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ABSTRACT 

A new capability has been added to the general purpose finite element 

program NASTRM Lp.vel 17.7 to conduct forced vibration analysis of tuned cyclic 

structures rotating about their axis of symmetry. The effects of Cor'iolis and 

centripetal accelerations together ~lith those due to 1 inear acceleration of the 

axis of rotation have been included. 

This report presents the theoreticai development of this nel" capabil ity. 

The work was conducted under Contract NAS3-22533 from NASA Lewis Research 

Center, Cleveland, Ohio, with Hr. Richard E. Morris as the Technical Monitor. 
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sur'~~lARY 

The objective of the work described herein, was the development, docu­
mentation. demonstration and deliv~ry of a computer program for the forced 
vibration analysis of rotating cyclic structures. Tuned bladed discs arc an 

example of specific interest. 

The scope \'>'as by defi nit i on to address: 

_ direct periodic loads moving with the rotating structure, 

specified in the frequency or time domain; 

translational acceleration of the rotating axis. 

The capability is operational in the N.t..STRAN general purpose program at 

Level 17.7. 

NASTRAtl documentation is provided and example analysis results have been 

obtailled. 

Re1ationships to previous ","ork are described and further developrr:ents 

are recoITrncnded. 
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1 • INTRODUCTION 

In Reference 1 (NASA CR159728), a gener'a 1 approach to conducting dynami cs 
analysis of bladed discs was discussed and a logical sequence of problems defined. 
Figure 1 indicates the problem spectrum cnd Figure 2 shows an overall program 
structure of modular nature, based on additions and modifications to the NASTRAN 
general purpose structural analysis program. 

The general set of problems can be represented by formal equations, various 
terms of \'1 11 i ch are included or excluded dependi ng on the proD 1 em bei n9 stud i ed. 
Thus the equations 

[~G {iiI + [[B] + 2)1[[\1]J iu} - [~~ {u} + [[K] - rl [f41]J {lI} 

= {PI - [M2] {~o} ) (1) 

\'Iith some boundary condit ions, may be taken to represent the general forced 

vibration dynamic problem of a tuned bladed disc. In the previous and current 
\'1ork, the advantag% of cycl ic sym:nctry are incorpol'ated in this formulation. 

The I'lork of Reference 1 handled, \·lithin state-of-the-art techll'J1ogy, analyses 
of aeroelastic, modal and flutter problems of tuned cyclic structures (Figure Z). 
It was documented and operated in NASTRAN at Levels 16 (Refs. 2 - 5~ and 17.7 (Ref 6). 

The equations 

[ria] {ill + [B] {a} - [QJ {u} + [K] {u} {OJ (2) 

were treated in the context of modal and flutter problems of a tuned system, 
where 

M represented the inertia matrix; 
B represented the damping matrix; 
Q represented the induced aerodynamic matrix (complex); 

and K represented the elastic cum geJmetric stiffness matrix. 

In the current work. the equations 

[N] {ti} + [[5J + 212 [E3 1J]{u} + [[K] rt.2 [H1JJ {u} {P} - U'2J {Ro} 

(3) 

are·treated in the context of forced vibration. (Figure 2) , 
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Figure 2: Overall Program Structure & Status 
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where [Ml, [B1. [Kl are as before, 
[81] represents Coriolis forces w.atrix 
{P} represents appl ied surface load vector 
n~21 represents base forcing mass matrix 

and {Ro} represents base acceleration vector. 

The specific form of the forced vibration equations incluJing th~ types of 
forcing functions to be incorporated were selected by NASA. These ~rc specifically 

- directly appl ied loads moving Ivi tt-. tile rotating str:..cture; 

- inertial loads due to translational accelerations of the ax's of 
rotation ("base acceleration"). 

The loads may be periodic and specified in the frequenc1 or time domains. 
Solution procedures follow generally those of the cyclic symmetry furmulation 
of the NASTRAN Theoretical ~lanual (Ref. 7). The capability has been dev{~10 ~j 

on the IBM 370 system at Bell Aerospace Textron and documented. delivered and 
demonstrated on the UNIVAC 1108 at tlASA LeloJis in tlASTRAN LE:"el 17.7. 

Five demons~ration examples are presented, one being a c~mp1€te strJcture 
example to shm'l compatibility wHh the cyc1 ic structurf' formulation. A sir:plc 
twelve bladed disc is modelled <.:nd forced at conditions related to its nat.ural 
frequencies. The response examples include: 

- phys i ca 1 component ford ng (freq;.!ency doma in) , 
- harr.1oni c cor.lf)Onent forc i ng (frequency dOfo~a in), 
- harmonic component forcing of th~ rotationa~ axis, 
- physical periodic forcing (time uOMa;n), 

harmonic component periodic fOI'cing (tir.le domain) 

It would be logical to extend t~~ current ~ork to include the gen~rat;on of 
applied and induced oscillatory aerodynamic loads S0 hat the farced vibrati'Jns 
of subcritical engine stages can be addressed dlrectly. Rotational base accel­
erations could also be of practical interest in investigating the gyrosccpic 
effects on rotat1ng machinery. 

-4-
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2. EQUATIONS OF NOTION 

The equations of !J1otion of a tuned cycl ic structure !""otating about its axis 
of syrrtiletr:i and subjected to steady sinusoidal and general per"iodic excitation 
are derived using Lagrange's formulation. 

Figure 3 illustrates the problem by conSidering a l2-bladed disc as an 
example. The bladed disc consists of " tHel ve 2r)° segments--identical 
in their geometric, material and constraint properties. rh~ ~isc rotates about 
its axis of symmetry at a constant angular velocity. The axis of rotation itself 
is pern.itted to oscillate 1 inearly in any given inertial refel'ence. In addition, 
the bladed disc is allowed to be loaded with steady sinusoidal or general periodic 
loads moving with the structure. Under these conditions, it is desired to deter­
mine the dynamic response (displacement, acceleration, stress, etc.) of the 
bladed disc. 

The cyclic symmetry feature of the rotating structure is utilized in deriving 
and solving the equations of forc~d motion. Consequently, only one of the cyclic 
sectors is modelled and analyzed using finite element~. yielding substantial 
savings in the analysis cost. Results, hOI-lever, are obta ined for the entire 
structure. The Coriolis and centripetal acceleration terms have been included. 
For Clarity of derlvation, the equations of motion are first derived for an arbi­
trary grid point of the cycl ic sector finite element model. and then extended 
for the complete model. 

