansion coeff difference) x (temp, change)

" C<xMo ' aSi) x

s Z mj

M = 2"E
Au - E

u = Poisson's ratio for each material

u(3X + 2u)
E " X + u

X = Rigidity modulus for each material

As a general rule, if tffl > tg, the radius of bevel is given

approximately by:

M + t 2

6 a M t
s s
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APPENDIX II

Measured Test Results

Transistc
No. VCFO(sus) w>

IR(A)

50 RO VC E(sat)(V) hFE

i
t

Nonpackaged
8-size

12B2-6
12D3-1
12B3-2
12C1-7
12B3-6
12B2-2

12B 1-8-2
12B 1-8-3
12C-1-2
1211-1-4
12H-1-9
12B2-3
120 1-6

Packaged

12C4-2
12B2-5
12C2-2
12C2-1
12C3-3

I 1 2D3-7
12D3-4
12D3-6
12D3-2
! 2D3-8

Packaged

I2D1-11
1201-10
I2B3-1
12B3-2
12R3-4
1 2B3-5
12B3-3
12D4-1

*y

1020
1008
1000
1030
1200
1020

1300
1040
1200
850
820
200
200

8-Size ir. T7SO

1020
1000
1000
1100
1!00
850
800
880
850
823

1400
1480
1000
1450
1320
1100

1450
1400
1300
950

1200
200
200

Package

1250
1100
1100
1300
1280
980

1000
990
900

1050

3.0
3.8
3.8
3.2
3.0
3.2

3.5
3.5
3.2

5.1
4.8

3.2
2.8

3.5
3.5
3.6
3.8
3.4

5.6
5.8
5.3
5.8
5.8

.38

.40

.42

.52

.38

.42

.35

.40

.35

.60

.55

.40

.65

.40

.42

.50

.52

.42

.42

.44

.55

.50

.38

16.6
14.0
14.0
16.0
16.6
16.0 (Etch Groove)

14.0
14.0
15.6
15.7
16.7
15.6 Dunmy
17.8 Dummy

14.2
14.2
14.0
14.0
14.7
14.2
14.0
15.0
14.0
14.0

8-Slze 1n Flat-Pak

860
850

1300
1200
1080
1000
900

1000

-

1380
1300
1180
noo
1580
1620
1000
1600

4.8
4.8

3.5
3.0
2.8
3.5

5.2
3.5

54

.70

.70

.45

.35

.40

.42

.20

.40

16.6
16.6
14.2
16.6
17.8
14.2
15.3
14.2

,

(
|

>

I

\
i

1
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ORIGINAL PACE [3
OF POOR QUALITY

Transistor
No.

1 204-3
1 204-4
1 204-5
1204-6
1 204-7
1204-10
12D4-11
1204-13
1204-14
1204-17
1204-18
1204-19
1204-20
1202-1
1202-2
1202-3
1202-4
1202-5
1202-6
1202-7
1202-8
1202-9

VCEO(sus)

1050
1100
800

1100
1050
1005
1050
1080
1000
10Rr>
1400
1010
1020
800
950
840
820
800
795
860
840
850

IB(A)

VCEO<V>

1580
1450
1200
1450
1400
1425
1480
1350
1220
1200
1630
1230
1238
1380
1500
1650
1480
1450
1200
1500
1500
1600

50

3.0
3.8

3.0
3.0
3.2
3.1
3.2

3.5
3.0
3.0
3.0

80

5.2

5.6

5.0
5.0
5.1
4.6
5.1
5.2
5.8
5.8
5.8

V^satHV)

.25

.20

.50 .

.22

.20

.20

.20

.28

.40

.20

.20

.20

.20

.80

.60

.70

.60

.90

.90

.70

.80

.70

hFE

16.6
14.0
15.3
16.6
16.6
15.0
15.0
15.0
14.1
14.2
16.6
16.6
16.6
16.0
16.0
15.7
17.4
15.7
15.0
14
14
14
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ORIGINAL PAGil ;«
OF POOR QUALITY
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