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1. INTRODUCTION

This report documents results accomplished at the NASA, National Space

Technology Laboratories, Earth Resources Laboratory (NSTL/ERL) from the devel-

opment and testing of an agricultural land use change monitoring capability as

a part of the Land Cover Information Systems (LCIS) task of the AgRISTARS
r

Domestic Crops and Land Cover (DCLC) project in cooperation with the U.S.

Department of Agriculture, Statistical Reporting Servite (SRS).

Change detection analyses using remotely sensed digital data have been

.plied to a variety of natural resource problems. They have been used in the

monitoring of alteration in coastall9, 26, forestland5, 10 1 15, 18, rangeland,

desert4, 20, and interior wetland8 environments as well as the measurement of

land use dynamics in both urban90 22, 23, 24 and natural settings3, 6, 18, 26.

This information has been used to monitor for water quality changes in water-

shedsl4, 16 and for increases in strip-mined lands 1, 11.

The remote detection of locational changes in surface cover materials pre-

supposes there are associated, measurable radiometric differences between

successive dates corresponding to these changes on the ground. Geometric

relationships preserved by imaging scanners make this possible. As a result,

several methods have been devised to recognize and map these phenomena. Those

tested have included: band ratioing8, 9, 24, band subtraction (image dif-

ferencing)9, 18, 22 , pre-classification differencing (delta data classifica-

tion)26, post classification comparison5, 8, 10, 15, 23, 26, classification of

' d	multidate data2, 
26' 

and measurement of spectral change vectorsl, 5 0 ll, 15,

4
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Other comparisuns	 for change have been accomplished through confersion of 	 the

digital	 counts	 to absolute	 physical	 quantities	 that	 are	 then	 subtracted''O 	and

also	 by	 taking	 statistical	 measures	 of	 correlation,	 covariance,	 and/or

percent-explained-variance	 by	 the	 first	 eigenvalue	 to	 compare	 between	 data

F sets4.	 One	 investigator	 used	 the Kolmogorov-Smirnoff 	 (K-S)	 test	 to	 identify

changes between dates 6 , while yet another has correlated land use changes with

q. information contained in the third principal 	 component of a transformed, multi-

x date data seta.

Numerous	 obstacles	 prevent	 the	 straightforward	 execution	 )f	 these	 opera-

tions,	 and	 subsequent	 problems	 make	 evaluation	 difficult.	 BFsically,	 any	 of

these methods require spectral 	 data sets to be precisely co-registered so that

the	 radiometric response of corresponding ground areas can be compared. 	 Posi-

tional	 inaccuracy advers e ly affects performance,	 although one method employing

the	 K-S	 test	 reports	 that	 it	 is	 relatively	 independent of	 small	 misi^gistra-

tion	 errors6 .	 Other	 problems	 include	 the	 influence	 of	 time-dependent	 varia-

tions	 of	 the	 extrinsic	 factors	 listed	 in	 Table	 1.	 These	 factors	 variably

combine to alter the radiometric fidelity of the recorded spectral 	 response of

a	 scene.	 This	 degrades	 technique	 performance	 by	 inducing	 the	 detection	 of

untargeted	 factors.	 A	 few of	 these	 (e.g.,	 clouds,	 cover	 material,	 and	 soil

moisture changes)	 are	 locational	 by nature whereas	 other changes	 affect total

F coverage.	 Investigators have experimented with and applied vaiious data modi-

fications	 in	 attempts	 to	 negate	 or compensate	 for	 such	 factors.	 Generally	 a

great deal must be assumed, and only the major influerces are tr eated, usually

by "standardizing" or equalizing the effect3 on each data set rather than

"correcting" or removing it as a factor since no one has proven that the

effects can be entirely subtracted.