COORDIN/\TE SYSTEHS 

These are shoHn in Figure 3. V-XYZ is an inertial coordinate SystE 1. 

O-XSYSZB is a body-fixed coordinate system such that aXB coincides with the axis 
of rotation of the structure and is ah/ays parallel to €lX. For a NASTRAN finite 
element model of the bladed d;sc, O-XBYBZB also represents the ~asic coordinate 
system. A-xyz is a body-fixed global coordinilte systerl in which the displace­
ments of any grid point P are desired. The unit vectol"S associated with these 
coordinate systems are also shown in Figure 3. 

DEGREES OF FREEDOM 

The rotating structure is permitted four rigid body mo~ions including three 
translations (a10ng OX, CJY and ElZ) and one rotation at a constant angular velocity 
n about its axis of rotation OXB. 

-5-
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All grid points of the structure are each permitted six degrees of freedom. 
The displacement at any grid point in any sector can be expressed in any body­
fixed coordinate system as a combination of: 

l} the steady state displacement due to the steady rotation of, and the 
steady state loads applied to, the structure, and 

2) the vibratory displacement (superposed on the steady displacement) due 
to the vibratory excitation provided by the directly appiied loads and the 
inertial loads due to the acceleration of the axis of rotation ('base' 
acceleration). 

The purpose of the present development is to determine the vibratory 
response. 

LAGRAtlGE FORf1ULATION 

Referring to Figure 3, the complete tuned structure consists of N identi­
cal cyclic sectors. If u represents all the vibratory degrees of freedor:J of the 
complete structure, the equations of motion can be derived via the Lagrange 
formulation, 

d
dt ( ~Tuo ) _ aT + .£!! + uD = oW 

o au au dB ou (1) 

where T and U represent the kinetic and strain energies, respectively, of the 
complete structure; D is the Rayleigh's dissipation function representing th~ 
energy lest in the system due to resisting forces proportional to veloci ties ~ 

(e.g. viscous damping forces); and 6W represents the virtual work done on the 
structure by the external forces through virtual displacements 6u. 

The complete set of degrees of freedom u can be subdivided into N subsets, 
each containing un degrees of freedom for each of the II cyclic sectors. Since 
any given cyclic sector is 'connected' to adjacent cyclic sectors only on its 
two sides, un satisfies the intersector boundal'y compatibil ity condition 

n n+ 1 ( ) uside 2:: usid~ 1 n = 1,2 •... , N. 2 

Equations (1), therefore, Ciln be written as N sets of equations coupled 
only ilS given by equations (2): 

n=1,2, •.. ,Il. (3) 

-7-
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For clarity of presentation, l'lithout loss of generality, equations (3) are 
first applied to obeain the equ<J.tions of motion of an arbitrary grid point in any 
cyclic sector by considering its three tr'Clnslational degrees of freedo~,l. Inclu­
sion of the three rotational degrees of freedom at the arbitrary grid point. and 
extension to include the remaining grid point$ in the cyclic sector are con­
sidered subsequently. 

KINETIC ENERGY 

With reference to Figure 3. point P is an arbitrary grid point of the nth 
cyclic sector with a mass of 'm' units lumped from the adjacent fini~e elements. 

The kinetic energy of the mass at P can be written as: 

(4) 

where 
(5) 

(6) 

o 0 A 0 A 0 A 

POP = XOpIB + 'iOPJB + ZOpKB ' (7) 

n = nI (8) 

and 

fB) [1 0 0 

III l ~ J' : 
c s 

-s c 

(9) 

with c ~ cos nt and s :::: sin nt (lO) 

Substitution of equations (5) through (9) in equation U·) results in 

T = ~-
0 0 

zoJ r J[.:~ LxO YO m 

L 

+1 " 0 ZOP{ r ~OP! LXoP Yor m \ YOP 2 

In _ (Zop ) 
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r OF POOR QU;:'UT'f 
i 0 0 0)1 XOP 

1 
I 

1 n2 ~OP Yop ZoPJ l~ 
YOP +- ,,-

!: _ 1 
2 

.. , 
0 ZOP 

::H 
0 

[: 

0 Xo 

1 liop Yap zOPJ 
0 

+ me Yo 
0 

-ms Zo 

[: 

0 

~mn XOP ~ 
+ n LXop y op ZOPJ 0 YoP 

m ZOP 

r: 0 oJ ) ~o } 
+ n Lxop Yap zopj -ms _: L;: (11) 

i..0 -me • 

In order to introduce the global coordinates of point P, consider now the position 
vector to P written as 

( 12) 

i.e. 

(13 ) 

where 

[TBasiC to GiObal] (14 ) 

-9-
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Therefore equation (13) yields 

C·;\;~;:i". ,~:. ~-';~J' .. : ::J 
OF POOR QUALITY 

(15 ) 

(16 ) 

The global position vector to the point P can be further thought of as consisting 
of three. component vectors, i.e., 

f xAP 
( [XAP l \ Ux l 1 Ux 

( l :AP ~ ~ : AP) + l i } + ~y j 07} 

AP AP initial Z Z 
L I I 'I I 
Initial position A Disr1acements due to vibratory forces 

IDisp1acements due 
to n and steady 
loads 

I I 
Steady part Vibratory part 

Substitution of equations (17) in equations (15), and differentiation once with 
respect to t yields 

o 

(1'~) 

Therefore, \'/ith the help of equations (15), (17) and (18), equati:>n (11) expresses 
the kinetic energy of the ~ass at P in terms of the displacements and velocities 
of P expressed in the global coordinate system A-xyz. 

