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ABSTRACT

A new capability has been added to the general purpose finite element
program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic
structures rotating about their axis of symmetry. The effects of Coriolis and
centripetal accelerations together with those due to linear acceleration of the
axis of rotation have been included.

This report presents the theoreticai development of this new capability.
The work was conducted under Contract KAS3-22333 from NASA Lewis Research
Center, Cleveland, Ohic, with Mr. Richard E. Morris as the Technical HMonitor.
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[ENSIPUTYY

SUMMARY

The objective of the work described herein, was the development, docu-
mentation, demonstration and delivery of a computer program for the forced
vibration analysis of rotating cyclic structures. Tuned bladed discs arc an

example of specific interest.
The scope was by definition to address:
- direct pericdic loads moving with the rotating structure ,
specified in the frequency or time domain;
- translational acceleration of the rotating axis.
The capability is operational in the NASTRAN general purpose program at
Level 17.7.
NASTRAN documentation is provided ard cxample analysis results have been
obtained.
Relationships to previous work are described and further developments

are recommended.
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1. INTRODUCTION

In Reference 1 (NASA CR159728), a gyeneral approach to conducting dynamics
analysis of bladed discs was discussed and a Togical sequence of problems defined.

" Figure 1 indicates the problem spectrum and Figure 2 shows an overall program

structure of modular nature, based on additions and modifications to the NASTRAN
general purpose structural analysis program.

The general set of problems can be represesnted by formail equations, various
terms of which are included or excluded depending on the problem being studied.
Thus the equations

[M] G} + [[8] + 2008, T1 {0} - [43 fu} + [[K] - 0 D310 {u}
= {P} - [M,] (R}, (1)
with some boundary conditions, may be taken to represent the general forced

vibration dynamic problem of a tunad bladed disc. In the previous and current
work, the advantages of cyclic symmetry are incorporated in this formulation.

The work of Reference 1 handled, within state-of-the-art technolegy, analyses
of aeroelastic, modal and flutter problems of tuned cyclic structures (Figure.2).
It was documented and operated in NASTRAN at Levels 16 (Refs. 2 - 5), and 17.7 (Ref 6).

The equations
(M1 {u + [B] {0} - [Q] {u} + [X] {u} = {0} (2)

were treated in the context of modal and flutter problems of a tuned system,

where
M represented the inertia matrix;
B represented the damping matrix;
Q represented the induced aerodynamic matrix (complex);
and K represented the elastic cum geametric stiffnass matrix.

In the current work, the equations

(M1 {ur + [[B] + 2u [ByJJtu} + [[X] - o’ (4,13 {u} = {P} - [M,] {ﬁo}
(3)

are.treatad in the context of forced vibration, (Figure 2),

-1-
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Differential L, Design/Analiysis, Steady State | (Refs. 1-5)
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RF 4 DISP | |
. ‘: X |
+—{Differential |
i {Stiffness }
W I ’ !
Normal Modes using ' i
cyclic symmetry, | !
RF_15 DISP > Stage Stage 2-d lOperatlona]
Flutter Analysis,)e_{Unsteady state cascade !(Rc fs. 1-6)
Hodal Flutter >{RF 9 AERO aerodynamic analysis
Analysis, |
RF 10 AERO ! |
— I [
Direct Frequency ’ Forced Vibration External forces ’ Operational
and Random ResponseJ_? Analysis of Rotating K—{and Base accelera- l (Present work and
Analysis, T Cyclic Structures tion | Ref. 8)
RF 8 DISP {1 [(Direct formulation), ,
i RF 8 DISP with ALTERS |
f A\ |
|1 [Forced vibration Analysis | pproach defined,
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| Structures (Modal I
| formulation) |
B A |
{ {Mistuned Bladed Discs{ I!Bladed Discs | Mode math deve]opment
l Modal, Flutter and je—{Mis*tuning ' complete -(Ref. 1).
Forced Vibration Specifications Flutter and forced
l Analyses } vibrations approach
I

Figure 2: Overall Program Structure & Status



where [M], [B], [X] are as bafore,
[B]] represents Coriclis forces matrix
{P} represents applied surface load vector
[MZ] represents base forcingmass matrix
and {Ro} represents base acceleration vector.

The specific form of the focrced vibration equations including the types of
forcing functions to be incornorated were selected by NASA. These are specifically

- directly applied loads moving with tue rotating stricture;

- inertial loads due to translaticnal accelerations of the ax“s of
rotation {"base ecceleration").

The lcads may be periodic and specified in the frequency or time domains.
Solution procedures follow generally those of the cyclic symmetry furmulation
of the NASTRAN Theoretical Manual (Ref. 7). The capability has been deveio 24
on the IBM 370 system at Bell Aerospace Textrcn and documented, delivered ang
demonstrated on the UNIVAC 1108 at HASA Lewis in NASTRAN Level 17.7.

Five demonsiration examples are presented, one being a c¢amplete structure
example to shew compatibility with the cyclic structure formulation. A simple
twelve bladed disc is modelled cnd forced at conditions related to its natural
frequencies. The response examples inciude:

physical component forcing (freqency domain),
harmonic component forcing (frequency domain),

- harmonic component forcing of tha rotationa’ axis,
physical periodic forcing (time comain),

harmonic component periodic forcing (time domain)

It would be logical to extend the current work to include the generatica of
applied and induced oscillatory aerodynamic loads sc¢ hat the forced vibratinns
of subcritical engine stages can be addressed directly. Rotational base accel-
erations could also be of practical interest in investigating the gyrescepic
effects on rotating machinery.

-f-



Z. EQUATICRS GF MOTION

The equations of motion of a tuned cyclic structure rotating about its axis
of symmetr;, and subjected to steady sinuscidal and general periodic excitation
are derived using Lagrange's formulation.