2
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Table	 1.	 Considerations	 for Temporally	 Dependent	 Sources	 of	 Change	 in

Reflectance Between Data Sets

Atmospheric Differences

Clouds

Haze
Humidity
Dust

Seasonal Differences

Solar Illumination Angle
Phenologic St,^ge

r

Surface Differences

So`l Moisture
Cover Materials

Sensors/Systems Differences

Orbital Altitude
Platform Attitude
Differential	 System Deterioration Rates
Sensor Calibration

E Processing Differences
t

Formatting
Resampling Procedures
Decompression Procedures

Astrophysical Differences

Solar Flux
Magnetospheric Interference
Various Axial Motion Components
Ecliptic Variations
Eccentricities in Orbit

f
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Geometric corrections for skew, rotation, scaling, etc., are regularly

applied to rectify both data sets in early stages of preprocess'ng before

co-registration5 , 6, 9, 12, 17 0 18 9 19 0 201, 26.	 Other investigators have

tried to correct for aerosols (haze) 12 and other non-localized atmospheric

effects20 as well as clouds3, 12.	 Atmospheric correction models usually

require additional measurements accA red concurrently with the spectral data;

othu rwise data sets are standardized to one another by the same factors that

are inherently collected in the data 20 .	 If not for the unavailability of

these concurrent atmospheric measurements and the expense and complexity of

mathematically describing atmospheric interactions, the use of these models

would be more prevalent. More frequently used are standardizations for

effects of differences in solar illumination angle and of differences in

sensor calibrationl2, 20, 21, 25.	 The effects of these factors can be

eliminated, however, by selecting data collected on anniversary dates with the

same sensor to avoid the major influences of seasonal and system differences.

But there are no guarantees that such factors as phenologic conditions or soil

moisture are as cyclical as sun angle effects and consequently have equal

influences in each date. 	 Also, data within these constraints of geographic

and temporal coincidence may not be available, However, the data were avail-

able for this study, and overall scene characteristics of both data sets were

very	 similar. The	 author	 achieved	 better	 results	 with	 this approach	 when

testing	 the	 first	 two	 techniques	 described	 in	 Section	 3	 than with	 data	 sets

standardized by either the ERIM-developed coefficients 12 or the Landsat User's

Handbook20.	 21, 25	 coefficients	 for	 both	 sun	 angle	 and	 sensor gain	 calibra-

tion.

a

m
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Another standardization based on the same theory as the regression

modeling technique described in Section 3.4 was also tested. Attempts were

made to model no change areas between dates in order to relate second-date

spectral response as a function of the first date's response. 	 This

relationship was then extended to th ,,, entire second-date scene to describe it

in the same terms as the first, which serves to equalize the extrinsic effects

mentioned before. The transformation using the model coefficients worked well

in the forested areas where the manual sample selection was adequate. 	 A

suitable sample of other types of unchanged areas of the scene was absent, and

the model could not sufficiently describe these areas. 	 This data set-

dependent approach to standardization hypothetically enables scenes, regard-

less of differences, to be related under equivalent terms.

In addition to the problems of registration, extrinsic factor effects, and

acceptable digital data selection, a control area is essential to establish

performance levels and to verify results when operating in an experimental

mode. This inexorably creates the need for ground data coincidental in time

and space with the necessarily retrospective study interval to be used as a

standard for comparison. 	 Therefore definition of a control area dictates

common areal coverage at two points in time from two uifferent data sources.

This restriction has prevented many investigators from having adequately

substantive proof of performance from their results. Most often they do not

satisfy all these criteria because the data are simply non-existent, or they

are more interested in the success of the application. 	 Usually aircraft

photography has been the only reliable, alternative data source for large area

surveys of this nature on successive dates, but even then coverage has been



spatially limited and irregularly collected. 	 In spite of this, aerophoto-

graphy has been used successfully to map land cover and land use change 13, 16

and previously has been the only other feasible recourse until the advent of

this technology. The control area, with its attendant data requirements, is

necessary only for the experimental process. 	 It is not required for the

routine application of these methods.

Schemes for detecting surface changes take two basically different direc-

tions in approaching their performance objectives. 	 One, a technique is used

to examine or sample the entire pixel population as an undifferentiated se':.

As a result it may identify  anything from relative measures based solely upon

the radiometric count difference of matched resolvable elements at two points

in time4 , or the technique may be able to locate and quantify specific types

of change areas which indicate conditions at each time frame 2, 10 .	 Two, a

technique may operate on a specified subset or stratum of cells where the

changes known to be occurring are the subject of study such as in a particular

ecosystem or habitat, with all other pixels being eliminated from analysis.