STRA HI ENERGY 

The strain energy due to the displacements at point P expressed in the basic 
coordinate system can be written as 

u = t Uxop - XOP , in.) , (Yap - Yap, in.) , (lOp - Zap, il1.11 .,. 
·f KXX KXY KXZ 1 \ XOP Xop , i 11. I 

* ~YX "YY ~'{Z L YOP - YOp,in. ? (19) 

L KZX KZy KZZ ZOP - ZOP, in. J 
-10- -.. 
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By using equations (15) and (17), this becomes 

(20) 

where 
Global ~B Tn· GB 

[K J = [TU J [KUaslCJ [T J (21) 

DISSIPATED ENERGY 

The energy dissipated by the damping forces acting against the motion of the 
point P is expressed by the Rayleigh's dissipation function, 

BXX BXY 

ByX Byy 

Szx ,BZy 

sic 0 

BXZ [ :OP 1 
ByZ Yap 

o 

BZZ Zap 

Use of equation (18) transforms this to 

\'lhere 

D = 1 l~ ~y 2 x 

Global 
~zJ [B J 

Global T Basic 
[B J = [TGB] [B] [TGB] 

VIRTUAL WORK 

o 

The virtual work done by an oscillatory appl ied load 

p = p i + P J~ + P k 
x' y z 

(22) 

(23) 

(24) 

(25) 

moving with the point of application, through individually dchieved virtual 

I' displacements 6ux' 6Uy and 6uz can be stated as 

(26) 

-11-
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EQUATIONS OF FORCED i~TI.Qri 

O:\ICIi~f.'\L ['f..e::: ~;; 
OF POOR QUAi-lTV 

Substitution of the cxpressions fOI' T (equation 11), U (equation 20), 0 
~quation 23) and 6H (equation 26) in the Lagrange equations (3) results in the 
following equations of forced motion of point P expressed in the displacement 
(global) coordinate system A-xyz: 

[r.1] {in + [[B] {- 2)2[B 1]J fij} + r~K] - )22[1011]] {u} = {P} [t12] di
o

} 

The terms appearing in equations (27) are: 

r 

{PI = i 

mol = p: 1 
Zo 

[11] = [M ] = [TGB] g1 oba 1 T [m~ JO~ mOO] [TGB] 

global 
[B] = [B J 

global T [~ 
0 

-n [B1J = [B1 j [TGBJ 0 [TGB] 
m 

global 
[KJ = [K J 

-12-
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and t 0 

~s] [r"21 = [TG3] ~ me (34) 

-ms me 

where c and s are given by equation (10) . 

Equations(27) describe the translatory motion of an arbitrary point P in 
an arbitl'ary sector n of the rotating eyc1 ic structure subjected to a directly 
applied vibratory load {P} and base acceleration {Ro}' 

These equations can be extended to include the three rotational degre~s of 
f,'cedom at point P by noting that: 

viz. 
by 

1) in a lumped mass model, only the translational degrees of freedom at 
any grid point contribute to the kinetic energy of the structure. and 

2) the coupling between various degrees of freedom may exist only via 
the stiffness matrix. (Instances where the damping matrix is defined 
proportional to the stiffness Matrix also may result in coupled equations 
of motion.) 

Accordingly. the matrices derived from kinetic energy considel'ations, 
[i1], [81], [N j ] and [H2] of equation (27) can be expanded as typifieci 

[M] = [~M~]J ~ ~] 
6x6 0 I 0 

I 

, (35) 

where [Mtt] is the 3x3 (!rans1ationa1j mass matrix of equation (27). With sub­
scripts t and r representing the lrans1ationa1 and ~otational degrees or freedom 
at point P, the stiffness and damping matrices may be expanded as 

and 

[K] = [~K~t]_ :_[~r~] (36) 

[KrtJ I [KrrJ 
I 

[B] = (37) 

By similar reasoning, the equations of forced vibratory motion of all the 
cycl ic sectors of the total structure can be \'Iri tten as 

-13- .-o 
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The intersegment boundary compatibility is specified by equation (2). 
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3. SOlUTIOii 0;= EQUATiONS OF MOTIor~ 

The method of solution of the equations of forced motion (equations 38 and 2. 
Section 2) is based upon the fom in \'/hich the excitation of the rotating struc­
ture is specified. As noted earlier. the present development considers excitation 
prescribed as: 

1) directly appl ied loads moving \'Jith the stl'ucture and 

2) inertial loads due to the translational acceleration of the axis of 
rotation ('base' acceleration). 

These steady-state sinusoidal Qt' general pel';odie loads are specified to 
represent: 

1) the physical loads on various segments of the complete structure, or 

2) the circumferential harmonic components of the loads in (1). 

The sinusoidal loads are specified as functions of frequency and the general 
periodic loads are specified as functions of time. 

The translationai acceleration of the axis of rotation is specified as a 
function of frequency in an inertial coordinate system. 

Because of its eventual implementation in the NASTRAN general purpose finite 
element structural analysis program, the following solution procedure generally 
follO\-Js the theoretical presentation of cyel ic symmetry given in the N.n_STRAr~ 

Theoretical Manual (Ref. 7). 

METHOD OF SOLUTION 

The method cf solution of the equations of motion consists of four principal 
steps: 

1) Transfonnation of applied 10ads to frequency-dependent circumferential 
harmonic components. 

2) Application of circumferential har~onic-dependent inter-segment com­
patibility constraints. 

3} Solution of frequency-dependent circumferential harmonic components of 
displacem~nts. 

4} Recovery of frequency-dependent response (disp11cements, stresses, loads, 
etc.) in various segments of the t0tal structure. 

-15-
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An overall flo't:chart outlining the solution algorithm is ShOl'iO in Figure 4. 
Provision to include the diff\!rentiai stiffness due to the steady loads is also 
shown. 

1. Transformation of Applied Loads 

J The transfornation to frequency-dependent circumferential harmonic components 
depends on the form in \'Jilich the excitation is specified by the user. The follow-

-i ing options are considered in the present developrr.ent to specify the form of exci-
; i~' tation due to the directly applied loads and base acceleration loads: 

t .. 
r 
r 
l 

r .. 

I . . . 
! 

t ... ' 

Directly applied loads specified as: 

periodic functions of time on various segments. 
- p~riodic f,lnctions of time for various circumferential harmonic indices 
- functions of frequency on various segments 
- functions of frequency for various circumferential harn:onic indices. 

Base acceleration specified as: 

- fur.ction of frequency for circumferential harmonic indices 0 {axial} 
and 1 (latel~al). 