Figure' 3 1illustrates the problem by considering a 12-bladed disc as an
example. The bladed disc consists of " twelve 20° segments--identical
in their geometric, material and constraini properties. [fhe 2isc rotates about
its axis of symmetry at a constant angular velocity. The axis of rotation itself
is permitted to oscillate linearly in any given inertial reference. In addition,
the bladed disc is allowed to be loaded with steady sinusoidal or general périodic
loads moving with the structure. Under these conditions,'it is desired to deter-
mine the dynamic response (displacement, acceleration, stress, etc.) of the
bladed disc.

The cyclic symmetry feature of the rotating structure is utilized in deriving
and solving the equations of forced motion. Conseguently, only one of the cyclic
sectors is modelled and analyzed using finite elements, yielding substantial
savings in the analysis cost. Results, however, are obtained for the entire
structure. The Coriolis and centripetal acceleration terms have been included.
For cierity of derivation, the equations of inotion are first derived for an arbi-
trary grid point of the cyclic sector finite element mcdel, and then extended
for the complete model.

COORDINATE SYSTEMS

These are shown in Figure 3. ©-XYZ is an inertial coordinate systeq.
O-XBYBZB is a body-fixed coordinate system such that OXB coincides with the axis
of rotation of the structure and is always parallel to ©X. For a NASTRAN finite
element model of the bladed disc, 0-Xg¥pZp also represents the Basic coordinate
system. A-xyz is a body-fixed global coordinate systen in which the displace-
ments of any grid point P are desired. The unit vectors associated with these

coordinate systems are also shown in Figure 3.

DEGREES OF FREEDOM

The rotating structure is permitted four rigid body mo.ions including three
translations (along 0X, ©Y and ©Z) and one rotation at a constant angular velocity

2 about its axis of rotation OXB.
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A1l grid points of the structure are each permitted six degrees of freedom.
The displacement at any grid point in any sector can be expressed in any body-
fixed coordinate system as a combination of:

1) the steady state displacement due to the steady rotation of, and the
steady state loads applied to, the structure, and

2) the vibratory displacement (superposed on the steady displacement) due
to the vibratory excitation provided by the directly appiied loads and the
inertial loads due to the acceleration of the axis of rotation ('base’

acceleration).

The purpose of the present development is to determine the vibretory
response.

LAGRANGE FORMULATION

Referring to Figure 3, the complete tuned structure consists of N identi-
cal cyclic sectors. If u represents all the vibratory degrees of freedom of the
complete structure, the equaticns of motion can be derived via the Lagrange
formulation,

U, 3D _ oM
dt(aﬁ) Yot ag TR (1)

where T and U represent the kinetic and strain energies, respectively, of the

cemplete structure; D is the Rayleigh's dissipation function representing tha

energy lest in the system due to resisting forces proportional to velocities &
(e.g. viscous damping forces); and W represents the virtual work done on the

structure by the external forces through virtual displacements &u. '

The complete set of degrees of freedom u can be subdivided into N subsets,
each containing u" degrees of freedom for each of the N cyclic sectors. Since
any given cyclic sector is 'connected' to adjacent cyclic sectors only on its
two sides, u" satisfies the intersector boundary compatibility condition

n _ n#l =
usidez“ uS1d’31 Y n"], 2, e o sy N- (2)

Equations (1), therefcre, can be written as N sets of equations coupled
only as given by equations (2):

n ~1f anh Al
d a7 ot | au 1V =
gt (agm ) -t gt g T AT B e B 5
-7-
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- For clarity of presentation, without loss of generality, equations (3) are
first applied to obiain the equations of motion of an arbitrary grid point in any
cyclic sector by considering its three transiational degrees of freedom. Inciu-
sion of the three rotational degrees of freedom at the arbitrary grid point, and
extension to inciude the remaining grid points in the cyclic sector are con-
sidered subsequently.

KINETIC ENERGY )
With reference to Figure 3, point P is an arbitrary grid point of the nth
cyclic sector with a mass of 'm' units iumped from the adjacent finite elements.

The kinetic energy of the mass at P can be written as:

S 1.3 03
T = smrp -1y (4)
where o o o
By = By + Bgp + (0 x Fyp), (5)
[«] o A 0o A [+ VN
o = Xl + Ygu + ZpK , (6)
Pop = Koplg * Yopdg * ZopKp o (7
& =0 , (8)
and \
| {_18\ 1 0 o0 1)
. JB L= 0 C S J (9)
l\KB 0 -s ¢ K . o
with - ¢ = cos ot and s = sin Qt . (10)

Substitution of equations (5) through (9) in equation (&) results in

m l XO
—] [+] o [+] (=]
L ma\‘o
' m XXOP
oK Vo 7 {v
t7 Xop Yor Zop m \ Yop
o
y " \‘op,\



1 B i
v 98 [Xop Yop Zgpd
+ Xgp Yop Zyp]

0 [+] Q
+a | Xgp Yop Zgp.

t
+92 | Xgp Yop Zgpl

0 0 0]
0 it 0
.0 0 m .
'm0 .0

0 ~MS MG |
"0 0 0]

0 0 -m
.0 m 0
0 0 0

L0 -mc -ms

|
{
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Xop
Yop
Zop

o

()

Ne <o o
o

(=]

In order to introduce the global coordinates of point P, consider now the position

vector to P written as

0 = CA+AP ,

i.e. i
. ~B
LXop Yop Zopd Iy
Kz .
where
i
i [TBasic to G‘uobal] 3
k

= [%oa Yoa ZoaJ

+ L xap Yap Zpp ]

-G-

(12)
I g
Jg
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Therefore equation (13) yields ' - OF POOR QUALITY
( Xop Xoa Xap
6B ,
z Yo (=) Yoa ¢ [T 4 vgp é (15)
Zop © " Top- Zp <,
noting that [T%8] = [TP¢7T, (16)

The global position vector to the point P can be further thought of as consisting
of three component vectors, i.e.,

*ap 7 ( *ap g Ux Uy
Yap 27 Yap + Z u, + u.y (17)
z z u. u
AP AP Cinitial 2
[ - | ) t 1
Initial position A Displacements due to vibratery forces

iDisplacements due!
to Q and steady
loads
{ ] L ]
Steady part Vibratory part

Substitution of equations (17) in equations (15), and differentiation once with
respect to t yields

o ]

XOP T S UX 4

o _ GB o .
Yop ¢ = [T u, (13)

] ]

Zop u,

Therefore, with the help of equations {15), (17) and {18), equation (11) expresses
the kinetic energy of the mass at P in terms of the displacements and velocities
of P expressed in the global coordinate system A-xyz.