This simplifies the procedure, and less confusion develops at the outcome

because of the reduced number of data points to analyze. 	 This allows the

detection operations to address more subtle differences than could be recog-

nized otherwise where these differences might be masked by greater spectral

differences, which may not be of concern for a particular application,

9t	 occurring in the general pixel population. 	 Of course a means of different-

"	 iating the population is required prior to operating on the correct subset.

ha	
The choice of schemes is dependent upon the objectives of the analyst for the

specific purpose to be undertaken and potential for its best results.

'I
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The methods that were developed and tested here were intended to express

`	 these changes in terms of the naturally vegetated landscape which underwent a

change of conditions associated with agricultural production. Thus a survey

of the whole population of data cells was taken as in the first option men-,
7

d
	

tioned. The obJectives of technique execution were to detect and to locate

changed pixel areas as well as to describe conditions at each date capable of

characterizing the changes present with the least amount of ground truth.

This does not mean that other methods or approaches will not provide these

same informational components: 	 detection, location, and identification. 	 It

was aleo desirable that they be flexible enough to provide maps as well as

tabular accounts of specific change types that would affect agricultural

productivity estimation.

2♦ .CiTWUi^ SITL HtYD DHTN

a	 2.1 Study Site Description

U

^
7 The test	 site covers an area 	 from 91.5 0 to 92 0 W.	 longitude and from 310
t

to	 32 0	N.	 latitude	 on	 the	 fertile alluvial plains of	 the	 lower Mississippi

River	 in	 east	 central	 Louisiana. This	 area is further characterized by

minimal	 relief,	 poor drainage,	 and fertile, shallow, undeveloped, organic-rich

soils	 complexly	 distributed	 by	 the fluvial processes	 at work	 in this	 region.

Extensive mixed-bottomland hardwood forests of oak, gum, and cypress once

M dominated 	 landscape. Rapid clearing for agricultural production of cropsthep	 g	 so	 g	 p	 p

and livestock has left less than a quarter of these forests standing 2 . Table 2

shows the deforestation rates for parishes that are a part of this
NP

t
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study area. The magnitude and type of land cover change occurring within this

J
area played a significant role in its selection as an exploratory site for

technique development and testing.

2.2 Landsat MSS i)ata

Landsat MSS data sets collected October 10, 1974, and October 2, 1979,

were obtained covering the frame defined by path and row coordinates 25/38 of

the Worldwide Reference System for Landsats 1, 2, and 3. Fall data sets were

used as this is the driest time of the year for this locale. 	 It had been

hypothesized from previous study 10 that forest and agricultural land cover

conditions in this season would offer enhanced spectral separability by

minimizing	 problem of spectral overlap partly caused by the excessive

surtsce wetness that prevails most of the year.

The 1974 data set is in the pre-EDIPS X format for CCT's (57m by 79m

resolution cell, geometrically uncorrected) while the 1979 data set is in the

ii	EDIPS P formllt of partially corrected, 57m X 57m resolution cells. 	 A tech-
4

nique for overlaying Landsat data with Seasat data described by Wu 27 was used

to co-register and merge these differing data format types into a single 8

channel, multidate source file.	 Registration was accomplishe s; to within one

r	 pixel (57m RMS) of the base set.

P	 ^

2.3 Aernphotographic Data

il
r

Conventional, high altitude, color IR photography was ava i lable for

retrospective ground coverage contiguously defining the test site.	 Aero-

R R.

9
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photographic missions had previously acquired these data October 4, 1974, at

1;120,000 scale and October 24, 1979, at 1:60,000.	 This closely coincided

with the endpoints of the 5-year interval between Landsat overpasses when the

spectral digital data were acquired. (See Table 3.)

The two sets of photography were ana l yzed for changes in land cover dis-

tributions.	 Changed areas were delineated and rectified upon a common base

using the eight USGS 15' series of topographic maps that comprise the study

area.	 Digital land use change maps were produced using an X-Y digitizer to

define the polygonal boundaries in the UTM coordinate system.	 Next this

polygonal information was converted into a raster data file with each data

cell representing either a change or no change area. This sequence is illus-

trated for a 15' subset of the area in Paragraph 4.1.