Details of each of the above five loading conditions are as follows: 

Directl.UEP.l ied loads (seament-dependent and pedodic in time) 

If ?n represents a general periodic ioad on sector n specified as a function 
of time at M equallY spaced instances of time per period (Figure 5). the lead 
at mth time instant can be written as 

m ·'0 £.L r- £.c 
pn = pn + I l:n cos(m-l£b) 

l=l 

-9..5 J -11/2 
- m- n + pn sin(m-ltb) + (-l) lp , (1) 

m = 1. 2 ••.•• M 

where b = 2Ti/I·1. 9..L = (M-l )/2 for odd 11, £.L = (11-2)/2 for even M. The last tcnn 
-"9.." in equation (1) exists only when M is even. The coefficients pn 

("9.." = 0; 9..c. 9.$. 9..=1. 2, .•• , 9..L; 11/2) in equation (l) are independent of time. 
and are defined by the relations 

-0 Ii1 1 ~, 
pn = M 1 lln 

m=l 
(9. = 0) Part of (2) 

-16-
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Dependent -. , 
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Differential 
Stiffness 
t1atrix 

(-- EnteC) --r 
Finite Eiement Hodel of one 
Cyclic Sector, Rotational 
Speed, Constraints, Loads 

Generation of Stiffness, Mass 
and Dzmping Matrices 

Application of Constraints and 
Partitioning to Stiffness. Mass 

and Damping Matrices 

General, periodic in tili'2 

Segment -
Dependent 

Circumf. 
Harmonic -
Dependent 

Fourier decomposition 
Phase 1 (time) 

Equation (6) 

Fourier decomposition 
Phase 2 (circumferential), 
Equation (7) 

. SeglT'I-?nt -
Der-endent 

Fouri"~r d;;;~posi' 
tion, Phase 1 
(time), Eq. (1) 

Fourier decomposi­
tion, Phase 2 
(circumferential), 
Equation (3) I 

'--_____________ .-6-_---y ___ --' ______ . ___ .. __ . _____ 4' 

'j 

.J 
\..l 

Application of Constraints and 
Partitioning to Load Matrices 

FIGURE 4: Overall Flo~lchart of Forced Vibration Analysis of Rotating 
Cyclic Structures 
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-2c m 
2 14 

pn = -" L pn cos(m~f~b), 
'I m=l 

-£.s M m 
. pn = ~ ') pn sin(m-ltb), 

H iii=l 

O~T~~~': ~ ~ ... ~ ~ ... : .... ~c~ I 
l\.t\:'I. I, __ 10 r .. "'.~~ • ...... 1 OF POOR QUALlIYI 

( 

(9.,::.1. 2, •••• t L) 

( 2 Contd. ) 

,I 

and 

-M/2 M m 

pn = k I .(_l)m-l pn (M even only) (l=M/2). J 
m=' 

II nil 

- tl 
Each of the coefficient vectors P on the left hand sides of equations 

(2) can further be expanded in a circumferential (truncated) Fourier series 

p~9.." :: ~£." + ~L r~I~t' cos (i1.:Tka) + ~rSin(n-lka)] + (_1)n-l~;;; 
k=l L-

where n ~ 1. 2 ••. ~. N • 
"9.,":: 0; lC. tS.l:: 1, 2 ..... lL; t-I/2 

a = 2r./N 
kL :: (N-1)/2 for N odd 
kL=(N-2)/2 for N even. 

The last term in equation (3) exists only when N is even. The Fourier 

(3) 

(4) 

-"l" 
"k" coefficients P ("k" = 0; kc, ks. k :: 1. 2 •.•.• kL; N/2) in equation (3) 

do not vary from sector to sector. and are defined by 

_"9.,11 

pO 

_"ll1 

pkc 

_"9.," 
ps 

1 N 
= N L 

n=1 

2 N 
= N I 

n=l 

2 N 
:: IT L 

n=l 

_"lil 

(k = 0) 

_" £." 

n (-) P cos n-1ka 

(k :: 1. 2, .... kL) ( 5 ) 

_" £." 

pn sin (n-1ka), and 

_"9.," "£" 

~l/~ = 1 ~ (_1)n-l pn (N even only) (k - N/2) 
N 0=1 
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The terms P ("9)' = 0; 2-c, R.s, 11. ::: 1, 2 •••• , R,L; rV2 and "kll = 0; kc, ks, 
k = 1, 2, •••• !<L; N/2) art; the trili1sforjri~d frequency-dependent circumferential 
harmonic components of the directly applied loads pW (m = 1,2, .••• M and n :: 1, 
2, ••. , N). 

Directly applied loads (Circumferential harmonic-dependent and periodic in 
time) • 

Such loads can be represented as 

m -0 £. ~-£c -lIkll -"k" L -"k" __ 
p = p + I P cos(m-iib} 

9. .. 1 

-£s l -H/2 
"k" m 1 "k" + Psi n (m-Hb U + (-1) - P , 

where m = 1. 2 ••.•• M represent the time instances at which harmonic components 
"k" = 0; kc, ks, k = 1. 2, •••• kL; N/2 of directly applied loads are specified. 

_" ,til 

The coefficients P"k" on the right hand side of equation (6) are obtained 
using equations (2) with sector number n replaced by harmonic number "k". 

Directly applied loads (frequency-and seament-dependent) 

This type of loads can be represented uS 

(6) 

(7) 

where "1" (=1. 2 •.•.• F) now represents the frequencies at which excitation is 

specified. The transformed frequency-dependent circumferential harmonic compo;Hmts 
_".11." 
-"k" p (Ilk" = 0; kc. ks, k = 1,2 •••• , k

L
; N/2) are obtained using equations (5) 

with ".11. 11 as defined above. 

Direct' y app, i ed loads (frequency- and ci rcumferent i a 1 harmoni c-dependent) 

These loads ~re the transformed frequency-dependent circumferential 
".t" ... -

components p-"k" ("k" = 0; kc. ks. k = 1.2 ••.•• kL; N/2) with "£." (=1, 

representing the various frequencies at which the directly applied loads 
specified. 

Base acceleration (fregLlen.f1- and cil'cumferential ham-onie-dependent) 

harmonic 
2, .•. , F) 

are 

In Appendix A. it is shown that the components of the translational base 
acceleratio~ contribute to inertial loads on the rotating structure in the follow­
ing manner: 

" . ~ 
l . • ... ~ 

~.,"f··~ .,'.~ .•. ~.~ .. ~ "-' 
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Axial component contributes to P \'/here Ilk" = 0, and "£ .. represents the 
specified excitation frequencies,_"

f
" 

"k" Lateral components contribute to ~ wher~ "k" = 1c and 1s, and "£" re-
presents the effective excitetion frequencies which are shifted from the 
specified frequencies by ± n, the rotational frequency. 