STRAIN ENERGY

The strain energy due to the displacements at puint P expressed in the basic
coordinate system can be written as

*

L1 )
U=71(Xop = Xop, 500 » (op = Yop, in.) » (Zop - Zop, in ]

T *x Ky Kz Xor = *op,in.

(19)

o]

Lz Ky Ky Zop = Zop,in.

-]0— -



By using equations (15) and (17), this becomes

_ 10— B _ Global | * %
él U= ?.L!ux + ux)’ (uy + uy)’ (uZ + uzlj[K ] u, + u (20)
- ’ . ER I
3 ' . Global an T .
where  [K] = [T°0] [kP2STCy 788y | (21)
i .
b : DISSIPATED EHNERGY
E' The energy dissipated by the damping forces acting against the motion of the
o point P is expressed by the Rayleigh's dissipation function,
o sic o
| . Byx  Bxv  Bxz *op
=1k, Yoo Zo] |8y, By, B Y (22)
. D=3 Uor Yor Zop vx By Byz op
L 82x By Bz Zop~ -
i” Use of equation (18) transforms this to
. (lO‘
- TR Global | % z | \
. D= 7 Lo uy u, [B ] uy (23}
o .
N where - Global - .o T Basic -
; 1 = [7°1 B1 [T°1 . (24)
VIRTUAL WORK
I The virtual work done by an oscillatory applied load
I B o= Pt P + Pk , (25)

moving with the point of application, through individuaily achieved virtual

} displacements dux, Su,, and éuz can be stated as

y
Py
o= 6 Lyx u, U, Py . (26)
P,

-11-
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' Sub;titution of the expressicns for T (eguation 11), U (equation 20), D

OR
CcF

ICINAL PACE 1D

PCOR QUALITY

equation 23) and &4 (equaticn 26) in the Lagrange equations (3) results in the
of forced motion of point P expressed in the displacement

following equations
(global) coordinate

M3 {G} +

The terms appearing

system A-xyz:

[t2 + zare;3] @@ + 1K1 - W03 wd = 003 - [, Ry

in equations (27) are:

{u} =4 u, g
[ uz R
€ Py
{P} =£ P‘y
P ’
z
XO D)
{ﬁo} ={ Y
Z0 ,
global GB T m 0
M} =M1 = [T] 0 mnm
0 0
global
(8] = [B ]
0
global T
[B,J=108, 1 =01°1 |o o
{0 m
global
(kK1 =[K]
global T
=01 =% o
0 ¢©
-12-
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GBT
[MZ] = [7T7°] 10 mc ms (34)
0 -ms mc R

where ¢ and s are given by equation (10)}.

Equations(27) describe the translatory motion of an arbitrary point P in
an arbitrary sector n of the rotating cyclic structure subjected to a directly
applied vibratory load {P} and base acceleration {ﬁo}.

These equaticns can be extended to include the three rotational degrees of
freedom at point P by noting that: '

1) in a lumped mass model, only the translational degrees of freedom at
any grid point contribute to the kinetic energy of the structure, and

2) the coupling between various degrees of freedom may exist only via
the stiffness matrix. (Instances where the damping matrix is defined
proportional to the stiffrness matrix also may result in coupled equations
of motion.) '

Accordingly, the matrices derived from kinetic energy considerations,
viz. [i1], [B]], [M]] and [Mz] of equation {27) can be expanded as typified
by

M] = |- -4~ (35)
where [Mtt] is the 3x3 (translational) mass matrix of equation (27). With sub-

scripts t and r representing the translational and rotational degrees of freedom
at point P, the stiffness and damping matrices may be expanded as

i bk 1
K] = EKEﬁ?_:_[_EVE (36)
18,1 | [8,.7]
and [B] = - = 7 T (37)
L[Br‘tJ : [Brr] R :

By similar reasoning, the equations of forced vibratory motion of all the
cyclic sectors of the total structure can be written as



(™ + [0 + 20fe]] 67 + [€7] - P01 ™) = %) - IR ),
n=1,2, ..., N

The intersegment boundary compatibility is specified by equation (2).

-14-
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3. SOLUTICH OF EQUATICNS OF MOTION

The method of solution of the equations of forced motion (equations 38 and 2,
Section 2 ) s based upon the form in which the excitation of the rotating struc-
ture is specified. As noted earlier, the present development considers excitation

prescribed as:
1) directly applied loads moving with the structure and
2) inertial loads due to the translational acceleration of the axis of
rotaticn {'base' acceleration).
These steady-state sinusoidal or general periodic loads are specified to
represent:

1) the physical loads on various segments of the complete structure, cr
2) the circumferential harmenic components of the loads in (1).

The sinusoidal loads are specified as functions of frequency and the general
periodic loads are specified as functions of time.

The translationai acceleration of the axis of rotation is specified as a
function of frequency in an inertial coordinate system.