Tablo 3. Data Acquisition Dates for Data Types Used in

This Investigation

DATE ACQUIRED

DATA SOURCE TIME	 1	 TIME	 2

LANDSAT MSS October 10,	 1974 October 2,	 1979

FALSE COLOR IR

AEROPHOTOGRAPHY October 4,	 19'/4 October 24,	 1979

2.4 Map Information for USDA/SRS Areal Unit Analysis

A

Prior to sampling and estimating the crops, livestock, farm labor, etc.,
'IC

1

for a geographic area, SRS personnel stratify land uses and agricultural land

^J

10
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use intensities through aerophotographic interpretation. 	 These land use

strata are further subdivided into what is the basic SRS geographic analysis

area or frame unit.	 Each frame unit is a similarly homogeneous part of the

stratum it represents.	 It corresponds to a specific polygonal area of the

land surface bounded by permanent, recognizable map features.

Strata maps (the area sampling frames) for Catahoula and Concordia Parish-

es were obtained, and the frame unit boundaries were digitized. Superimposing

these areal reference units with information produced by one of the change

detection processes gives land use change statistics, as well as land use

proportions at both dates, for each frame unit. Also, the geographic location

and extent can be mapped on peripheral devices and used effectively to update

the stratification.	 (See Figure 1.) Here the same boundaries are used, and

frame units only are redefined, which prevents reconstructing the entire frame

by present means.

3. CHANGE MONITORING TECHNIQUES

3.1 Post-Classification Comparison

This approach is one of the most widely used. 	 It involves making inde-

pendent land cover classifications for both points in time, usually through

automated spectral pattern recognition techniques.	 These are reduced to

n m common descriptive categories and then compared for areas of each category

that have changed during the period covered.

m«
i

fa

c±c;
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In this case an unsupervised clustering technique that passes a

user-defined window through the data to find spectrally homogeneous areas was

usedlC .	 These are reduced into statistically defined spectral groupings or

signatures which provide the decision boundaries for mapping all data cells

into classes based upon probability densities via a maximum likelihood

algorithm. The 1974 data set produced 49 spectral classes, and the 1979 data

set produced 54 such groups. Through interpretive examination both s n ;,a were

reduced into the three major surface cove-s that exist at this site: cropland,

forestlard, and water.	 With both time periods commonly represented by this

classifi,.ation scheme, they were numerically recoded in order to be digitally

compared for detecting the desired changes. Figure 2 graphically depicts the

assignment of each spectral signature to one of the three major surface covers

and the position of the means of each signature on a plot of a visible and

infrared band.

3.2 Spectral Change Pattern Analysis

This method uses the same pattern rc-ognition technique in 3.1 as the

primary data reduction meth d; however, rather than operating on individual

dates, the co-registered, composite, multidate file or subsets of correspond-

ing channels in each date are used as the source for statistical signature

development. In this manner, as in the sense of multiseasonal classifications,

the added information from another date defines classes whose spectra have

changed in a distinct pattern in addition to those groups that have the same

spectral response in both dates.	 In this way these composite signatures can
a

be temporally sliced to indicate the spectral response at each date because

,nom
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the same spectral class represents both dates„ unlike the previous technique

in which each date had signatures developed separately. Thus after mapping

the data into these statistically defined categories, areas of change and no

change can be identified by their signature migration along with conditions

indicative of therf c coversu a e co a at each paint in time.

In	 this	 investigation,	 the	 full	 eight	 channels	 of	 data,	 a	 six-channel

subset	 (bands 4,	 5,	 7	 of both dates)	 and a	 four-channel	 subset	 (bands 5 and 7

r
for	 both	 dates),	 were	 tested	 and	 developed	 sets	 of	 56,	 52,	 and	 58	 training

statistics,	 respectively.	 The rt:sults from the three data sets differ by only

0.3%,	 with	 the	 four-channel	 data	 set	 giving	 the	 most	 accurate	 results.