Appl ieation of Inter'-Segment Compatibil ity Constraints. 

As sho\'/n in Section 4.5.1 of Reference 7, equations (2) of Section 2 
are used to derive the compatibility conditions relating the circumferential 
harmonic component degrees of freedom on the b/o sides of a l"otationally cyc1 ic 

(k = 0) 

(k = 1, 2, •..• kL) (8 ) 

(k = H/2) 

In order to apply these constraint relationships for any given harmonic k, 
an independent set uK consisting of the circumferential harmonic component (cosine 
and sine) degrees of freedom from the interior and side 1 of the cyclic sector is 
defined. uK is selected from the 'analysis' set degrees of freedom (i.e., the 
degrees of freedom retained after the application of constraints and any other 
reduction procedures), and is defined as 

itc -f' and = Gck(k) u " 
(9) . 

uks = ) -K Gsk(k u 

itc and uks each contain all (and ~lnly) the 'analY:;1s'set degrees of freedom 
from the interior and both sides of the cyclic sector. Equations (8) are used 
to define some of the elements of the transformation matrices Gek and Gsk ' For 
k = 0 arid N/2, the matrix GSk is null. 

-22-
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For a given hal"monic !~, tile introduction of U''' in the equations of motion, 
equations (38), Section 2 , ~'esu1ts in the transformed equations of motion (Ref. 1) 

(10) 

where .-.KM' = GT Mn G ;. GT Hn G ck ck sk' sk' 

(11 ) 

o,K _ ,.. T Kn r. -:- G T Kn G • and 
~ - uck uck sk sk 

~ = GT pKC + GT pks 
ck sk 

As discussed in subsection 1 of Section 3, pkc and pks are the transformed 
frequency-dependent circumferential harmonic components of the directly applied and 
base acceleration loads. 

At any excitation freqUency w". let 

} (12) 
uK = uKeiw~t 

=K =K where P a;.d u are complex quanti:ies. Equation (10) can be rewritten as 

(13 ) 

The excitation frequency w~ is given by 

(14) 

= Win for lateral base acceleration loads. 

w~ = w for all directly applied and axial base acceleration '} 
loads, and 

Equation (13) is solved for uK for all excitation frequencies and all harmonics 
as specified by the uset'o The cosine and sin~ harmonic components of displacements 
are recovered using equ,}tions (9). 

4. Recovery of Frequency-Dependent D~lacements in Various Segments 

This step is carried out only when the applied loads are specified on the 
various segments of the complete structure. 
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For loads specified (is functions of time, equation (3) is used to obtain the 
_II ou . 

displacements un"" in various 5cgmE:nt5 v.'ith ".~" ;: 0; lc, 1s, £ ;: 1, 2, .•• , 1max. 

The circumferential harmonic k is varied from kmin to "max. The use," specifies " 

1max' kmin and k~ax· 

For loads specified as functions of frequency, equation (7) is used to 
_110 11 

obtain the displacements ul1- in various segments with "t" representing the 

excitation frequencies. The circumferential harmonic is varied from user speci­
fied kmin to kmax ' 

The solution pr'ocedure discussed in this section has been implemented as a 

ne\"/ capab i 1 ity in NASTRJI.N (Ref. 8) • 
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4. EXpJ!'PLES 

Five inter-related examples are presented to illustrate the theoretical 
development of the previous sections. The ne\'/ capabil ity added to flASTRAN to 
conduct forced vibt'ation analysis of rotating cyclic stl"Uctures (Ref. 8), 
as a result of the present development, has been used to conduct these examples. 
A l2-bladed disc is used for demonstration. 

Example 1 ;s conducted on a finite element model of the complete structure 
(Figure 6). Examples 2 through 5 use a finite element model of one rotationally 
cyc1;c sector (Figure 7). Results of example 1 are used to verify some of the 
results obtained in the remaining examples. Table 1 sumnarizes the principal 
features demonstrated by these examples. 

Steady-state frequency-dependent (sinusoidal) or time-dependent (periodic) 
loads are applied to selected grid point degrees of freedom. The specified loads 
can represent either the physical loads on various segments or their circumfer­
ential harmonic components. For illustration purposes oniy, the frequency band 
of excitation, 1700-1920 Hz, due to directly applied loads and base acceleration 
is selected to include the second bending mode of the disc for a circumferential 
harmonic index k = 2. The 'blade-to-blade' distribution of the directly appiied 
loads also corresponds to k = 2. Table 2 lists the first few natural frequencies 
of the bladed disc for k = 0, 1 and 2. Nodes for k = 2 are sho'fJn in Figure 8. 

General In2ut 

1. Parameters: 

Diameter at blade tip = 19.4 in. 
Diameter at blade root = 14.2 in. 
Shaft diameter = 4.0 in. 
Disc thickness = 0.25 in. 
Blade thickness = O. i25 ; n. 

Young's modulus = 30.0 x 106 lbf/in2 

Poisson's ratio = 0.3 

Material density = 7.4 x 10-4 lbf-sec2/in4 

Uniform structural damping (g) = 0.02 

2. Constraints: 

All constraints are applied in body-fixed global coordinate system(s). 
All grid points on the shaft diameter are completely fixed. Rotational degrees 

of frecdonl 9Z at re~a;ning grid points are constrained to zero. 

-25-
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Figure 6: NASTRAfl lIodel of the 12-Bladed Disc 

-26-

... 
. 1' 



r' f~ ..,. 
f 

" ';' 

I 
J .' 

r 
l ' 

,- . 

l. 

r 

,--
j 

I 

( . 

. . 
; 

1 

Figure 7: NASTRAN Cyclic Model of the 12-Bladed Disc 

-27-



-, 
...: 

.:.-'" ,;, ) 

I 
1') 
00 
I 

Example 
No. 

1 

I 2 

3 

" 5 

'-------~ 

Fi nHe 
Element 
r~odel 
of 

Complete 
Structure 

Cyclic 
Sector 

Cyclic 
Sector 

Cyclic 
Sector 

Cyclic 
Sector 

--I ---I •. ,....c-.::. ... , .;' .... cl olI.--+ 

TABLE 1: PRINCIPAL FEATURES DEMONSTRATED BY EXArI.PLE PROBLEHS 

Applied loads specified as functlons of 
Frequenc Jsinusoidall TimeLQeriodic1 Base 

Physical Circum.Harmonic Physical Circum.Harmonic Acceleration 
Components ComEonents Components Components 

Yes No 

Yes No 

Yes Yes 

I 
Yes No 

Yes No 

-------------- - .. --- ----- ---- . 