Because of its eventual implementation in the NHASTRAN general purpose finite
element structural analysis preogram, the follewing solution procedure generally
follows the theoretical presentation of cyclic symmetry given in the NASTRAN
Theoretical Manual (Ref. 7). '

METHOD OF SOLUTION

The method cf solution of the equations of motion consists of four principal
steps: '

1) Transformation of applied loads to frequency-dependent circumferential
harmonic components.

2) Application of circumferential harmonic-dependent inter-segment com-
patibility constraints.

3) Solution of frequency-dependent circumferential harmonic components of
displacements.

4) Recovery of frequency-dependent response (displacements, stresses, loads,
etc.) in various segments of the total structure.

-15.
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An overail flowchart outlining the solution algorithm is shown in Figure 4.
Provision to include the diffcrential stiffness due to the steady loads is also
shown. ‘

1. Transformation of Apnlied Loads

The transformation to frequency-dependent circumferential harmsnic components
depends on the form in which the excitation is specified by the user. The follow-
ing options are considered in the present development to specify the form of exci-
tation due to the directly applied loads and base acceleration Tloads:

Directly applied loads specified as:

periodic functions of time on various segments,

periodic functions of time for varicus circumferential harmonic indices
- functions of frequency on various segments

functiens of frequency for various circumferential harmonic indices.

Base acceleration specified as:

- furction of frequency for circumferential harmonic indices 0 (axial)
and 1 (lateral).

Details ¢f each of the above five loading conditicns are as follows:

Directly applied loads (sedgment-dependent and periodic in time)

If P" represents a general periodic Toad on sector 2 specified as a function
of time at M equally spaced instances of time per period (Figure & Y, the lcad

at mth time instant can be wiitten as
m o & {-Lc -5 -M/2
P = p" 4 7 [P cos(mTab) + P" sin(mTab) | + (-1)™P" -, (1)

2=1
=1,2, ..., H s

where b = 2n/HM, y = (¥-1)/2 for odd M, 3 = (M-2)/2 for even M. “The last term
in equation (1) exists only when M is even The coefficients I',n2
("2" = 0; 2, 25, 221, 2, ..., % 5 M/2) in equation (1) are independent of time,
and are defined by the relations
I Ny o

1 n

= % } P (2 = 0) Part of (2)
m=1

-16-
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: 1]
o= %-Z PN cos{m-T8b),
m=1 _
-25 M 4] ?(l:]’ 29 erey £L)
" o= ﬁ- Y P" sin(m=1%b), and > (2 Contd.)
m=1 )
-M/Z m
n 1 B m-1 .n ‘
P 0 Y (<)) P" (M even only) (2=M/2).
m=1 )

-ll‘(\)ll
Each of the coefficient vectors P on the left hand sides of equations
(2) can further be expanded in a circumferential (truncated) Fourier series
—"2“
sin(E?Tka)] + (-l)n'lﬁﬂ/z .

(3)

tpn kL | IR '
+ 5 L?‘ cos (n-Tka) +
k=1

~Mpn ton
Pn = FO XS

'U_Ll

wheren=1, 2, ..., N ,

"2“ = 0; Q.C, 25,£ = ]) 2: coay R«L; H/Z
a = 2n/N 3 (4)
k= (N=1)/2 for N odd
kL=(N-2)/2 for N even.

-

The last term in equation (3) exists only when N is even., The Fourier

Sugn
coefficients P ¢ ("k" = 0; ke, ks, k = 1, 2, ..., k3 N/2) in equation (3)
do not vary from sector to sector, and are defined by

A DL (k = 0)
n=1
"'"2," -"2,"
ske 2 N n —_
P =g 1 P cos(n-Tka)
" n=1
(k=1,2, s kL) f (S)
B
Pt = % Y P sin (p-Tka), and
' n=l
-"2," " non
P2 . % ) 1™ P ( even only) (k = N/2)
n=1 7

-20-
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The terms P

("o" =03 2¢, 25, 2=1, 2, ..., K M/2 and "k" = 0; kc, ks,
k=1, 2, ..., kL; N/2) are tha transformed freguency-dependent circumferential
harmonic ccmponents of the divectly applied loads PW (m=1,2, ..., Mand n = 1,

2, ...y N). '

_ Directly applied ldads (Circumferential harmonic-dependent and periodic in
time).
Such loads can be represented as
M -0 9. J-2¢ -£s ] -/2
_llkll ___ukn L —"k" —_ —"k" —_ m-’l—"P“
P = P + ) P cos(m-12b) + P " sin (m-lzbZJ + (-7, (6)
2=1

where m = 1, 2, ..., M represent the time instances at which harmonic cocmponents

"k" = 0; ke, ks, k =1, 2: cees kL; N/2 of directly applied loads are specified.
"“2,‘
The coefficients ﬁﬂk" on the right hand side of equation (6) are obtained

using equations (2) with sector number n replaced by harmonic number “k“.

Directly applied loads (freaquency-and seament-dependent)

This type of loads can be represented as

-"f," _IIKII kL -“2" _llﬂll -"2,"

" =P 4§ IBKC cos(RTka) + P*S sin(nTka) |+ (<) AVE, (1)
k=1L '

where "2" (=1, 2, ..., F) now represents the frequencies at which exéitation is

specified. The transformed fregquency-dependent circumferential harmonic components
-l Qll

7K ("k" = 0; ke, ks, k=1, 2, ..., k.3 N/2) are obtained using equations (5)
with "2" as defined above.

Directly applied loads (frequency-and circumferential harmonic-dependent)

These loads are the transformed frequency-dependent circumferential harmonic
Nen

components 5 "&" ("k" = 03 ke, ks, k=1, 2, ..., kL; N/2) with "&" (=1, 2, ..., F)

representing the various frequencies at which the directly applied loads are

specified.