^v
Whether	 this	 is	 because	 of	 the	 high	 correlation	 between MSS	 bands	 providing

essentially most of the	 information	 in two channels or of the optimization of

the	 classifie r	for	 four	 channels	 is	 not certain.	 Figure 3	 graphically	 shows

the	 assignment	 and	 position	 of	 each	 of	 the	 58	 spectral	 group	 means	 in	 two

bands	 for both	 dates	 of	 the	 four-channel	 data	 set.	 Note	 here	 that the	 same
s

class occurs	 for each date whereas before 	 (3.1)	 the classes between dates have

no	 relationship	 other	 than	 they	 represent	 corresponding	 types	 of	 surface

E materials.

3.3 Radiance Vector Shift

This method uses an algorithm that looks at two channels of information

from each date independently and then compares for differences between data

sets in terms of standard deviation and an angle of relative, directional

shift17 .	 The algorithm works by finding all the pairwise occurrences from

I
15
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F the two channels that have been selected from the first data set within the

° second, and it computes a distance from these corresponding pixel 	 locations in

standard deviations for that set of specific pixels.	 It then takes an angular

I measure relative to the first point, to the position of the second point Oich

is described by	 its values in the two channels. 	 It was believed in Oe design
.i

of	 this	 particular	 algorithm	 this	 second	 channel	 of	 informatior	 would	 have

descriptive value to the type of chai.ge ,	 but as is,	 this directional	 component

is not relatable through any common reference 	 frame such as the origin of the

two	 axes	 describing	 the Euclidean	 space	 that	 the	 values	 occupy.	 That	 is,	 a

number of possible land covers could have the same value for the bidirectional

shift	 as	 well	 as	 equivalent	 measures	 of	 magnitude	 and	 be	 entirely	 different

types	 of	 changes	 at	 both	 beginning	 and	 end.	 Another	 shortcoming	 to	 this

algorithm's	 treatment	 of	 spectr-, 7	 change	 vector analysis	 is	 the	 averaging	 of

the	 co-occurrence	 values	 in	 the	 comparison	 data	 set.	 Because	 of	 this,

identity of the values resulting from that specific change is lost.

G.

A	 continuous	 range of change values is	 output where	 zero	 represents	 no

F
change.	 A	 threshold	 is decided upon based upon ground data since there is no

outstanding data feature to delineate the change/no change boundary.	 Usually

this	 is	 gradational;	 the	 boundary may	 cover	 a	 range	 of	 five	 values	 or ,	more.

This condition	 leads to commission and/or omission errors wherever the thres-

hold	 is	 set.	 In	 this case	 the ground truth	 was	 used	 to	 obtain	 the	 value

producing the best results.

1



3.4 Regression Model

This method involves the development of a mathematical model through a

IT	

stepwise regression procedure between each date that relates the second date

(T2) spectral response for iri,vidual ground cells to those for the first date

(T1) for each corresponding channel of information. 	 The model values

predicted for T2, as described by its best fit with T I , are subtracted from

the actual T2 data to produce a digital file of residual errors for all pixel

locations. Areas of land cover change coincide with the more anomalous values

0	 derived from the predictive model.	 A critical value is determined for the

residual error values, and pixels assigned a change/no change status

accordingly. In all trials between corresponding bands in each date, the

relationship was best described by a cubic equation in the form:

_2
n-	 Yijk = Ao + 4lX ijk + A2X ijk + A3X 'ijk + Eijk

where:

Yijk

Xi jk

A
u	 o

A l A 2 A3

band k value at row i and column j in second date (T2),

band k value at row i and column j in first date (TI),

constant offset,

: multiplicative factor for first, second and third order

regression coefficients, and

E ijk = Y	 observed - Y	 predicted, residual	 error that represents

change to some degree beyond predicted fit between dates	 for

the _	 )und area imaged at row i	 and column j	 in band k.

The basic precept here	 is that if there were no change,	 E ijk = d • This would

be	 the	 ifcase	 an	 area	 could intwice	 short	 succession beforebe	 imaged any

measureable changes could	 take place	 or	 if	 this relationship	 was established



for a duplicated data set: Y ijk 0 
xij k (or T2 a T 1 ).	 But as t e interval

between successively collected data increases, this relationship evolves to

express whatever changed conditions present can be mathematically described --

in this case, a cubic expression.