~ ~"<I:'!:3 !1~ 

Rotational 
Sj:eE:d 

No 

No 

Yes 

Yes 

Yes i 
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TABLE 2: GUiDED-DISC fiATURAL FREQUENCiES 

Ol~:~~~ .. ,i-"i:' ,-;.:.,;.. : \ .•• 

OF POO~ Q~.jALnY 

--. 
Frequency (f·lode NO.), Hz. 

k = 0 
Mode Description 

k :: 1 k :: 2 

~ 
214 (1) 208 (i) 242 (1) I en 

I 
ZII~ 

591 (2) 594 (2) 622 (2) 
I 
I ---~ 
I 

1577 (3) 1633 (3) 1814 (3) !~ I . 

I I 
2468 (5)** 2460 (4) 

I 
2433 (4) I ....,.,... =, "" . .---<::::::l 

I 

* k is the circumfere.,tial hat'monic index 

** Mode No. 4 for k = 0 at 1994 Hz represents an in-plane shear mode not excited 
by the applied forces. 
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Figure 8: k = 2 Modes of Bladed Disc 
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EXPJiPLE 1 

Description 

This example uses the direct frequency response capability in NASTRAN, 
RF8, and forms the basis to verify some of the results of examples 2 through 5. 

1. Parameters: 

Same as general input parameters. 

2. Constraints: 

Same as general input constraints. 

3. Loads: 

where 

P(f;n} = A(f) cos (n-1 .® @ ) 
n is the segment number, 
® represents k = 2, 
~ represents the total number of segments in the bladed 

disc. 
P is specified using RLOAUi bulk data cards. 

Results 

Sample plots of grid point displacem~nt and element stress response are 
shown in Figures 9 through li. The expected behavior about a k = 2 natural 
frequency of the bladed disc can be seen in all these figures. 

\ 

All the response plots (Figures 9 through 25 except 16) have been obtained 
using the plotting capability of flASTRAN. On any given piot, the various curves 
are identified, in order, by symbols X, *, +, -, • and o. The sequence of 
curves is indicated ojn the first 1 ine of the pOlot description at the bottom 
left of each figure. 
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Dcscripticn 

This example uses the forced vibration c~pability with cyclic symmetry. 
The user input/output data for loads, displacements, stresses, etc., pertain 
to the physical representation of the various segments of the bladed disc. 
The frequency-dependent applied ioads correspond to k = 2, and hence the solution 
loops on the circumferential harmonic index k are restricted to k = 2 only via 
parameters KMIN and ~1AX. 

Input 

1. Parameters: 

In addition to general input parameters, 

CVelD = +1 physical cyclic input/output data 
K.t.!IN = 2 minim~m cir!:ur.1ferential harmonic index 
KMAX = 2 maximum circumferential harmonic index 
NSEGS ~ 12 number of rotationally cyclic segments 
RPS ~ 0.0 rotational speed 
GKAD = FREQRESPl Spec; fy the form in whi ch the dampi n9 parameters 
LGKAD = +1 f are used. 

2. Constraints: 

Same as general input constraints. 

3. Loads: 

where 

Results 

n is the segment number, 
® represents k = 2, 
@ represents the total number cf seqments in the bladed 

disc. 
P is specified using RLOADi bulk data cards. 

Displacement and stress output results for selected grid points and elements 
are presented in Figures 12. through 15. Agreement betv/een results of Figures 12-13 

and Figure 9, Figure 14 and Figure 10, and Figure 15 and Figure 11 is excellent. 
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Description 

This example uses the forced vibration eapabil ity I':ith cye1 ie syrrmetry. 
The user input/output data pertain to harmonic representation. Frequency­
dependent excitation is provided by both directly applied and base acceleration 
loads. 

Input 

1. Parameters: 

In addition to general input parameters, 
CYCIO = -1 har~~nic cyclic input/output data 
KtUN = a minimum circumferential hat'monic index 
!<PAX = 2 maximum circumferential harmonic index 
NSEGS = 12 number of rotationally cyclic sectors 
RPS = 600.0 revolutions per second 
BXTID, BYTID, BZTID l Refer to TABLEDi bulk data cards to specify 
BXPTID, BYPTID, BZPiID! magnitude and phase of base acceleration 

component:. 
GKAD = FREQRESPl Specify the form in, which damping parameters are 
LGKAD = +1 J used. 

2. Constraints: 

Same as general input constraints. 

3. Loads: 

a) pO,2c = A(f) specified on RLOADi bulk data cards. 
b) Base acceleration as shown in Figure 16 . 

Results 

Results are shown in Figures 17 through 25 • 

Figures 17 and 18 present k = 0 results (subcase 1). The excitation consists 
of axial base acceleration and directly applied loads. The selected frequency 
band of excitation, 1700-1920 HZ, lies between the second out-of-plane disc bending 
mode frequency (1577 Hz, k = D, Table 2) and the first ~n-p1ane shear r.1ode 
fre.quency (1994 Hz, k ~ 0, Table 2). Since the excitation is parallel to the 
axis of rotation, only the former mode responds. 
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Figures 19 through 23 present k ~ 1 results (subc~ses 2 (k :: 1c) and 3 
(k :: ls)}. ihe excitation is due to lateral base acceleration only. Although 
the frequency band of input base acceleration is 1700-1920 Hz. the rotation of 
the bladed disc at: 600 Hz (pararr.etcr RPS) spl its the input bandi~idth into b~o 
effec t i ve band'i11 dths: 

(1700 - 600) :: 1100 to (1920 - 600) :: 1320 Hz, and 
(1700 + 600) :: 2300 to (1920 + 600) = 2520 Hz. 