Base acceleration (frequency- and circumferential harmonic-dependent)

In Appendix A, it is sinown that the components of the translational base
acceleration contribute to inertial loads on the rotating structure in the folicw-
ing manner:

N . . 3 '.. h"
[T RS R T A T RIE
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1.  Axial component contributies to P K where "k" = 0, and “&" represents the
"specified excitation fregquencies.

- LH ﬁ“
(AT .
2. Lateral components contribute to P k where "k" = 1c and 1s, and "2" re-
presents the effective excitation frequencies which are shifted from the

specified frequencies by * @, the rotational frequency.

2. ‘App1icétion of Inter-Segment Compatibility Constraints

As shown in Section 4.5.1 of Reference 7, equations (2) of Section 2
are used to derive the compatibility conditions relating the circumferential
harmonic component degrees of freedem on the two sides of a rotationally cyclic
sector: ' '
side 2 side 1

g - (k= o
Egc = U?C cos(ka) + U?S sin(ka)

(k=1,2, ..., kL) > (8)

a‘és = U;C sin(ka) + U'fs cos(ka)
and W2 - G2 | (k = 1/2)

E

In order to apply these constraint relationships for any given harmonic k,
an independent setﬂK consisting of the circumferential harmonic component (cosine
and sine) degrees of freedom from the interior and side 1 of the cyclic sector is
defined. _GK is selected from the 'analysis' set degrees of freedom (i.e., the
degrees of freedom retained after the application of constraints. and any other
reduction procedures), and is defined as

W = 6 (k) T, and |
- K (9)
S _ — .
U= Gsk(k) u
—kc —ks ‘ s 1 ") ' ik £
u™~ and u"> each contain all (and only} the 'analysis'set degrees of freedom

from the interior and both sides of the cyclic sector. Equations (8) are used
to define some of the elements of the transformation matrices GCk and Gsk’ For
k = o and N/2, the matrix GSk is null.

N O
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3. Solution of Frequency-Dnrundost Hormonic Displacements

1/
For a given harmonic k, the intreduction of u™ in the cquations of motion,
equations (38), Section 2 , results in the transformed cquations of motion (Ref. 1)

A+ BNR + GK = FX (10)
=K _ T .,n a7 on
K _ AT pn T .n
B" = Gck B G + Gsk B Ggy »

. r (1)
K _ n NP N |
K™= 8 K" G + €y KT Gy » and

_ o7 ske T zks

P - Gy, PC 46l P . J

As discussed in subsection 1 of Section 3, 5kc and 5k5 are the transformed

frequency-dependent circumferential harmonic components of the directly applied and
base acceleraticon loads. '

At any excitation frequency w”, let

EK = EKeiw‘t and accordingly, _ ] (12)

=k

- aKe'lw t !

where BK and EK are complex quantities, Equation (10) can be_rewritten as
[-w'z ﬁK + ‘iw’B—K + -IZK]!.:JK = EK . : _ - (13)

The excitation frequency «” is given by
w” = w for all directly applied and axial base ac;eleration '

loads, and
= wi} for iateral base acceleration loads.

(14)

Equation (13) is solved for * for all excitation frequencies and all harmonics
as specified by the user. The cosine and sine harmonic components of displacements

are recovered using equations (9).

4. Recovery of Frequency-Dependent Displacements in Various Segments

This step is carriad out only when the applied loads are specified on the
various segments of the complete structure.

-23-
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For loads specified as Tunctions of time, equation (3) is used to obtain the

"'".Q“
displacements WP in various scoments with "2" =03 2¢, 85, 2=1, 2, ..., max®
The circumferential harmonic & is varied from knin to kmax' The user specifies
2'max‘ kmin and kmax'

For loads specitied agoﬁunctions of freauency, equation (7) is used to
obtain the displacements Un~ in various segments with "L" representing the
excitation frequencies. The circumferential harmonic is varied from user speci-

‘ fied kmin to kmax‘

The solution procedure discussed in this section has been implemented as a
new capability in MASTRAN {Ref. 8 ).

-24-
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4. EXRMPLES

Five inter-related examples are presented to illustrate the theoretical

- development of the previous sections. The new capability added to MASTRAN to

conduct forced vibration analysis of rotating cyclic structures (Ref. 8),
as a result of the present development, has been used to conduct these examples.
A 12-bladed disc is used for demonstration.

Example 1 is conducted on a finite element model of the complete structure
(Figure 6). Examples 2 through 5 use a finite element model of one rotationally
cyclic sector (Figure 7). Results of example 1 are used to verify some of the
results obtained in the remaining examples. Table 1 summarizes the principal
features demonstrated by these examples.

Steady-state frequency-dependent (sinusoidal) or time-dependent (pericdic)
loads are applied to selected grid point degrees of freedom. The specified loads
can represent either the physical loads on various segments or their circumfer-
ential harmonic components. For illustraticn purposes oniy, the frequency band
of excitation, 1700-1920 Hz, due to directly applied loads and base acceleration
is selected to include the second bending mode of the disc for a circumferential
harmonic index k = 2. The ‘'blade-to-blade' distribution of the directly appiied
loads also corresponds to k = 2. Table 2 lists the first few natural frequencies
of the bladed disc for k = 0, 1 and 2. Modes for k = 2 are shown in Figure 8.

General Input

1. Parameters:

Diameter at blade tip = 19.4 in.

Diameter at blade root = 14.2 in.

Shaft diameter = 4.0 in.

Disc thickness = 0.25 in.

Blade thickness = 0.125 1in,

Young's modulus = 30.0 x 108 1bf/in?
Poisson's ratio = 0.3

Material density = 7.4 x 1074 ]bf—sec:z/in4
Uniform structural damping {(g) = 0.02

2. Constraints:

‘All constraints are applied in body-fixed global coordinate system(s).
A1l grid points on the shaft diameter are completely fixed. Rotational degrees

of frecdom QZ at remaining grid points are constrained to zero.