Earlier trials did not deliver the expected results. Sampling of corres-

ponding cells between dates had depended upo-i a coarse, regular interval of

point selection, because of program limitiations and study area size, and

proved to be inadequate to describe the desired relationship. After reconsid-

eration, it was decided that to properly describe T 2 response as a function of

T i ,	 the model should	 express	 the	 relationship between dates	 in	 terms	 of	 no

change. In other	 words,	 the	 samples	 use.,	 to develop the	 model	 should	 be

selected from areas with absolutely no location-specific surface changes.	 In

-	 this way: 11) the many environmental 	 difference factors 	 influencing every cell

could be taken	 into consideration and be expressed by the model	 as a constant

offset, and	 (2)	 the calculated,	 predic^ed values of the model	 would reflect no

surface changes	 so	 that	 (3)	 in computing	 the	 residual	 errors	 between	 the

model's predicted	 value	 and	 those actually	 observed,	 highly	 anomalous	 values

would	 occur in	 areas	 of	 change. Unfortunately,	 only	 forested	 areas	 of	 no
MP

change could	 be	 stratified	 for model	 building	 and	 did	 not	 represent the

entirety of land covers within the scene. The manual or supervised procedure

of sample selection for defining the model was unatle to locate enough

acceptably unchanged examples of other representative land covers to success-

fully describe them through the stepwise regression analysis. Of the major

land covers characterizing this area, no agricultural samples could be

used--even though there were large areas of agriculture in both dates--because

19



I
of the continual changes in surface r.vnditions brought about by their

intensive human use. 	 Even the large areas of water in this area were

rejected,	 because	 they	 also varied	 extremely	 between,	 dates. With no	 other

type	 of	 samples	 but	 forest to	 develop	 the	 relation between dates, the model

did	 not	 perform well	 under these	 other	 condtions. However, within forested

areas,	 the	 method	 worked isonably	 well.	 There was	 very little error	 or

noise,	 and	 with	 experience the	 various	 residuil error	 levels could	 be

associated with specific types of change.

In expressing the iocational, no-change relationship between dates, this

method might also work well as a data-specific standardization between any

data sets from which the model was developed. 'M i s idea was not fully tested

because of the same sampling problem.

4. EVALUATION OF RESULTS

s,	 4.1 Verification Procedure

For verification of detected changes of land use between 1974 and 1979,

the digital ground data mapped from the coincident aerophoto coverage was

formatted into a multichannel, georeferenced data file.	 Every 57m2 cell

within polygon boundaries representing the photointerpreted land use change

was encoded with the value "1". All areas of no land use change were assigned

a zero value.	 This exercise served to provide complete, contiguous data
i

representation for an area of eight 15' series quadrangle maps with a digital

land use change map to serve as a comparison standard for method performance.

t



Each individual change detection technique's digital output was also reg-

istered into the data base as "0's" or "1's".	 This was accomplished after

registering th.e Landsat data to the UTM coordinate system ? so that equivalent

points on the ground could be compared.

Criteria for photointerpretation employed the use of a minimum ten percent

crown closure to distinguish forests fram non-forests.	 Only change areas

larger than ten acres were delineated during photointerpretation. In order to

maintain as much label definition consistency and compatibility between data

sources as possible, Landsat-derived data products were further subjected to a

spatial classifier recognizing only change parcels larger than ten contiguous

acres, effectively eliminating anything less from the comparison. Each tech-

nique's output was then added cell-by-cell to that of the doubled ground data

value to produce an "error source map" and/or accuracy statistics. 	 This

operation is better described by CHO = CH1 + (CH2 *2;

where: CHO = result of operation for comparison

CHI = MSS-derived change data

CH2 = ground reference data

for each equivalent ground resolution cell. 	 Ti,,- possible outcome of this

operation is a 0, 1, 2, or 3 for each cell where (0) zero represents agreement

between both data sources that no change has occurred for that cell, (1) one

indicates commission error on the part of the computer-identified change

technique, (2) two indicates omission error, and (3) three indicates there was

mutual agreement to that data cell having undergone changes. 	 Statis+ical

information from this procedure for the four techniques tested is shown in

Table 4, and an "error sour;:e" map is shown in Figure 4.
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Using the error-source map generated from this procedure, the correspond-

ing locations of the commission and omission errors can be examined in the

photography and a descriptive determination of their cause can be identified,

whereas the numerical procedure alone only classifies the errors in one of

these two ways.	 With this ability, the first examination revealed that many

of the larger areas of commission error were locations of actual change that
u

had been overlooked during the photointtrpretation. 	 The data in these were

locations updated to correct these errors in the ground truth. After further

reexamination of this information in its spatial context, the remaining errors

were attributed to the following factors:

1. Non-simultaneous acquisition of Landsat and aerophotographic data as

in the case of sizable random, iocational errors of omission;

2. Several types of misregistration of the ground data to a common map

base such as:

(a) photo-to-map transfer of land use change delineations,

(b) imprecise digitizing of these locations,

(c) conversion of this polygonal data to a raster data file, as in

small, contiguous errors of both commission and omission in

boundary locations;

3. Misregistration between data types such as:

(a) band-to-band registration in individual spectral data sets,

(b) scene-to-scene registration between spectral data sets,

 eV6

(c) scene-to-map registration for a georeferenced data set which

resulted in more scattered, but patterned, errors of both types in

E	 many physical boundary locations;

14 IV

r
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4. Human error in ground data set development such as:

(a) incompiate identification of all change sites between sets of

photography that could not be corrected and

(b) misinterpretation of land use change which resulted in small

discrete errors of both types;

5. Discordant labeling criteria between data types--This factor caused

either commission or omission errors depending on the circumstance.

For instance, a computer-assisted, satellite- detected spectral change

may consistently occur at a forest density break of 40 percent crown

closure, whereas manual mapping criteria may stipulate a 10, 15, or 20

percent break before it is recognized as a change to another category.

Other problems of this nature included surface areas covered by high

water and the range of surface conditions associated with cultivated

areas.

6. Spectral similarity between certain surface materials and consequent

co-classification--Small examples of various misclassifications were

found that included confusion between burned over areas and wet areas,

between some types of agriculture and forested sloughs, brakes, and

wetlands, and within highly complex boundary areas where many land

cover types occur within a single resolution cell and produce

integrated spectra.

Most of these errors (1, 2 9 4, and 5) could be eliminated in routine applica-

tions where the verification exercise is unnecessary.

4.2 Summary Conclusions

Computer generated classificat,3ns of Landsat multispectral (MSS) data can

be used to measure forestland to agricultural land use changes accurately

25
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I
when the proper data are selected and land parcels being converted are ten

acres or larger. With these stipulations, the accuracy obtainable is at least

equivalent to what can be obtained through aerop,,otographic measures of

changed land use.	 Results showed that approximately 10.5% to 13% 	 the

entire half degree by one degree study area had changed from forestland to

agricultural use in the five-year period.	 However, in some areas where land

u	 use changes were more concentrated, data from certain 15' quadrangles

indicated up to 20% of this land use change within their boundaries. Several
u

a
blocks of land as large as four square miles incurred 100% clearing and

replacement by agricultural use.

The methods reported here work without extensive efforts to standardize

various extrinsic effects on each data set. 	 All techniques require accurate

digital co-registration of the data sets.	 The two methods involving maximum

Tlikelihood classifications as the primary data reduction tool provide all the

information requirements discussed in Section 1 with the least ground truth.

`i	These methods also more accurately depict they	 p	 geographic distribution of the

changes identified.	 This is paramount in applications where this spatial
i.

detail is necessary. 	 Even though all techniques' performance results vary

from 89% to 96% correct and appear adequate, there is a marked difference in

t	 the images each technique's accuracy produces. 	 (See Figure 5.)	 The added
k

dimension of this additional information suggests that many applications would
f

d	 be unusable without at least a 95% accuracy by this method of accuracy

I
measurement.

The post-classification comparison (PCC) and spectral change pattern

analysis (SCPA) techniques obtained the same scores for accurately identified

26
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i
m	 change and equal amounts of omiss`on error because of similarities in the data

reduction techniques used in each; however, the SCPA technique was more

^T	 sensitive to decreases in forest cover density despite scoring less commission
U

errors and despite user-supplied labels on spectral groups in the PCC tech-
7

nique that eliminated differing labeling criteria. Reasons for this will be

7 -	 explored as these methods are tested in test areas in Kansas and Arizona.
i
U

Iu

U-

7°
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