The only k = 1 mode in these effective band~'iidths is the first torsional 
mode of the blade \'Jith the disc practically stationary (2460 Hz. k :: 1. Table 2). 
This is shO\>in by the out-of-plane displacement magnitudes of grid points 18 
(blade) and 3 (disc) respectively (Figures 19 (k = lc) and 22 (k :: ls». The 
corresponding phase responses of these grid points are sh~~n in Figure 21 • 

Figures 24 and 25 present k = 2 results (subcase 4 (k = 2c». The excitation 
consists of directly applied k = 2c loads. The out-af-plane displacement magni­
tude of grid point 18 (Figure 24) compares well with that obtained in example 2 
(Figure l~. Table 3 lists the ollt-of-plane displacement response of grid point 
18 as obtained in examples 2 and 3. The marginal difference in response in example 3 
is due to the Coriolis and centripetal acceleration effects at a rotational speed 
of 600 revolutions per second. 

No k = 2s loads are applied in this example (subcase 5). 
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OF POOR QUALlT'f 

TABLE 3: EFFECT OF CGHlOUS Atm CENTRIPETAL ACCELERATIONS ON THE 

DISPLACEHENT RESPONSE OF GRID POINT 13 AT 600 RPS • 

Example 2 Exam21e 3 
Frequency Segment 1 lsuhcase 1 ~ k = 2c (subcase 4) 

Hz Mao. (in)/Phase (deg) !4ag. (in)/Phase (deg) 

1700 7.2655 E-5/349.4 7.6132 E-5/354.3 
I 
I 

1750 1.3071 E-4/343.1 I 1.3844 E-4/347.3 
i 

1778 2.1580 E-4/332.7 I 2.3252 E-4/335.8 

1796 3.4139 E-4/314.6 i - 3.7252 E-4/315.2 
, 

1814 4.8374 E-4/269.9 4.9177 E-4/266.8 

1832 3.4146 E-4/224.9 ! 3.2555 E-4/225.5 

1850 2.1451 E-4/206.6 I 
i 

2.0742 E-4/209.3 

1880 l.2433 E-4/195.6 I 1. 2214 E-4/199. 2 

1920 7.6125 [-5/190.4 7.5397 E-5/194. 3 
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EXA~lPLE 4 

Description 

This example uses the forced vibraticn capability ~'/ith cyclic s}mnetry. 
The user input/output pertains to physical representation. Periodic loads are 
specified as functions of time on the segments of the bladed disc corresponding 
to k = 2. For clarity of illustration only, sinusoidal loads of varying 
amplitudes at a frequency of i8l4 lIz are specified. The Fourier' decomposition 
of these sine functions obviously contains contributions from first hannonie 
alone (t = 1)-- the parameter Lf.1AX accordingly has been set at 1 (r. = 0, le. IS). 

Iii .p.!:!! 

1. Parameters; 

2. 

In addition to general input parameters, 

CYCiO :: +1 physical cyclic input/output data 
KHIN :: 2 min"jmum circumferential harmonic index 
KHAX :: 2 maximum circumferential harmonic index 
L~~X = 1 maximum harmonic in the Fourier decomposition of periodic, 

time-dependent loads. 
NSEGS :: 12 number of rotationally cyclic sectors 
RPS = 600.0 revolutions per second 
GKAD :: FREQRESPl Specify the form in which the damping parameters are 

. LGKAD :: +1 fused. 

Constraints: 

Same as general input constraints. 

3. Loads: 

l'ihere n is the segment number. 
(g)represents k = 2. 
~ represents the total number of segments in the bladed 

disc. 
A(t) = A·sin (2n·1814·t). 
P is specified on TLOADi bulk data cards. 
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Results 

Results are presented in T.:ble 4 and are in good agreement \'1ith those from 
exampl e 3. 
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TABLE 4: crX1P/IJUSON OF RE!i!'OIlSE AT 1814 Hz, 

Grid Pt.Disp. or Ei:uITiole 3 Examole 4 
" = 2c (subcase 4) Segment i "(S"Ubcasel) E1em. Stresses Mag.(in)/Phas2(deq) Haq.(in)/Pllase{deg) 

8 (T3Rf1), liZ 5.4297 E-4/82.6 5.·1299 E-4/82.6 

- - .... -
18 (nru·!). liZ 4.9177 E-4/266.8 4.9180 E-4/266.8 

11 (3), uxx ,l ..... 1.4841 E 3/84.7 1. 4842 E 3/84.7 

11 (5). Uyy ,l 2.0891 E 2/83.4 2.0892 E 2/83.4 

--- -

11 (7), 'xy, 1 1.0774 E 2/64.7 1.0775 E 2/64.7 

11 (10). Uxx,t 1.4677 E 3/263.3 1.4678 E3/263. 3 

11 (12), Uyy • 2 2.2489 E 2/260.3 2.2491 E 2/260.4 

11 (14), L)'y,2 1.8510 E 2/253.0 1 .8511 E 2/253.0 

* Fibre distances 1 and 2. 
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I Example 5 
k :: 2c Tsubcase 4) 
l<1aQ. (in l/Phase( deq) 

5.4299 E-4/82.6 

.. - .- .. ----

4.9180 E-4/266.8 

1. 4842 E3/84. 7 

2.0892 E2/83.4 
- .. - - .. -- --. _. 

1.0775 E2/64.7 

1. 4678 E3/263. 3 

2.2491 E2/260.4 I 
1.8512 E2/253.0 



;/ 

Description 

This example uses the forced vibloation capc:lbility \'lith cyclic symmetry. 
The user input/output pertains to han~Dnic representation. Periodic loads are 
specified as functions of time fOt' the circumferential harrronic index k :: 2. 
For clarity of illustration only, sinusoidal loads are selected. 

1. Param~ters: 

In addition to general input parameters. 

CYCIO :: -1 hanr.onic cyclic input/output data 
KfHN = 2 minimum circumferential harmonic index 
KHAX = 2 r.aximum circumferential harmonic index 
LMAX = 1 maximum harmcnic in the Fourier decomposition of periodic, 

time-dependent loads. 
NSEGS = 12 nu~er of rotationally cyclic sectors 
RPS = 600.0 revolutions per second 
GKAD = FREQRESPl Spec; fy the fOl"ID in \~hich the damping parameters 
LGKAD :: +1 J are used. 

2. Constraints: 

Same as general input constraints. 

3. Loads: 

p2c{t) = A.sin (2n.18l4.t) 

specified on TLOAD; bulk data cards. 