-25-
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TABLE 1: PRINCIPAL FEATURES DEMONSTRATED BY EXAMPLE PROBLEMS

Finite ~_Applied loads specified as functions of '
Example Element Frequency (sinusoidal) Tima (periodic) Base Rotational
No. Model Physical | Circum.Harmonic | Physical | Circum.Harmonic Acceleration Sgeed
of Components Components Components Components :
1 Complete ' Yes . Mo Ko
Structure
2 Cyclic Yes No No
Sector
3 Cyclic Yes Yes Yes
Sector
s 4 Cyclic Yes No Yes
e Sector
5 Cyclic Yes No Yes
Sector
o
53
T 02
8
P
Q 2
o
¥4
T
; |

4
é
(1
-t

-
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TABLE 2: BLADED-DISC HATURAL FREQUENCIES OF POOR QuALITY
Frequency (Mode No.), Hz.
 — Mode Description
k=0 k=1 k=2
214 (1 208 (1 242 {1
( ) ( ) \ ) i EmmaenquEL“_§
‘ i
591 (2) 594 (2) 622 (2) N
|
l
1577 (3) 1633 (3) 1814 (3) i T
|
2468 (5)** | 2460 (4) 2433 (4) ; S i L

* k is the circumferential harmonic index

** Mode No. 4 for k = 0 at 1994 Hz represents an in-plane shear mode not excited

by the applied forces.
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EXAMPLE 1

Description
*This example uses the direct frequency response capability in NASTRAN,
RF8, and forms the basis to verify some2 of the results of examples 2 through 5.

Input.
1. ' Parameters:

Same as general input parameters. | |
2. Constraints: ' :

Seme as general input constraints.

3. Loads:
P(fin) = A(f) cos (n-1- (:>,QZ§ ,
where n is the segment number,
@represents k = 2,
(Z represents the total number of segments in the bladed
disc. '
P is specified using RLOADi bulk data cards.

- Results
Sample plots of grid point displacement and element stress response are

shown in Figures 9 through 17, The expected behavior about a k = 2 natural
frequency of the biaded disc can be seen in all these figures.

A1l the response plots (Figures 9 through 25 except i6) havé been obtained
using the plotting capability of NASTRAN. On any given piot, the various curves
are identified, in ofder, by symbols X, *, +, -, « and o. The sequence of
curves is indicated in the first line of the plot descr1pt1on at the bottom
left of each figure.
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Descripticn

This example uses the forced vibration copability with cyclic symmetry.
The user input/output data for loads, displacements, stresses, etc., pertain
to the physical representation of the variocus segments of the bladed disc.
The frequency-dependent applied ioads correspond to k = 2, and hence the solution
lcops on the circumferential harimonic index k are restricted to k = 2 only via
parameters KMIN and KMAX,

1. Parameters:

In addition to general input parameters,

CYCIO = +1 physical cyclic input/output date

KMIN = 2 minimum circumferential harmonic index

KMAX = 2 maximum circumferential harmonic index

NSEGS = 12 number of rotationally cyclic segments

RPS = 0.0 rotational speed

GKAD = FREQRESP\ Specify the form in which the damping parameters
LGKAD = +1 [ are used.

2. Constraints:

Same as general input constraints.

3. Loads:

P(f) = A(f) cos (E:T'<:>°é§9 ,
where n 1is the segment humber,
(:) represents k = 2,
QZ represents the total number cf segments in the bladed
disc.

P is specified using RLOADi buik data cards.

Results

Displacement and stress output results for selected grid points and elements
are presented in Figures |2 through 15. Agreement between results of Figures 12-13
and Figure 9, Figure 14 and Figure 10} and Figure 15 and Figure 11 is excellent,
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EXR¥PLE 3

Description
- - This example uses the forced vibration capability with cyclic symmetry.
The user input/output data pertain to harmonic representation. Frequency-
dependent excitation is provided by both directly applied and base acceleration

 loads.

Input

1. Parameters:
In addition to general input parameters,
CYCIO = -1 harmonic cyclic input/output data
KMIN = 0 minimum circunferential harmonic index
KMAX = 2 maximum circumferential harmonic index
NSEGS = 12 number of rotationally cyclic sectors
RPS = 600.0 revoluticns per second
BXTID, BYTID, BZTID | Refer to TABLEDi bulk data cards to specify
BXPTID, BYPTID, BZPTIDf magnitude and phase of base acceleration

component:,

GKAD = FREGRESP| Specify the form in which damping parameters are
LGKAD = +1 / used. : '

2. Constraints:
Same as general input constraints.

3. Loads:
a) P22 = A(f) specified on RLOADi bulk data cards.
b) Base acceleration as shown in Figurel6 .

Results

Results are shown in Figures 17 through 25.

Figures 17 and 18 present k = 0 results (subcase 1). The excitation consists
of axial base acceleration and directly applied Toads. The selected frequency
band of excitation, 1700-1920 Hz, lies between the second out-of-plane disc bending
mode frequency (1577 Hz, k = 0, Table 2) and the first in-plane shear mede
frequency (1994 Hz, k = 0, Table 2). Since the excitation is parallel to the
axis of rotation, only the former mode responds. '
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Figures 19 through 23 present k = 1 results (subcases 2 (k = 1¢) and 3
(k = 1s)). The excitation is due to lateral base acceleration only. Although
the frequency bard of input base accelzration is 1700-1920 Hz, the rotation of
the bladed disc at &00 Mz (parametor RPS) splits the input bandwidth into two

effective banduidths:

(1700 - 600)
(1700 + 600)

®

1320 Hz, and
2520 Hz.

1}

1100 to (1920 - 600)
2300 to (1920 + 600)

in these effective bandwidths is the first torsional
= 1, Table 2).

The only k = 1 mode
mode of the blade with the disc practically staticnary (2460 Hz, Kk

This is shown by the ocut-of-plane displacement magnitudes of grid pbints 18

(blade) and 3 (disc) respectively (Figures 19 (k = 1c) and 22 (k = 1s)). The

corresponding phase responses of these grid points are shown in Figure 21.
Figures 24 and 25 present k = 2 results (subcase 4 {k = 2¢)). The excitation

consists of directly applied k = 2¢ loads. The out-of-plane displacement magni-

tude of grid point 18 (Figure 24) compares well with that obtained in example 2

(Figure12). Table 3 lists the out-of-plane displacement response of grid point

18 as obtained in examples 2 and 3. The marginal difference in response in example 3

is due to the Coriolis and centripetal acceleration effects at a rotational speed

of 600 revolutions per second.

No k = 25 loads are applied in this example (subcasa 5).
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TABLE 3: EFFECT OF CGRIOLIS AND CENTRIPETAL ACCELERATIONS ON THE

P D
Gruiiial, sl 1o

OF PCOR QUALITY

DISPLACEMENT RESPONSE OF GRID POINT 18 AT 600 RPS,

Frequency
Hz

Example 2

Example 3

Segment 1 (subcase 1)
4a0. (in)/Phase (deq)

k = 2c (subcase 4]
Mag. (in)/Phase {deg)

1700

7.2655 E-5/349.4

7.6132 E-5/354.3

1750

1.3071 E-4/343.1

1.3844 E-3/347.3

1778

2.1580 E-4/332.7

2.3252 £-4/335.8

1796

3.4139 £E-4/314.6

3.7252 E-4/315.2

1814

4.8374 E-4/269.9

4.9177 E-4/266.8

1832

3.4146 E-4/224.9

(]

.2655 E-4/225.5

1850

2.1451 £-4/206.6

2.0742 E-4/209.3

1880

3.2433 E-4/195.6

1.2214 E£-4/199.2

1920

7.6125 E-5/190.4

7.5397 E-5/194.3
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EXAMPLE 4

Description

This example uses the forced vibraticn capability with cyclic symmetry.
The user input/output pertains to physical representation. Periodic loads are
specifiéd as functions of time on the segments of the bladed disc corresponding

to k = 2.

For clarity of .iilustration only, sinusoidal loads of varying

ampiitudes at a frequency of 1814 Hz are specified. The Fcurier decomposition
of these sine functions obviously contains contributions from ¥irst harmonic

alone (2 = 1)-- the parameter LMAX accordingly has been set at 1 (£ = 0, 1c, is).

1.

Parameters:

In addition to general input parameters,

CYC10 = +1 physical cyclic input/output data

KMIN =2 minimum circumferential harmonic index

KMAX = 2 maximum circumferential harmonic index

LMAX = 1 maximum harmonic in the Fourier decomposition of periodic,
time-dependent loads,

NSEGS = 12 number of rotationally cyclic sectors

RPS = 600.0 revolutions per second

GKAD = FREQRESP| Specify the form in which the damping parameters are

- LGKAD = +1 { used.

Constraints:
Same as general input constraints.

Loads:
P'(t) = A(t) cos (E’-‘T~@-%‘) ,

where n is the segment number,

(z)represents k=2,
Q:)represents the total number of segments in the bladed

disc,
A(t) = Assin (2r-1814-t).
P is specified on TLOADi bulk data cards.

-53-
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Results
Results are presented in Table 4 and are in good agreement with those from

example 3.



TABLE 4: COVPARISGN OF RESPONSE AT 1814 Hz,

Grid Pt.Disp. or
Elem. Stresses

Examplie 3

Exampie 4

Example 5

k ='2c (subcase 4)
iag. (in)/Phase(deq)

Segment 1 (subcase 1)

¥aqg.(in)/Phase(deqg)

k = 2c (subcase 4)
l4aq.(in)/Phase(deq)

n
i

8 (T3RrRM), u,

5.4297 E-4/8Z.6

5.4299 E-4/82.6

18 (T3RM), u,

4.9177 E-4/266.8

£.9180 E-4/266.8

~ 5.4299 E-4/82.6

4.9180 E-4/266.8 -

11 (3), U#x,l*

1.4841 E 3/84.7

1.4842 E-3/84.7

1.4842 E3/84.7

11 (5), Uyy,]

2.0891 E 2/83.4

2.0892 E 2/83.4

1 (7), Ty, 1

1.0774 £ 2/64.7

1.0775 E 2/64.7

2.0892 E£2/83.4

1.0775 E2/64.7

11 (10}, Uxx,Z*

1.4677 E 3/263.3

1.4678 £3/263.3

1.4678 £3/263.3

1 ,
1 (12) oyy,Z

2.2489 E 2/260.3

12.2491 E 2/260.4

2.2491 £2/260.4

11 (14), Tyy,2

1.8510 £ 2/253.0

1.8511 E 2/253.0

1.8512 £2/253.0

* Fibre distances 1 and 2.
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‘Descrigtion
. This example uses the vorced vibration capability with cyclic symmetry.
f The user 1nput/ogtput pertains to havimonic representation. Periodic loads are
| specified as functions of timz for the circumferential harmonic index k = 2,
For clarity of illustration only, sinuscidal loads are selected.
Input
1. Paramseters:

In addition to general inbut parameters,

CYCIO = -1 harmonic cyclic input/output data

KMIN = 2 minimum circumferential harmonic index

KMAX = 2 maximum circunferential harmonic index

LMAX = 1  maximum harmcnic in the Fourier decomposition of periodic,

time-dependent loads.
NSEGS = 12 nurber of rotaticnally cyclic sectors

RPS = 600.0 revolutions per second _ -;
GKAD = FREQRESP\ Specify the form in which the damping parameters
LGKAD = +1 [ are used.