Results 

Results are pre~ented in Table 4 and agree well with those from example 3. 
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5. CO::CLUSlOiiS 

1. A ne~'J capabil ity has been developed and added to the general purpose 
finite elem~nt progrilm NASTHAtl Level 11.7 to conduct forced vibration analysis 
of tuned cyclic structures rotuting i)bcut their axis of symmetry. 

2. The effects of Coriolis and centripetal accelerations together with 
those due to the translational acceleration of the axis of rotation have been 
included. 

3. A variety cf l!SC:-' options is pr'ovlozQ to specify the loads on the 
rotating structure. 

4. Five intel'related examples are presented to illustrate the .'arious 
features of this development. 
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5. m:CO;"J{Ef{D.I\TIONS 

1. This is a nett capsbility ar.d, therefore, the examples presented herein. 

have been prili'.Jl'ily designed to il1ustl"ate the various basic features of the 

developr.:ent. ApiJl icat ion to a variety of real problems would substantiCllly 

contribute tC\'Jilrds determining its m~rits arid limitations \'lith regards to its 

applicabil'lty, u5efull1Co;S, and savings in modelling and COiT:put~tional time. 

2. The capability should be extended to conduct forced response analysis 

using norrml modes with cyclic symmetiAY as the basis. 

3. Inclusion of induced and applied oscillatory aerodynamic loads within 

the capability i':ould be a desirable step in solving the forced vibration problems 

of turbomachines. 
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APPENDIX 

H{f-RTIAl LOADS DUE TO BASE ACCELERATION 

The acceleration of the axis of rotation generates inertial loads at all 
grid points of the co~p1ete structure. In this appendix, the generation of these 
inertial loads and their transformation to frequency-dependent circumferential 
harmonic components ai"e discussed. 

As given by equation (27) of Section 2 • the inel·tial forces on the 
three translational degrees of freedom at an arbitrary point P of the modelled 
cyclic sector, expressed in the global (displacement) coordinate system. are 

{pG} = -[M2]{~0} = [TBG]{pB} (1) 

where 

{pB} = F: 1 
B 0 or' 0 

:H~: 1 [ ~ - : m : l~ c 

0 -s Pz 
(2) 

with c = cos nt and s = sin nt. 

Since ali the eycl ic sectors are identicai in all respects except for the 
specified loads. no general ity is lost in assu;nin':J. for s"imp1 icity, that the 
modelled sector is the n = 1 sector. Equation (1) can, then. be rewritten as 

(3) 

where 
c = cos (n-1 • 1 ·2n/U),- and } n (4 ) 
s = sin (n-1 ·1 ·21'"/11) n 

substituting equation (3) in equations (5) of Section 3 , and noting that 

N 
L cn - 0 
n=l 

(5) 
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r cn • cos (n-T. k • 2rr/N) = lJ/2 k=l 
n 

- 0 

ISn • cos(n:T· k • 2iT/N) ::: 0 , 
n 

ICn • sin{n:T. It. • 2rr/N) :: 0 • 
n 

Is~ • sin(n:T. k • 2:r/1l} = N/2 
n 

= a 

• k=l 

• k~l 

(5) 
(contd) 

the circumferential ha~nic components of the base acceleration loads become 

("k" = 0) 

("k" ;: lc) 

(6) 

("k" = ls) , and 

G 
{p1<c,ks} ;: {O}, all other "k". 

In the present development, the components of ~ .se acceleraticn XO' YO and 
Zo are considered to be sinusoidal of frequency ~\, and are specified as 

.. 

I Xo ;: Xo cos({j;t + 4X) , mag 
.. 

YO = YO r:os ({j:t + 'i') , and ( (7) 
, mag 

Zo .. ZOo cos (ut ~ ;~l) I mag ./ 
_ h()- ~~'\ 



r 
r 
.. 

" 

From equation (2), therefore, lte Cilfl vlr-ib~ . 
P B = 
X 

P B y = 

p B = Z 

-mXo,mag. co~(wt + ~X} 

.. 
-m[YO ,mag cos f··.· cos(wt + ¢'y} + Z O.mag sin nt • cos(wt ;. IPZl1 and 

.. .. 
-m[-YO ,mag Sill., . I"os(wt + ¢y} + Zo . ,mag cos nt· cos(wt ... ¢'Z}J. 

The cosine and sine products in equations (8) can be expressed in terms of 
individual cosine and sine terms with'freq~encies (w + n) and (w - n). 

The following conclusions about base acceleration loads can, therefore, be 
drawn by ~ubstituting equat10ns (8) into equations (6): 

1. The axial component of base acceleration, Xo(w), contributes to pO at exci­
tation frequencies w. 

.. .. 
2. The lateral components of base acceletation, YO(w) and ZO(w), contribute to 
plc and pls at excitation frequencies (w ± n) for each w specified. 
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B 

Bl 

D 

G 
,.. ,.. ,.. 
I. J. K 
,.. ,.. ,.. 
IB, JB~ KB 
,.. ,.. ,.. 
; , j, k 

K 

k 

R.. 

!~ 

Ml 

M2 

m 

N 

P 

Q 

RO 
.... R -+ ,. p " , 
T 

t 

U 

u 

W 

n 

w 

Damping matrix 

Coriolis acceleration coefficient m3tri~ 

Raylei~h's dissipation function 

"Symmetric Componcnts" tran5for--;nation r..atrih 

unit vectors along Inertial XVZ axes 

Unit vectors along Basic XB VB Zu axes 

Unit vectors along Global xyz axes 

Stiffness matrix 

Circumferential harmonic index 

Tim!! harmonic index 

} (Figure 3) 

Mass matrix, number of time intervals per period {Fig~re 5) 

Centripetal acceleration coefficient matrix 

Base acceleration coefficient matrix 

Hass 
Nu:nber of cyclic sectors in the complete structure 

Load vector 

Aerodynamic coefficient matrix 

B~se acceleration vector 

position vectors (Figure 3) 

Kinetic energy, coordinate system transformation matrix 

Tim€: 

Strain energy 

Physical displacement degrees of freedom 

Virtual \~ork 

RotatioMl frequency 

Forcing frequency 
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n 

-0 

-1',C 

-R.s 

-kc 

-ks 

-W2 

-N/2 

StM30LS {Cootinued) 

Superscripts 

Basic 

Giobal 

Independent solution set in "syrrrnetric components" 

~th tima instant 

nth cyclic sector 

Fouri er coeffi cients ("symmetric components") 
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