2. Constraints:
-Samé as general input constraints.
3. Loads:
F2C(t) = A-sin (2n-1814-t)
specified an TLOADi bulk data cards.

Resuits

Reéults are presented in Table 4 and agree well with those from example 3.

-56-



" 5. COUCLUSIONS

1. A new capability has been developed and added to the general purpose
finite elemant program HASTRAH Level 17.7 to conduct forced vibration analysis
of tuned cyclic structures rotating about their axis of symmetry.

2. The effects of Coriolis and centripetal accelerations together with
those due to the transiational acceleration of tho axis of rotation have been
included.

3. A variety of user options 1s nrovidad to specify the loads on the
rotating structure.

4. Five interrelated examples are presented to illustrate the rarious

features of this davelopment.
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5. RECCHMERDATIONS

1. This is a new capability arnd, therefore, the examples presented hercin
have been primarily designed to illustrate the various basic features of the
development. Application to a variety of real problems would substantially
contribute tewards deternining its merits and limitations with regards to its
applicability, usefulness, and savings in modelling and computational time.

2. The capability should be extended to conduct forced response analysis
using normi modes with cyclic symmetry as the basis.

3. Inclusicn of incduced and applied osciilatory aercodynamic loads within
the capability would be a desirable step in soiving tihe forced vibration probiems

of turbomachines.
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OF PGOR QUALITY
RPPENDIX
INERTIAL LOADS DUE TO_BASE ACCELERATION

The acceleration of the axis of rotation generates inertial loads at all
grid points of the complete structure. In this appendix, the gencration of these
inertial loads and their ;ransformation to frequency-depéndent circumferential
harmonic components arve discussed.

As given by equation (27) of Section 2 , the inertial forces on the
three translational degrees of frecedom at an arbitrary point P of the modelled
cyclic sector, expressed in the global (displacement) coordinate system, are

%) = 10k ) = (P00 | (1)
where
Py mo0 o)1 o o] %3
%) = {p, = -l0 m o0 [o ¢ s| Y (2)
PZ 0 0 m 0 -s ¢ Z0 ,

sin Qt.

with c = ces Ot and s

Since ali the cyclic sectors are identicai in all respects except for the
specified loads, no generality is lost in assuming, for simplicity, that the
modelled sector is the n = 1 sector. Equation (1) can, then, be rewritten as

10 0
G =B o ¢ s | 0B - (3)
0 -sp ¢, ,

where

cos (n-1-1-2u/N), and

n " RNy
sin (n-1 + 1 2r/N)

o -
It

w
n

Substituting equation (3) in equations (5) of Section 3 , and noting that
c. = 0 _ . (5)

-59-
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Lsy =0 l
yc, e cos (A=T-k-2n/l) = 1/2., k=1
n
= 0, ki1,

an e cos(n-Tsk-27/H) =0 , S (5)
n (contd)
ch e sin{n=Tek-2n/8) 206 ,
=
Zsé o sin(n=T .k - 21/H) = N/2 s k=1
n

=0 . k#l o,

-

the circumferential harmonic components of the base acceleration loads become

3
p Z B
G- X
{T)o} = [TBGJ 0 (“k“ = 0)
o)
.. G 0 9°
#C = 189 P, g ("k" = T¢)
Pl s 5> (6)
G 04"
#'5) = [1°%) », i ("k" = 1s) , and
-Py ,
G
(PRekS) = (0}, all other k. ]

In the present development, the components of ' .se acceleraticn XO, Y0 and
Z0 are considered to be sinusoidal of frequency v, and are specified as

XO XO, mag cos(ut +<&) s
YO = YO, mag ros{wt +~§) , and f - (7)
Iy -~ X, mag cos(ut 1‘2) ‘ j

A=

£

<Y
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From equation (2), therefore, we can write

B (1] . ’
P = g o cos(wt + o) s
B N i (1] ) " ’. v ’ b - . I
Pyo = =mlYq oo cos §% e cos(ut + ¢y) + Zg oo sin 0t - cos(ut + 471
. ) B .o ) V . e
Py = ml-Yg rag ST eos(ut + ¢y) + Zg o cos Ot - cos(ut + ¢;)].

The cosine and sine products in equations (8) can be expressed in terms of
individual cosine and sine terms with frequencies {(w + Q) and (w - Q).

The following conclusions about base acceleration loads can, therefore, be
drawn by substituting equations (8) into ecquations (6):
1. The axial component of base accé1eration, Xo(m), contributes to ?0 at exci-

tation frequencies w.

2. The lateral components of base acceleration, Yo(w) and Zo(w), contribute to
51c and 545 at excitation frequencies (w * Q) for each w specified.

and

(8)
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SYHROLS

Dampinyg matrix

Coriolis a;celeration ceefficient matrix

Rayleigh's dissipation function

“Symmetric Components” transformation matrix

Unit vectors along Inertial XYZ axes

Unit vectors along Basic Xg YB ZB axes (Figure 3)
Unit vectors along Global xyz axes

Stiffnass matrix

Circumferential harmonic index

Tiie harmonic index

Mass matrix, number of time intervals per pericd (Figure 5)
Centripetal acceleration coefficient matrix

Base acceleration coefficiant matrix

Hass

Number of cyclic sectors in the comélete structure
Load vector '
Aerodynamic coefficient matrix

Base acceleration vector

Position vecters (Figure 3)

Kinetic energy, coordinate system transformation matrix
Time

Strain energy

Physical displacement degrees of freedom

Virtual work

Rotational freguency

Forcing frequency

35,
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-i/2
-N/2

SYi:20LS {Continved)
Superscripts

Basic

Giobal

Independent solution set in "symmetric components"
mth tim2 instant

nth cyclic sector

Fourier coefficients ("symnetric components®)
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